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Abstract

Intermittent demand forecasting is an important supply chain task, which
is commonly done using methods based on exponential smoothing. These
methods however do not have underlying statistical models, which limits
their generalisation. In this paper we propose a general state-space model
that takes intermittence of data into account, extending the taxonomy of
exponential smoothing models. We show that this model has a connection
with conventional non-intermittent state space models and underlies Cros-
ton’s and Teunter-Syntetos-Babai (TSB) forecasting methods. We discuss
properties of the proposed models and show how a selection can be made
between them in the proposed framework. We then conduct experiments on
simulated data and on two real life datasets, demonstrating advantages of
the proposed approach.

Keywords: Inventory forecasting, state space models, exponential
smoothing, intermittent demand, Croston, count data

1. Introduction

An intermittent time series is a series that has non-zero values occurring
at irregular frequency. The data is usually, but not necessarily, discrete and
often takes low integer values. Intermittent series occur in many application
areas where there are rare events. Examples include security breaches, nat-
ural disasters and the occurrence of demand for slow-moving products. In
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the last case we usually refer to “intermittent demand” which, in addition to
irregularity of occurrence, contains only zeroes and positive values. The final
application area is important in a supply-chain setting, where decisions need
to be made about the quantity to order and the discontinuation of ordering.

In this paper, we establish a general modelling framework for intermittent
series, which does not depend on any particular application area. However,
its development has been motivated by the requirements of inventory man-
agement. Two forecasting methods that have been described in the supply-
chain literature to inform how much to order and when to discontinue a
product, are Croston’s method (Croston, 1972) and the TSB method (Te-
unter et al., 2011). Neither of these methods has, so far, been furnished with
a satisfactory statistical model.

From a practical supply-chain perspective, there are a number of issues
that need to be resolved. We need to decide, in a systematic way, which
intermittent demand forecasting method to use, rather than allowing these
choices to be arbitrary. Having chosen the forecasting method, it needs to
be parametrised appropriately. Finally, replenishment decisions should be
informed by reliable estimates. For inventory systems based on the probabil-
ity of stock-out, good estimates of upper percentiles of demand are required.
For systems based on fill-rates (percentage of demand filled immediately from
stock), good estimates of probabilities of demand are required. In the latter
case, these may be calculated from an estimated Cumulative Distribution
Function. The modelling approach recommended in this paper supports the
estimation of both percentiles and Cumulative Distribution Functions. In-
deed, we argue that a sound statistical model can support method choice,
parametrisation and, ultimately, replenishment decisions in supply chains.

In this paper we propose a statistical model for intermittent data, discuss
its properties, then derive reasonable and concise models underlying Cros-
ton’s method and TSB and demonstrate their advantages. We also show the
connection between conventional forecasting models and the intermittent de-
mand model. We then demonstrate how the proposed intermittent demand
model works on several examples. Thus we contribute towards filling a gap
of modelling intermittent time series, which opens new research directions in
the area.

2



2. Literature review

The most popular intermittent demand forecasting method was proposed
by Croston (1972). His method has been researched extensively in recent
years and has been implemented in widely adopted supply chain software
packages (e.g. SAP APO). Croston was the first to note that, when demand
is intermittent, simple exponential smoothing produces biased forecasts im-
mediately after demand occurrences (known as ‘decision-point bias’). So he
proposed splitting the observed data into two parts: demand sizes and de-
mand occurrences. The proposed model in Croston (1972) has the following
simple form:

yt = otzt, (1)

where ot is a binary Bernoulli distributed variable taking a value of one
when demand occurs and zero otherwise and zt is demand size, having some
conditional distribution. Proposing the model (1), Croston suggested to
work with each of these two parts separately, showing that the probability
of occurrence can be estimated using intervals between demands. If qt is
the time elapsed since the last non-zero observation, then it represents the
demand interval when the next non-zero observation occurs. Both demand
sizes zt and demand intervals qt are forecasted in this method using simple
exponential smoothing, which leads to the following system:

ŷt = 1
q̂t
ẑt

ẑt = αzzt−1 + (1− αz)ẑt−1
q̂t = αqqt−1 + (1− αq)q̂t−1

, (2)

where ŷt is the predicted mean demand, ẑt is the predicted demand size and
q̂t is the predicted demand interval and αq and αz are smoothing parameters
for intervals and sizes respectively. In Croston’s initial formulation it was
assumed that αq = αz, but separate smoothing parameters were later sug-
gested by Schultz (1987), and this additional flexibility has been supported
by other researchers (e.g. Snyder, 2002; Kourentzes, 2014). Note that the
update of variables q̂t and ẑt happens in the method (2) only when ot = 1.
When ot = 0, then there is no updating, ẑt = ẑt−1 and q̂t = q̂t−1.

Syntetos and Boylan (2001, 2005) showed that estimating the mean de-
mand using the first equation in (2) leads to ‘inversion bias’ and in order
to correct it, they proposed the following approximation (known as the
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Syntetos-Boylan Approximation, SBA):

ŷt =
(

1− αq
2

) 1

q̂t
ẑt. (3)

They conducted an experiment on 3000 real time series and showed that
forecasting accuracy of SBA is higher than Croston’s method (Syntetos and
Boylan, 2005).

Although various models have been proposed, none have so far been iden-
tified which would be appropriate for non-negative integer series and would
underlie Croston’s method. This means that heuristic methods of initialisa-
tion and parameter estimation are used instead of statistically rigorous ones.
Several authors over the years have looked into this problem.

Snyder (2002) discussed possible statistical models underlying Croston’s
method. He examined the following form:

yt = otµt|t−1 + εt, (4)

where µt|t−1 is the conditional expectation of demand sizes. Snyder (2002)
showed that the model (4) contradicts some basic assumptions about inter-
mittent demand. The main reason for this is because the error term εt is
assumed to be normally distributed, but this means that demand can be
negative. So, Snyder (2002) proposed the following modified intermittent
demand model:

y+t = ot exp(µt|t−1 + εt), (5)

where y+t represents the demand at time t.
Shenstone and Hyndman (2005) studied several possible statistical models

with additive errors, including those of Snyder (2002), to identify a model for
which Croston’s method is optimal. They argued that any model underlying
Croston’s method must be non-stationary and defined on continuous space
including negative values. They concluded that such a model has unrealistic
properties.

However, one of the main conclusions of Shenstone and Hyndman (2005)
is open to misinterpretation. One should not conclude that intermittent
demand methods do not have and cannot have any reasonable underlying
statistical model. This conclusion depends on the important assumption of
an additive error term. In this paper, we shall propose statistical models
with multiplicative error terms as an alternative to the models discussed by
Shenstone and Hyndman (2005).
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(Hyndman et al., 2008, pp. 281 - 283) proposed a model underlying
Croston’s method based on a Poisson distribution of demand sizes with time
varying parameter λt:

yt = otzt
zt ∼ Poisson(λt−1 − 1) + 1
λt = αzzt−1 + (1− αz)λt−1
ot ∼ Bernoulli

(
1
qt

)

qt = αpτt−1 + (1− αp)qt−1

, (6)

where λt is the average number of events per trial and τt is the observed
demand intervals. The authors point out that the proposed model “gives one-
step-ahead forecasts equivalent to Croston’s method”. This is because the
conditional expectation of zt for one-step-ahead in (6) is equal to λt−1−1+1 =
λt−1, which corresponds to Croston’s ẑt in (2). However, the proposed model
has two problems.

First, (6) cannot be considered as an appropriate statistical model, be-
cause it uses the SES method for λt, without giving a rationale for the gen-
erating process. The system of equations (6) should be considered as a filter
instead. It still retains useful statistical properties, but it is not as powerful
as appropriate statistical models, and sidesteps the ETS taxonomy. Fur-
thermore although the Poisson distribution becomes closer to the normal
distribution with an increase of λ, the connection between the model (6) and
the conventional ETS models is not apparent, making two separate cases.
The authors also do not propose any statistical model underlying the de-
mand intervals qt and once again use SES. This limits the properties of the
occurrence part of the model to the specific forecasting method.

Second, using the filter described in (6) restricts its generalisation, be-
cause introduction of new components or exogenous variables is not straight-
forward in this framework.

Overall, while the filter (6) solves some problems for intermittent demand,
and has a connection with Croston’s method, it cannot be considered as a
complete solution to the problem.

In Snyder et al. (2012) several intermittent demand models were pro-
posed. The model (6) is called in that paper the “Hurdle shifted Poisson”
model. The authors suggested applying the Negative Binomial distribution
with time varying mean value to the intermittent data, and found that it per-
forms better than the other filters. However this filter has the same problems
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as the Poisson one, discussed above. In addition, although it is well-known
that with the increase of trials the Binomial distribution asymptotically be-
comes equivalent to the normal distribution, it cannot be explicitly used
when the probability of success is equal to one, because it is not supported
in this case. Furthermore because the authors did not model the occurrence
variable separately, the proposed Negative Binomial filter is more restrictive
than the filter (6). Finally, the authors did not make a comparison with
the ETS(A,N,N) model in their paper, so it is not possible to assess the
accuracy advantage of the proposed filters in comparison with the simpler
non-intermittent models.

