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Abstract

Wireless Sensor Networks (WSNs) comprise a collection of portable, wireless, intercon-

nected sensors deployed over an area to monitor and report a variable of interest; example

applications include wildlife monitoring and home automation systems. In order to cater

for long network lifetimes without the need for regular maintenance, energy efficiency

is paramount, alongside link reliability. To minimise energy consumption, WSN MAC

protocols employ Clear Channel Assessment (CCA), to transmit and receive packets. For

transmitting, CCA is used beforehand to determine if the channel is clear. For receiving,

CCA is used to decide if the radio should wake up to receive an incoming transmission, or

be left in a power efficient sleep state. Current CCA implementations cannot determine

the device type occupying the media, leaving nodes unable to differentiate between WSN

traffic and arbitrary interference from other devices, such as WiFi. This affects link

performance as packet loss increases, and energy efficiency as the radio is idly kept in

receive mode.

To permit WSN deployments in these environments, it is necessary to be able to

gauge the effect of interference. While tools exist to model and predict packet loss in

these conditions, it is currently not possible to do the same for energy consumption. This

would be beneficial, as parameters of the network could be tuned to meet lifetime and

energy requirements. In this thesis, methods to predict energy consumption of WSN

MAC protocols are presented. These are shown to accurately estimate the idle listening

from environmental interference measurements.

Further, in order to mitigate the effects of interference, it would be beneficial for a

CCA check to determine the device type occupying the media. For example, transmitters
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may select back-off strategies depending on the observed channel occupier. Receivers

could be made more efficient by ignoring all non-WSN traffic, staying awake only after

detecting an incoming WSN transmission. P-DCCA is a novel method presented in this

thesis to achieve this. Transmitters vary the output power of the radio while the packet is

being sent. Receivers are able to identify signals with this characteristic power variation,

enabling a P-DCCA check to reveal if the medium is currently occupied by WSN traffic

or other interference. P-DCCA is implemented in a common WSN MAC protocol, and is

shown to achieve high detection accuracy, and to improve energy efficiency and packet

delivery in interference environments.
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AP Access Point

BAN Body Area Network

BSS Basic Service Set

CAP Contention Access Period

CCA Clear Channel Assessment

CFP Contention Free Period

CPU Central Processing Unit
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CSMA Carrier Sense Multiple Access

CTI Cross Technology Interference
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DCF Distributed Coordination Function

DIFS DCF IFS
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FDMA Frequency Division Multiple Access
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GPIO General Purpose Input/Output
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LPL Low Power Listening

LQI Link Quality Indication

LR-WPAN Low Rate Wireless Personal Area network

MAC Medium Access Protocol

MCU Microcontroller Unit

MD-DCCA Modulation Detection-DCCA

MWO Microwave Oven

NAV Network Allocation Vector

OFDM Orthogonal Frequency Division Multiplexing

OS Operating System

P-DCCA Power-DCCA

PAPR Peak to Average Power Ratio

PCB Printed Circuit Board

PRR Packet Reception Rate

RF Radio Frequency
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RSS Received Signal Strength

RSSI Received Signal Strength Indicator

SDR Software Defined Radio

SFD Start of Frame Delimiter

SIFS Short IFS

SNR Signal to Noise Ratio

T-DCCA Time-DCCA

TDMA Time Division Multiple Access

TP True Positive
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WSN Wireless Sensor Network
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Chapter 1

Introduction

In the 60 years following the development of the Integrated Circuit (IC), programmable

computers have become widespread in many devices, from supercomputers to smartphones,

and many applications, from military to healthcare. At the smaller, more discrete scale,

advances in manufacturing techniques have allowed hardware to be built with a smaller

footprint. Likewise, more efficient electronic design means devices can be built with lesser

power requirements, permitting the use of more flexible power sources, including battery

power, or energy harvesting. These trends have carved a path for embedded computer

systems, which share many similarities with larger computers, but are typically smaller,

more portable, and less powerful. Embedded systems are now found in mobile phones,

MP3 players, engine control units, game controllers, and many other applications that

require computation but have limited cost, space, or power requirements. In conjunction,

wireless communication techniques have advanced in terms of range, data rate, and

reliability. A number of physical and protocol standards are now available to meet

numerous cost and functionality demands.

Wireless Sensor Networks (WSNs) are an example embedded system that has evolved

over the past two decades in line with hardware advances and user demands. These

consist of a network of sensor nodes, deployed in an environment to monitor a partic-

ular phenomenon. Each node is typically built around a Microcontroller Unit (MCU),

incorporating the Central Processing Unit (CPU), memory, non-volatile storage, and
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Chapter 1 Introduction

communication peripherals. The MCU interfaces with other on board devices, including

wireless radio for node-to-node communication, power sources, and at least one sensor.

Only limited data processing, such as compression or data aggregation, is done within the

network. Instead, sensor readings are forwarded through the network toward a designated

node, the sink, where they are made available for analysis. Example uses of WSNs

are bridge structural health monitoring [KPC+07], wildlife monitoring [MCP+02], and

volcano emission monitoring [WALR+06]. In all three cases, WSNs are preferred over

more traditional sensors because of their smaller initial and operating costs, and in some

cases because less human involvement reduces the risk of injury.

To allow flexible deployment, WSN nodes are often powered by a small, on board

power source such as a battery. Likewise, WSN deployments may often be in environments

where regular maintenance is difficult, making battery replacement to sustain a network

either practically or commercially unfeasible. Therefore, the lifetime of the network is

determined by the energy capacity and energy consumption of each sensor node. WSN

nodes may also employ energy harvesting techniques such as solar panels. In this case,

the energy consumption of each node must meet a limited budget.

On typical WSN hardware, the radio is the greatest source of energy consumption,

even when not actively transmitting or receiving data. Over the past decade much

research has focused on optimising the energy efficiency of WSN MAC protocols by

keeping the radio powered down as much as possible. This conserves energy and extends

the lifetime of the deployment. Since nodes can only communicate when their radios

are powered-on, these MAC protocols must facilitate a synchronisation mechanism to

send data. To meet energy efficiency requirements, while still able to transmit and

receive, WSN nodes use Clear Channel Assessment (CCA) for both functions in the

MAC protocol. CCA provides an indicator of the channel as busy or free, and is used by

receiving nodes to detect incoming packets; and by transmitting nodes to avoid collisions.

In ideal conditions, these approaches allow nodes to reach extremely low radio duty

cycles, enabling long network lifetime without sacrificing communication requirements.

However, depending on the deployment environment, ideal conditions may not be possible
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Chapter 1 Introduction

due to other interference sources. The 2.4Ghz Industrial, Scientific and Medical (ISM)

frequency band is a common choice amongst WSN. This is shared with a plethora of

other wireless networks and devices, including IEEE 802.11 (WiFi), 802.15.4 (ZigBee),

and 802.15.2 (Bluetooth) standards. As well, other electronic devices - such as electric

motors and microwave ovens - emit interference on this band as a by-product of their

operation.

For most wireless networks, interference from other devices may cause packet decoding

errors, which reduce link quality and throughput. This issue is referred to as Cross

Technology Interference (CTI), and in WSN MAC protocols, is further exacerbated to

also include a reduction in the energy-efficiency of the node. This stems from the use

of CCA, which in most radio hardware is unable to discern WSN traffic from other

interference. Consequently, when transmitting, WSN nodes are unable to adequately

respond to channel contention from other interferers. This affects packet loss and the

reliability of WSN links in these conditions. Under light interference, this may only

negligibly impact WSN operation; under heavy interference, however, communication

between nodes may be prevented entirely.

Similarly, under interference conditions the use of CCA during the receive process of

WSN MAC protocols leads to false wakeups - where incoming traffic is wrongly inferred

due to other channel activity. Energy is then wasted whilst the radio is kept powered on,

increasing energy consumption beyond that expected in an ideal environment. Therefore,

when installing a WSN in an environment subject to CTI, it is difficult to predict

beforehand the energy consumption, and lifetime of the network.

Being able to estimate energy consumption, and also network lifetime, is an important

tool for WSN designers: permitting more thorough feasibility assessments; and more

efficient power supply design for the nodes. For example, given a lifetime requirement of

at least six months, power supply components can be chosen more efficiently to meet

this - knowing the estimated energy consumption. Alternatively, for the same hardware,

WSN and MAC parameters can be tuned to meet minimum lifetime requirements.

Current state-of-the-art methods of energy estimation in literature are based on either

3



Chapter 1 Introduction

theoretical models, or network simulation. These estimations are able to account for

numerous factors in WSN design, including hardware characteristics, node deployment,

transmission range, routing and MAC protocol. For example, given the planned positions

of each node and their hardware features, MAC and routing protocol parameters can

be tuned appropriately to meet energy constraints. None of these methods are able to

account for the effects of CTI, including false wakeups. Therefore, accurate prediction

of energy consumption is not currently possible in environments subject to interference.

This is a pivotal shortcoming in WSN deployment planning, due to the ubiquity of

such environments. In this thesis, a methodology to estimate energy consumption is

presented which accounts for false wakeups caused by CTI. This is based on MAC

protocol behaviour and environmental interference measurements.

A number of solutions to mitigate the effects of interference on WSN MAC protocols

have been proposed in literature. A taxonomy of these works is presented in this

thesis, based on how the solution is implemented - divided into frequency avoidance,

resilience, and detection approaches. These approaches offer numerous tradeoffs, in terms

of hardware requirements, complexity, energy efficiency, and compatibility with other

networks. Detection approaches - which bolster the channel sensing mechanism in order

to detect other interference - are compatible with existing MAC protocols, and have been

shown in previous literature to improve link quality and packet delivery performance.

Current state-of-the-art solutions, however, incur the cost of significantly increased idle

listening - reducing the energy efficiency even in interference free environments.

In this thesis, a detection-based solution is presented: Differentiating CCA (DCCA),

which does not incur significantly increased idle listening, and is thus more energy efficient.

DCCA is an extension to the standard IEEE 802.15.4 CCA, able to indicate the type

of interference, as well as the current state of the channel. Power-DCCA (P-DCCA) is

described as an implementation of DCCA, feasible on current WSN hardware. P-DCCA

is evaluated in a common WSN MAC protocol, and shown to mitigate both energy

inefficiency and packet loss in interference conditions.

Fuelled by falling manufacturing costs and advances in hardware design, commercial
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Chapter 1 Introduction

and academic paradigms have spawned from WSN research to meet new demands. This

includes Vehicular Sensor Networks (VSN), and Home Automation Networks (HAN),

which share similar processing and communication requirements with WSN. The Internet

of Things (IoT) proposes collection and exchange of data from ubiquitous embedded

sources, across an existing infrastructure: typically, the internet. This is enabled by the

advent of IPv6, whose large address space may allow each IoT device to be uniquely

identifiable. In this thesis, the focus is specifically WSN, however the findings presented

are applicable to these other domains also.

1.1 Problem Statement

Interference in the 2.4Ghz frequency domain can originate from co-located WiFi, Blue-

tooth, and microwave ovens, among other devices. In each case, coexistence with other

technologies is often overlooked, resulting in sub-optimal performance for affected net-

works. This is the case for IEEE 802.15.4, whose link quality is degraded under CTI

conditions. For WSN MAC protocols based on the IEEE 802.15.4 standard, this issue is

further exacerbated in two regards:

\bullet Link Performance

Collisions between WSN and other interferers result in packet loss, which restricts

the capacity of the link. This issue is made worse by the design of WSN MAC

protocols, which are more susceptible to CCA-collisions than other IEEE 802.15.4

devices. Link capacity is further penalised due to infrequent sender/receiver

synchronisation opportunities in these MAC protocols.

\bullet Energy efficiency

In interference environments, efficient use of the radio may cease due to two

reasons. Firstly, in order to mitigate packet loss, retransmission and error correction

mechanisms may be employed; these incur an additional energy cost. Secondly,

interference is mistaken for incoming data in the MAC protocol wakeup sequence.

This leads to the radio being left powered on, which wastes energy.

5



Chapter 1 Introduction

In this thesis, solutions are sought to two problems currently facing WSN deployments

in interference environments, both of which stem from these issues raised above. These

problems, P.1 and P.2 listed below, are referred back to throughout this thesis.

P.1 Accurate energy consumption estimation of WSN

Reliable prediction of WSN energy consumption, and therefore network lifetime,

is a requirement not currently possible in environments subject to CTI, due to

shortcomings in existing energy estimation methods. A mechanism to accurately

predict node energy use and lifetime, which accounts for environmental interference,

would be beneficial to WSN designers.

P.2 Improved detection mechanism in WSN MAC protocols

Current solutions to mitigating the effects of CTI that are based on WSN detection

as part of the MAC protocol enable an improved interferer-collision response,

improving performance under interference. Current solutions, however, require

much greater idle listening time, reducing energy efficiency and battery life of each

node. A detection-based solution which does not incur this penalty, while still able

to mitigate interference effectively, would be beneficial to WSN deployments in

interference environments.

1.2 Contributions

The contributions of this thesis, presented in chapters 4 and 5 are twofold, to meet the

two issues raised above:

\bullet Methods for estimating WSN MAC protocol duty cycle for a node, based on the

environmental interference, are presented. This can be used to gauge node energy

use and estimate network lifetime. Two methods are described and evaluated based

on one typical WSN MAC protocol, ContikiMAC. This contribution is described

as a tool available to WSN designers, to assist in pre-deployment design.

\bullet An extension to the IEEE 802.15.4 standard Clear Channel Assessment (CCA)

mechanism: Differentiating CCA (DCCA), which can differentiate between sources
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Chapter 1 Introduction

of interference, as well as detecting the current occupation of the channel. Power-

DCCA (P-DCCA) is an implementation approach to DCCA that is pursued in

this thesis. This contribution is described as an approach to improve existing

MAC protocol performance - in terms of energy efficiency and link quality - under

interference.

1.3 Related Publications

Three peer reviewed publications have resulted from the presented work, in addition to

another publication that is awaiting review. Each publication is listed below, including

an explanation of how it relates to the work in this thesis.

\bullet Alex King, James Brown and Utz Roedig. DCCA: Differentiating Clear Channel

Assessment for Improved 802.11/802.15.4 Coexistence. In Proceedings of the 3rd

International Workshop on Internet of Things Communications and Technologies

(IoT - CT 2014). This workshop paper introduced the concept of DCCA in sensor

networks, without any specific implementation.

\bullet Alex King, James Brown, John Vidler and Utz Roedig: Estimating Node Lifetime

in Interference Environments. In Proceedings of the 10th International Workshop

on Practical Issues in Building Sensor Network Applications (IEEE SenseApp

2015). This workshop paper describes the work on estimating node lifetime in busy

interference environments. This paper forms the basis of Chapter 4.

\bullet Alex King, James Brown and Utz Roedig: Differentiating Clear Channel Assessment

using Transmit Power Variation. This journal article has been submitted to the

ACM Transactions on Sensor Networks (TOSN) journal. This paper forms the

basis of Chapter 5. This journal article is awaiting review.

\bullet Alex King, James Hadley and Utz Roedig: Dependability Competition: Contiki-

MAC with Differentiating Clear Channel Assessment. This entry into the 13th

International Conference on Embedded Wireless Systems and Networks dependabil-
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ity competition incorporates P-DCCA into the ContikiMAC protocol. In this event,

WSN MAC protocols were pitted against one another under interference conditions.

P-DCCA came 6th out 11 overall, and scored the highest energy efficiency of all

competitors.

1.4 Thesis Layout

The remainder of this thesis is divided into six chapters:

Chapter two presents the foundations of this thesis, beginning with typical WSN

hardware and software components. This chapter then covers the IEEE 802.15.4 PHY

and MAC wireless standard, which is a common choice in WSN design. Finally, sources

of interference in the 2.4Ghz domain are described, and how they affect WSN.

Chapter three reviews the related work in the domain of IEEE 802.15.4 and WSN

CTI. This includes firstly measurement studies and theoretical models, which evaluate

the effects of interference on WSN. Then, previous solutions in literature to mitigating

CTI are discussed and compared.

Chapter four presents a methodology for estimating energy consumption of a WSN in

an interference environment, in order to meet the first problem, P.1, discussed in section

1.1. This includes a theoretical model and monte-carlo simulation of the WSN radio

behaviour, in known interference conditions. By way of example, these techniques are

demonstrated for a common WSN MAC protocol: ContikiMAC.

Chapter five focuses on the second problem, P.2, in section 1.1, and describes an exten-

sion to the standard IEEE 802.15.4 CCA mechanism: DCCA. Different implementation

options of DCCA are compared, based on detection accuracy and energy cost. P-DCCA

is presented as an implementation option that is available on commodity hardware, is

capable of high accuracy, and is energy efficient. P-DCCA is implemented in a WSN

MAC protocol, and evaluated in terms of link performance and energy efficiency. The

evaluation includes small scale, single-hop deployments, and large testbed deployments

spanning multiple hops.

Finally, the thesis is concluded in chapter seven. The contributions of this work
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are reviewed in the context of the previous literature, and the scope for future work is

considered.

9



Chapter 2

WSN Interference and Coexistence

In this section, the foundations of this thesis are presented. The history, evolving demands,

and typical hardware of WSN are discussed in Section 2.1. WSN MAC protocols are

discussed in Section 2.2. ContikiMAC, which is used as an example MAC protocol in

Chapters 4 and 5, is described in Section 2.2.1. The effects of interference on WSN, and

sources of interference, are discussed in sections 2.2.2 and 2.3 respectively. The chapter

is summarised in Section 2.4.

2.1 Wireless Sensor Networks

The progression of manufacturing techniques, improved battery performance, and de-

velopment of cost- and energy-efficient components catalysed the advance of WSN from

academic to real world applications. WSN are well suited to applications requiring

sensor mobility, such as inventory tracking and wildlife monitoring. In applications

where regular maintenance is difficult, such as monitoring hazardous structures, or where

pre-deployment planning of sensors is not possible, the self-organising and self-repairing

nature of WSN is desirable. WSN are exemplified in scientific and industrial endeavours

to monitor and report an environmental variable, such as wildlife tracking, volcano

monitoring, oil well sensoring, and military deployments. More recently, the use case of

WSN has expanded to include commercial applications, including Heating, Ventilation,

and Air Conditioning (HVAC) systems, smart cities, and home automation. Notably, the
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latter examples put the WSN on a collision course with other ubiquitous technologies

sharing the frequency domain.

In most WSN applications, regular node maintenance - including battery replacement

and recharging - is difficult or impossible. Therefore, the energy consumption of a node is

an important design feature, dictating the lifetime of the network. Likewise, some node

hardware designs use energy harvesting components, such as solar panels, to operate

indefinitely. In which case, energy consumption is a limiting factor of the WSN, within

which sensing, data processing, and communication must operate satisfactorily.