Another intermittent demand method was proposed by Teunter et al.
(2011), which has been known in the literature as TSB. It was derived for
obsolescence of inventory, but can be used for other cases as well. The authors
proposed using the same principle as in (1), but estimating the time vary-
ing probability of demand occurrence pt using simple exponential smoothing
based on the variable ot rather than switching to intervals between demands.
Their method can be represented by the following system of equations:

ŷt = p̂tẑt
ẑt = αzzt−1 + (1− αz)ẑt−1
p̂t = αpot−1 + (1− αp)p̂t−1.

, (7)

where p̂t is the predicted probability of demand occurrence and αp is the
smoothing parameter for this probability estimate. The update of probabil-
ity in TSB is done after each observation, while demand sizes are updated
only when ot = 1. In cases when ot = 0 there is no updating, ẑt = ẑt−1.
An advantage of this method is that the conditional expectation does not
need any corrections similar to (3). However the authors did not propose a
statistical model for their method, which leads to issues similar to the ones
for Croston’s method. These include problems with the correct estimation
of the model parameters, conditional mean and variance.

Both TSB and Croston can be applied to fast moving products, where
they become equivalent to simple exponential smoothing. They both perform
well on several datasets (Kourentzes, 2014); however they are disconnected
from other exponential smoothing methods and are considered to be a dif-
ferent group.
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3. Statistical model

3.1. Filter or statistical model?

Before proceeding to the main part of the paper, it is important to discuss
two forecasting approaches, that are often met in the literature, namely using
filters and using statistical models.

The filtering approach assumes that the data is used as an input of some
equation (or set of equations) and is transformed into a value of the same scale
as the original data. The classical example of a filter is Simple Exponential
Smoothing (SES), which has the form:

ŷt = αyt−1 + (1− α)ŷt−1, (8)

where α is the smoothing constant. The advantage of filters is in their sim-
plicity and the small number of assumptions. For example, SES is very easy
to interpret and can be used without assuming normality of the residuals.
The main disadvantage of filters is in the lack of statistical rationale. This
leads to ambiguity in estimation of the parameters of the filter and problems
in the construction of prediction intervals. For example, different initialisa-
tion procedures and different estimators can be applied to (8) and there is no
way to say which of them should be preferred without a rigorous analysis of
its predictive performance. This was one of the main arguments against us-
ing exponential smoothing in the statistical literature and one of the reasons
that statisticians used to prefer ARIMA models to exponential smoothing
(Box and Jenkins, 1976). Finally, the selection of a filter appropriate to the
data is one of the problems that does not have a straightforward solution.
Both Croston’s and TSB methods are filters.

As for the statistical models, they have their own advantages and disad-
vantages as well. For example, statistical models usually have strict assump-
tions on the error term, which means that in order to select the correct model
and correctly estimate its parameters, those assumptions need to hold. The
upside of having a model is in a simplified model selection procedure (which
nowadays is based on information criteria), statistically rigorous estimation
of parameters and in a simplified derivation of prediction intervals. Overall,
models allow working with the distributions of values, while filters are fo-
cused on point values. Finally, it is well known that there is no such thing
as a “true model”. But even if the model is wrong it can still be useful.
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Overall, both approaches are used in practice and both of them have
advantages and disadvantages. In this paper we employ the modelling ap-
proach, keeping in mind its upsides and downsides mentioned above.

3.2. General Intermittent State-Space Model

We start from Croston’s original formulation (1) and split intermittent
demand into two parts in a similar way, but assuming that zt is generated
using a statistical model on its own. We argue that the assumption that the
error term interacts with the final demand yt rather than demand sizes zt
is the main flaw in the logic of derivation of statistical models underlying
intermittent demand forecasting methods. Moving the error term into zt
allows using any statistical model that a researcher prefers (e.g. ARIMA,
ETS, regression, diffusion model etc). The model underlying zt corresponds
to potential demand for a product, while the other model, underlying ot,
corresponds to demand realisations, when a customer makes a purchase of a
product.

Taking into account that both Croston’s method and TSB use exponential
smoothing methods, we propose to use a model form that underlies this
forecasting approach. We adopt the single source of error (SSOE) state-space
model, as this has been well-established (Snyder, 1985; Hyndman et al., 2002)
whilst acknowledging that other model forms are possible (e.g. multiple
source of error, MSOE). We use the SSOE model for zt, which in a very
general way has the following form, based on (1):

yt = otzt
zt = w(vt−1) + r(vt−1)εt
vt = f(vt−1) + g(vt−1)εt

, (9)

where ot is a Bernoulli distributed random variable, vt is the state vector,
εt is the error term, f(·) is the transition function, w(·) is the measurement
function, g(·) is the persistence function and r(·) is the error term function.
These correspond to the functions in (Hyndman et al., 2008, p.54) and allow
both additive and multiplicative state-space models. One advantage of this
approach is that in cases of fast moving demand ot becomes equal to one
for all t, which transforms the model (9) from an intermittent into a non-
intermittent conventional model. This modification expands the Hyndman
et al. (2008) taxonomy and allows introducing simple modifications of the
model by inclusion of time series components and exogenous variables.
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In our new model, the first equation corresponds to Croston’s original
formulation (1), while the second equation, called the measurement equation,
reflects the potential demand size evolution over time. The third equation is
the standard transition equation for an SSOE model, describing the change
of components of the model over time.

An interpretation of the new intermittent demand model (9) is that a
potential demand size may change in time even when an actual demand is
not observed. In these cases, ot = 0, leading to yt = 0 in the first equation
of (9). However the measurement and the transition equations in (9) are not
affected by ot, leading to potential evolution of zt regardless of whether there
is an actual demand occurrence or not.

One thing to note about this model is that it can be applied to inter-
mittent data with continuous non-zero observations. Such series arise in the
context of natural disasters and other natural phenomena. They are less
common in a supply chain context, but time series with such characteristics
do exist. For example, daily sales of an expensive coffee sold per ounce can
exhibit such behaviour with zeroes in some days and then fractional quanti-
ties in the others.

However, while the model (9) solves the problem identified by Shenstone
and Hyndman (2005) of negative values (because now a multiplicative model
can be used for zt), there is still a need for an integer-valued model. In order
to solve this problem, we propose a simple modification of the first equation
in (9):

yt = otdzte, (10)

where dzte is the rounded up value of zt. This way the statistical model we
propose becomes integer-valued, and it does not contradict any reasonable
assumptions about intermittent demand. Furthermore, any statistical model
can be used for zt. It is worth noting that the rounding is an important
issue, which will be explored further in this paper, in Section 3.7. But before
looking into model (10) we need to study the properties of the basic model
(9), keeping in mind that it is an approximation of the more realistic model
(10).

The model with rounded up values will be called in this paper “integer”
model, while the simpler model (9) will be referred to as “continuous”.

In order for the model (9) to work we make the following assumptions,
some of which can be relaxed and would lead to different models:

1. Demand size zt is continuous. This assumption is relaxed in (10) and
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discussed later in this paper, in Section 3.7.

2. Demand size zt is independent of its occurrence ot. Relaxing this as-
sumption will lead to a different statistical model;

3. Potential demand size may change in time even if we do not observe
it. Relaxing this assumption means that we need to impose additional
restrictions on the transition equation;

4. ot has a Bernoulli distribution with some probability pt that in the most
general case varies in time. This is a natural assumption, following the
idea of Croston (1972). Making some other assumption in its place will
also lead to a different statistical model.

With these assumptions the proposed intermittent state-space model al-
lows calculating conditional expectation and variance for several steps ahead
using the following formulae:

µy,t+h|t = µo,t+h|tµz,t+h|t
σ2
y,t+h|t = σ2

o,t+h|tσ
2
z,t+h|t + σ2

o,t+h|tµ
2
z,t+h|t + µ2

o,t+h|tσ
2
z,t+h|t

, (11)

where µy,t+h|t and σ2
y,t+h|t are respectively conditional expectation and con-

ditional variance of yt; µo,t+h|t and σ2
o,t+h|t are conditional expectation and

variance of occurrence variable ot and finally µz,t+h|t and σ2
z,t+h|t are the re-

spective values for the demand sizes zt.
The important point is that, taking into account intermittent demand,

pure multiplicative models make more sense for the measurement equation
in (9) than additive or mixed ones, because they restrict the space of de-
mand sizes to positive numbers. In this paper we discuss the multiplicative
error ETS model for demand sizes, namely ETS(M,N,N), which denotes mul-
tiplicative error, no trend and no seasonality. The reason for this choice is
because ETS(M,N,N) is a simple well-known model underlying simple expo-
nential smoothing (Hyndman et al., 2008, p.54), which is a core method in
both Croston and TSB. However more complicated models can also be used
instead of ETS(M,N,N), but they are not of the main interest in this paper.

The general continuous intermittent state-space model (9) reduces to the
special case, called iETS(M,N,N), and can be written as:

yt = otlz,t−1 (1 + εt)
lz,t = lz,t−1(1 + αzεt)

, (12)

where lz,t is the level of the series of non-zero observations and lz,t−1 (1 + εt) =
zt. A natural assumption about (1 + εt) is that it is i.i.d. and log-normal
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with location parameters µε and σ2
ε : (1 + εt) ∼ logN (µε, σ

2
ε ). The general

properties of the ETS(M,N,N) model with the proposed assumptions are
discussed briefly in Appendix A.