In WSN design, this requirement motivates processor selection in favour of energy

efficient 8- and 16-bit microprocessors with memory typically in the tens of kilobytes, and

Operating Systems (OSs) toward lightweight, event-based designs with little overhead.

The work in this thesis adopts the Contiki WSN OS [DGV04], which provides a thread-

based API familar to programmers [DSVA06], without the costly CPU overhead of

pre-emptive scheduling. On-node processing is typically limited to data compression and

aggregation, while more intensive processing is pushed beyond the sink node. The nature

of the application dictates the choice of input sensors; examples include light, humidity,

mechanical stress, acceleration, and movement sensors. For the typical WSN use case,

which has little user interaction, output components are often limited to a few LEDs for

status information.

The communication requirements in a WSN prioritise energy efficiency, the radio

typically being the largest source of power consumption in node hardware. The traffic

load in WSN is typically lower than other wireless applications; a simple deployment

may need only to periodically report integer-value sensor readings, for example. The

IEEE 802.15.4 specification is a suitable choice, more energy efficient than either 802.11

(WiFi) and 802.15.2 (Bluetooth), while still capable of an acceptable data rate and

communication range for most WSN demands.
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2.1.1 WSN Hardware

The work in this thesis was based around the Moteiv Tmote Sky [She04], which is now

described. The processing, interface, GPIO and radio hardware of the Tmote Sky are

comparable to many other WSN hardware examples. The Tmote Sky is based around an

8Mhz Texas Instruments MSP430 F1611 microcontroller [Ins09], with 10KB of RAM, and

48KB of flash storage. The board, measuring 3.2cm by 1.3cm, includes an IEEE 802.15.4

2.4Ghz physical layer-compliant TI CC2420 [Ins06] radio transceiver, with integrated

Printed Circuit Board (PCB) antenna. The board also includes various integrated sensors

and GPIO pins connecting to the MCU; programming is done over the USB connection

by means of a pre-installed bootloader. The board also includes an FTDI UART-to-USB

interface, which can be used for serial connection to a host computer.

The MCU communicates with the CC2420 radio via SPI. The CC2420 defines registers

that configure and direct radio operation, such as the CCA thresholds, output power,

and initiating a transmission. A single FIFO buffer is used for both sending and receiving

packets, with a built-in Cyclic Redundancy Check (CRC) generator.

2.1.2 IEEE 802.15.4 (LR-WPAN)

The IEEE 802.15.4 Low Rate Wireless Personal Area network (LR-WPAN) is a common

choice in WSN, and is therefore described in detail in this section. The standard defines

wireless communication physical (PHY) and medium access control (MAC) layers for

low power, low data-rate, and low cost applications making it suitable for WSN. The

communication range of these devices is typically at least 10m, described by the standard

as the Personal Operating Space (POS). Suggested uses include Home Automation

Systems (HAS), asset and inventory tracking, and industrial control. Unlike WLANs,

little or no infrastructure is required for operation, which prioritises ease-of-installation

and low maintenance overhead.

The standard defines multiple PHY options, each describing the operating frequency,

and type of modulation. Each has tradeoffs between communication speed, range, security,

and energy consumption. Four frequencies, and subsequent channels, are supported
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based on the Industrial Scientific and Medical (ISM) bands: 780Mhz, 868Mhz, 915Mhz,

and 2.4Ghz. Due to the number of channels, energy efficiency features, communication

range, and data rate, the 2.4Ghz frequency is a common choice in devices using the

LR-WPAN standard, including WSN. Here, two modulation methods are available: Chip

Spread Spectrum (CSS) and Offset-Quadrature Phase-Shift Keying (O-QPSK), which

provide 1Mb/s and 250kb/s date rates respectively. Most currently available 2.4Ghz

IEEE 802.15.4 transceivers are based on O-QPSK, which has 16 channels, each 2Mhz

wide, spaced 5Mhz apart. The work in this thesis was based on the 2.4Ghz O-QPSK

PHY, although should be applicable to others as well.

The functionality provided by the radio is common across all PHY layers, and provides

a common interface to the upper MAC and NET layers:

\bullet Received Signal Strength Indicator (RSSI) an estimate of the received signal

power on the channel, intended to be used by the network layer for the purposes of

channel selection. No attempt is made to identify or decode signals on the channel.

The RSSI result is calculated by averaging over eight symbol periods, which the

2.4Ghz O-QPSK defines as 128\mu s. The standard requires that the span of RSSI

values be at least 10dB, and provide a linear relation between the power received

in decibels to the RSSI value.

\bullet Link Quality Indication (LQI) a characterisation of the quality of a received

packet, which may be based on RSSI, Signal to Noise Ratio (SNR), or received

symbol correctness. LQI is performed for each packet, and at least eight unique

values should be supported. LQI is intended for the purposes of link quality

assessment.

\bullet Clear Channel Assessment (CCA) a determination of the current status of

the channel as either busy or clear. This is intended for use in the Carrier Sense

Multiple Access (CSMA)/CA mechanism, before transmitting data. The standard

requires that at least one of the following CCA methods is supported:

-- Mode 1: Energy Detection (ED)
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Figure 2.1: PHY Protocol Data Unit

If the energy detected on the channel exceeds the set threshold, which is

configurable in software, a busy channel is reported.

-- Mode 2: Carrier Sense (CS)

If a signal compliant with the standard, with the same modulation and

spreading characteristics, is detected, a busy channel is reported. The signal

may be above or below the ED threshold.

-- Mode 3: ED and CS

A combination of both above methods, either of which may indicate a busy

channel.

-- Mode 4: ALOHA

The channel is always reported idle.

\bullet Channel frequency selection: Transceivers must be able to change the current

channel, within the allowable frequency for the particular PHY.

\bullet Data transmission and reception Transceivers must be able to transmit and

receive packets.

The 2.4Ghz PHY defines the PHY Protocol Data Unit (PPDU) as the underlying

packet format, shown in figure 2.1, taken from [Ins06]. Each packet is prepended by a

four-octet preamble, which is used for synchronising the receiver to incoming data. This

is followed by the start of frame delimiter (SFD), a single octet with the value 0xE5,

which indicates the start of a packet. The 7-bit frame length field describes the length of

the PHY payload, and has a maximum value of 127, thereby dictating the maximum

packet length for this PHY.
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The IEEE 802.15.4 MAC protocol supports two network topologies: star, and peer-

to-peer. The former has a single central node called a PAN coordinator, with which all

other nodes exclusively communicate, and that is responsible for initiating and managing

the network. This node has higher energy demands than other nodes, so is suited to

applications that can afford a universal base-station, such as HAS and health care. Peer-

to-peer topologies similarly have a PAN coordinator, but nodes are able to communicate

amongst each other, therefore allowing multiple hops and more complex routing.

To cater for the diversity in supported devices, two device classes are defined in

the standard: Full Function Device (FFD) - which can be used in either topology, and

Reduced Function Device (RFD) - which can only be used in star topologies.

The MAC protocol supports two methods of channel arbitration: beacon-enabled, and

nonbeacon-enabled. In beacon-enabled mode, the PAN coordinator broadcasts beacons

which are used to synchronise attached devices and identify the PAN. The beacon is

followed by the Contention Access Period (CAP), and Contention Free Period (CFP).

Nodes wishing to communicate then use slotted-CSMA/CA within the CAP, else may be

assigned Guaranteed Time Slots (GTS) within the CFP for uncontested channel access.

This is useful in applications with specific bandwidth, or predictable latency requirements.

Between beacons some quanta may be designated inactive, wherein nodes can sleep;

this allows for some degree of energy efficient operation. In nonbeacon-enabled mode,

nodes use unslotted CSMA/CA to mediate channel access between nodes. In both cases,

acknowledgements are sent without CSMA/CA.

Nodes have two forms of address: a 64-bit long address, and a 16-bit short address

which is assigned when the node joins the network. Each PAN is identified by a 16-bit

PAN identifier, the selection of which is beyond the scope of the standard.

The standard defines the MAC Protocol Data Unit (MPDU), encapsulated within

the PPDU, shown in figure 2.2, taken from [Ins06]. The 2-byte frame control field defines

the packet type, addressing mode, and attributes required for processing the packet. The

address fields may be either short (2-byte) or long (8-byte) as described above, and so

the minimum length of the MPDU Header is 11 bytes. Each packet is appended with
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Figure 2.2: MAC Protocol Data Unit.

a Frame Control Field (FCS) to validate received packets. The FCS contains a 16-bit

CRC, calculated over the MPDU contents.

There is a disparity between the goals of WSN applications and the IEEE 802.15.4

MAC protocol. While the latter strives for interoperability via standardisation, this is

less prominent in WSN deployments, which favour flexibility, and have low likelihood

of communicating beyond the WSN. WSN applications typically have requirements

exceeding the IEEE 802.15.4 MAC, such as: low power consumption - which may demand

more efficient radio usage, low latency - which may demand a more refined Time Division

Multiple Access (TDMA) approach, and complex routing protocols - to support multi-hop

networking. In light of this, most WSN designers opt instead for a WSN-specific MAC

protocol, implemented in software, which is built on top of the IEEE 802.15.4 PHY

interface. These are discussed in the next section.

The IEEE 802.15.4 physical layer is adopted by a number of other wireless standards,

each of which define a separate MAC protocol. These include ZigBee [All09] and

WirelessHART [wir], both of which are similarly affected by CTI. Consequently, the

literature discussed in Chapter 3 is in most cases, unless stated otherwise, assumed

interchangeable between these standards and WSN.

In the remainder of this thesis, the IEEE 802.15.4 standard is referred to as 802.15.4

for brevity. Unless stated otherwise, only the PHY layer is being referred to.

2.2 MAC Protocols

Given the implications of radio use on energy efficiency, many MAC protocols have been

proposed for WSNs. As well, as WSN applications have diversified, so to have MAC
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protocol requirements, to seek optimisation's also in QoS, link latency, and network

throughput. An exhaustive review can be found in [DEA06, HXS+13]. In order to

conserve energy, nodes duty cycle the radio between low power sleep and active modes,

the latter required to send/receive data. Therefore, in order for two nodes to communicate,

both must be in active mode.

In previous literature, the mechanism used to facilitate this synchronisation appears

in two flavours: contention- and slotted/TDMA-based. Contention-based MAC protocols

do not assume any synchronisation between neighbouring nodes' duty cycles. In order

to send data, both nodes must first initiate a costly transmission mechanism. These

approaches achieve a low idle cost, yet high transmission costs, and so are ideal in low

data rate applications. Conversely, slotted approaches (also known as TDMA) require

synchronisation amongst nodes in the network, each node assigned an uncontended slot

to access the channel. This allows for more predictable latency, and high throughput

under heavy load. When only a few nodes have data to send, the restriction on assigned

transmission slots curtails maximum network throughput; this has been an active area of

research in this domain.

Slotted approaches are preferable in high-data rate applications, however for infrequent

communication, contention-based are more energy efficient, and therefore more common

in typical WSN deployments. Contention-based approaches are therefore used as the

basis for work in this thesis. The remainder of this section discusses the existing literature

into contention-based MAC protocols.

Preamble sampling [EH02] is the precursor to many later contention-based MAC

protocols which follow the same paradigm. Here, nodes periodically wakeup and check

for channel activity, returning to sleep if an idle channel is detected. Transmissions are

prepended with a preamble, of sufficient duration to be detected by the receiver. This

approach allows nodes to keep the radio powered down most of the time, and achieve

better energy efficiency under light traffic loads than previous TDMA-based protocols

[SGAP00].

In either case, the idle listening cost is kept relatively low, at the expense of having a
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high transmission cost: transmitters must transmit a preamble throughout the receivers'

duty cycle, in order for a packet to be received. On the receiver-side, after detecting a

preamble, nodes must wait upto the entire duration of the preamble before the packet

begins. Also, other nodes besides the target node can detect this preamble. Energy

is then wasted by keeping the radio powered until it is determined to be destined for

another node; this is called the overhearing problem. El-Hoiydi et al describe WiseMAC

[EHD04], a technique to reduce the transmitting cost. While running, each node in the

WSN learns the wakeup schedules of its neighbours. Then, to transmit, the sender need

only wait until the receiver is expected to wake up and sample the channel. Not only does

this reduce the energy cost of transmitting, but also increases the throughput available to

the channel. To reduce the overhearing problem, timing and address information can be

encoded in the preamble, as in B-MAC+[PHC04]. Then, nodes can quickly determine the

recipient of a packet, and non-target nodes can return to sleep, avoiding the overhearing

problem. The timing information allows target nodes to discover the time remaining

until the start of the packet, and power down until then.

Both approaches are incorporated into X-MAC [BYAH06], where the preamble is

transmitted as multiple short packets strobes. Target nodes are able to acknowledge a

strobe, thereby allowing the packet transmission to begin earlier, further reducing the

cost of transmitting.

In many WSN MAC protocols, Low Power Listening (LPL) is adopted to reduce idle

listening time and further improve energy efficiency. Here, CCA is used to infer incoming

traffic [PHC04]. If the channel is detected busy, the radio is kept powered on to receive

data; otherwise, the node enters sleep state. Thus, CCA are used in these protocols for

both sending and receiving; this is illustrated in figure 2.3. LPL requires that the CCA

threshold is set accordingly. Set too low, and false positives may be increased, causing the

radio to waste time listening to an idle channel - referred to as a false-wakeup. Conversely,

set too high and valid packets may be missed. In B-MAC [PHC04], this threshold is set

based on prior measurements of the noise floor.

ContikiMAC [Dun11] is a LPL MAC protocol that is optimised to provide extremely
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Figure 2.3: Operation of LPL MAC protocol

low duty cycles by optimising the idle listening mechanism. In this thesis, ContikiMAC is

used as a base for optimisation in interference conditions, and is described in more detail

in Section 2.2.1. Within the TinyOS Operating System, BoX-MAC [ML] is a similar

LPL protocol referred to as LPL.

Receiver-initiated MAC protocols have also been proposed as an alternative approach

to the transmitter/receiver handshake [SGJ08, DDHC+10]. Here, the receiver periodically

broadcasts a beacon, then listens for incoming data. To send a packet, the sender listens

to the channel for a beacon, then transmits the packet. This approach firstly reduces the

channel use compared to preamble sampling, thereby leaving more channel bandwidth

available to the rest of the network. Secondly, collisions can be handled more centrally

by the receiver, which allows for a faster collision-resolution strategy. This approach does

incur a higher idle listening cost, however has been shown to be more energy efficient

under certain traffic loads than sender-initiated alternatives.

2.2.1 ContikiMAC

ContikiMAC [Dun11] is used in this thesis in Chapters 4 and 5 as an example LPL

MAC protocol, to exemplify the solutions described therein. Therefore, the operation of

ContikiMAC is described here.

Incorporating previous MAC protocol design techniques from literature, ContikiMAC

is able to achieve a low duty cycle in ideal environments. Nodes periodically wakeup to

sample the channel for activity. If detected, the radio is kept powered on to receive the

packet, otherwise turned off to conserve energy. To send a packet, the sender repeatedly

transmits the packet payload - referred to as packet strobes - throughout the receivers

wakeup period. The senders' packet strobes must coincide with the receivers channel
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Figure 2.4: Normal Operation of ContikiMAC

check, stopping after a collision with another node, an ACK is received, or a timeout

occurs.

CCA is employed in ContikiMAC for both sending and receiving. Senders sample

the CCA six times before transmitting to ensure the channel is free, and sample once

between each packet strobe, to detect an acknowledgement or a collision. To reduce the

energy cost of transmitting, senders postpone the packet strobes until the receiver is

expected to wakeup (similar to WiseMAC [EHD04]). This mechanism is called Phase

Lock (PL).

To receive a packet, CCA is used for the periodic channel checks. In order to be

confident that the CCA coincides with an ongoing strobe transmission, and not the

period in between, two CCA are used and timed to ensure at least one can detect a

packet strobe. This time window must be minimised to reduce the cost of idle listening.

ContikiMAC therefore relies on hardware acknowledgements, optional in the 802.15.4

standard. By default, the time between transmissions is 400\mu s, and the time between

CCA checks is 500\mu s. The operation of ContikiMAC is depicted in figure 2.4.

If the CCA erroneously detects other interference, [Dun11] describes Fast Sleep: if,

after detecting incoming traffic, the channel remains quiet for a number of subsequent

CCA, the receiver exits the wakeup sequence and powers down. Likewise, if no packet is

received after a set number of CCA, which may also be due to a packet being destined to

another node, the receiver returns to sleep.

2.2.2 Effect of interference

The 2.4Ghz ISM band is shared with a plethora of other wireless technologies. Among

which, transmission powers, modulations, bandwidth, and channel arbitration policies
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are far from homogeneous. Consequently in environments shared with other devices,

link performance in these networks may be degraded. This issue is referred to as Cross

Technology Interference (CTI), and is an important consideration in the design of any

wireless protocol, and prior to any deployment.

Compared to other communication protocols, and standard 802.15.4 devices, the

effects of CTI are more exaggerated in WSN MAC protocols, such as ContikiMAC. This

is due to the infrequent nature of rendezvous opportunities, and the need to achieve

low power operation. The effects of CTI are twofold on WSN: packet loss, and energy

inefficiency.

Packet Loss

Packet loss is caused by collisions - simultaneous use of the channel - with other

interference; this degrades network reliability and throughput. Packet loss may result

from two types of interaction: packet-collision, and CCA-collision. Packet-collisions occur

when another interference signal coincides with a WSN transmission. The reduced signal

quality at the receiving node prevents the packet contents from being received correctly.

This is the most common cause of packet loss in typical communication protocols.

CCA-collisions occur in communication protocols that implement a listen-before-send

policy - including LR-WPAN, WSN MAC protocols, and IEEE 802.11. Here, nodes check

the channel is free before transmitting using a CCA check. If the channel is deemed

busy, due to an interference signal on the same frequency - the transmission is aborted.

Depending on the retransmission policy, another attempt may be rescheduled.

The occurrence and effect of CCA-collisions are amplified in contention-based WSN

MAC protocols. Unlike other 802.15.4 protocols, the transmission procedure in these

protocols requires a lengthy synchronisation phase with multiple CCA checks - any one

of which may cause a CCA collision. For example, in the ContikiMAC send sequence, six

CCA checks are required before transmitting, followed by further CCA checks between

each packet strobe. This is shown in figure 2.5. By contrast, the standard 802.15.4 MAC

requires only a single CCA check in the CAP, and no CCA checks at all in the CFP.

Therefore, as studied in previous literature ([BVT+10] - discussed in Section 3.2), packet
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Figure 2.5: ContikiMAC under WiFi interference

loss due to interference is more prevalent in WSN-specific MAC protocols.

Energy inefficiency

Energy efficiency is an essential feature of WSN MAC protocols, in order to provide

long network lifetime on minimal resources. Under interference conditions, energy

consumption of WSN MAC protocols is increased. Therefore, network lifetime may be

reduced compared to an idealistic environment.

Energy inefficiency may stem from two sources of energy use: transmitting or receiving,

and idle listening. In the first instance, mechanisms to counter packet loss, such as

retransmissions, error correction coding, and routing changes, consume more energy than

in an interference-free environment. This may be necessary to achieve quality of service

requirements in a deployment.

Secondly, the energy consumption of idle listening - when not receiving or transmitting

data - is also influenced by interference. This is due to the listening mechanism during

periodic wakeup checks, which use CCA to detect if another node may be transmitting.

If this CCA detects other interference, a false-wakeup results, where the node enters the

wakeup procedure, increasing energy consumption [ZCW+14]. For example, this is shown

for ContikiMAC in figure 2.5. In typical WSN deployments, which have low data rate

requirements, idle listening is the predominant source of energy consumption. Therefore,

in interference environments, false wakeups are likely to be the greatest source of energy

inefficiency.
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2.3 Interference Sources

In this section, interference sources that are common in the 2.4Ghz frequency domain are

discussed. This includes communicable devices, such as WiFi and Bluetooth, which define

a standardised channel access protocol. Also, Microwave oven interference is discussed as

an example of non-communicable interference source. In both cases, 802.15.4 networks

are known to suffer in coexisting deployments.

2.3.1 IEEE 802.15.1 (Bluetooth)

Bluetooth is a PHY and MAC protocol for short range, high data rate communication

originally intended to replace cables connecting electronic devices [Blu10]. Devices include

wireless computer peripherals, such as mice and keyboards, wireless headphones and

hands free headsets, and file transfer between smart phones, to name a few examples.

Bluetooth devices operate in the 2.4Ghz frequency domain, and use Frequency Division

Multiple Access (FDMA) to mediate channel access. The channel is split up into 79

channels (in the US and most of Europe, 23 in Japan, Spain, and France), each 1Mhz

wide. Nodes implement channel hopping - following a pseudo-random hopping sequence,

known to all participating devices - to achieve robust communication in the presence

of other interferers. Within each piconet, consisting of two or more devices, nodes are

hop synchronised to communicate reliably. The hop duration is 625\mu s, and nodes switch

channels at a rate of 1600 hops/second. The basic specification supports a data rate of

721Kb/s, while an enhanced data rate supports upto 2.1Mb/s.

Unlike other 2.4Ghz protocols which implement a CSMA-style protocol, such as

WiFi and ZigBee, Bluetooth does not have any CCA, or listen-before-talk paradigm.

However, Adaptive Frequency Hopping (AFH) provides Bluetooth devices the ability to

mark channels as used and unused, using only the former within the hopping sequence.

Both master and slave devices within a piconet can detect interference, and ensure these

channels are marked unused.

This coexistence approach is beneficial to other 2.4Ghz protocols, including 802.15.4.

However, in a heavily interfered environment, Bluetooth is forced to use channels that
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are affected by interference. Further, other networks with a low data rate or duty cycle -

as is the case with WSN protocols - may not be detected by Bluetooth devices prior to

establishing a piconet, and hence those channels will not be marked.

2.3.2 IEEE 802.11 (WiFi)

IEEE 802.11 was first released in 1997, to provide high speed LAN access to wireless

devices. It is typically the last hop in a network topology, enabling network access to

electronic devices requiring mobile network access, such as smartphones and laptops.

The brand name for IEEE 802.11, including later amendments and revisions, is WiFi,

which is used interchangeably in this thesis. Amendments to the protocol are provided as

wireless technology progresses, increasing data rates and feature set. In the OSI model,

these changes relate to the physical and data link layer, presenting the same interface to

higher applications.

An 802.11 network consists of a number of addressable nodes, referred to in the

standard as stations (STA). Each network consists of a Basic Service Set (BSS), as

the basic building block, defining an area within which stations can communicate. An

Independent BSS (IBSS) is the simplest form of BSS, consisting of two stations which

can communicate directly. This is often known as an Ad-hoc network. By contrast, an

Infrastructure BSS includes an Access Point (AP), which may provide access to a wider

network. APs periodically broadcast their presence to nodes within the BSS via beacons.

Thus, to join an infrastructure BSS, nodes must receive a beacon.

Released in 1999 as the second 802.11 standard, 802.11b was the first to be widely

adopted and most current WiFi devices still maintain backwards compatibility. 802.11b

channel bandwidth is 22Mhz, and the minimum transmission power is 0dBm. This stan-

dard introduced High Rate Direct-Sequence Spread Spectrum (DSSS), which increased

the maximum data rate from 2Mbps in the original 1997 standard to 11Mbps.

Subsequently in 2003, 802.11g was released, and incorporated into the 802.11 standard

in 2007 under clause 19. Using the Orthogonal Frequency Division Multiplexing (OFDM)

modulation, transmit rates are provided upto 54Mbps. In deployments where 802.11g
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networks must coexist with 802.11b devices, backwards compatibility is supported. Here,

data packets are transmitted with an 802.11b-compatible DSSS packet header, therefore

reducing the maximum data rate. This revision also incorporated more extensive security

features into the standard.

802.11n is the most recent amendment to the 802.11 standard in the 2.4Ghz domain,

and is incorporated into the 802.11 standard in 2012, under clause 20. The same OFDM

modulation is used as in 802.11g, however, by affording channel bandwidths upto 40Mhz,

and support for multiple spacial streams simultaneously, 802.11n can support data rates

upto 600Mbps. The larger bandwidth therefore presents a wider interference footprint,

which must coexist with other 2.4Ghz devices.

The 802.11 PHY provides an interface to configure the rate of the underlying mod-

ulation used to transmit packets. Rate selection algorithms then vary between device

vendors. In some cases, 802.11 stations may respond to packet loss by reducing the rate,

to improve performance under low SNR. Other instances may respond by increasing the

rate, to reduce the on-air time for each packet, and avoid future collisions. A review of

802.11 rate selection algorithms is beyond the scope of this discussion.

Across all revisions, the MAC protocol remains mostly unchanged. 802.11 uses

the Distributed Coordination Function (DCF) to mediate channel contention between

multiple 802.11 devices. Before being able to use the channel, the protocol requires that

the channel is idle for a minimum period called Inter-Frame Space (IFS). Otherwise, the

node must enter the backoff procedure, where the node waits until this condition has

been met. After which, each node picks a random slot to begin transmitting; the node

picking the soonest slot number wins and begins transmitting, while the other nodes

repeat the procedure. An Acknowledgement is transmitted after each data frame. This

is shown in figure 2.6.

By defining the IFS, nodes can be afforded different priorities, shorter IFS grant-

ing higher priority. Short IFS (SIFS) is used for higher priority packets, including

acknowledgements, while DCF IFS (DIFS) is used for all other packets.

The DCF requires a CCA method to detect activity on the channel, to determine
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Figure 2.6: Simplified model of 802.11 DCF

if another device may be transmitting; this CCA method affects the coexistence with

other neighbouring devices. The standard supports two mechanisms to provide CCA:

Energy Detection (ED). which can detect any signal above a preset threshold, and

Carrier Sense (CS), which can only detect signals of the same modulation. In 802.11b, g,

and n, ED CCA is optional, and is not required in any regulatory domains. However, its

implementation has become more common in later compliant devices.

Virtual Carrier Sense (VCS) is provided by the MAC layer using the Network

Allocation Vector (NAV). Here, all packets include a duration field, indicating the

duration of the packet. Upon detecting a packet, a station marks the channel busy until

the duration field has expired. Request-To-Send/Clear-To-Send (RTS/CTS) packets

are also defined in the standard; if implemented, the duration field in both records the

duration of the entire DATA/ACK exchange. The use of RTS/CTS is configurable,

and implementation dependent, and is recommended where improved NAV protection is

needed (see hidden node problem).

2.3.3 Microwave Oven (MWO) interference

Microwave Ovens (MWOs) use a magnetron to emit microwave radiation. Despite being

shielded by a faraday cage, leaked energy is still emitted across the 2.4Ghz frequency

range. This is more prominent in older devices. The interference generated is observed

as a 50\% duty cycle pulse train, whose on/off period is determined by the AC mains

frequency. For example, in countries that use 50Hz AC mains frequency, the on-duration

of microwave interference is approximately 10ms, followed by 10ms off.

Some previous works have observed unique features of MWO interference within

802.15.4 RSSI traces [ZCW+14, BVN+11]. MWO interference has been shown to cause

RSSI fluctuations below the noise floor during the on-period, which is not exhibited
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by other interference sources. This is attributed to the saturation of the intermediate

frequency amplifier chain in the CC2420 radio.

Unlike other interference, MWO interference is not a by-product of wireless commu-

nication. Likewise, MWOs have no channel access or arbitration policy, compared to

802.11 for example. Interference is generated regardless of the prior channel state. This

must be accounted for in the design of any interference mitigation approach.

2.4 Chapter Summary

In this chapter, the foundations of WSN, MAC protocols, and interference have been

discussed. WSN MAC protocols were reviewed in Section 2.2 where CTI has been shown

to affect packet loss and energy inefficiency. Typical interference sources in the 2.4Ghz

frequency domain - common amongst WSN devices - were discussed in Section 2.3. In

the next chapter, previous literature on CTI, including mitigation solutions, with respect

to 802.15.4 and WSN MAC protocols specifically, is reviewed.
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Related Work

This chapter reviews previous literature related to wireless coexistence and interference,

with respect to 802.15.4 and WSN communication. Following an overview in Section 3.1,

three research areas are explored.

In Section 3.2, experimental studies of wireless coexistence are discussed, where the

effects of interference are measured empirically. Environmental interference is shown to

negatively affect 802.15.4 and WSN links, motivating the remaining discussion in this

chapter.

In Section 3.3, theoretical models of coexistence are presented, where link performance

and energy efficiency are estimated from known environmental properties. Underscoring

problem P.1, it is shown here that no model of energy consumption is currently available

that accounts for the idle listening behaviour in interference environments.

In Section 3.4, previous solutions to mitigate wireless interference are presented. These

are classed into avoidance, detection, and resilience approaches. Exploring detection

mechanisms, previous works are shown to either require specialist hardware - beyond the

reach of off-the-shelf WSN hardware, or increase idle listening - at the expense of energy

efficiency. The review of previous work in this section underscores problem P.2.

Finally, the chapter is concluded in Section 3.5.
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3.1 Coexistence Overview

Focusing on 802.15.4 networks, coexistence scenarios with 802.11 are the most commonly

researched due to their application overlap. The consensus here is that 802.15.4 links

are more susceptible to the effects of 802.11 interference than vice versa. The effects

on 802.15.4 networks are twofold. Firstly, collisions and packet loss increase as channel

conditions deteriorate, subsequently worsening latency and QoS. Secondly, the mechanisms

to mitigate collisions and packet loss - discussed in Section 3.4 - have additional energy

demands, which reduce energy efficiency.

The majority of work in this domain has focused on the standard 802.15.4 PHY and

MAC layers, or industry standards such as ZigBee. For the specific case of 802.15.4-based

WSN MAC protocols however, the effects of CTI on packet loss and energy inefficiency are

amplified. Packet loss is compounded by the awkward nature of unicast communication

in duty-cycled WSN MAC protocols; latency is further affected due to the infrequent

nature of synchronisation and opportunities for retransmission. Low power listening

MAC protocols, such as LPL [MHK07] and ContikiMAC [Dun11], are susceptible to false

wakeups caused by interference - where CTI is mistaken for WSN channel activity. In

the presence of external interference, false wakeups become more frequent, increasing

idle listening and reducing energy efficiency.

Yang et al present a thorough survey of 802.11 and 802.15.4 coexistence work in

[YXG11]. The authors begin with measurement-based studies, which evaluate exper-

imentally the effect of distance, transmission rate, 802.11 version, and data direction

variables on 802.15.4 communication. These typically take place in controlled environ-

ments to ensure reliable results. Following this, theoretical studies are surveyed. These

are organised based on input, output and behaviour components, which allows for easy

comparison between models, and to identify how one model may feed into another. For

example, distance and transmission power may be used as input to a path loss function,

whose output is received power; this may subsequently be fed into a Bit Error Rate

(BER) function to estimate packet loss. Finally, the authors review existing solutions

to interference, classed as either inherent - performed permanently during operation, or
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on-demand - dynamically employed in response to detecting interference.

The authors review only coexistence amongst standards-based communication, such

as ZigBee [All09], Wireless Hart [wir], and ISA100 [isa], but do not include less common

WSN MAC protocols. Also, Yang et al only review 802.11 and 802.15.4 coexistence, and

do not consider interference from other sources such as microwave ovens and Bluetooth

devices. Interference detection mechanisms are summarised to have appeared in literature

throughout the network stack, from the PHY through to the MAC layer. These are used

to drive on-demand, reactive solutions. The authors find that these detection mechanisms,

and the response to their outcome, require further research.

Hayanajneh et al present a survey of Body Area Network (BAN) coexistence issues in

[HAUV14]. BANs are a subset of WSN, sharing the same energy efficiency requirements,

radio hardware, and communication protocol design, and therefore this survey is relevant

to the wider issue of WSN coexistence. The authors consider two types of interference:

mutual, originating from inside the same network; and cross-interference, from other

sources. In this thesis, only cross-interference is considered. Three wireless standards

are discussed as candidates for BAN communication: 802.15.4, 802.15.6, and Low-power

WiFi. As with [YXG11], only interference with 802.11 is reviewed, and WSN-specific

MAC protocols are not included. The survey considers theoretical, simulation, and

testbed studies, leading the authors to make some important observations. Firstly, the

coexistence parameters that are evaluated most often vary to suit the type of study.

Secondly, most coexistence studies are carried out experimentally, using testbeds with a

small number of nodes per network.

In response to concerns governing WiFi and ZigBee coexistence, Thonet et al [TAJC]

present a survey of studies into 802.15.4 and 802.11 coexistence, and measure the effect

of coexistence on both networks experimentally. This work only reviewed industrial

studies, and did not include any academic sources. The findings here that, except under

high traffic loads, WiFi does not impede 802.15.4 networks, is contrary to the consensus

among work in this field. Further, the ZigBee standard, designed for home automation

purposes, is dissimilar to WSN usage, wherein energy efficiency requirements and traffic
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patterns differ.

3.2 Experimental studies

This section discusses previous literature measuring the effects of CTI on 802.15.4 and,

more specifically, WSN via experimentation. Due to their prevalence outside WSN, the

majority of these works have studied only the 802.15.4 PHY and MAC layers. The

findings however, are applicable to WSN MAC protocols also. For similar reasons, these

works have focused exclusively on the issue of link quality degradation. Experimental

studies of energy consumption, which is of less significance to other 802.15.4 applications,

has received relatively little attention.

Angrisani et al [ABFS08] measure packet loss in a coexisting 802.15.4 and 802.11b

deployment. A WiFi network, consisting of access point and station separated 13m apart,

is joined by an 802.15.4 network made up of 10 nodes, located near one of the WiFi

nodes. By re-locating the 802.15.4 network, and setting direction of data in the WiFi

network, symmetric and asymmetric interference scenarios can be generated. Measuring

packet loss, the authors consider the effects of coexistence on both networks. The findings

support earlier works: 802.15.4 is worse affected than 802.11, and that 802.11 is less

able to detect 802.15.4 despite having ED CCA. A tradeoff is apparent in both networks

between desired data rate and packet loss rate, which should be decided during the

network design phase.

Motivated by the greater signal bandwidth of 802.11n compared to earlier 802.11b/g,

Petrova et al [PWMR07] present a measurement study of 802.15.4 coexistence with

802.11g/n. An 802.11 network was deployed to generate controllable interference, which

consisted of an access point and station separated by 11m. Alongside this, an 802.15.4

network, made up of two TelosB nodes spaced 4m apart, was placed equidistant from

the 802.11 nodes. The spectral separation, physical orientation, and CCA threshold were

varied, while the authors measured the link performance of the 802.15.4 network. 802.15.4

packet loss is shown firstly to be dependent on the 802.11 traffic load - higher interferer

throughput reduces channel capacity for 802.15.4 traffic. Secondly, greater frequency
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separation between both networks improves the SNR of the 802.15.4 receiver, reducing

packet loss. Thirdly, 802.15.4 network orientation with respect to the 802.11 interferer is

shown to influence packet loss, although this only applies to 802.11n devices equipped

with MIMO antennas. Finally, this paper also highlights that the TI CC2420 does not

have carrier sense - as suggested by the specification [Ins06] - that would otherwise allow

for an improved CCA method.

Hauer et al investigate, and confirm, the detrimental effect of 802.11 interference on

802.15.4 BANs [HHW09]. The BAN used in the paper consists of two 802.15.4 nodes

attached to person, separated by approximately 1.5m. One node continually transmits

packets while the receiver measures link quality throughout the experiment, recording the

Packet Error Rate (PER). The transmission power of the BAN is used as an independent

variable throughout the experiments.

The first experiment takes place in an interference-free environment, generating

controlled interference via an 802.11b network. The human subject, wearing the 802.15.4

BAN, walks on a straight path within range of the interferer. On the 802.15.4 channels

overlapping with WiFi, link quality is shown to be impaired; PER is shown to be reduced

for higher 802.15.4 transmission powers. The authors only evaluate 802.11b interference,

whose PHY and MAC layers differ from more modern 802.11 variants. Further, the

802.11 network used was an Ad-hoc network (also known as an IBSS network), which is

known to behave differently compared to a BSS network (consisting of Access Point and

Station).

In the second experiment, the first experiment is repeated in three urban locations, to

measure realistic, uncontrolled interference. In addition to PER, a laptop in the subject's

backpack records also 802.11 activity. Here, WiFi activity is shown to be temporally

correlated to 802.15.4 link quality, reaffirming the hypothesis that 802.15.4 wireless links

are adversely affected by 802.11 interference.