The statistical model (12) is useful because it allows estimating all the pa-
rameters via likelihood maximisation. The concentrated log-likelihood func-
tion for the model (12) in case of log-normal distribution of error has the
following form (see Appendix B for the derivation):

`(θ, σ̂ε
2|Y ) = −T1

2

(
log(2πe) + log(σ̂ε

2)
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log(p̂t) +
∑

ot=0

log(1− p̂t)
, (13)

where θ is the vector of parameters to estimate (initial values and smoothing
parameters), T1 is the number of non-zero observations, σ̂ε

2 = 1
T1

∑
ot=1 log2 (1 + εt)

is the variance of the one-step-ahead forecast error for the demand sizes and
p̂t is the estimated probability of a non-zero demand at time t. This like-
lihood function allows estimation of the parameters of iETS models and
implementation of model selection even between different intermittent and
conventional ETS models.

The only variable that still needs to be estimated is the probability pt,
which can be modelled in different ways. In the simplest case it can be
assumed that it is fixed, meaning that:

ot ∼ Bernoulli(p). (14)

In more complicated cases it may vary in time, leading to a Croston’s style
approach:

ot ∼ Bernoulli

(
1

1 + qt

)
(15)

or an approach in the TSB style:

ot ∼ Bernoulli(pt). (16)

All these cases and their properties are discussed in the following sections.
In order to distinguish intermittent state-space model from the conven-

tional one we use the letter ‘i’. We use a subscript in order to distinguish
the three cases of demand occurrence variable discussed above. We denote
the model (12) with the case (14) as iETSF , the model with the case (15)
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as iETSI (acknowledging that the occurrence part is modelled via demand
intervals) and the model with the case (16) as iETSP (pointing out that the
probability is modelled directly). We drop the part denoting the type of ETS
model used for demand sizes, implying that the ETS(M,N,N) is the standard
model for demand sizes.

In this paper we discuss four types of models: with fixed, Croston’s, TSB
probability and the one selected automatically between the three. The model
without any specified probability does not have a subscript.

3.3. iETSF – the model with fixed probability

This is the simplest model. It is formulated in the following system of
equations:

yt = otlz,t−1 (1 + εt)
lz,t = lz,t−1(1 + αzεt)
ot ∼ Bernoulli(p)
(1 + εt) ∼ logN (µε, σ

2
ε )

. (17)

In this model we assume that the probability of demand occurrence is fixed.
The conditional expectation of the occurrence variable ot can be then calcu-
lated as:

µo,t+h|t = p. (18)

The conditional variance of demand occurrence does not change over time as
well and is equal to:

σ2
o,t+h|t = p(1− p). (19)

Finally the conditional expectation and variance for intermittent demand can
be calculated using (see derivations in Appendix C):

µy,t+h|t = pµz,t+h|t
σ2
y,t+h|t = pσ2

z,t+h|t + p(1− p)µ2
z,t+h|t

. (20)

In order to estimate this model we use the log-likelihood function (13), which
with the assumption of fixed probability becomes simpler. The probability
p can then be estimated via the maximisation of the likelihood:

p̂ =
T1
T
, (21)

where T is the number of all the observations. The probability estimate (21)
can be inserted in the concentrated log-likelihood (13) and then used in in-
formation criteria calculation. The number of parameters of the model (17)
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(which is needed for information criteria) is equal to four: initial value lz,0,
smoothing parameter αz, variance σ2

ε and the probability p. The location
parameter µε is usually assumed to be equal to zero, so that the underlying
normal distribution has zero mean. However if the parameter is not equal to
zero, then it should be taken into account, increasing the number of param-
eters by one.

3.4. iETSI – the model with Croston’s probability

It is assumed in Croston’s method that the probability of occurrence pt
does not change between demand sizes that we observe, and that the intervals
qt between demands are inversely proportional to the probability. Taking this
into account, the occurence part of iETSI in Croston style can be formulated
as:

ot ∼ Bernoulli
(

1
1+qt

)

qt = lq,t−1(1 + εq,t)
lq,t = lq,t−1(1 + αqεq,t)
(1 + εq,t) ∼ logN (µq, σ

2
q )

, (22)

where lq,t is the level component for intervals between demands, αq is the
smoothing parameter and εq,t is the error term of demand intervals. The error
term implies that the demand intervals have their own stochastic nature,
so even if the level of intervals is fixed, the actual observed intervals may
have their own variability. Note that the interval variable qt is continuous
in the model (22), distributed log-normally and defined on (0,∞). But in
many applications it is often the case that we can only observe integer-valued
intervals q̃t. So we deal with discretisation of a continuous unobservable
variable due to the process of measurement of data. This imposes some
restrictions on the model (22), because the observed q̃t will have a discrete
log-normal distribution and will be represented by integer numbers greater
than zero with the smallest value of q̃t = 1 in contrast with (1 + qt) always
being greater than one. So the observed intervals q̃t can be set equal to dqte.
This means that the first equation in (22) should be amended in order to
make the model more realistic:

ot ∼ Bernoulli

(
1

dqte

)
, (23)

At the same time we argue that the continuous log-normal distribution can
be used as a good approximation of discrete log-normal in this situation. So
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finally the model that underlies Croston’s method and can be estimated on
data collected in discrete time has the following form:

yt = otlz,t−1 (1 + εt)
lz,t = lz,t−1(1 + αzεt)
(1 + εt) ∼ logN (µε, σ

2
ε )

ot ∼ Bernoulli
(

1
dqte

)

qt = lq,t−1(1 + εq,t)
lq,t = lq,t−1(1 + αqεq,t)
(1 + εq,t) ∼ logN (µq, σ

2
q )

. (24)

It is also important to note that although the intervals qt may vary in
time on each observation, influencing the corresponding probability pt, iETSI
model cannot be estimated when demand is zero. So during the estimation of
the model it is assumed that the states of qt do not change between demand
occurrences. This may be an artificial assumption but it follows logically
from the original Croston’s method.

Finally it follows straight from the connection between simple exponen-
tial smoothing and ETS(M,N,N) that Croston’s method (2) has (24) as an
underlying statistical model. Note that this implies that the method has an
underlying intermittent model with continuous demand sizes.

Overall, the usage of continuous distribution for demand intervals in the
model is motivated by the following:

1. We assume that the demand intervals are continuous in their nature,
and only their measurement makes them integer;

2. Using the continuous ETS(M,N,N) model for demand intervals shows
the connection of the iETSI model with Croston’s method;

3. The model for demand intervals becomes extendable. This means that
in future research it is easy to modify the demand intervals part of
the model, introducing different time series components and exogenous
variables.

Taking into account the discussion of sample paths of ETS(M,N,N) in
Appendix A based on (A.1), it can be noted that iETSI model implies one
of the two cases:

1. If exp
(
µq +

σ2
q

2

)
≤ 1, then the sample path of qt will converge to zero

(either asymptotically or almost surely), meaning that the probability
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of occurrence will converge to one. So in this case the demand changes
from slow moving to fast moving.

2. If exp
(
µq +

σ2
q

2

)
> 1, then qt will diverge, meaning that the probability

of occurrence becomes close to zero, which characterises the obsoles-
cence of a product.

Although the latter is implied by the model, it cannot be correctly estimated
because of the aforementioned updating properties of Croston’s method. This
means that iETSI model should be more efficient for the former cases.

We can also calculate conditional (on the information available on the
observation t) expectation and variance of the model, which depend on value
of qt. The former is straightforward and is equal to:

µo,t+h|t = E
(
pt+h|t

)
= E

(
1

qt+h|t

)
. (25)

Syntetos and Boylan (2001, 2005) showed that the conditional expectation
in Croston’s method is biased and proposed a correction, but we do not
incorporate it here for reasons discussed later in Section 3.6. Knowing the
value (25) and using the Bernoulli distribution assumption, the conditional
variance of the occurrence part can be calculated as:

σ2
o,t+h|t = µo,t+h|t(1− µo,t+h|t). (26)

Because the model underlying the occurrence part of Croston’s method is
ETS(M,N,N), its parameters can be estimated by maximising the likelihood
function of the log-normal distribution. In order to estimate the likelihood
of the final intermittent demand model (13), we would need to derive the
density function for pt. However it can be shown (see Appendix D) that for
the estimation of the occurrence part of the model (24), a likelihood, derived
from the assumption of log-normal distributions of (1 + εq,t), can be used
directly:

`(θ, σ̂ε
2|Y ) = −Tq

2

(
log(2πe) + log(σ̂ε

2
q)
)
−
∑

ot=1

log(qt), (27)

where σ̂2
q = 1

Tq

∑Tq
t=1 (1 + εq,t) and Tq is the number of intervals between

nonzero demands. After that the conditional one-step-ahead expectation
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(25) for each observation t can be inserted in (13) instead of p̂t in order to
obtain the following concentrated likelihood:

`(θ, σ̂2|Y ) = −T1
2

(
log(2πe) + log(σ̂2)

)
−
∑

ot=1

log(zt)

+
∑

ot=1

log (p̂t) +
∑

ot=0

log (1− p̂t)
. (28)

This simplifies the estimation process of the iETSI model as it can now
be done in two steps:

1. Estimation of parameters of the demand occurrence part of the model
using (27);

2. Estimation of parameters of the demand size part of the model using
(28).

In order to calculate information criteria we need to know the number of
parameters used in the model. While the demand sizes part of the model is
still the same, the occurrence part now has a smoothing parameter and its
own variance along with the initial value. So the number of parameters in
(24) is equal to six: initial value lz,0, smoothing parameter αz, variance σ̂ε

2,
initial value lq,0, the smoothing parameter αq and the variance σ̂2

q .
Note that any multiplicative ETS model could potentially be used instead

of ETS(M,N,N) in the demand occurrence part of (24), including models with
exogenous variables. This enlarges the spectrum of potential intermittent
demand models. However we do not aim to study all these models in this
paper.