The authors also analyse the availability, and link quality, of 802.15.4 channels from

the urban locations. Sha et al conduct a similar analysis in [SHL11b], focusing instead

on Home Area Networks (HAN) using 802.15.4 devices. Similar conclusions are drawn in
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both papers: firstly, while there is no single channel consistently available which can offer

reliable link quality, there is normally at least one channel available, at any given point,

that can. This observation is used to justify the use of channel hopping approaches to

mitigate interference. In both papers, this is proven with an offline analysis to select

the optimal channel for a given time-trace of link quality - demonstrating, with this

technique, that loss of connectivity entirely is rare. Sha et al also observe long lasting

periods of consecutive packet drops, indicating that retransmissions alone are insufficient

to maintain connectivity on an interfered link.

For both BANs and HANs, the design requirements and features differ compared to

WSN, in particular the energy consumption demands, and traffic patterns. Nonetheless,

these works empirically highlight the effect 802.11 interference, among other sources, has

on 802.15.4 links, and reaffirm the importance of effective mitigation methods.

In contrast to earlier works, Liang et al [LPLT10] and Pollin et al [PTH+08] evaluate

the interactions, and subsequently the effects of interference, between 802.15.4 and 802.11

on a finer scale.

The initial coarse measurements provided by Liang et al, including a 90-node de-

ployment in a busy lecture hall, thoroughly confirms the detrimental effect of 802.11

interference on 802.15.4, worse so for 802.11b than 802.11g, due to the slower transmission

rate and longer on-air time.

Liang et al then configured an 802.11b/g and 802.15.4 network in proximity to each

other, each with a single transmitter and receiver. By observing the RSSI trace from

a spectral analyser, finer observations are made about the interaction between the two

networks. For short distances between the networks, 802.11bg devices are shown to detect

and backoff to 802.15.4 transmissions. However, for longer distances, 802.11b/g cannot

detect 802.15.4, and can interfere with, and corrupt, such packets. Liang et al identify

these two regions as symmetric - where both 802.11 and 802.15.4 can detect each other,

and asymmetric, where 802.15.4 can detect 802.11, but not vice versa.

To explain the remaining issue of packet loss for symmetric links, the authors analyse

the distribution of bit errors in corrupted 802.15.4 packets. Here, bit errors are localised
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near the beginning of the 802.15.4 packets, otherwise being more spread out for asymmetric

links. The authors conclude that both WiFi and 802.15.4 detect the channel free, and

begin transmitting, simultaneously. The first transmitter to finish - in most cases 802.11

due to the shorter packet durations - then detects the channel busy, and backs off,

resulting in the aforementioned bit error distributions in corrupted packets. Based

on these observations, Liang et al then describe two interference mitigation methods,

Multiple Headers (MH) and Forward Error Correction (FEC), to mitigate regions of

symmetric and asymmetric interference respectively. This work is discussed in Section

3.4.2. While their work is based on ZigBee, the implications for 802.15.4-based WSN

MAC protocols are identical.

Pollin et al similarly analyse the coarse and fine grained interactions between 802.11b

and 802.15.4, finding that, contrary to prior opinion, 802.15.4 does impact 802.11b

communication. In a similar controlled experiment, the measured 802.11 throughput is

shown to be degraded under heavy 802.15.4 interference, although the impact on 802.15.4

is not reported. Again the authors analyse an RSSI trace taken during the experiment, and

conclude that both nodes detect the medium free and initiate simultaneous transmissions.

While this work was based on the 802.15.4 PHY, the traffic load measured (up to 45\% of

channel capacity) is unlikely for WSN applications.

In [BVT+10], boano et al present the first analysis of the effects of 2.4Ghz interference

on WSN MAC protocols. The authors study a broad spectrum of MAC protocols,

including sender-initiated (X-MAC [BYAH06], LPL [MHK07]), receiver-initiated (LPP

[MELT08]) and TDMA-based (CoReDac [V\"O08]). Interference is simulated based on

JamLab [BVN+11]: a separate sensor node emits a pseudo-random signal using the test

mode of the CC2420 radio. Two interference modes are used - bursty, and semi-periodic -

which are used to simulate most common 2.4Ghz interference. Each MAC protocol is

subjected to interference, measuring link performance and energy consumption. From

this, three traits of MAC protocol design are identified that achieve better performance

under interference.

In the first experiment, a designated transmitter node exchanges packets at a fixed
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data rate with a receiver node, recording success rate rate and power consumption. A

third node simulates interference. The transmission power of the interferer is set above

the transmitter and receiver nodes, ensuring that any collisions result in packet loss.

The paper draws attention to X-MAC and LPP, where better packet reception

was found if senders retained packets for longer before giving up, thus having more

opportunities to receive an initial probe. Abstracting this observation, the authors state

that MAC protocols with more frequent initial handshake opportunities are more resilient

to interference. Secondly, a variation of LPP is included, whereby receivers broadcast

a new probe after receiving a data packet, giving senders the opportunity to send all

packets destined to the same receiver in a short time frame (matching the operation of

RI-MAC [SGJ08]), which improves both metrics. The authors term this trait packet-train,

whereby brief periods of exclusive channel access can be capitalised upon to communicate

unimpeded.

The implementation of CCA before transmitting is then investigated, distinguishing

between two types of backoff: the first controlling the waiting time of consecutive CCA

if the channel is not free, and the waiting time between retransmissions if a collision is

detected. Variations of NullMAC - a simple CSMA protocol - are tested under interference

conditions. As well as different backoff strategies, a variant without CCA entirely is also

included. At the maximum traffic rate, this is found to achieve the best packet success

rate, and high energy efficiency. At more realistic WSN packet rates however, quadratic

or linear backoffs achieve better latency and energy efficiency.

DCCA is presented in Chapter 5 as a broader component of WSN MAC protocol

design to mitigate interference. A simple incorporation of DCCA into ContikiMAC is

described in 5 to replace the standard CCA; in this context, the simple policy evaluated in

[BVT+10] is close to the testing of the No-CCA NullMAC variant: if detected, interference

is ignored. However, the traits presented by boano et al relate to more abstract MAC

and network layer protocol design, and are thus compatible with DCCA.

In [BVT+10], energy efficiency is measured as cumulative power consumption through-

out the experiment. To evaluate DCCA in Chapter 5, the average radio-on time per
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packet received is used instead. Since the radio is the largest source of energy consumption

in the communication system, this remains representative of power consumption. The per-

packet metric better conveys the cost of communicating in a network, unlike [BVT+10],

where the connection between link quality and energy efficiency is less apparent.

3.2.1 Section Summary

This section has discussed previous experimental studies that measure the effect of

interference on wireless sensor networks, 802.15.4 PHY and MAC layers. Due to the

prevalence of 802.11 networks in many environments over other 2.4Ghz interferers, and

the overlapping deployment scenarios with 802.15.4, it is the most prominently studied

interferer in these works.

Angrisani et al [ABFS08] and Petrova et al [PWMR07] studied the effects of 802.11 b,

g and n interference on 802.15.4 links, and found that the latter is worse affected in terms

of packet loss. These studies simulated 802.11 CTI in controlled experiments - which

may not represent realistic interference conditions and environments. Conversely, Hauer

et al complement this by measuring the effects of CTI on 802.15.4 networks in realistic

test conditions. The authors similarly found that PRR of 802.15.4 links is impaired by

interference.

These studies only coarsely observed CTI. Conversely, Liang et al [LPLT10] and Pollin

et al [PTH+08] studied this on a finer scale to investigate the cause of poor coexistence.

The authors concluded that, among other factors, asymmetric timing characteristics

exaccerbate CTI in such environments.

The studies described above focused only on the 802.15.4 MAC protocol. By contrast,

the effects of interference on WSN MAC protocols - which have different requirements -

are studied by Boano et al [BVT+10]. The authours found that the design of these MAC

protocol exaccerbates the effects of CTI on WSNs.

To the author's knowledge, no experimental studies exist in literature that examine

the effect of interference on idle listening, and energy efficiency, in low-power listening

protocols. This is due, firstly, to the relative obscurity of these protocols amongst

36



Chapter 3 Related Work

802.15.4 research in general. This is due, secondly, to the difficultly of measuring energy

consumption and node lifetime accurately outside a lab environment. The review of work

dicussed in this section confirms the consequences of CTI presented in section 1.1, and

justifies the need for further research to mitigate these issues.

3.3 Theoretical Models

The theoretical models presented in this section are able to estimate energy consumption

and link performance, as a function of a set of inputs.

To estimate energy consumption in WSN, most models rest on two assumptions.

Firstly that, as is the case with most WSN hardware, the radio is the greatest consumer

of energy. Secondly, that communication between nodes in the same network - including

destructive collisions - constitutes the greatest source of radio usage. Therefore, input

parameters to estimate energy consumption range from the physical layer (such as

hardware efficiency, transmission power, range) to routing and node deployment. For

most of these works, the effect of CTI on energy consumption is not considered.

Conversely, a number of theoretical models of packet loss have been presented in

literature that explicitly incorporate CTI. These estimate 802.15.4 packet loss as a

function of interferer properties, such as communication power and rate, transmission

rate, and distance between networks. By modelling retransmissions also, network latency

can also be estimated.

This allows design parameters to be optimised to reach reliability and energy re-

quirements, else evaluate entirely the feasibility of a deployment. For example, most

WSN hardware is driven by a finite power source, with little scope for node maintenance

and repair. Therefore, the lifetime of the network is a function of each nodes energy

consumption, and therefore may be predicted from these models. Theoretical models are

also able to provide insight into energy consumption of WSN, in order to design power

conservation strategies. Likewise, packet loss in interference environments may be better

understood, leading to more effective mitigation mechanisms.

37



Chapter 3 Related Work

3.3.1 Energy Consumption

Duarte-Melo et al model the expected lifetime of a WSN as a function of data rate, initial

energy capacity, and node distribution parameters [DMLM04]. Information capacity is

defined as the maximum data that can be transferred in a network, before the first node

loses power. The authors equate this model to a linear flow maximisation problem to

optimise information capacity, which is shown to be equivalent to maximising network

lifetime. The continuous spatial domain of a WSN deployment is divided into grids, and

the subsequent discrete model solved using a linear programming approach. Though

this model is not empirically evaluated, the authors are able to compare the effects of

node placement and routing topologies on network lifetime. For example, the model

shows that network lifetime may be extended by more densely positioning nodes closer

to the sink, where traffic load is highest. Communication rate is modelled as continuous

throughout the network lifetime. The overhead of channel access and idle listening is

ignored: packet communication is assumed the primary source of energy consumption.

Wang et al develop a less abstract model of energy consumption of WSN communica-

tion, focusing on radio hardware and channel properties as opposed to network deployment

patterns [WHY06]. Each radio component is modelled individually, and transmission

power is considered variable to suit the communication range. A 1-dimensional spatial

model is used to compare the energy consumption of single- vs n-hop routes, assuming

negligible channel contention and retransmissions. Unlike [DMLM04], this model includes

the communication overhead of a MAC protocol. The authors find that if, on individual

links, the minimum transmission power is used that is still able to deliver sufficient SNR

single-hop networks are shown to be more energy efficient than multi-hop networks, given

stable channel conditions.

Both of these papers model energy consumption as a function of WSN application,

topology, or MAC protocol design, and assume ideal channel conditions. Conversely,

Alam et al explicitly model the energy cost of adverse communication events - such as

collisions and retransmissions - in [ABM+11]. This work complements previous models,

in that topology and physical deployment are fixed, while wakeup interval and data rate

38



Chapter 3 Related Work

are variable. The authors theoretically model the link layer, encompassing error detection

and recovery, and the MAC layer, which includes the channel access model, based on a

WSN MAC protocol. From this, the probability of 1) Wakeup and data packet collisions,

and 2) packet errors are derived theoretically, based on channel usage parameters. Then,

the energy consumption incurred in each event is measured on typical WSN hardware.

Combined with the probability model, energy consumption is predicted. This approach

is evaluated in practice, comparing predicted estimations to actual energy consumption

to within 8\% error.

In both cases, sending and receiving packets is assumed the greatest constituent of

energy consumption within the radio. Conversely, the idle listening behaviour is assumed

constant, and independent of channel conditions.

Zheng et al model the idle listening in WSN in their evaluation of ZiSense [ZCW+14],

accounting for environmental interference. The accuracy of the listening mechanism in

BMAC (an LPL protocol) is measured as the false positive/false negative rate. Alongside

the interference probability, these are used as input to a function to predict the rate of

false wakeups, and the effect on idle listening. Idle listening is shown to be significantly

increased due to false wakeups, exacerbated under either high levels of interference, or

low traffic conditions. This model suffices to theoretically compare different wakeup

mechanisms and sensitivities, however its accuracy is not evaluated empirically.

In order to simplify the models, theoretical estimations rely on network and envi-

ronmental abstractions. Since these cannot realistically describe a WSN deployment

or operating environment, accuracy is inherently reduced [MN14]. Conversely, simula-

tions capture the entire design of a WSN application, only modelling the environmental

characteristics.

Avrora is a WSN simulator presented in [TLP05]. Based on an AVR instruction-level

emulator, which uses the same cross-compiled program binaries as the actual WSN

hardware, this is able to provide fine granularity of energy consumption. Alberola and

Pesch extend the avrora simulator to include a model of the CC2420 802.15.4 radio

and wireless environment [dPAP08]. This includes all elements of the radio interface:
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CCA, RSSI, and LQI, packet transmission and reception. Therefore, Avrora is able

to evaluate the energy consumption of protocols directly, without modification. To

realistically evaluate an interference environment, a prior recorded RSSI trace, obtained

with standard WSN hardware, can be played back during simulation. The effects of this

interference can then be measured. The authors show that this is able to accurately

predict packet loss compared to an actual deployment. While not evaluated, it would be

feasible to also measure energy consumption, and predict the rate of false-wakeups due

to interference, with this approach.

To complement models of energy consumption, online estimation techniques are

used during deployment to monitor energy usage. This can be used to validate prior

estimations. For example, energy use may be reactively reduced to meet lifetime goals

[LMMR07]. Dunkels et al. [DOTH07] implement an on-line energy estimation technique

in Contiki [DGV04]. Here, the current consumption is measured for each component, in

each state, including the radio, sensors and LEDs. As the node operates, the usage of

each component is tallied, to estimate total energy consumption.

3.3.2 Packet Loss

Howitt et al [HG03] study the effects of 802.15.4 coexistence on a nearby 802.11b network.

The model describes an 802.11 access point and station, the latter being surrounded by

clusters of 802.15.4 nodes. Only downlink traffic is considered, and the model assumes

neither network can hear the other (i.e. not having ED CCA). The distance between

802.11 nodes varies the SNR of the receiver, and is used to model the size of the effective

interference area. Then, the number of 802.15.4 nodes which may cause interference

(in the given environment), and the subsequent packet loss of 802.11, is modelled. The

authors find that the PER of the WiFi link may be moderated by limiting either 802.15.4

activity, or enforcing frequency separation between networks. Regardless, the authors

find that except for close-proximity links, 802.15.4 networks are unlikely to have any

impact on 802.11 links.

As the 802.15.4 standard was being ratified in 2007, Shin et al researched the
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issue of coexistence with other communication protocols using the same frequency in

[SPK07b, SPCK07, SPK07a]. [SPCK07] studies the affect of 802.11 interference on

802.15.4 devices; [SPK07b] extends this to include 802.15.1 interference. In [SPK07a],

the affects of interference are considered in both directions: how 802.15.4 networks may

interfere with 802.11 networks. Each study was based on the unslotted 802.15.4 MAC

protocol, and assumed that transmissions were independent events. Each study produced

an theoretical model, subdivided into 1) the probability of a collision, and 2) the affect

on BER of a collision; these findings were then validated via simulation. The models

accept node distance, frequency offset, and network size inputs.

These works were based on the 802.11b standard. While this is now mostly obsolete,

the models are still valid once timing parameters to new standards are incorporated.

The authors assumption that neither protocol uses energy detection CCA is not the case

with newer deployments, although the model is still valid in scenarios where the link

range is beyond the CCA detection range. These models also assume that the 802.11

transmitter is fully saturated: always having a non-empty send queue. Since this is

unrealistic in most scenarios, these only present the worst-case scenario of coexistence.

The study highlights that the Power Spectral Density (PSD) of 802.11 is not uniform

and varies depending on the offset from the centre frequency. Consequently, simulations

confirm that the degree of frequency separation between co-located 802.15.4- and 802.11-

networks determines the severity of the interference.

Yuan et al present a more thorough analysis of 802.11 and 802.15.4 coexistence in

[YWLN13]. The authors first assume that both networks are equipped with energy-

detection CCA, therefore defining three coexistence ranges: R1: both 802.15.4 and 802.11

are able to detect each other, and hence avoid collisions; R2: only 802.15.4 is able to

detect 802.11; R3: neither 802.15.4 nor 802.11 can detected each other, but 802.15.4

may still suffer the affects of interference. Models for coexistence then estimate link

quality as a product of 1) CCA or packet collision, and 2) Bit Error Rate (BER). The

model described incorporates MAC Layer retransmissions of 802.15.4, in order to predict

throughput and latency. Unlike previous analysis, this work evaluates the models both
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experimentally and via simulation.

Yuan et al make a number of key observations via these models. Firstly, the Tx/Rx

switching time can have a significant effect upon link quality for short distances between

networks, due to 802.11 being able to begin transmitting during this period. Secondly,

partial CCA is defined as when a CCA check only partially captures an interference

signal, skewing the outcome. This is shown to have a negative effect on coexistence,

leading the authors to conclude that a more robust channel sensing mechanism is desired

to improve coexistence.

3.3.3 Section Summary

In this section, theoretical models of wireless link performance and energy consump-

tion have been discussed with regard to CTI. Duarte-Melo et al [DMLM04] present

a highly abstract model of energy consumption in WSNs, which takes as input node

distribution, energy capacity, and data rate. From this, the authors consider how to

optimize information capacity and lifetime of a network. This model does not encompass

pragmatic aspects of WSN design, such as hardware properties and MAC protocol design.

Conversely, Alam et al [ABM+11] model radio hardware, wireless channel properties and

network topology, while Alam et al [3] model collisions between nodes. These models are

used to evaluate network topology decisions in multi-hop WSNs, in order to optimize

network lifetime.

These studies do not incorporate external interference, and derive energy consumption

as a function of packet delivery. Therefore, these studies assume that the greatest source

of energy consumption stems from radio communication within the WSN. This is not the

case with LPL MAC protocols, wherein false wakeups occur as interference is mistaken for

valid WSN traffic. Consequently, Zheng et al [ZCW+14] present a model which includes

CTI, and measure the effect of idle listening due to false wakeups. However, this model

is not empirically evaluated.