3.5. iETSP – the model with TSB probability

Similarly to Croston’s method, it is assumed in TSB that the probability
of demand occurrence may vary in time, which means that it has its own
conditional expectation and variance. In order to model this behaviour we
use a Beta distribution for the probability of occurrence. This means that
we need to deal with a compound Beta-Bernoulli distribution:

ot ∼ Beta-Bernoulli (at, bt) , (29)

where at and bt are Beta shape parameters for the left and right sides of
the distribution respectively. The Beta-Bernoulli distribution is a special
case of the Beta-Binomial distribution, which has been shown to perform
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well in intermittent demand forecasting (Dolgui and Pashkevich, 2008a,b).
However, in previous papers it was assumed that the parameters of the Beta
distribution do not vary in time, while our modification assumes that both
parameters of the Beta distribution may change in time. In order to model
this we propose using two ETS(M,N,N) models, which leads to the following
large state-space model:

yt = otlz,t−1 (1 + εt)
lz,t = lz,t−1(1 + αzεt)
(1 + εt) ∼ logN (µε, σ

2
ε )

ot ∼ Beta-Bernoulli (at, bt)
at = la,t−1 (1 + εa,t)
la,t = la,t−1(1 + αaεa,t)
(1 + εa,t) ∼ logN (µa, σ

2
a)

bt = lb,t−1 (1 + εb,t)
lb,t = lb,t−1(1 + αbεb,t)
(1 + εb,t) ∼ logN (µb, σ

2
b )

, (30)

where la,t and lb,t are levels for each of the shape parameters, εa,t and εb,t are
mutually independent error terms and αa and αb are the smoothing param-
eters. Similarly to previous models, error terms are distributed log-normally
with location parameters µa, µb, σ

2
a and σ2

b . This guarantees that both shape
parameters are positive.

Using the properties of sample paths discussed in Appendix A, we can
show that (30) allows modelling the following four situations:

1. If exp
(
µa + σ2

a

2

)
≤ 1 and exp

(
µb +

σ2
b

2

)
≤ 1, then the sample paths

of both at and bt will converge to zero (either asymptotically or al-
most surely), in which case the Beta distribution becomes equivalent
to Bernoulli with p = 0.5.

2. If both exp
(
µa + σ2

a

2

)
> 1 and exp

(
µb +

σ2
b

2

)
> 1, then at and bt

will diverge, meaning that distribution of probability pt is concentrated
around 0.5. This means once again that asymptotically p = 0.5.

3. If exp
(
µa + σ2

a

2

)
≤ 1 while exp

(
µb +

σ2
b

2

)
> 1, then the sample path

of at will converge to zero, while the sample path of bt will diverge.
This corresponds to a situation of product obsolescence, because the
Beta distribution becomes degenerate with all the values concentrated
around zero.
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4. If exp
(
µa + σ2

a

2

)
> 1 while exp

(
µb +

σ2
b

2

)
≤ 1, then the sample path of

at will diverge, while the sample path of bt will converge to zero. In this
case the Beta distribution becomes degenerate with values concentrated
around one, which means that a product switches from slow moving to
fast moving.

So, in general, model (30) underlies a wide variety of real life processes. How-
ever, the TSB method is underpinned by a more specific model, because it
does not have the part corresponding to bt. In order to derive the connec-
tion between the model (30) and the TSB method we need to impose the
following restriction:

at + bt = 1, at ∈ (0, 1) (31)

This means that instead of using two models for shape parameters we can
use only one:

at = la,t−1 (1 + εa,t)
la,t = la,t−1(1 + αaεa,t)

. (32)

In turn, this means that the expectation of the Beta-distributed probability
pt can be simplified to:

E(pt) = E

(
at

at + bt

)
= E(at) = la,t−1. (33)

The very same expectation is calculated in the TSB method (7), which im-
plies that the model (32) underlies the occurrence part of the TSB method,
because ETS(M,N,N) underlies the simple exponential smoothing method.
However there is one important element – this connection implies that at = ot
and bt = 1 − ot – which is not realistic, because the density function of the
Beta distribution is equal to zero for cases of at = 0 or bt = 0. This means
that the model (30) will underlie TSB only when the difference between at
and ot is infinitesimal. In order to estimate this model, we can introduce the
following approximation for at:

at = ot(1− 2κ) + κ, (34)

where κ is a very small number (for example, κ = 10−10). This modification
is artificial but it helps estimation of the model. It is worth stressing that κ
is not a natural element of the model and does not affect the simulated time
series paths. Its only purpose is to make model estimable.
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So, summarising all of the derivations above, the following model under-
lies TSB:

yt = otlz,t−1 (1 + εt)
lz,t = lz,t−1(1 + αεt)
(1 + εt) ∼ logN (µε, σ

2
ε )

ot ∼ Beta-Bernoulli (at, 1− at)
at = la,t−1 (1 + εa,t)
la,t = la,t−1(1 + αaεa,t)
(1 + εa,t) ∼ logN (µa, σ

2
a)

, (35)

where (34) is used purely for model estimation purposes. The model (35)
will have only two sample paths cases out of four, corresponding to items
(3) and (4) in the list above. So this model is suitable for modelling demand
for products that either become obsolete or fast moving. However there is a
potential problem with the model (35) in the case (4), because at can become
greater than one, implying that bt = 1− at < 0. In this situation the model
does not make sense. So iETSP model (35) implies that there is only one
sensible situation, corresponding to item (3) of the list: when at decreases
and converges almost surely or asymptotically to zero, while bt converges to
one.

Once again we may use a likelihood function for estimation of the model
(35). It can be derived using the same likelihood as in (13) (see Appendix
E for the details):

`(θ, σ̂ε
2|Y ) = −T1

2

(
log(2πe) + log(σ̂ε

2)
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log(la,t−1) +
∑

ot=0

log(1− la,t−1)
. (36)

Taking into account that demand sizes are independent of demand occur-
rences in the proposed model, the latter can be optimised separately by
minimising the following cost function (instead of maximising the compound
Beta-Bernoulli likelihood directly):

CF = −
∑

ot=1

log (la,t−1)−
∑

ot=0

log (1− la,t−1) . (37)

So the iETSP model should be estimated using cost function (37) rather than
any other.
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The conditional mean and variance of the demand occurrence part of the
iETSP model are much simpler to calculate than in iETSI model. They are:

µo,t+h|t = la,t
σ2
o,t+h|t = la,t(1− la,t). (38)

Finally, due to (37), there is no need to estimate the variance of the
occurrence part of the model (35). This means that the iETSP model has
only five parameters: initial value lz,0, smoothing parameter αz, variance σ̂ε

2,
initial value la,0 and the smoothing parameter αa.

Once again any other multiplicative ETS model can be used instead of
ETS(M,N,N) in (35), which leads to completely new types of models. But
this is yet another potential research direction.

3.6. Conditional values and prediction intervals for iETS models

One of the advantages of statistical models, as discussed in section 3.1 is
the ability to work with distributions of variables rather than point values.
For intermittent state-space models, there are some peculiarities that need
to be taken into account, which are mainly caused by the assumption of
log-normal distribution of residuals.

It has already been discussed that the mean of the log-normal distribution
can be calculated based on location parameters µε and σ2

ε using (A.1):

E(1 + εt) = exp

(
µε +

σ2
ε

2

)
.

However in cases of skewed distributions, the median value is usually consid-
ered to be more robust and useful than the mean. It can be shown that the
conditional median of zt+h|t can be calculated using (see Appendix F):

Md(zt+h|t) = lz,t. (39)

This is exactly the same forecast as in the conventional ETS(M,N,N) model.
However because of the different assumption about the error term, the value
(39) in Hyndman et al. (2008) corresponds to the conditional mean. The
difference between the conditional mean and median will be negligible if σ2

ε

in (A.1) is close to zero. Recalling that ETS(M,N,N) is also used for demand
occurrences modelling, µo,t+h|t will also correspond to the conditional me-
dian value rather than the mean for ot. If a researcher needs the conditional
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mean, it can be calculated using (A.1). However this means that the mod-
els will produce different point forecasts than Croston’s method and TSB.
Furthermore, if (A.1) is used for the final calculation, the forecast trajectory
may demonstrate increase over time, because the variance in (A.1) typically
increases with the increase of the forecast horizon. That is why this will not
be discussed further in this paper.

The formula (39) also implies that Croston’s method in our formulation
does not need any bias correction, because Md

(
1
x

)
= 1

Md(x)
.

All of the above also means that the final forecasts produced by all the
models discussed in this paper are not mean forecasts, but a multiplication
of median forecasts for demand sizes and the median of demand occurrence
parts. Although this is not what is usually used in forecasting, we argue
that this is not a critical issue, because for the typical task of inventory
management it is more important to have a distribution of values rather
than a single value.

In order to calculate prediction intervals for intermittent state-space mod-
els, the cumulative distribution function (CDF) can be used:

F (yt+h < x) = µo,t+h|tFh(zt+h < x) + (1− µo,t+h|t), (40)

where Fh(zt+h) is the h-steps ahead CDF for zt+h and x is the value of the
desired quantile of the distribution. In order to find the appropriate x for
intervals of a desired width, an optimisation procedure can be used for each
horizon h. In this procedure the parameters of the distribution for each step
h and x are inserted in (40) and the probability F (yt+h < x) is then compared
with the desired level 1 − α. The procedure continues until the difference
between F (yt+h < x) and 1− α becomes infinitesimal.