Models of packet delivery under interference conditions accept environment, network,

and hardware parameters, and include the behaviour of other network's channel use.
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Howitt et al [HG03] and Shin et al [SPK07b, SPCK07, SPK07a] represent models of packet

delivery for 802.11b and 802.15.4 networks. The authors show that 802.15.4 interference

has negligeable effect on 802.11 links, while 802.15.4 packet reception determined by

802.11 data rate, distance, and frequency seperation. Yuan et al similarly present a model

which is then evaluated empirically, and highlight a number of observations regarding

802.11 and 802.15.4 coexistence.

As stated in problem P.1, no model currently exists which has been experimentally

validated, that is the intersection of these two bodies of work: estimating energy con-

sumption as a function of environmental interference properties, and based specifically

on LPL-style MAC protocols. This would be highly useful, as the expected lifetime of a

network could be predicted based on prior measurements of an environment - before any

nodes are deployed.

3.4 Solutions

CTI solutions seek to either reduce packet loss, or maintain energy efficiency in interference

environments. For the most part, these have been mutually exclusive, although some

solutions have been evaluated in both contexts [ZCW+14]. In this section, previous

studies are classed based on their approach to mitigating CTI which, broadly speaking,

may take three forms:

1. Frequency Avoidance

Avoid interference by communicating on another, unaffected channel.

2. Resilience

Make WSN transmissions more resilient to CTI.

3. Detection

Improve the detection mechanisms of interferers, and WSN, so that they may avoid

collisions and maintain energy efficient idle listening.

The taxonomy of works covered in this sections is shown in figure 3.1. Within this,

the position of DCCA, a detection-based solution presented in Chapter 5, is also shown.
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Frequency Avoidance
[SHL11a],[IWL11],
[XSL+11],[MET08],
[GLSJ12],[LLSH16]

CTI Solutions

Interferer
[DVTMD13],

[ZS13],
[HCCG09],
[WWZ+11]

WSN
[SHL13],

[ZCW+14],
[TWMM13],
[TWD+13],
[YLN10],
DCCA

Detection
[TYP+12]

Resilience
[HWW10],
[HXZZ10],
[BZRV12]

Figure 3.1: CTI Solutions taxonomy

3.4.1 Frequency Avoidance

Frequency avoidance mechanisms mitigate the effects of interference by distancing the

WSN from interference sources in the frequency domain. These approaches require that

at least a minimum number of unaffected 802.15.4 channels are available at any instant,

an assertion supported by previous interference environment studies ([HHW09, SHL11b]).

These approaches can be network-centric - all nodes switching to a new channel, or

link-centric - applying channel change to affected links only.

In general, these mechanisms share the same components:

\bullet Detection

Detection of deteriorating link quality on a given channel, prompting channel

change. To this end, nodes may periodically check channel conditions, else detect

deteriorated conditions during the course of operation.

\bullet Selection

Selecting a new channel to use for communication. This may be an empirical

process of scanning available channels, or a random selection.

\bullet Synchronisation

Informing other nodes in the network of the new operating channel. In methods
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that use a common channel for all nodes, this will end with all nodes performing a

channel switch.

\bullet Communication

Communicating on the new channel. In networks without a common channel, this

will involve some kind of switching mechanism before each transmission.

Detection is practically interchangeable between these approaches, and may be

launched as an integral part of the mechanism, or by a higher layer application. Likewise,

the selection process is interchangeable: [MET08] and [XSL+11] both use PHY-level mea-

surements based on RSSI, while [IWL11] and [SHL11a] pick the next channel randomly

or sequentially with no input.

The synchronisation method is unique in each case, and must be designed to handle:

\bullet Reliable communication of new channel to all affected neighbours.

\bullet A bootstrap procedure, for a node to join an existing network.

\bullet A fallback procedure, in case node synchronisation cannot be achieved on the

current channel. For example, due to particularly bad interference.

In [MET08], Musaloiu and Terzis present a frequency avoidance mechanism for multi-

hop sensor networks in the context of an environmental monitoring deployment. Atop

the ZigBee MAC and routing protocol, periodic data requests are forwarded to a specific

node from the base station. On each request, nodes en route conduct scans across all

channels to assess their conditions; this data is relayed back to the base station which

selects the least-busy channel from this aggregate information. A channel-change request

is then sent from the base-station, after which the sensor readings are transmitted.

The authors evaluate packet loss in a multi-hop ZigBee network of four nodes, alongside

an 802.11b network which generates controlled interference. Compared to the worst-case

single channel - which coincides with the WiFi network, packet loss is reduced from 58\%

to less than 1\%. This method adds significant control traffic overhead, increasing latency

and energy consumption even in instances where no channel change is required. Since the
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number of control packet increases with the path distance, this centralised approach is

unsuitable for large networks. Likewise, this method uses a single channel for all links on

a given path, and therefore may suffer in deployments with disjoint interference regions

which require more flexible frequency avoidance.

Similar to [MET08], Muzi is a frequency avoidance mechanism which uses PHY

measurements, sought from RSSI, to infer channel quality [XSL+11] and inform detection

and selection. However, channel selection is per-link, and control is decentralised to

each node, thereby improving scalability and reducing overhead. Each node maintains a

table of <node,channel> pairs for each neighbour, updated whenever a channel change

notification is received. To communicate with another node, this table is searched for

the correct channel. Nodes periodically measure interference on the current channel;

therefore, unlike [MET08] channel scan and selection process is initiated only if the set

threshold is exceeded. Following the channel scan, the least-busy channel is selected,

weighted in favour of those channels in use by nearby nodes. Notification of the new

channel is then unicast individually to neighbour nodes, after which the new channel is

switched to.

Muzi is evaluated on a small 4-node testbed in conditions favouring a link-centric

frequency-avoidance strategy: two disjoint WiFi stations, covering collectively all available

802.15.4 channels. Two configurations based on fixed channels, which fall under the 802.11

networks, experience 3.5\% and 28\% packet reception rate; this increases to 94\% with Muzi.

In the implementation described, the time between the first channel change notification,

and the channel change itself is determined by the number of neighbours; Therefore,

channel change is not atomic, and may lead to packet loss in networks where nodes have

many children. Such a case is not represented by the small evaluation employed. As with

[MET08], no fallback option is discussed if control packets cannot be communicated.

ARCH [SHL11a] and Chrysso [IWL11] use higher-level metrics to measure channel

performance, namely ETX and recent backoff congestion. These may more accurately

represent link performance for a given channel, but inherently take longer to measure and

are therefore less reactive to changing conditions. In both cases, channel quality can only
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be observed after switching to it, and thus channel selection is either random (ARCH) or

sequential (Chrysso). Adjacent channels - which may be affected by the same interferer

spanning multiple 802.15.4 channels - are avoided. To reduce the overhead of control

packets experienced in [MET08] and Muzi, channel change notifications are appended

to outgoing acknowledgements. This increases the time taken to change channel, and

amplifies the atomicity issue - which ARCH addresses.

ARCH is designed for Home-Area Sensor Networks (HANs). A channel change is

prompted once conditions deteriorate below the threshold. Once a channel is found to be

suffering under interference conditions, it is temporarily blacklisted from future selection;

once too few channels become available, the blacklist is cleared. While applicable in

HANs with relatively stable interference, this approach may be inefficient in dynamic

environments with constantly changing interference.

ARCH is firstly evaluated offline based on packet delivery traces, obtained from ten

sensor network deployments in an apartment building ([SHL11b]). These deployments are

subject to uncontrolled interference originating from microwave ovens, WiFi, Bluetooth

devices of the occupants, and thus [SHL11a] gives the most realistic evaluation. In each

apartment, the nodes cycled through the available 802.15.4 channels, recording packet

error rate in 5 minute intervals - the experiment lasting 24 hours. The findings show

that the selection algorithm outperforms random, and fixed selection, and is only 6\%

below the optimum achievable packet delivery. Also, ARCH requires relatively few - at

most 25 - channel switches per day to avoid interference. ARCH is then evaluated in

practice using the same testbed. In both single-hop and multi-hop configurations, ARCH

increases packet delivery rate, and reaffirms the earlier findings.

Chrysso incorporates frequency avoidance into the routing protocol, although channel

change is still coordinated per-link. Nodes append channel quality information to

outgoing data packets sent to the parent node. There, the aggregate of this information

is used to determine if a channel change is required. Channels are switched, sequentially

avoiding adjacent channels which may fall under the same interferer. The implementation

described in [IWL11] uses only a subset of five 802.15.4 channels. As with ARCH, channel
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change is communicated via ACK packets, however the authors also describe a robust

bootstrapping procedure to join a network, and include logic to re-synchronise if control

packets cannot be exchanged.

In addition to packet loss, [IWL11] measure energy consumption, thereby evaluating

the energy cost of frequency avoidance strategy. Chrysso is tested on two sensor network

testbeds under interference conditions. Compared to a fixed channel, Chrysso reduces

packet loss and energy consumption; more so under heavy interference. This indicates

that the energy cost of overhead traffic is outweighed by the improved channel conditions.

These approaches represent single channel, reactive, approaches - in that channel

change is instigated in response to changes in channel quality, such as increase in channel

activity or packet loss. Recent multi-channel MAC protocols on the other hand, define a

multi-channel proactive approach - which hop between channels systematically during

packet transmission as part of the MAC protocol design [KT13, GLSJ12, MGC16], similar

to Bluetooth.

Oppcast is a receiver-initiated MAC protocol [MGC16] that combines opportunistic

routing and multi-channel communication, providing spacial and spectral diversity re-

spectively to counter local interference sources. Receivers periodically broadcast probes

on a subset of 802.15.4 channels; to transmit, nodes listen on each channel for a probe,

before transmitting the packet. Fast Channel Hop is defined as an efficient rendezvous

mechanism, where receivers and transmitters cycle channels symmetrically until a probe

is received. Instead of a stringent routing path, nodes forward the packet on the next

hop closer toward the sink, inherently avoiding interfered links. Oppcast is evaluated

against single channel-opportunistic, and multi-channel tree-based routing protocols. In

a 96-node testbed, Oppcast achieves increased packet delivery, lower latency, and lower

energy consumption under interference conditions. In ideal channel conditions, however,

Oppcast experiences increased latency compared to single-channel protocols - a cost

of additional channel rendezvous. Therefore, reactive approaches may achieve better

performance in cases where interference is less dynamic, and can be responded to quickly,

while proactive approaches such as this may better suit dynamic environments which
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mandate frequent channel changes.

[LLSH16] describes ART, a frequency planning technique that assigns each node's

frequency based on its location within the network and measured environmental interfer-

ence, including WiFi. The frequency domain is divided into a continuous domain (within

hardware limitations), rather than the 5Mhz increments defined by the standard [IEE07].

Thus, nodes in close proximity are assigned isolated frequencies far apart, otherwise

using nearer frequencies. This approach gives the WSN more freedom to avoid WiFi in

the frequency domain, yet contravenes the standard. The authors describe centralised

and distributed implementations, the latter requiring significant overhead to coordinate

channel assignments. Each node must also know its location within the network, which

is unlikely in many deployments.

A common feature of all these works is evaluating link conditions, in order to inform

channel selection. This shares many similarities with Link Quality Estimation (LQE):

metrics which are used in route selection to structure the network. For example, PRR

and RSSI metrics may be used to determine the most suitable next hop in a network, for

a given node. Given the variety of LQE goals (such as reactivity, stability, and accuracy),

approaches, and evaluation metrics, there has been a large body of work investigating

LQE.

Baccour et al survey WSN link studies and LQE methods in [BKM+12], separating

methods into hardware - such as RSSI, SNR, and software - such as PRR, ETX. LQE's

operate on a per-link basis, and therefore can only extract information from delivered

packets between nodes. Conversely, frequency avoidance methods require measurements

per-channel, although some may aggregate per-link information ([IWL11]). Baccour et

al conclude that combinations of LQEs, hardware and software, may be more accurate

than a homogeneous metric [BZV+10]. Similarly frequency avoidance mechanisms which

combine hardware and software measurements could allow for more efficient channel

selection; this remains an open research question.

These works have shown that frequency avoidance is a viable option to mitigate

interference: by switching to an unaffected channel, the adverse effects of interference can
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be avoided entirely. Link metrics, including packet loss rate and retransmission count,

are reduced where frequency agility is employed. In all cases, additional control overhead

is required, such as to aggregate channel readings and initiate channel change, which

may incur additional energy cost. Chrysso [IWL11] found, however, that the energy cost

is outweighed by the benefits of frequency avoidance; for example, by requiring fewer

retransmissions.

Studies measuring interference in typical environments have found that, in most

cases, interference avoidance is sufficient to mitigate interference. However, channel

availability is dynamic, leaving no single channel consistently available. Since Chrysso

and ARCH describe only limited fallback options, relying on some other channel being

deterministically available to rendezvous, it is feasible that a network make become

disconnected despite other channels being unaffected. Therefore, other solutions that

are able mitigate interference on the same 802.15.4 channel are justified in order to

complement these frequency avoidance approaches. The issue of switching atomicity is

mitigated only by ARCH, however none of these methods have been evaluated under such

conditions - where any nodes have more than one child node. Similarly, these solutions

must ensure agreement between nodes during channel selection and synchronisation

marred by CTI, else channel change may not be unanimous [BZRV12].

Scope for future work in this domain includes a comparison of software-based, NET-

layer measurements (such as ETX, congestion) vs hardware PHY-layer metrics (RSSI) for

channel selection. An approach which incorporates both of these approaches could quickly

eliminate bad channels via coarse PHY measurements, then more closely scrutinise channel

selection based on finer NET measurements. From these methods, a distributed scheme

is preferred over a centralised approach, but may lead to unnecessary fragmentation of

the network over multiple channels. An approach which fragments the network as little

as possible while still improving link-level reliability would build on these works.
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3.4.2 Resilience

Resilience approaches mitigate the effects of interference - particularly packet loss - by

making packet transactions more resilient to CTI. These mostly reside at the link layer,

and are integrated into the MAC protocol. The standard 802.15.4 MAC Automatic

Repeat Request (ARQ) scheme is a simple example: unacknowledged packets - the result

of either data or ACK frame being corrupted - are retransmitted after a backoff period.

Hence, the recipient is given another opportunity to receive the packet. Other methods

discussed in this section strive for more efficient post-collision recovery mechanisms,

while others may embedded additional redundancy in transmitted frames to permit error

correction.

Liang et al [LPLT10] focus on CTI between WiFi and ZigBee networks, and identify

two interference regions: 1) symmetric - both WiFi and ZigBee can hear and avoid each

other, and 2) asymmetric - WiFi cannot hear ZigBee, but collisions still result in packet

loss. Following this, Multiple Headers (MH) and FEC are proposed to counter these

interference regions respectively.

MH is based on the observation that while both networks may be able to detect the

other, simultaneous channel access may still result in a collision. Therefore, WiFi packets

are more likely to collide with the beginning of (much longer) ZigBee packets - including

the preamble and header which are required to detect and receive incoming frames.

MH encapsulates multiple repeated packet preamble and headers within transmitted

ZigBee frames, giving receivers multiple opportunities to detect incoming packets. MH is

evaluated in a symmetric interference environment of five 802.11g clients and access point,

and five ZigBee nodes. Across all links, PRR is shown to be improved 50\% with only a

single additional header. Further headers provide diminishing improvement. Jamieson

and Balakrishnan similarly mitigate preamble and header corruption via a postamble at

the end of each packet [JB07], which can also be used to detect incoming packets stored

in a circular buffer. This approach adds significant hardware complexity, and is beyond

typical WSN radio design.

FEC is used to embedded additional redundancy, so that receivers may recover
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corrupted packets. Two FEC implementations are evaluated based on collected packet

traces: Hamming codes and Reed-Solomon. Due to the localised nature of decoding

errors, Hamming codes were only able to correct 4.7\% and 19.1\% of 802.11b and 802.11g

interference respectively. On the other hand, Reed-Solomon is able to correct 85.9\%

and 85.3\% of corrupted packets respectively. Liang et al present TinyRS, a Reed-

Solomon implementation optimised for embedded devices; however, this does still consume

significant resources: 2.9KB ROM, 1.4KB RAM, and on the Tmote Sky platform requires

at least 207ms to decode corrupt packets. Comparing against ARQ and Partial Packet

Recovery (PPR), the authors find that FEC is more efficient under heavy interference.

However, in lesser interference environments, ARQ/PPR schemes may prove more efficient.

From this, Liang et al present BuzzBuzz: a resilience approach that reactively employs

ARQ (initially), MH, and FEC as interference worsens. Evaluated on a large WSN testbed

in an office environment, BuzzBuzz is found to improve packet delivery from 43\% to

73\%, while also reducing traffic load on the network. Since the maximum frame size

in 802.15.4 is fixed, the payload overhead incurred by MH and FEC curtails the data

capacity of each packet.

In [HXZZ10], the distribution of idle period lengths within WiFi traffic is modelled

as a Pareto probability distribution. The authors find that despite there being sufficient

channel capacity for ZigBee, the CSMA MAC is unable to mitigate the effects of collisions.

Intuitively, smaller packets have less on-air-time, and are less likely to collide with other

interference. Therefore, large packets may be made more resilient to bursty interference

by dividing them into smaller packets, the sum of which is more likely to be successfully

transmitted. This incurs the cost of additional overhead, as each packet requires it's own

PHY/MAC header and footer.

WISE is proposed as a MAC solution which transparently segments network traffic

into smaller packets. The maximum packet size is optimised to achieve throughput goals

in a measured interference environment. In their evaluation, WISE achieves higher PRR

and throughput, but also reduces the overhead of the network - incurred otherwise via

more retransmissions.
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Boano et al address the more narrow issue of wireless agreement, a fundamental

component of many WSN protocols, in interference conditions [BZRV12]. Many protocols

throughout the network stack require agreement between nodes, including frequency

hopping and TDMA protocols. Known as the Two Generals' Problem, in an n-way

handshake facilitating agreement it is impossible for the final packet to be conclusively

sent. Disagreement occurs when this packet packet is lost, and both nodes differ on the

perceived outcome. To reduce the chances of disagreement, the final packet must be

made more resilient.

A simple solution is k-MAG, where the last packet is repeated k times, ensuring a

higher likelihood of at least one being received. This incurs the additional overhead of

each transmission. Boano et al instead propose JAG, which jams the channel using the

test mode available on some 802.15.4 radio, as final exchange in a handshake. This is

detected via an RSSI trace, which can easily detect the absence of any jamming signal.