These prediction intervals will in general be asymmetric, because of the
log-normality assumption of residuals. One of the nice properties of the pro-
posed iETS model is that it allows producing meaningful one-sided intervals,
which is important for safety stock calculation. In order to do that the upper
quantile is calculated for 1− α rather than 1− α/2.

3.7. Integer state-space model

The integer iETS model is more complicated than the continuous model
(9) and it has two important aspects that distinguish it from its counterpart.

First, conditional expectation and variance cannot be analytically derived
for this model. However, they can be both calculated via simulations. In
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order for the model to be consistent with the other models discussed in this
paper, the median demand sizes need to be taken during the simulation
instead of mean for the final value of point forecasts. Simulations can also be
used for the calculation of quantiles of distribution for the prediction intervals
construction. However, we can use a simplification, which still allows using
analytical derivations instead of simulations for both point forecasts and
prediction intervals. This simplification is based on the following equality for
any quantiles of any distribution (see Appendix G):

qα (dzte) = dqα(zt)e , (41)

where qα(·) is α quantile of a random variable. The equality (41) implies that
the quantiles of the log-normal distribution imposed by the continuous model
underlying demand sizes can be used and then rounded up. As a result there
is no need to work directly with the integer model and to produce values via
the simulations. Furthermore, the following equality holds for all zt as well
(Appendix G):

qα (bztc) = bqα(zt)c . (42)

This means that the decision of whether to round up or round down values
can be made by a forecaster depending on their preferences after producing
quantiles of the continuous model. The result will be equivalent to using the
model with the respective rounding mechanism directly.

Second, the likelihood function for the integer model is more complicated
than for the continuous one, because in the former case a multitude of values
of zt correspond to one rounded up value dzte: all the values in the region
(dzte − 1, dzte] need to be taken into account. This means that the density
function cannot be used for the estimation of the likelihood for demand sizes,
but the CDF for the interval should be used instead:

Fz(dzte − 1 < zt ≤ dzte) = Fz(zt ≤ dzte)− Fz(zt > dzte − 1), (43)

where Fz is the CDF of demand sizes (log-normal distribution assumed
throughout this paper). Note that with the increase of the level and variance
of time series, the distance between Fz(zt ≤ dzte) and Fz(zt < dzte − 1) will
decrease, and the (43) will asymptotically be equal to the PDF of the same
distribution.
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The log-likelihood function for the model (10) based on (43) is:

`(θ, σ̂ε
2|Y ) =

∑

ot=1

log (Fz(dzte − 1 < zt ≤ dzte))

+
∑

ot=1

log(p̂t) +
∑

ot=0

log(1− p̂t)
. (44)

The parameters of the model (10) can be estimated directly via maximisation
of the concentrated likelihood function (44), which is a more computation-
ally intensive task than the maximisation of the likelihood function for the
continuous model (9). However, after the estimation, the likelihood function
(44) can be used in model selection. In order to simplify the process we pro-
pose to use two-stage optimisation, where in the first stage the parameters
of the continuous model are estimated, and in the second the likelihood (44)
is used for the correction of the estimated parameters.

3.8. Model selection in the iETS framework
Having the likelihood functions for all three intermittent state-space mod-

els (17), (24) and (35) and knowing the number of parameters to estimate,
we can calculate any information criterion and use it for model selection. For
example, the Akaike Information Criterion can be calculated as:

AIC = 2k − 2`(θ, σ̂ε
2|Y ), (45)

where for intermittent models k is equal to 4, 5 or 6 (depending on the model
underlying the occurrence part) and, for example, for a basic ETS(A,N,N)
k = 3. So the only difference between intermittent models is in probability
modelling. If demand occurs and the probability of occurrence is high, then
the likelihood value will be high as well, meaning that the model is more
appropriate for the data.

Note that we can also compare conventional non-intermittent ETS models
(with trend and seasonality) with the intermittent ones using information
criteria. However we do not aim to cover all the possible models in this
paper and focus on the level models only.

It is also important to note at this point that having at least four pa-
rameters to estimate, iETS models need at least five non-zero demand ob-
servations. If for some reason the sample is smaller, then simpler models
for demand sizes should be used instead of iETS(M,N,N). For example, us-
ing a model with fixed level (setting smoothing parameter α to zero) allows
preserving one degree of freedom without substantial loss in generality and
fitting the model to data with at least four non-zero observations.
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4. Experiments

4.1. Forecasting performance on simulated data

In order to see how the iETS models work and under which conditions,
we have conducted a simulation experiment. We have generated data using
three integer valued iETS models with:

• fixed probability, where p is chosen randomly from the interval (0, 1),

• Croston’s probability with lq,0 = 10, αq = 0.1,

• TSB probability with la,0 = 0.5, αa = 0.1.

The distribution used in all parts of models is logN
(
−0.16

2
, 0.16

)
. These

parameters of the distribution lead to almost sure decline of sample paths,
discussed in Section 3.2, but also give some variability of data. In case of TSB
we had to ensure that at converges to zero and that condition (31) is satisfied.
That is why we have set a different location parameter µa = −0.16

2
− 0.05

(which leads to asymptotic convergence to zero) and have selected only those
series, where at ∈ (0, 1). We have generated 10,000 time series with 1,000
observations each and made sure that all of them are intermittent and have
at least 5 non-zero observations. This was done using the sim.es() function
from the smooth package v2.0.0 for R.

We have then applied several iETS models to randomly selected conse-
quent parts of data containing 24, 48, 96 and 1000 observations, withholding
the last 12 observations in order to measure forecasting accuracy. This gives
us in-sample sizes of 12, 36, 84 and 988. The first two sizes are typical for
supply chain data, the third one is usually considered in practice as a large
sample and finally the last is needed in order to see the asymptotic properties
of models. The models we used were:

1. ETS(A,N,N), which is needed as a benchmark;

2. iETSF – the model with fixed probability;

3. iETSI – the model with demand intervals (Croston probability);

4. iETSP – the model with varying probability (TSB probability);

5. iETSA – the model with model selection between the first four models
using AIC corrected;

6. int iETSF – integer counterpart of iETSF ;

7. int iETSI – integer counterpart of iETSI ;
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8. int iETSP – integer counterpart of iETSP ;

9. int iETSA – similar to (5), but with rounded up values.

We use the es() function from the smooth package v2.0.0 for R for the
estimation of all these models.

Taking into account the ability of all the models to produce distributions
of values, we decided to assess their performance using distributions rather
than looking at mean, median or quantile values. In order to do that we use
the prediction likelihood score (PLS) discussed in Snyder et al. (2012) and
shortly in Kolassa (2016). Other methods are also available, but we think
that PLS is easier to interpret and work with. We use the log-likelihood
functions (13) and (44) for each of the models and insert the withheld values
of generated series instead of zt and ot, estimating the joint distribution of
1 to h steps ahead forecasts. Then we can measure if the distributions are
estimated correctly by each of the models and decide which of them performs
well in each case.

In order to summarise PLS across all the series, we use the arithmetic
mean. Higher values of PLS indicate better estimation of the distribution.
The results of the simulation are shown in Tables 1 and 2. The first column in
both tables shows the number of observations in the sample, and the second
column shows the data generating processes used. The other columns show
iETS models applied to the data. The continuous iETS models are shown
in Table 1, while their integer analogues are summarised in Table 2. The
highest values for each sample size and data generating process are shown in
bold.

It can be seen from Table 1 that the iETSF outperformed all the other
models on smaller samples (12, 36 and 84 in-sample observations) with iETSP
performing similarly but slightly worse. This can be explained by negligible
difference in data characteristics for the three DGPs on small samples –
even if probability decreases over time, it does not change substantially on
such a small amount of data. It is worth noting that the iETSP model
outperformed all the other models on the large sample of 988 observations.
iETSI performed well only on large samples, still not being able to beat the
best model for each of the DGPs, even for the data generated using iETSI
model. This is probably because of the mechanism of updating in the model,
when probability is updated only with non-zero demand occurrences. Finally,
the selection mechanism does not perform very well on small samples, but
it outperforms most of the models on the large sample of 988 observations,
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In-sample DGP ETS(ANN) iETSF iETSI iETSP iETSA

12
iETSF -33.63 -18.67 -19.44 -18.72 -26.53
iETSI -32.34 -13.95 -15.80 -14.00 -29.60
iETSP -37.06 -18.13 -19.94 -18.15 -34.25

36
iETSF -33.27 -19.19 -19.76 -19.30 -19.97
iETSI -30.44 -11.65 -12.47 -11.72 -16.18
iETSP -33.23 -12.20 -13.16 -12.28 -16.22

84
iETSF -32.79 -19.61 -19.90 -19.65 -19.75
iETSI -29.56 -11.20 -11.64 -11.24 -12.14
iETSP -29.38 -8.04 -8.61 -8.06 -10.36

988
iETSF -34.20 -19.01 -19.05 -18.75 -18.75
iETSI -30.76 -13.66 -13.26 -13.11 -13.12
iETSP -22.62 -1.14 -0.67 -0.31 -0.31

Table 1: PLS values for continuous models applied to simulated data.

where the difference between data produced by different models becomes
more substantial.

Table 2 shows similar results concerning the performance of intger iETSF ,
iETSI and iETSP . However the model selection mechanism for integer mod-
els does not seem to work for small samples. The important thing to note
is that all the integer valued models perform worse than their continuous
counterparts on all the samples and all the DGPs. For example, continuous
iETSF applied to data generated from fixed probability model with sample
size of 84 has PLS of -19.61 (Table 1), while its integer counterpart produced
PLS=-21.69 (Table 2). This shows that although the integer valued models
are designed to work on this data, they produce less accurate distributions
than their continuous analogues. We will investigate this effect further in the
next section on real data.

In addition we analysed the percentage of selected models out of all the
cases for the Auto for each of the DGPs. iETSF and ETS(A,N,N) were
selected for the majority of cases. This is the expected result, taking into
account that intermittent models have more parameters than ETS(A,N,N).
iETSI model has the largest number of parameters and it has not been se-
lected at all, probably because iETSP is able to perform better, but with
fewer parameters to estimate.
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In-sample DGP iETSF iETSI iETSP iETSA

12
iETSF -22.71 -23.49 -22.77 -30.52
iETSI -16.03 -17.88 -16.07 -31.89
iETSP -18.12 -19.92 -18.14 -34.32

36
iETSF -22.11 -22.68 -22.22 -29.95
iETSI -12.95 -13.78 -13.02 -28.57
iETSP -12.29 -13.25 -12.37 -31.60

84
iETSF -21.69 -21.97 -21.73 -31.10
iETSI -12.12 -12.56 -12.16 -29.28
iETSP -8.13 -8.70 -8.14 -29.70

988
iETSF -21.79 -21.83 -21.53 -34.41
iETSI -14.74 -14.34 -14.19 -31.77
iETSP -1.15 -0.68 -0.32 -25.33

Table 2: PLS values for integer models applied to simulated data.

Overall we have expected that each of the applied models would perform
better on the data generated from the respective processes, but our experi-
ment shows that this is not true. The model with fixed probability performs
better than all the others on small samples and may be preferred to more
complicated ones. However iETSP performed very well in many cases and
especially well on large samples. Taking its overall good performance and
flexibility, we would recommend it as a basic model for intermittent demand
forecasting. The iETSI model did not perform well in our experiment. But
this does not mean that it is not applicable at all. It may perform better on
time series with slowly increasing probability (for example, with lower vari-
ance σ2

q ). Finally, we found that integer valued iETS models perform worse
than their continuous counterparts.

4.2. Real time series experiment

In order to examine the performance of the proposed intermittent state-
space models, we conduct experiment on two datasets.

The first is 3000 real time series of automotive spare parts. This dataset
originates from Syntetos and Boylan (2005) and was also used in Kourentzes
(2014). This is monthly time series, containing 24 observations. We withheld
5 observations from each time series for measuring forecasting accuracy.

27



The second dataset is Royal Air Force data, which contains 5000 real time
series (Eaves and Kingsman, 2004). Each of the time series in this dataset
has 84 observations. We withheld 12 observations and use them in order to
measure forecasting accuracy of tested models.

We have used the same set of models as in Section 4.1 in this experiment
and added the following benchmark methods and filters implemented in the
tsintermittent, v2.0 package for R:

1. Hurdle shifted Poisson filter (denoted “HSP”) discussed in Snyder et al.
(2012) implemented in hsp() function;

2. Negative Binomial filter (denoted “NegBin”) from Snyder et al. (2012),
implemented in the function negbin().

3. TSB method implemented in tsb() function;

4. Croston’s method implemented in crost() function;

5. SBA method implemented in crost() function.

We can calculate PLS only for iETS model, HSP and NegBin filters.
The last three methods produce expected values only and the distribution of
values cannot be estimated correctly for them. So we measure accuracy of
point forecasts of all the competing methods and models as well. In order
to measure performance of all of them we use the following error metrics,
discussed in Kourentzes (2014) and Petropoulos and Kourentzes (2015):

• sME – scaled Mean Error;

• sMSE – scaled Mean Squared Error;

• sAPIS – scaled Absolute Periods in Stock.

We have calculated mean and median values of these errors across all the
series and summarised them in two tables. In cases when data had no vari-
ability in-sample and when models produced unrealistic forecasts, PLS re-
turned infinite values. So we excluded those cases, when calculating PLS,
which left us with 2785 series instead of 3000 in Automotive data and 4365
series instead of 5000 in RAF data.

The results of the experiment on Automotive data are given in the Table
3, which shows that all the methods performed very similarly. Continuous
iETSF appears to be more accurate than the other models in median values
of sMSE and sAPIS and in mean values of sAPIS, while iETSP was very close
to it, producing almost identical forecasts. The continuous iETSI is the least
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Methods
Mean values Median Values

sME sMSE sAPIS PLS sME sMSE sAPIS PLS

ETS(A,N,N) -0.04 1.07 6.84 -11.99 -0.05 0.72 5.59 -10.15
iETSF 0.10 1.03 6.48 -6.63 0.09 0.66 5.19 -7.26
iETSI 0.02 1.04 6.55 -6.97 0.01 0.69 5.21 -7.62
iETSP 0.10 1.03 6.49 -6.68 0.08 0.66 5.19 -7.29
iETSA 0.06 1.04 6.57 -8.68 0.04 0.66 5.34 -8.38
int iETSF 0.11 1.07 6.80 -6.95 0.09 0.69 5.40 -7.99
int iETSI 0.03 1.08 6.90 -7.29 0.02 0.71 5.47 -8.37
int iETSP 0.10 1.07 6.80 -7.00 0.09 0.69 5.38 -8.02
int iETSA -0.05 1.09 7.00 -11.01 -0.05 0.72 5.76 -10.53
HSP -0.07 1.07 6.85 -14.49 -0.09 0.73 5.51 -10.11
NegBin -0.03 1.02 6.57 -11.30 -0.05 0.71 5.48 -9.96
TSB -0.03 1.01 6.49 NA -0.06 0.70 5.41 NA
Croston -0.04 1.02 6.54 NA -0.08 0.70 5.40 NA
SBA -0.04 1.02 6.52 NA -0.06 0.70 5.33 NA

Table 3: Automotive data results.

biased model judging by both mean and median values of sME. The TSB
method was more accurate on mean value of sMSE. The differences between
the methods and models do not look substantial. As for the PLS, it is worth
noting that although the data we deal with is count, the continuous models
outperform consistently integer models both in mean and median values. It
is also worth pointing out that almost all the iETS models outperform both
Hurdle shifted Poisson and Negative Binomial filters of Snyder et al. (2012)
in the majority of measures.

In order to determine if the differences between the models are statistically
significant, we have conducted a Nemenyi test (Demšar, 2006) on PLS values.
The results of this test are shown in Figure 1. The ranking was done so that
the model with the highest PLS would have the score of 1 and the model with
the lowest PLS would have the score of 10. The Y-axis in Figure 1 shows
average ranks for each of the models. The vertical lines in the figure show the
groups of models, in which the difference between the ranks is statistically
insignificant. The significance level used in this experiment is 5%.

As we see from the graph, the continuous iETSF performed significantly
better than all the other models. The second best model is continuous iETSP .
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iETS_F − 4.08

iETS_P − 4.53

int iETS_F − 5.06

iETS_A − 5.17

int iETS_P − 5.43

iETS_I − 5.51

NegBin − 6.14

int iETS_I − 6.39

ETS(A,N,N) − 7.17

HSP − 8.12

int iETS_A − 8.40

Figure 1: Nemenyi test for models applied to automotive data.

The difference between integer iETSF , continuous iETSA with model selec-
tion and integer iETSP is statistically insignificant. The HSP filter performed
significantly worse than all the models outperforming only the integer iETSA
with model selection. At the same time, the Negative Binomial filter per-
forms significantly better than the Posson filter (which agrees with the finding
of Snyder et al., 2012) and some of the iETS models. It is at least as good
as the integer iETSI model, but significantly worse than the integer iETS
with fixed and TSB probabilities. It also performed worse than all the other
continuous iETS models. It is also worth pointing out that the model se-
lection in case of integer model does not perform well. So we would advise
either using continuous iETS with model selection instead or to use iETSF
or iETSP for this data.

The results of the experiment for the Royal Air Force data are shown in
Table 4.