Provided the duration of the jamming signal exceeds the maximum duration of any

other interference, it can be reliably detected. JAG is evaluated firstly in a 15-node

testbed under controlled WiFi and Bluetooth interference, and secondly in a residential

deployment subject to environmental interference. Compared to 2-MAG, JAG achieves

fewer disagreements while also reducing the required listening duration. Microwave

oven interference is not included in the evaluation. However, since this typically has a

period greater than the listen threshold in JAG, the detection algorithm may be liable to

false-positives under such conditions, increasing the rate of disagreements.

Unlike these pre-emptive resilience approaches, Hauer et al describe a reactive ap-

proach [HWW10]. After a collision has occurred, receivers respond with a Negative-

Acknowledgement (NACK), indicating which parts of the packet are unreadable. The

sender then retransmits only the required parts of the packet.

How to identify corrupted packet segments, while minimising overhead, has been

considered as well in previous literature. Jamieson and Balakrishnan propose softPHY,

an augmented PHY interface which annotates the confidence of each symbol on receiving

a packet [JB07]. This approach is not yet available on most commodity radio hardware,
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including 802.15.4. Hauer et al instead propose REPE to solve this problem, which

samples the RSSI of the radio during packet reception. Within this trace, external

interference is observed as spikes above the flat 802.15.4 packet profile. These are then

temporally correlated to byte-locations within the payload most likely to be incorrect.

REPE is evaluated on two Tmote Sky testbeds. Compared to the default ARQ-scheme,

REPE achieves 2.1\% and 6\% throughput gain.

3.4.3 Detection

In deployments where frequency avoidance is not possible, improving the detection of

heterogeneous network technologies can ensure fair channel usage, and mitigate the effects

of CTI. Homogeneous detection is an existing component in wireless protocol design,

necessary to reduce collisions in contentious channel conditions. For example, 802.11

must listen to the channel before transmitting, to reduce the probability of multiple

nodes interfering simultaneously. Such protocols often cater for heterogeneous networks

also, however, differences in their implementation prevent fair channel access. Prior work

has found this to be the case with 802.15.4 and 802.11 networks: the latter is unable to

detect the former, leading to collisions and preventing efficient channel arbitration.

Detection mechanisms also play an important role in LPL-style MAC protocols in

WSN. Here, the channel state is used to infer if another node is transmitting, to decide

if the radio should wake up or conserve energy by returning to sleep. However, this

mechanism can be unintentionally triggered by interference on the same channel, leading

to a false wakeup. This reduces energy efficiency and, in battery-powered WSN, network

lifetime. From this, a logical solution is therefore to bolster these detection mechanisms'

sensitivity to heterogeneous devices. If the WiFi MAC protocol, for example, could detect

802.15.4 signals, transmissions would be deferred until the channel becomes free again,

avoiding a collisions.

In the following discussion, previous literature is classed based upon where detection

is improved - either the interferer, or the WSN. Most interferer solutions have almost

exclusively focused on 802.11. This classification does not dictate where any modification
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takes place. For example, making WSN transmissions more visible to 802.11 is considered

an interferer-detection mechanism, even if the modification resides on the WSN.

Tytgat et al study the asymmetry in ZigBee and WiFi CCA mechanisms in [TYP+12].

The effect of WiFi interference on ZigBee is modelled, on the assumption that WiFi CCA

cannot detect ZigBee transmissions. As with carrier sense CCA in WiFi, Tytgat et al

also find it to be the case even with energy detection CCA. This is due to the difference

in bandwidths. 802.15.4, having a bandwidth of 2Mhz, has 9.6-dBm higher sensitivity

to WiFi, that has a bandwidth of 20Mhz, than vice-versa.

Coexistence Aware CCA (CACCA) is then proposed to supplement WiFi and ZigBee

CCA with a sensing engine, specifically to detect each others signals. The CACCA

duration is modelled around 802.11g CCA of 4\mu s. No signal processing is done by

the sensing engine, however the authors assume that sufficient accuracy is possible by

measuring signal strength alone. The prior model is then adapted to include ZigBee-only

CACCA, WiFi-only CACCA, and both.

Under 100kb/s WiFi interference, the model then predicts that WiFi-only CACCA

may reduce ZigBee packet loss by 75\%. Conversely, ZigBee-only CACCA results in 24\%

reduction, while both results in 99.6\%. WiFi-only CACCA is also shown to decouple

the WiFi traffic load from ZigBee packet loss, otherwise correlated in the original model.

Tytgat et al here only model the timing interaction of WiFi and ZigBee, with and

without CACCA. The sensitivity of CACCA is not modelled which prevents analysis of

the transmission power asymmetry between WiFi and ZigBee. Nonetheless, their work

affirms that WiFi is the primary culprit in WiFi-ZigBee CTI. Following, in the case

of 802.11, interferer-side solutions are likely to yield the greatest reduction of 802.15.4

packet loss in joint deployments.

3.4.3.1 Interferer-side

Valck et al present an implementation of WiFi-only CACCA on an Software Defined

Radio (SDR) platform in [DVTMD13]. The authors design CACCA to be backward-

compatible with the existing 802.11 standard, constraining the CACCA duration to 4\mu s.
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Two methods are studied to implement CACCA: energy detection (ED), and matched

filter (MF). ED measures the energy on each overlapping 802.15.4 channel, and MF also

filters each channel for the O-QPSK modulation.

CACCA is then implemented on a WARP SDR platform. To evaluate CACCA, the

802.11 MAC protocol is mimicked in order to simulate coexistence. For the evaluation, a

shielded RF enclosure is used, and the signal attenuation is manually adjusted between

the WiFi interferer, and two ZigBee nodes. Measuring CACCA sensitivity, ED is shown

to retain 90\% accuracy for signals above -79dBm, while MF reduces this to -83dBm.

By comparison, the 802.15.4 standard requires a sensitivity of -85dBm. However, the

authors explain that this sensitivity is not possible for ED and MF CACCA within the

CCA timing constraint of the 802.15.4 standard.

The second experiment includes an 802.11 interferer, with and without CACCA,

alongside two ZigBee nodes transmitting at maximum capacity. Within those sensitivity

ranges, CACCA is shown to limit packet loss to less than 10\%, wherein otherwise total

packet loss is experienced. This evaluation compared against an 802.11 benchmark

that did not have ED CCA. More useful would have been to measure against an ED

CCA-equipped WiFi interferer, which is supported by the standard. This approach

requires extensive modification to the design of WiFi hardware. Given the guarded

nature and complexity of 802.11 firmware; the number and ubiquity of WiFi networks

already deployed, this approach cannot practically alleviate CTI in the immediate future.

By contrast, Hou et al [HCCG09] and Tang et al [WWZ+11] modify WSN devices:

leveraging the existing detection mechanism in WiFi, improving the visibility of 802.15.4

communications. In both cases, this is achieved via the sink node, which is responsible

for signalling to nearby WiFi devices during ZigBee packet exchanges. Hou et al build on

the 802.11 VCS MAC component, which uses RTS/CTS packets to reserve the channel

for the duration of the packet exchange. To utilise this for the protection of 802.15.4

packets, an 802.11 CTS frame is broadcast by the sink, listing a duration sufficient for

the following ZigBee exchange. Upon hearing this CTS frame, WiFi devices will defer

until the channel becomes free again after the ZigBee exchange.
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Similarly, Wang et al propose WiCop, and study two signalling approaches: Fake-PHY

headers, and DSSS-nulling. The former broadcasts 802.11 packet headers, whose length

field is sufficient to cover the ZigBee exchange. This is similar to the VCS mechanism

described above, but is a more explicit deviation from the 802.11 standard. DSSS-nulling

instead continuously transmits 802.11 PHY headers, jamming the channel, throughout

the ZigBee packet exchange. The signal bandwidth is reduced from 22Mhz to 8Mhz, in

order to provide sufficient space on the channel for ZigBee, while still remaining visible

to WiFi interferers. This approach guards against opportunistic WiFi devices that may

ignore Fake-Headers and CTS approaches.

In both papers, these methods are found to be capable of reserving sufficient channel

capacity to meet the QoS requirements of the WSN. Evaluated under WiFi interference,

packet loss is reduced to below 3\% and 2\% respectively in [HCCG09] and WiCop

[WWZ+11]. Both papers envisage a medical sensing application, and assume a centralised

topology around the sink node.

These approaches require atypical hardware solutions, beyond the remit of off-the-

shelf WSN. To avoid this pitfall, Zhang and Shin present a signalling approach based

on standard 802.15.4 hardware. During the ZigBee packet exchange between two nodes,

a third node - designated the signaller - emits a busy tone on an adjacent channel.

The signaller may have a greater transmission power than standard ZigBee nodes, but

otherwise conforms to the design of 802.15.4 hardware, and is detectable by WiFi devices.

The busy tone covers the CCA check, packet transmission, and acknowledgement of

the ZigBee CSMA protocol. Therefore, the issues of asymmetric interference range and

Tx/Rx switch found in [LPLT10], are mitigated. This approach is termed Cooperative

Carrier Signalling (CCS), and is evaluated on the MICAz and USRP SDR platforms

[ZS13].

In CCS, packet transmissions are preceded by a RTS/CTS exchange which includes

the packet length. Upon overhearing this exchange, the signaller switches to an adjacent

channel - still under the same WiFi channel, and emits the busy tone. Therefore, WiFi

nodes are able to detect and avoid ongoing ZigBee communication. CCS is evaluated in

57



Chapter 3 Related Work

a testbed which includes co-located ZigBee and WiFi networks. On a single link, CCS is

shown to reduce ZigBee packet loss by upto 90\%.

CCS is also evaluated for ZigBee in TDMA mode, where similar improvements

are shown. This approach does not require any hardware modifications outside either

standard, and the authors describe more generally how it may alleviate coexistence

between arbitrary networks. The overhead of coordinating with the signaller does incur

a cost in energy consumption of at least 10\% above standard ZigBee. This is detrimental

in WSN applications where energy efficiency is paramount. Further, Zhang and Shin

recommend the signaller be mains powered and capable of higher transmission power -

not possible in many WSN applications.

3.4.3.2 WSN-side

WSN-side detection solutions mitigate CTI by affording the presence of heterogeneous

interference in the design of those protocols. These solutions are designed to reduce

either packet loss or false wakeups - the latter is only applicable to LPL MAC protocols.

For example, packet loss may be reduced if WSN nodes are able to handle collisions from

WiFi interference, or within the same network, differently [TWMM13]. Likewise, LPL

protocols may be made more efficient under interference if the rendezvous mechanism

were able to differentiate WSN traffic from interference, waking up only for the former

[SHL13, ZCW+14].

Yuan et al and Tang et al both present interference mitigation mechanisms based

on CCA threshold adaptation [YLN10, TWD+13], which aim to reduce ZigBee packet

loss in interference environment. Under Wifi interference, Tang et al show that the

CCA threshold of ZigBee devices heavily influences the rate, and cause, of packet loss.

Increasing the threshold reduces the rate of CCA collisions, and subsequently is able to

achieve higher packet delivery. However, if the threshold is set too high, collisions with

WiFi interference may increase. Therefore, a equilibrium must be found. Both approaches

adaptively change the CCA threshold: Yuan et al compare the rate of CCA failures to a

preset threshold, while Tang et al measure the rate of packet buffer overflows. The former
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approach is evaluated in a network simulator comprising a WiFi network and sixteen

ZigBee nodes; the latter is evaluated on a small-scale testbed. Both evaluations show that

packet loss, caused by CCA failure and collisions with interference, is reduced. However,

neither evaluates the affect of this CCA threshold adaption on communication within

the WSN, where multiple nodes may be vying for channel access simultaneously. These

methods are based on ZigBee CSMA, which has only one CCA check before transmitting.

This is vastly different to WSN MAC protocols which have multiple packet strobes per

transmission, each preceded by CCA.

Tang et al present Interference Aware Adaptive Clear Channel Assessment (IAACCA),

which more proactively contends for channel access by replacing the standard CCA

[TWMM13]. Instead of a single CCA check, the channel is sampled continuously until

found to be clear. If a timeout is reached, the packet is dropped. Otherwise n further CCA

checks are taken - where n is random to avoid collisions with other ZigBee devices - after

which, the packet is transmitted. Compared to the standard CSMA/CCA mechanism,

which more conservatively backs off on finding a busy channel, IAACCA is shown to

reduce packet loss under WiFi interference. IAACCA is evaluated only in a small

network, where any interference is assured to have originated outside the network. In a

heterogeneous environment however, a collision policy informed by the interferer source

would be more beneficial: able to enact the most suitable response deterministically.

Nonetheless, this approach demonstrates that the standard CSMA/CCA mechanism,

and its sweeping CCA collision response, is inadequate in CTI environments (particularly

under WiFi interference). DCCA is evaluated in this context in Chapter 5, and found to

reduce packet loss by employing such a policy.

To mitigate false wakeups incurred by LPL MAC protocols, Sha et al present Adaptive

Energy Detection Protocol (AEDP) [SHL13]. In 802.15.4 compliant radios the Energy-

CCA threshold, above which any signal indicates a busy channel, is configurable in

software. The authors find that this parameter affects the rate of false wakeups: higher

thresholds are less liable to detect other interference and cause false wakeups; it must

be low enough, however, to detect valid incoming packets. The CCA threshold must

59



Chapter 3 Related Work

therefore be raised as much as possible, but not so much as to miss valid packets. In

order to adapt to different environments, AEDP seeks this optimisation at runtime.

Each node tracks two variables within a sliding, 15 minute window: 1) ETX from in-

coming packets (ETX), 2) false wakeup rate (WR). For both variables, upper thresholds

are set to guide the refinement algorithm: if ETX > ETXthreshold, the CCA threshold is

quickly reduced; if WR > WRthreshold, the CCA threshold is gradually increased. Over

time, AEDP will find the most efficient CCA threshold which balances ETX and false

wakeups. AEDP must be able to adapt to changing network topology, which may require

lowering the CCA threshold to detect new neighbours. This is achieved by periodically

setting the CCA threshold to its lowest value. Since this is neither energy-efficient or

highly reactive, AEDP is better suited to stable network topologies.

AEDP is implemented in BoX-MAC-2 [ML], using the default wakeup interval of two

seconds. The node duty cycle is used to measure energy efficiency with, and without

AEDP - using the default CCA threshold. In a quiet environment, false wakeups are

rare, and hence AEDP brings no changes in duty cycle. Alongside an 802.11n network

generating interference, AEDP reduces duty cycle by 47.3\%. Likewise, in a residential

deployment, AEDP is able to reduce the duty cycle by 45.5\%. AEDP is tested in a

multi-hop network on a 55-node deployment in a residential deployment exposed to

interference, each node sending a packet to the sink every five minutes. During the

24-hour experiment, the duty cycle is again reduced to 35.44\% using AEDP. Interestingly,

AEDP reduces the average ETX by 11.26\%, due to unintentionally pruning unstable

links which are below the CCA threshold. Since AEDP cannot reduce the CCA threshold

below the lowest neighbours RSS, this is shown to determine the effectiveness of AEDP.

Thus, the authors note that AEDP may offer no benefit in sparse deployments.

Zheng et al point out that many deployments are dominated by such Intermediate

Quality (IQ) links, with RSS indiscernible from other interference sources. Examining a

dataset which includes link RSS of a large testbed, 90\% of links are shown to be below

-66dBm. Following this, Zheng et al describe ZiSense - a mechanism to reduce false

wakeups not reliant on signal strength [ZCW+14]. ZiSense is similar to other interference
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classification mechanisms [ZXX+10, AAM11], insofar as an RSSI trace is searched for

known spectral and temporal features. However, ZiSense is intended only to detect the

presence of 802.15.4, in order to bolster the rendezvous mechanism.

Instead of a single CCA check, ZiSense samples the RSSI register at high frequency

over a sample period. From the RSS trace, ZiSense identifies individual signals, and

for each constructs a feature set consisting of 1) On-air time: the duration of each

signal, 2) Peak-to-Average-Power Ratio (PAPR): a measure of the shape of a signal, 3)

Minimum Packet Interval (MPI): the minimum interval between successive transmissions,

and Under Noise Floor (UNF): a binary indication of RSS dips beneath the noise floor,

characteristic of microwave oven interference. (1) and (3) can be correlated for each

interference source, for example the maximum value of (1) for an 802.11g device is 542\mu s.

The authors found that PAPR differs depending on the modulation technique: WiFi

has a higher value than Bluetooth/ZigBee due to different modulation techniques. Each

feature set is then passed to an identification algorithm, three of which are described in

[ZCW+14].

The false wakeup rate of ZiSense is first evaluated under controlled conditions,

compared to B-MAC and AEDP under WiFi, Bluetooth, and microwave oven interference.

B-MAC, which uses a fixed CCA threshold, performs the worst, approaching 100\% false

wakeup rate for short distances. AEDP reduces this only when the interferer is further

than 4m away, or when the 802.15.4 links have RSS greater than -65dBm. This is expected,

since high interferer, or low 802.15.4, signal strength render both indistinguishable. On

the other hand, ZiSense consistently achieves fewer false wakeups independent of link RSS

or interferer distance than AEDP or B-MAC. ZiSense is then evaluated in a large-scale

testbed of 41 nodes in an office environment. Each node in the multi-hop network

forwards one packet every five minutes to the sink, and the channel check rate is 2Hz.

ZiSense is shown to reduce the duty cycle from 3.74\% (B-MAC) and 4.14\% (AEDP) to

2.46\%. In the ZiSense implementation, the duration of the RSSI sampling is 2800\mu s -

90 samples. This is a significant departure from a single CCA check (128\mu s), and adds

significantly to the cost of idle listening.
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P-DCCA is presented in Chapter 5. As with ZiSense, P-DCCA searches an RSSI

trace for prior known temporal and spectral features, in order to differentiate 802.15.4

from other interference. However, to shorten the timescale on which such features

can be detected, P-DCCA does not rely on inherent 802.15.4 characteristics. Instead,

P-DCCA nodes embed additional information in the amplitude of outgoing transmissions

- by varying the output transmission power, effectively creating an orthogonal channel.

Detection of this unique feature in an RSSI trace indicates an P-DCCA transmission.

The duration of a P-DCCA check is variable between 128\mu s and 256\mu s, more closely

approximating that of a standard CCA check. In Section 5.5, P-DCCA is shown to

significantly reduce the cost of idle listening compared to ZiSense.

As with these approaches, P-DCCA is designed to mitigate the false wakeup problem

in low power MAC protocols, however, P-DCCA is also designed to alleviate channel

contention and packet loss in interference environments. P-DCCA and ZiSense search

for signal features discernible from interference, that are invariable with distance or

signal strength. Consequently, in either a diverse link environment, or one subject to link

dynamicity, both would expect a lower false positive rate compared to AEDP. However,

the underlying CCA in AEDP relies on a simple RSSI threshold, and is inherently

less prone to missing valid signals, and therefore may suffer fewer false-negatives. The

drawback of P-DCCA is that the power variation used to identify transmissions reduces

the total SNR of each packet, and hence may reduce the communicable link range. As

with AEDP, P-DCCA may therefore be less suitable in sparse deployments, although

such links are more heavily penalised in P-DCCA.

P-DCCA is evaluated against ZiSense in Chapter 5, measuring true-positive and

true-negative accuracy. While the high accuracy recorded in [ZCW+14] could not be

replicated, P-DCCA was shown nonetheless to achieve comparable or greater accuracy.

The authors note that interference sources other than those considered in [ZCW+14]

may be less discernible from 802.15.4, yielding lower true-positive accuracy. In Section

5.4, this is found to be the case with 802.11b interference, under which ZiSense is highly

susceptible to interference. While now mostly obsolete, there are circumstances where
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802.11b interference may be encountered, where ZiSense would perform poorly. This is

due to the modulation and timing similarities between 802.11b and 802.15.4.

Both P-DCCA and ZiSense rely on preset thresholds to differentiate unknown inter-

ference from incoming traffic. These face a similar tradeoff to the CCA threshold, and

therefore a mechanism based on AEDP may be used to fine tune such parameters at

runtime - in order to optimise the false-negative/positive tradeoff.

Detection has been proven an efficient solution to reduce packet loss and maintain

energy efficiency in CTI environments. As the most prolific example of CTI, studies

here have mostly focused on 802.11 and 802.15.4 coexistence. Improving the ability of

WiFi to detect other networks is shown to yield the greatest improvement in 802.15.4

packet delivery. This is because WiFi devices are unlikely to detect other CTI, and whose

transmissions are most destructive. Solutions here based on modified radio hardware

- to improve either sensitivity of, or visibility too, WiFi CCA, achieve the greatest

improvement in 802.15.4 link performance. However, the cost and energy consumption of

these additional components precludes many WSN applications.

In WSN-side detection solutions, packet loss is mitigated by affording more selective

channel arbitration. Collisions with other WSN traffic are avoided, while more assertively

vying for channel access amongst interference. WSN-side detection solutions are also able

to ensure energy efficiency in CTI environments, by avoiding false wakeups. In Chapter 5,

P-DCCA is presented as a WSN-side detection solution. P-DCCA has greater accuracy

compared to existing approaches with minimal energy overhead, and is shown to both

mitigate packet loss, and preserve energy efficiency.

3.4.4 Section Summary

Among coexistence solutions in literature, the three most prominent classifications

discussed are frequency avoidance, detection, and resilience. Each solution has merits

and tradeoffs that suit particular circumstances; these must be accounted for when

considering which to employ in a given environment.

Across all solutions, comparison of the results suggests that - annecdotally - frequency
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avoidance offers the greatest improvement in link quality; this is because interfered

channels can be avoided entirely allowing unimpeded WSN operation. While reducing

packet loss, this will also reduce false wakeups and improve energy efficiency - although

the latter has not been evaluated in practice. Musaloiu and Terzis [MET08], Sha et

al [SHL11a], and Iyer et al [IWL11] present frequency avoidance solutions that select

the channel based on channel measurements, and network metrics. These are reactive

approaches - which initiate channel change in response to adverse channel conditions,

and incur the cost of channel coordination across multiple nodes in a WSN. By contrast,

Kumar et al [KT13], Gonga et al [GLSJ12], and Mohammad et al [MGC16] present

multi-channel reactive approaches, whereby WSN nodes continuously iterate through a

subset of channels as part of the MAC protocol.

Frequency avoidance requires that a minimum number of channels are not subject

to interference at any instant. While previous studies of BANs and HANs support

this assumption [HHW09, SHL11b], the emergence of new, wide-bandwidth, standards

may challenge this (such as 802.11n, which uses 40Mhz-wide channels). Likewise, the

channel selection and synchronisation protocols require reliable communication which,

on an already severely affected channel, may not be possible. Therefore, frequency

avoidance solutions should ideally be complemented by other approaches, either resilience,

or detection.

Resilience solutions increase the likelihood of WSN data being received correctly in the

presence of interference. Liang et al present a resilience approach based on observations

of CTI between WiFi networks and WSNs [LPLT10]; this approach embeds sufficient

redundancy to allow data packets to be recovered after a collision. Similarly, post-collision

solutions describe a method to recover partially corrupted packets [HWW10, JB07]. These

solutions have been shown to improve link performance in interference conditions, however

do not mitigate energy inefficiency - stemming from false wakeups in WSN MAC protocols

- caused by interference.

Detection approaches facilitate greater sensitivity of wireless devices to heterogeneous

interference, and may focus on either WSN-, or interferer-detection improvement. In the
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case of 802.11 - less sensitive and more destructive to other networks - interferer-detection

provides the greatest link performance for 802.15.4. However, the complexity of this

approach incurs significant hardware cost. Likewise, implementing this solution in existing

2.4Ghz deployments, such as WiFi, is practically unfeasible. Conversely, WSN-detection

approaches allow for more selective contention policies in the WSN MAC. While not

able to mitigate collisions with higher-powered interferers - such as WiFi - packet loss

due to transmit FIFO overflow can be reduced. WSN-detection is also able to minimise

energy consumption of LPL MAC protocols in interference environments, by reducing

false wakeups. These approaches typically do not require any special radio hardware and

can be implemented on most WSN platforms.

Sha et al [SHL13] and Tang et al [TWMM13] have presented solutions that tune

the CCA threshold to meet energy consumption and packet delivery rate goals. These

approaches suffice in environments where signal strength alone is sufficient to differentiate

WSN traffic from interference. In more dynamic environments however, this is not the

case [ZCW+14]. Zheng et al have proposed ZiSense, which detects 802.15.4 transmissions

based on temporal RSS features, irrespective of signal strength [ZCW+14]. ZiSense is

shown to reduce false wakeups in CTI environments, however, the idle listening - hence

minimum energy consumption - is significantly increased. ZiSense is also not able to

mitigate link quality degradation.

This review of current CTI solutions suggests that an efficient, low-cost approach

may be offered by WSN-based detection works. These require no additional hardware,

no modifications to existing heterogeneous networks, and can be implemented alongside

existing MAC protocols. However, current state-of-the-art implementations incur sig-

nificantly increased idle listening over standard MAC implementations. This reduces

energy efficiency, and the battery life of nodes in the network. It would be beneficial to

implement a WSN-based detection solution that does suffer this drawback, while still

able to improve link quality and energy efficiency.
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3.5 Chapter Summary

This chapter has examined existing work related to wireless coexistence, particularly

with regard to 802.15.4 and WSNs. In section 3.2, previous empirical studies of CTI

were reviewed. These measured the effects of interference on 802.15.4 devices and

WSNs, and included coarse measurements in large deployments and fine observations

in controlled experiments. These works have shown that CTI is detrimental to 802.15.4

links, resulting in increased packet loss and latency. For WSN MAC protocols this was

shown to be exacerbated - reducing energy efficiency and network lifetime. These studies

have highlighted the need to further study how to mitigate CTI.

In section 3.3, current methods to estimate energy consumption were reviewed. These

are based on either simulation or theoretical models of energy consumption. The latter

encompass models of the MAC and routing protocols, network load, hardware components,

and physical deployment, among others. For example, using these models, it is possible

to estimate energy consumption and network lifetime for a given deployment in ideal

conditions. None of these, however, are able to account for the effects of CTI on WSN

MAC protocols. Given that this effect is known to be non-negligible, it is therefore not

possible using current techniques to estimate energy consumption and lifetime of a WSN

in an interference environment. This has underscored the first problem presented in

section 1.1: accurate estimation of WSN energy consumption and node lifetime is not

possible.

In section 3.4, existing solutions that aim to mitigate the effects of CTI in WSNs

were reviewed. A taxonomy of these works was presented, based on the underlying

mitigation approach, including: avoidance, resilience, and detection. Avoidance solutions

communicate on an unaffected channel, mitigating the effects of CTI entirely. Current

implementations however assume a minimum link quality to coordinate channel selection,

which may not be possible. Detection solutions offer the ability to mitigate packet loss,

and improve energy efficiency in interference environments. Currently available detection

solutions however either increase idle listening - and therefore energy consumption, or

require impractical hardware changes. Consequently, there is currently no detection
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solution available that remains energy efficient, and is possible on commodity hardware.

This underscores the second problem presented in section 1.1.
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Estimating Node Lifetime

Predictable energy consumption is an invaluable component of WSN design. As discussed

in Chapter 2, the receiving function of WSN MAC protocols is based on the 802.15.4 CCA

interface, which detects incoming packets without costly-idle listening. However, the

most common CCA implementation, energy-detection, is susceptible to other interference;

energy consumption is therefore dependent on the environmental interference.

Consequently, WSN designers would benefit from a tool to estimate energy consump-

tion of a WSN, based on interference measurements in an environment. This may be

used to assess the feasibility of a deployment; fine tune MAC protocol parameters to

meet network lifetime requirements; and compare MAC protocol performance.

To address problem P.2, raised in section 1.1, methods of measuring interference are

first discussed in section 4.2. Then in Sections 4.3 and 4.4, two methods of predicting

energy consumption are described, and shown by example for a well known MAC protocol.

Prediction accuracy is then evaluated in Section 4.5. Finally, the chapter is summarised

in Section 4.6.

4.1 Estimating Energy Consumption in WSN

When designing or installing a WSN, node energy consumption is a key design parameter.

On battery powered devices, node energy consumption dictates network lifetime, and so

WSN designers can tailor energy consumption to meet lifetime goals. A WSN deployment
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to monitor volcano emissions, for example, may require that readings are recorded for

at least three months. Alternatively, on WSN hardware powered by energy harvesting

devices, node energy use must fall within the set budget for the network to operate. For

example, a sensor node powered by a solar cell must not exceed this energy budget, in

order for the node to function.

On most WSN hardware, the radio is the greatest source of energy consumption,

even when not transmitting or receiving. Thus, node energy consumption and lifetime

is determined more by the radio than any other component. However, as reviewed

in Chapter 3, radio energy use has been shown in previous works to be influenced by

environmental interference.

This is the case in asynchronous low power MAC protocols that infer from channel

energy if a packet is being sent. In protocols such as ContikiMAC, and Tiny OS LPL,

Clear Channel Assessments (CCA) are used to sample the channel energy and determine

if a packet is being transmitted. This achieves very low energy usage, as the radio only

briefly needs to be listening to the channel to determine if a further wakeup is needed.

Most transceivers provide CCA based on energy detection, whereby the channel energy

is sampled, and compared to a predefined threshold. This can detect 802.15.4 activity,

and also any other activity in the 2.4Ghz domain, including other interference devices.

In the context of a WSN MAC protocol wakeup sequence, this is liable to false-wakeups:

where a WSN node infers channel activity from other interference. This increases idle

listening and reduces energy efficiency and node lifetime.

Therefore, accurate predictions of WSN energy consumption, for these protocols,

cannot be made without factoring the interference in the deployment. Tools and methods

to achieve this can be used to:

1. Tune MAC parameters Wakeup frequency, CCA check behaviour, CCA thresh-

old, and energy saving optimisations can be tuned to meet node energy use require-

ments for a given environment.

2. Assess deployment feasibility Given known hardware, network, application,

and lifetime requirements, the feasibility of a WSN deployment operating in an
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environment may be determined in advance.

3. Comparing MAC protocols Different MAC protocols may be compared on an

energy efficiency basis, to select the most suitable for a deployment.

4.2 Measuring Interference

In order to estimate the energy consumption of a sensor node in a given environment, a

quantification of the interference must be provided. This will be used as input to the

energy consumption estimation method, and must accurately reflect the interference in an

environment. Methods of sampling and analysing interference within 802.15.4 channels

have received attention in WSN literature. This has been used for applications including

identifying interference sources within the environment; optimising packet delivery in

interference environments; and as input to channel selection algorithms. Methods of

measuring interference in an environment, based on current WSN hardware, are discussed

in this section.

A prominent approach has been to record the RSSI register value repeatedly into

an in-memory buffer, providing a time domain trace of channel energy. This provides

a detailed representation of any interference signals present, from which a wealth of

information can be drawn. For each signal recorded, modulation characteristics, signal

strength, and timing features may be calculated from such a trace. A high sampling

frequency here is desirable to capture an RSSI trace representative of channel activity.

This method, however, suffers a number of drawbacks. Firstly, the memory capacity

on typical WSN hardware is less than 10KB, which limits the maximum sample duration.

While compression techniques can mitigate this restriction, long uninterrupted sample

durations are not possible. Likewise in applications which require this feature alongside

other WSN functions, such a substantial memory allocation is not possible. Although

this may not be an issue in a WSN tool set which has only this specific requirement.

This approach is useful in applications which are required to analyse each detected signal

or packet, such as interference source classification.
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Statistical methods are able to compress the recorded RSSI before it is saved into

memory. Some signal features are inevitably lost in this approach, although this is

acceptable in applications which do not analyse each detected signal or packet - as in

the case presented here. The distribution of idle/busy period frequencies in an RSSI

trace has been adopted in previous literature. In this case, the idle and busy period

durations of interference signals are divided into set defined ranges. On detection of

each idle/busy period, the corresponding counter is incremented. In this approach,

long sampling durations can be afforded at the expense of additional processing in each

sampling loop iteration. The granularity of this approach can be tailored by altering the

bin size. Packet delivery estimations, which are based on the probability of the channel

remaining clear for a given packet length, have adopted this approach in previous work.

False wakeups in WSN MAC protocols stem from detection of interference in CCA

checks in the wakeup sequence. Consequently, estimations of radio use stemming from

false wakeups are required only to consider the interaction between interference and these

CCA checks. In current state-of-the-art WSN MAC protocols, CCA checks within the

CCA sequence are sufficiently separated, as to be considered temporally independent.

For example, in the ContikiMAC protocol, CCA checks are spaced 500ms apart, which is

far greater than the channel use of other interference sources. Therefore, in this chapter,

the channel busy probability, denoted PC , is used to measure interference. This is the

probability of the channel being occupied by other interference at any instant, and is

calculated as in equation 4.1.

PC =

\sum N
n=1Cn

N
(4.1)

Where Cn is the state of the channel as busy (1) or clear (0) as measured on the nth

sampling iteration, and N is the total number of samples recorded in a measurement.

A quieter interference environment will be close to zero, while a busy channel will be

closer to one. Depending on the interference source, requirements on the PHY and MAC

layer within the standard may restrict this. For example, under 802.11g interference, PC

cannot exceed 55\%, even under multiple stations transmitting at once. This is due to
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the design of the 802.11g MAC protocol.

The memory and processing overhead of this approach is the smallest of these

approaches, and can easily be incorporated alongside other WSN applications. As

with measuring idle/busy distribution, only the channel state is required. This can

be measured via CCA, which is much faster than RSSI and therefore supports higher

sampling frequencies. This approach is sufficient for modelling WSN MAC protocol

behaviour, based on the CCA wakeup sequence. However, it is insufficient for modelling

more complex MAC protocol features, such as packet delivery. The chosen sampling

frequency and duration affects the accuracy of this measurement. Increased sampling

frequency will capture more interference signals and details, while increased measurement

duration will better reflect the interference within an environment.

PC is not expected to be static over time. Rather, it should increase during busier

periods as devices generate more 2.4Ghz interference (for example, during working hours

in an office), and decrease during quieter hours. However, the maximum recorded value

of PC can be used to calculate the worst case estimate for the energy use. Likewise, if the

sample window for PC is large enough, the average value of PC can be used to estimate

the average-case lifetime of the sensor node.

4.3 Closed Form Solution

In this section, a method to derive a closed form solution - D(PC), which is used to

estimate idle listening time for a given MAC protocol - is described. This method

was chosen firstly because the derived solution has minimal computing requirements to

estimate idle listening time - and therefore may benefit embedded software environments.

Secondly, this method may provide insights into interaction between the MAC protocol

and interference. This may, consequently, aid in designing mitigation strategies.

This method excludes other factors which may affect energy consumption, such

as hardware characteristics, internal WSN communication, and other node processing.

Consequently, this method can be used to measure the impact on energy consumption

based on changes to PC . However, this approach may reduce the accuracy of the
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estimation in real deployments.

A closed form solution, D(PC), takes as input the channel busy probability, PC . D

expressly ignores traffic within the WSN, assumes that the largest expenditure in energy

consumption is idle listening. The idle listening time is a product of the expected radio

on time, per wakeup sequence, E, and the channel check frequency f , as in equation 4.2.

D(PC) = E(PC) \cdot f (4.2)

f is the rate that nodes check for incoming traffic, and is configured before the network

is deployed; higher f allows for greater network throughput, but increases idle listening.

E must be calculated for the MAC protocol, accounting for the wakeup procedure. As

an example, a derivation of E(PC) for the ContikiMAC MAC protocol is now described.

The operation of ContikiMAC is similar to other MAC protocols that use CCA to detect

incoming traffic, to which this approach should be applicable.

The ContikiMAC wakeup sequence - as per the current implementation - is shown as

a flow chart in figure 4.1. It consists of two components: the listen and receive phases.

Firstly, in the listen phase, two CCA checks sample the channel to detect incoming traffic.

The duration between the CCA checks is Tw, by default 500ms, and is sufficient to ensure

that at least one will coincide with any ongoing packet transmission. If either indicate

a busy channel, the node enters the receive phase. Otherwise, the wakeup sequence

terminates.

The receive phase is where the packet is received, after which an acknowledgement

packet is sent (if required) and the radio is powered down. While waiting for a packet, the

CCA and incoming data flag are polled continuously every 620\mu s to check the channel

state. If no packet is received, the receive phase times out after Nmax iterations, and

the radio returns to sleep. The default setting of Nmax is ten. To mitigate the cost

of idle listening caused by false wakeups, fast-sleep, is described as an optimisation in

ContikiMAC. Here, if the channel is found clear for Nsil uninterrupted CCA checks, a

false-wakeup is assumed, and the radio is powered down. The default setting of Nsil is

five.
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Figure 4.1: State diagram for ContikiMAC channel check sequence. Elements contributing to
the idle duty cycle are shaded gray.
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From this, the function E(p) (see equation 4.3) is the sum of three terms, which are

derived from the three paths the wakeup sequence can take in response to each CCA

outcome. Each term is the product of the probability of its occurrence, and the resulting

radio-on time in each case.