The differences between the applied models and methods are more sub-
stantial on this dataset. The leading model in both sMSE and sAPIS is
the continuous iETSP . It outperforms the TSB method (which is optimised
and initialised differently), but performs very closely to the model with fixed
probability. In terms of PLS, iETSF and iETSP perform very similarly, shar-
ing the first place in this competition. Once again the continuous models in
general outperform integer ones with the one exception of integer iETSA,
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Methods
Mean values Median Values

sME sMSE sAPIS PLS sME sMSE sAPIS PLS

ETS(A,N,N) -0.37 11.06 76.17 -24.04 -0.62 2.25 81.22 -18.83
iETSF -0.16 10.54 66.63 -4.53 -0.39 2.27 59.76 -4.71
iETSI -0.65 11.47 89.27 -4.96 -0.81 3.62 80.20 -5.05
iETSP -0.16 10.54 66.60 -4.54 -0.39 2.25 59.69 -4.71
iETSA -0.20 10.68 68.24 -7.08 -0.41 2.28 61.24 -5.05
int iETSF -0.15 10.59 66.94 -5.95 -0.32 2.63 56.88 -4.90
int iETSI -0.63 11.69 89.22 -6.38 -0.71 3.86 74.68 -5.35
int iETSP -0.14 10.59 66.88 -5.95 -0.32 2.61 56.87 -4.90
int iETSA 0.02 11.50 77.66 -23.72 0.00 3.48 65.33 -21.46
HSP -0.50 10.98 81.25 -10.28 -0.76 2.65 87.68 -5.04
NegBin -0.34 10.63 74.21 -6.16 -0.64 2.30 79.76 -5.03
TSB -0.31 10.61 73.21 NA -0.62 2.26 76.55 NA
Croston -0.37 10.63 74.73 NA -0.68 2.30 78.16 NA
SBA -0.36 10.63 74.48 NA -0.67 2.26 77.36 NA

Table 4: Royal Airforce data results.

which has the least biased forecasts measured by both mean and median
sME. The worst performing model (in terms of sME, sMSE and sAPIS) on
this dataset is iETSI (both continuous and integer versions). It even per-
forms worse than Croston’s method, which points to the differences at the
estimation of parameters. This may be explained by the maximum likeli-
hood estimation of parameters of the model leading to less accurate point
forecasts on this dataset than in case with the simple estimation methods
(implemented in the tsintermittent package). The HSP filter performed
similarly to how it performed on a previous dataset, this time slightly outper-
forming ETS(A,N,N) and outperforming iETSI model. As for the Negative
Binomial filter, it performed better than HSP in all the measures (once again
agreeing with Snyder et al., 2012). Finally, the model selection mechanism
in case of integer iETS model does not seem to work well.

Following the same procedure as with automotive data, we have con-
ducted a Nemenyi test with the results shown in Figure 2.

The test shows that continuous iETSP is significantly more accurate than
the other models. The integer version of this model is the second best. The
worst performing model is the integer iETS(M,N,N) with model selection. As
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iETS_P − 3.66

int iETS_P − 3.92
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int iETS_I − 6.79

HSP − 7.00
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int iETS_A − 10.64

Figure 2: Nemenyi test for models applied to Royal Air Force data.

for the HSP filter, it was the third worst model in the comparison, performing
similar to the integer iETSI model. Finally, Negative Binomial filter outper-
formed both iETSI models and HSP, but it could not produce as accurate
forecasts as iETSF and iETSP .

As can be seen from this experiment the proposed intermittent state-
space models perform very well and can be applied to real life problems. The
iETSP model seems to be the most robust of all of them. Although we know
that the data we deal with is count and that the continuous model is wrong
in this case, we found that it is still useful.

5. Conclusions

In this paper, we have proposed a statistical model that underpins both
Croston’s and the TSB method. These methods are important in a supply
chain context, as they are used to inform replenishment and discontinuation
decisions. The model also unites intermittent and non-intermittent processes,
expanding the Hyndman et al. (2008) taxonomy by the inclusion of intermit-
tent models. This is vital for the forecasting of a wide range of stock keeping
units, which may evolve from slow moving to fast moving products (or vice-
versa). The model allows for a systematic approach to method selection,
rigorous parametrisation, and estimation of upper percentiles of demand.

32



This paper was focused on the ETS(M,N,N) model and the intermittent
equivalent of this model was called iETS(M,N,N). Firstly we have proposed
a simple state-space model with fixed probability (denoted as “iETSF”),
which is very easy to estimate and use. We have shown that Croston’s
method has an underlying statistical model (denoted as “iETSI”), which
allows the calculation of conditional expectation and variance. After that we
have shown that the TSB method also has an underlying statistical model
(denoted as “iETSP”), which allows estimation of the model parameters.
We have also derived the likelihood functions for all the iETS models, which
allow not only obtaining efficient and consistent estimates of parameters, but
also selecting between several state-space models. This also includes selecting
between intermittent and non-intermittent models, thereby simplifying the
forecasting process. We have shown that the forecasts produced by iETSI
and iETSP correspond to the conditional median of demand sizes rather than
the mean, which in case of intermittent data is a useful property. We have
also proposed an algorithm of parametric prediction intervals construction
using the proposed intermittent state-space model. Finally, we developed
integer counterparts of iETS models which address the issue of count data
modelling.

We conducted several experiments on simulated and real data. The sim-
ulation that we have conducted shows several interesting results. First, it
seems that integer iETS models do not perform as accurately as their con-
tinuous counterparts. Second, iETSF and iETSP work very well on small
samples of data generated from different iETS models. Third, iETSP works
better than the other models on large samples, being able to produce the
most accurate forecasts for all the DGPs. Fourth, iETS with model selec-
tion improves its performance with an increasing sample size. We argue that
iETSP should be preferred to other models on small samples as a more robust
and more flexible model. It is able to produce accurate forecasts on a wide
variety of time series from different data generating processes.

Finally, the experiment on automotive data and on data from the Royal
Air Force shows that the proposed approach is applicable to real life supply
chain problems and that the proposed models perform very well on different
datasets. They outperformed the existing forecasting methods and several
filters previously proposed in the literature. iETSP generally was one of the
best forecasting models on both data sets. We would advise it as one of the
most robust models, applicable to wide variety of series.

We should remark that the focus of this paper was on a specific iETS(M,N,N)
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model, which underlies the two intermittent demand forecasting methods
studied in the paper (Croston’s and TSB). We simplified the notation for
this model in the paper. However, we propose a more detailed one, which
acknowledges the flexibility of the proposed approach and the fact that both
demand sizes and demand occurrence parts may have their own ETS models
(potentially with exogenous variables). So, the model with demand intervals,
discussed in the paper can be denoted as iETS(M,N,N)(M,N,N)I , where the
letters in the first brackets indicate the type of ETS model for demand sizes
and the letters in the second ones indicate the type of ETS model used for
demand intervals. Using this notation, new types of models can be stud-
ied in future research. For example, model with additive trend in demand
sizes and multiplicative trend in time varying probability can be denoted as
iETS(M,A,N)(M,M,N)P . This allows extending the Hyndman et al. (2008)
taxonomy and opens new avenues for the research.

It is also worth mentioning that the approach of intermittent state-space
modelling allows using (for both demand sizes and demand occurrence parts
of the model) ETS, ARIMA, regression models or diffusion models, which
could be applied to a wide range of time series (not limited with intermittent
demand). Studying properties of such models would be another large area
of research. The other possible direction of research is the development of a
new model for demand occurrence, as both Croston’s and TSB mechanisms
have their own flaws. Finally, in order to show the connections between the
methods and the models, we assumed throughout this paper that demand
occurrence and demand size parts are independent. This could be modified
in a new model using the state-space approach discussed in the paper.

Appendix A. Properties of ETS(M,N,N) model

The main properties of ETS(M,N,N) are well studied in Akram et al.
(2009) and are not discussed here. The important thing to note is that the
authors use Kakutani’s theorem, showing that if the mean value of (1+αzεt)
is equal to one and the distribution is non-degenerate, then the sample path
of ETS(M,N,N) tends to converge almost surely to zero. This is based on
the assumption of normal distribution with zero mean of εt, which leads to
E(1 + εt) = 1. However in cases of log-normal distribution of error term,
the mean value of (1 + εt) is in general not equal to one, because of the
following connection between the mean of the log-normal distribution with
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the parameters of the normal distribution:

E(1 + εt) = exp

(
µε +

σ2
ε

2

)
. (A.1)

Even if µε = 0 in the model (12), σ2
ε is not equal to zero. If µε is close

to −σ2
ε

2
, then the sample path of ETS(M,N,N) will converge almost surely

to zero as discussed in Akram et al. (2009), because the expected value of
(1+ εt) will be close to one in this case, meaning that E(εt) tends to zero and

E(1 + αεt) tends to one. In the other case, when µε < −σ2
ε

2
, the sample path

will converge to zero asymptotically, because E(1+εt) becomes less than one,
making E(1 + αεt) < 1 as well, leading to diminishing values of the level of

time series lt. Finally, when µε > −σ2
ε

2
the sample path will asymptotically

diverge from zero, because E(1+αεt) > 1, which causes growth of level. This
is an important property, because it implies that with different values of µε
and σ2

ε the model will behave differently.
The properties of the log-normal distribution and the multiplicative model

also restrict the smoothing parameter with the interval [0, 1]. Assuming that
the smoothing parameter is always positive, the inequality (1+εt) > 0 implies
that:

εt > −1
αzεt > −αz

1 + αzεt > 1− αz
(A.2)

The ETS(M,N,N) model makes sense only when 1 + αzεt > 0. So, if αz > 1,
then 1+αzεt may become negative, which breaks the model, because the level
may become negative. The model however still makes sense for boundary
values of αz: when αz = 0, the level is not updated, while in the case of
αz = 1, the level has the dynamics of a random walk process. The condition
αz ∈ [0, 1] is rather restrictive, because there may be some cases when even
with αz > 1 the value of (1 + αzεt) will be greater than zero. However it
guarantees that the level of time series is always positive whatever the error
value is.

Appendix B. Likelihood function for iETS(M,N,N)

The likelihood function for the log-normal distribution L(θ, σ2
ε |zt) is well-

known and is not presented here. It is worth noting that θ is a vector of all
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the parameters of the model, µz,t|t−1 is the conditional mean and σ2
ε is the

variance of one-step-ahead forecast error for demand sizes.
There are two cases for the intermittent demand model: when demand

occurs and when it does not. In the former case, the probability of obtaining
the value yt is equal to:

P (yt|θ, σ2
ε , ot = 1) = L(θ, σ2

ε |yt, ot = 1) = ptL(θ, σ2
ε |zt). (B.1)

In the latter case it is just equal to the probability of non-occurrence:

L(θ, σ2
ε |yt, ot = 0) = (1− pt). (B.2)

The likelihood function for all the T observations, which include T0 cases of
non-occurrence and T1 cases of demand occurrence, is then:

L(θ, σ2
ε |Y ) =

∏

ot=1

ptL(θ, σ2
ε |zt)

∏

ot=0

(1− pt), (B.3)

where Y is the set of all the variables yt. Taking the logarithm of (B.3), we
obtain:

`(θ, σ2
ε |Y ) = −

∑

ot=1

(
log(zt) +

1

2
log(2πσ2

ε ) +
1

2

(
log zt − log µz,t|t−1

)2

σ2
ε

)

+
∑

ot=1

log(pt) +
∑

ot=0

log(1− pt)
.

(B.4)
The variance σ2

ε can be estimated using this likelihood (by taking the deriva-
tive of (B.4) with respect to σ2

ε and equating it to zero) and is equal to:

σ̂2
ε =

1

T1

∑

ot=1

log2 (1 + εt) , (B.5)

where log(1 + εt) = log zt − log µz,t|t−1. In addition, the probability pt is also
not known and needs to be substituted by the estimated value p̂t. All of this
leads to the following concentrated log-likelihood:

`(θ, σ̂2
ε |Y ) = −T1

2

(
log(2πe) + log(σ̂2

ε )
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log(p̂t) +
∑

ot=0

log(1− p̂t)
. (B.6)
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Appendix C. Conditional variance for iETSF

Knowing that σ2
o,t+h|t = p(1 − p) for a Bernoulli process and inserting it

in (11) leads to:

σ2
y,t+h|t = p(1− p)σ2

z,t+h|t + p(1− p)µ2
z,t+h|t + p2σ2

z,t+h|t, (C.1)

which then can be simplified to:

σ2
y,t+h|t = pσ2

z,t+h|t + p(1− p)µ2
z,t+h|t. (C.2)

Appendix D. Likelihood function for iETSI

In order to derive the likelihood for iETSI model, the probability density
function for pt = 1

1+qt
needs to be derived. This can be done, taking into

account that qt has a log-normal distribution, using the formula:

fy(y) =

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣ fx(g−1(y)), (D.1)

where y = g(x), x = g−1(y) is the inverse function of y and fx(·) is the
density function of x. qt can be reformulated as qt = 1−pt

pt
, the differential of

which is equal to − 1
p2t

. Inserting this in (D.1), the density function of pt is:

f(pt|θq) =
1

p2t

1
1−pt
pt

√
2πσ2

q

e
−(log( 1−pt

pt )−log µq,t|t−1)
2

2σ2q , (D.2)

which becomes:

f(pt|θq) =
1

pt(1− pt)
1√

2πσ2
q

e
−(log(1−pt)−log(pt)−log µq,t|t−1)

2

2σ2q , (D.3)

where θq is the vector of parameters relating to the occurrence part of the
model. The probability of having an occurrence is now a compound with the
following density function:

f(ot = k|θq) =

∫ 1

0

pkt (1− pt)1−kf(pt|θq)dpt, (D.4)
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where k = 1, when demand occurs and k = 0 otherwise. The density func-
tions (D.4) and (D.3) can now be inserted in the general likelihood function
(B.3), discussed in Appendix B. However there is no point in doing so, and
it is sufficient to note that maximisation of the likelihood (B.3) means auto-
matically the maximisation of (D.3). And if we make the substitution pt = 1

qt

in (D.3) we will have the likelihood function for qt based on the log-normal
distribution. This means that the estimation of iETSI model can be done in
two steps: first the occurrences part should be estimated via maximisation of
the likelihood function for qt, then the general model can be estimated using
(B.3) and the expected values of probabilities from iETSI model. This also
demonstrates the connection between the optimisation procedure on demand
intervals level and on the level of the model as a whole.

Appendix E. Likelihood function for iETSP

The likelihood function for iETSP resembles the likelihood of the general
iETS model. The only difference is in the probability of occurrences. So the
concentrated log-likelihood can be written as:

`(θ, σ2
ε |Y ) = −T1

2

(
log(2πe) + log(σ̂2

ε )
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log

(
B(ot + at, 1− ot + bt)

B(at, bt)

)
+
∑

ot=0

log

(
B(ot + at, 1− ot + bt)

B(at, bt)

)
,

(E.1)
where B(a,b) is the Beta function with parameters a and b. The likelihood
(E.1) can be simplified to (taking TSB restriction of at + bt = 1):

`(θ, σ2
ε |Y ) = −T1

2

(
log(2πe) + log(σ̂2

ε )
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log

(
B(1 + at, 1− at)

B(at, 1− at)

)
+
∑

ot=0

log

(
B(at, 1 + 1− at)

B(at, 1− at)

)
.

(E.2)

Now we should recall two important properties of the Beta function. They
are:

B(1 + a, b) = a
B(a, b)

a+ b

B(a, 1− a) =
π

sin(πa)
.

(E.3)
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Using these properties, it can be shown that:

B(1 + at, 1− at)
B(at, 1− at)

= at
B(at, 1− at)
at + 1− at

sin(πat)

π
= at

π

sin(πat)

sin(πat)

π
= at.

(E.4)
Similarly it can be shown that:

B(at, 1 + 1− at)
B(at, 1− at)

= 1− at. (E.5)

This means that the log-likelihood function for this model is:

`(θ, σ2
ε |Y ) = −T1

2

(
log(2πe) + log(σ̂2

ε )
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log(at) +
∑

ot=0

log(1− at)
. (E.6)

However at is unknown and thus should be estimated using ETS(M,N,N).
This gives us the following final concentrated log-likelihood:

`(θ, σ̂2
ε |Y ) = −T1

2

(
log(2πe) + log(σ̂2

ε )
)
−
∑

ot=1

log(zt)

+
∑

ot=1

log(la,t−1) +
∑

ot=0

log(1− la,t−1)
, (E.7)

Appendix F. Conditional values of iETS(M,N,N)

If we rewrite the demand size part of the general intermittent state-space
model (12) in logarithms:

yt = ot (log lz,t−1 + log (1 + εt))
log lz,t = log lz,t−1 + log(1 + αzεt)

(F.1)

then the measurement equation for yt+h can be written as:

yt+h = ot+h exp

(
log lz,t +

h−1∑

j=1

log(1 + αzεt+h−j) + log(1 + εt+h)

)
. (F.2)

The part inside the exponent in (F.2) will have a normal distribution if
(1 + εt) has a log-normal distribution. The conditional expectation and vari-
ance of that part will then be:

µ̃z,t+h|t = log lz,t

σ̃2
z,t+h|t = σ2

ε

(
1 +

∑h−1
j=1 σ

2
α

)
, (F.3)
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where σ2
α = 1

T1

∑T1
t=1 log(1+αεt)

2. Knowing these values allows us to calculate
the conditional mean, median and variance of zt:

µz,t+h|t = exp

(
µ̃z,t+h|t +

σ̃2
z,t+h|t
2

)

Md(zt+h|t) = exp
(
µ̃z,t+h|t

)

σ2
z,t+h|t =

(
exp

(
σ̃2
z,t+h|t

)
− 1
)

exp
(

2µ̃z,t+h|t + σ̃2
z,t+h|t

), (F.4)

where µz,t+h|t is the conditional mean, Md(zt+h|t) is the conditional median
and σ2

z,t+h|t is the conditional variance of zt+h. Note that the smaller the con-

ditional variance σ̃2
z,t+h|t is, the closer the final conditional mean and median

are to each other.
It is also worth mentioning that in these derivations we only look at the

dynamics of demand sizes, which may change over time between t + 1 and
t+h. Thus we ignore the possibility of demand occurrence, which can be done
because of the assumption of independence of demand sizes and occurrences.

Appendix G. Quantiles of rounded up random variables

Before proceeding with the proof we need to give the definition of the
quantiles of the continuous and rounded up random variables:

P (zt < k) = 1− α, (G.1)

and
P (dzte ≤ n) ≥ 1− α, (G.2)

where n is the quantile of the distribution of rounded up values (the smallest
integer number that satisfies the inequality (G.2)) and k is the quantile of
the continuous distribution of the variable.

In order to prove that n = dke, we need to use the following basic prop-
erty:

dzte ≤ n ⇐⇒ zt ≤ n, (G.3)

which means that the rounded up value will always be less than or equal to
n if and only if the original value is less than or equal to n.

Taking into account (G.3), the probability (G.2) can be rewritten as:

P (zt ≤ n) ≥ 1− α. (G.4)
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Note also that the following is true:

P (dzte ≤ n− 1) = P (zt ≤ n− 1) < 1− α. (G.5)

Taking the inequalities into account (G.1), (G.2), (G.4) and (G.5), the fol-
lowing can be summarised:

P (zt ≤ n− 1) < P (zt < k) ≤ P (zt ≤ n) , (G.6)

which is possible only when k ∈ (n−1, n], which means that dke = n. So the
rounded up quantile of continuous random variable zt will always be equal
to the quantile of the descritised value of zt.

It is also worth noting that the same results can be obtained with the
floor function instead of ceiling, following the same logic. So the following
equation will hold for all zt as well:

qα (bztc) = bqα(zt)c , (G.7)
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