E(p) = Eii + Eb + Eib (4.3)

These terms are collectively exhaustive, and encapsulate all code paths where no

packet is received. Eii represents the case where both CCA in the listen phase find a

clear channel. No packet is detected, and there is no following false wakeup sequence.

This is the optimal case, which achieves the lowest duty cycle. The probability of this

branch executing within the state machine is Pii = (1 - p)2. The radio-on time in this

case is the time required to execute two CCA checks (CCA1 and CCA2), with duration

T1 and T2. Eii is thus given by:

Eii(p) = (1 - p)2 \cdot ((T1 + T2)) (4.4)

Eb represents the case where ContikiMAC's first CCA returns busy and ContikiMAC

enters the receive phase of the wakeup sequence, wherein the channel is periodically

checked via a CCA (CCA3 with duration T3). In this procedure the node evaluates if a

detected channel activity is part of an incoming transmission. A maximum number of

Nmax + 1 CCA's are carried out. The procedure may terminate before Nmax + 1 CCA's

are carried out if Nsil +1 consecutive clear CCA's are encountered. Between each CCA a

delay of Tw is included, which contributes to the radio on time as ContikiMAC keeps the

radio active during the entire procedure. The very first CCA in this procedure returns

always busy as there is no time delay between this CCA and the busy CCA leading into

this procedure.

The default ContikiMAC configuration sets Nmax = 10, and Nsil = 5. The time

delays in the protocol which contribute to the radio-on time are, firstly, Tw, which is

the time between channel checks in the receive phase. By default, this is set to 500ms.
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Secondly, T1 and T2 are the durations of the initial CCA checks in the listen phase. These

were both measured as 294\mu s. T3 is the duration of the CCA check within the receive

phase, measured as 122\mu s.

For these settings, seven possibilities exist for the procedure to terminate before the

maximum number of Nmax + 1 = 11 CCA checks are carried out. For example, after the

first CCA in the procedure -- which always returns busy -- we could encounter a sequence

of 6 idle CCA which leads to a termination of the procedure after 7 CCA checks. The

probability of this path is given by p \cdot (1 - p)6.

In equation 4.5, Eb is therefore given by the sum of three, collectively exhaustive,

terms which represent all paths through the state machine.

Eb(p) = p \cdot 
\bigl( 
T1 + E1(p) + E2(p) + E3(p)

\bigr) 
(4.5)

In equation 4.6, E1 represents the case where the first Nsil CCA checks are clear, and

the fast sleep mechanism powers down the radio.

E1(p) = (1 - p)Nsil \cdot Nsil \cdot (T3 + Tw) (4.6)

In equation 4.7, E2 represents the case where Nsil clear CCA checks are preceeded

by up to Nmax  - Nsil  - 2 other CCA checks. Here, the fast sleep mechanism powers

down the radio.

E2(p) = (1 - p)Nsil \cdot 
\Bigl( (Nmax - Nsil - 2)\sum 

m=1

m\sum 
n=1\bigl( 

pn \cdot (1 - p)m - n
\bigr) 
\cdot (Nsil +m) \cdot (T3 + Tw)

\Bigr) 
(4.7)

Finally, equation 4.7 gives E3, which is the expected duration if Nsil clear CCA

checks are not found, and the fast sleep mechanism is not enacted.

E3(p) =
\Bigl( 
1 - 

\bigl( 
(1 - p)Nsil +

(Nmax - Nsil - 2)\sum 
m=1

m\sum 
n=1

pn \cdot (1 - p)m - n
\bigr) \Bigr) 
\cdot (Nmax  - 1) \cdot (T3 + Tw) (4.8)
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Combining these terms, as in equation 4.5, Eb can be given by:

Eb(p) = p \cdot (1 - p)Nsil \cdot 
\Bigl( 
(Nsil \cdot (T3 + Tw) + T1)

+

(Nmax - Nsil - 2)\sum 
m=1

m\sum 
n=1

\bigl[ 
pn \cdot (1 - p)(m - n)

\cdot 
\bigl( 
(Nsil +m) \cdot (T3 + Tw) + T1

\bigr) \bigr] \Bigr) 
+p \cdot 

\Bigl( 
1 - 

\bigl( 
(1 - p)Nsil

+

(Nmax - Nsil - 2)\sum 
m=1

m\sum 
n=1

\bigl[ 
pn \cdot (1 - p)(m - n)

\bigr] \bigr) \Bigr) 
\cdot 
\bigl( 
(Nmax  - 1) \cdot (T3 + Tw) + T1

\bigr) 
(4.9)

Eib represents the case where ContikiMAC's first CCA (CCA1) returns clear but

the second CCA (CCA2) returns busy which then leads to the execution of the same

procedure as described for Eb. The difference here is the resulting duration of the radio

on time, as two CCA are executed before entering the receive phase. Eib is therefore

given in equation 4.10.

Eb(p) = (p - 1) \cdot p \cdot 
\bigl( 
T1 + T2 + E1(p) + E2(p) + E3(p)

\bigr) 
(4.10)

As above, the expansion of Eib, is given by:

Eib(p) = p \cdot (1 - p)Nsil+1 \cdot 
\Bigl( 
(Nsil \cdot (T3 + Tw) +

T1 + T2)

+

(Nmax - Nsil - 2)\sum 
m=1

m\sum 
n=1

\bigl[ 
pn \cdot (1 - p)(m - n)

\cdot 
\bigl( 
(Nsil +m) \cdot (T3 + Tw) + T1 + T2

\bigr) \bigr] \Bigr) 
+p \cdot 

\Bigl( 
1 - 

\bigl( 
(1 - p)(Nsil+1)

+

(Nmax - Nsil - 2)\sum 
m=1

m\sum 
n=1

\bigl[ 
pn \cdot (1 - p)(m - n)

\bigr] \bigr) \Bigr) 
\cdot 
\bigl( 
(Nmax  - 1) \cdot (T3 + Tw) + T1 + T2

\bigr) 
(4.11)

77



Chapter 4 Estimating Node Lifetime

 0

 2

 4

 6

 8

 10

 12

 14

 0  0.2  0.4  0.6  0.8  1

D
u

ty
 C

y
c
le

 D
(p

) 
in

 [
%

]

Channel Busy Probability p

CCR 4Hz - Closed Form
CCR 8Hz - Closed Form

CCR16Hz - Closed Form
CCR16Hz - Monte Carlo

Figure 4.2: Closed form estimation of ContikiMAC duty cycle under interference conditions

The predicted duty cycle function, D(PC), of ContikiMAC is plotted in figure 4.2,

for channel check rates 4Hz, 8Hz, and 16Hz. The graph shows, firstly, that D(PC)

increases with channel busy probability, p. This is due to false wakeups, which are caused

by CCA checks in the wakeup sequence detecting interference. Consequently, this model

predicts that node energy consumption is a function of environmental interference. This

correctly meets the expected behaviour of this WSN MAC protocol under interference,

and therefore the validity of the model is supported.

Figure 4.2 secondly shows that higher channel check frequencies, f , increase energy

consumption and exacerbate the impact of p on node energy consumption. This leads

to the finding that, in order to improve energy efficiency and network lifetime, WSNs

deployed in interference environments should minimise f , as part of the design phase.

As p increases toward one, the duty cycle begins to plateau. This is due to the

asymptotic nature of the model. For example, for f = 8Hz, which is a common setting in

WSN, the optimal duty cycle is 0.5\% under ideal conditions without interference (PC = 0).

Under worst-case conditions (PC = 1), the duty cycle increases to approximately 4.5\% -

11 times worse. Obviously, in such circumstances WSN communication is not possible,

but the model shows that interference levels must be considered when estimating network

lifetime.
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4.4 Monte Carlo Solver

For a given value of PC , the closed form solution D(PC) offers precise estimations of

the duty cycle of affected nodes. However, the difficulty of deriving D(PC) for a MAC

protocol is dependant on the complexity of the wakeup sequence. The implementation of

ContikiMAC is quite simple, however, deriving D(PC) is difficult, due in part to the fast

sleep mechanism. Even small modifications to ContikiMAC, such as changing the number

of CCA checks used in the periodic channel check, or allowing Nmac to vary in response

to PC , for example, would require significant changes to E(PC). Other MAC protocols,

which use more complex mechanisms, introduce more paths and assigned probabilities

through the state diagram, which D(PC) would need to account for.

A more flexible solution, which can be readily adapted to new changes and MAC

protocols, is desirable. To achieve this, a Monte Carlo solver was used. Here, the MAC

protocol wakeup sequence is executed in a simulator, from which the radio-on time is

measured. To determine the expected radio-on time, E(p), the simulator is executed

N times. For each run, the calculated radio-on time, En(p) is recorded. The expected

radio-on time is then the average, calculated as:

D(p) =
f

N

N\sum 
n=1

En(p) (4.12)

Following the previous section, the ContikiMAC wakeup sequence was implemented in

the simulator. The simulator, which was written in the scripting language Lua, requires

as input the channel busy probability, p. This is incorporated into the simulation as a

function call for the CCA, which returns true/false based on the probability p. The solver

takes as input also the channel check frequency, f , and outputs the expected duty-cycle

for the wakeup sequence, D(p).

Algorithm 1 shows the algorithm for ContikiMAC in the simulator. This implementa-

tion is based on the protocol state machine, shown in figure 4.1.

This approach is much closer to the actual implementation of ContikiMAC, and so

is trivial to implement. The ContikiMAC protocol builds atop the Contiki OS, which
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Input: busy probability: p
Result: radio on time: E

E = 0; first = TRUE; silence = 0; count = 0;

E += T1;
if cca clear( p ) == TRUE then

E += T2;
if cca clear( p ) == TRUE then

return E;
end

end

while TRUE do
if first == TRUE OR cca clear( p ) == FALSE then

silence = 0;
else

silence++;
end
first = FALSE;
count++;

if ( silence > Nsil ) OR ( count > Nmax ) then
return E;

end

E += T3 + Tw;

end
Algorithm 1: The Monte Carlo solver simulation of the ContikiMAC state machine

provides a thread-based abstraction for sleeps and delays. In OSs that lack this feature,

or are event-based, a different approach may be appropriate.

The output of the Monte Carlo solver was measured for f = 16Hz, and included

in the figure 4.2. Comparison of the result with the result provided by the closed form

solution shows little deviation. The largest deviation is 0.25\%, with a busy probability of

p = 0.3\%. Hence, the Monte Carlo solution was concluded to offer comparable precision of

energy consumption estimation as the closed form solution, while still providing flexibility

to handle different MAC protocol parameters.
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4.5 Evaluation

In this section, the evaluation of the Monte Carlo solver and closed form solution methods

is described. Three experiments were carried out. The first took place under controlled

interference, and evaluated the accuracy of energy consumption estimation under various

WiFi interference rates. The second experiment took place in two uncontrolled interference

environments, and again measured the prediction accuracy under realistic interference.

The final experiment measured also the effect of WSN traffic on the accuracy of these

estimations. The objective of these experiments was to measure accuracy of the predicted

duty cycle, as compared to the measured duty cycle in the WSN.

From sections 4.3 and 4.4, the Monte Carlo solution was shown to be the simplest to

measure in practice. Therefore, the Monte Carlo solution is used in this evaluation. In

section 4.4, it was shown that, for the same input values of p, the estimated duty cycle of

the Monte Carlo solver and the closed form solution are similar. Therefore, the following

evaluation of the Monte Carlo solution is also applicable to the closed form solution.

4.5.1 Controlled Interference

The objective of the first experiment was to evaluate the accuracy of the Monte Carlo

solver under controlled interference conditions. In this experiment, two Tmote Sky sensor

nodes and an 802.11g network, which consisted of an access point and station, were

deployed in an unused office.

The methods to estimate idle listening presented earlier are based only on the CCA,

and not on the specific Received Signal Strength (RSS) of signals. Therefore, in this

experiment, the transmission power of the 802.11g interferers was set to the maximum,

20dBm. The distance between the WSN nodes and the 802.11g network was 6m. This

was to ensure that all 802.11g packets generated exceeded the CCA threshold.

The ContikiMAC protocol, described previously, ran on one of the nodes using the

default parameters, including channel check frequency, f = 8Hz. As the node was

running, the cumulative radio-on time was calculated for each experiment run. No

packets were sent from the node, hence the radio-on time is caused only by idle listening.
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Busy Probability p [\%] Data Rate [kbit/s]

1.74 0
3.91 500
7.55 2000

13.10 4000
23.81 8000

Table 4.1: The mapping of WiFi data rates and measured channel busy probability p.

The second node measured the channel busy probability, p, throughout each experiment

- without any MAC protocol or duty cycling. This was used to estimate idle listening

based on the Monte Carlo solver method. In both cases, the results were communicated

to the host computer via serial connection.

The 802.11 network generated controlled interference using the iperf tool [TQD+05] on

an 802.11 channel adjacent to the 802.15.4 channel used by the WSN. The corresponding

value for p, for each interference level as measured on the Tmote Sky node, is shown in

table 4.1. 802.11g traffic rates were used corresponding to a channel busy probability

range from 1.74\% to 23.81\%. It was not possible to obtain an entirely interference-free

environment (p = 0), due to background interference. This is inconsequential though, as

only p is used as the independent variable, not the specific traffic rate. Higher interference

levels were not used as WSN deployments are unlikely in such environments. Due to this

experiment having no initialisation phase or stabilisation delay, the results were recorded

in short intervals of five minutes.

The measured value for p is plotted against the output of the Monte carlo simulation

and the actual measured duty cycle in figure 4.3. The results show that the Monte Carlo

solver closely estimates the recorded duty cycle. The largest deviation from the recorded

measurement is 7.4\%, for p = 7.55\%. Therefore, this approach has been shown to provide

high prediction accuracy of estimating the radio duty cycle of ContikiMAC, under known

interference conditions.

The relationship between the recorded channel busy probability, p, and the duty cycle

appears linear. This experiment further supports the conclusion to sections 4.3 and 4.4:

that energy efficiency is determined by interference conditions. In this experiment p was
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Figure 4.3: ContikiMAC duty cycle under controlled interference settings.

known and could be compared against the actual recorded duty cycle. In a practical

deployment, p may only be measured once, to estimate the duty cycle.

4.5.2 Uncontrolled Interference

The previous experiment evaluated the accuracy of the energy estimation under controlled

interference, for a particular interference type. In real deployments, WSNs may be subject

to a larger variety of interference sources, including Bluetooth and MWO. This may affect

the accuracy of the estimation technique. Therefore, the objective of this experiment

is to measure the prediction accuracy of the Monte Carlo solver under uncontrolled

interference, which is more representative of realistic interference conditions.

In two deployments two sensor nodes were deployed as previously. One Tmote

Sky node recorded the interference in the environment, measured as the channel busy

probability, p. This was used to estimate the duty cycle of ContikiMAC via the Monte

Carlo solver. The second Tmote Sky node implemented the ContikiMAC protocol, and

periodically recorded the duty cycle of the radio. No WSN traffic was generated by either

node, and therefore all radio activity stemmed from the wakeup sequence in ContikiMAC.

In order to capture a range of interference representative of urban environments, two

locations were chosen: a meeting room and a shared office. These were subject to various

interference sources, including WiFi and Bluetooth, throughout the experiment due to
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Figure 4.4: ContikiMAC's duty cycle estimated and measured over time (f = 8). This experi-
ment was carried out in a meeting room.

normal activity.

The host computer communicated with both nodes via serial connection, and calcu-

lated the six-hour average of estimated and recorded duty cycle. In both nodes, the CCA

threshold was set to the default value. The results from both deployments are plotted in

figures 4.4 and 4.5.

These graphs show firstly that the duty cycle of ContikiMAC varies throughout the

experiment. This is due to normal activity, such as staff arriving, attending meetings,

and working. The largest periods of activity happen on days two, six, and eight, during

working hours. Interference is not consistent throughout the experiment, and is much

lower on other days. Consequently on days four and five, there is no change to the duty

cycle.

These graphs show that the predicted duty cycle, as calculated by the Monte Carlo

solver, closely follows the observed duty cycle throughout the experiment. The average

deviation of the predicted duty cycle from the measured duty cycle is 6.23\% and 2.09\%

for the office and meeting room respectively. In the office deployment, the worst case

deviation was 13.1\%, on day six. In the meeting room deployment, the worse case was

12.94\%, on the second day.
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Figure 4.5: ContikiMAC's duty cycle estimated and measured over time (f = 8). This experi-
ment was carried out in an office.

4.5.3 Background WSN Traffic

Experiments in Sections 4.5.1 and 4.5.2 have shown that the duty cycle of ContikiMAC

can be accurately predicted based on the Monte Carlo solver. These experiments were

tested under the premise that idle listening constitutes the only use of the radio, hence why

previous experiments did not involve any WSN traffic. Additional packet transmissions

will increase the radio-on time, which is not accounted for in the prediction. The objective

of this experiment is to evaluate this hypothesis.

In this experiment, three Tmote Sky nodes were placed 6m apart in an unused office,

alongside an 802.11g network at a distance of 6m.

As previously, one sensor node recorded the channel busy probability, p, throughout

the experiment. A second sensor node executed the ContikiMAC protocol, and recorded

the duty cycle of the radio. This node also transmitted packets to the third node at a

variable rate, using the ContikiMAC send function. In this experiment, a packet size

of 120 bytes was chosen, since this is the largest packet size supported. Consequently,

this provides an upper bound, to test this hypothesis. Only the packet rate of the link

layer, and not higher network layers, was used as independent variable, and therefore

retransmissions are not implemented. Similarly, a routing protocol was not used, as this

was a single hop network. The channel check rate was set to 8Hz, and the remaining
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Figure 4.6: ContikiMAC duty cycle under controlled interference, for WSN traffic rates 1, 10,
30, and 240 packets per minute.

ContikiMAC parameters were set to default values.

The 802.11 network generated controlled interference using the iperf tool [TQD+05]

on an 802.11 channel adjacent to the 802.15.4 channel used by the WSN. The same

interference rates as in the first experiment were used here (see table 4.1). As previously,

each interference rate was tested in five minute intervals. The predicted duty cycle,

calculated from p, is plotted alongside the recorded duty cycle for packet transmit rates

1, 10, 30, and 240 packets per minute. The results are shown in figure 4.6.

The results show, firstly, that the trend of the estimated duty cycle closely predicts

the recorded duty cycle for low packet transmission rates below 240ppm. For packet

transmission rates above this, the estimated duty cycle is below the recorded duty cycle.

This is because of packet transmissions, which increase radio-on time and the duty cycle

of the radio. This is not accounted for in the model.

Secondly, for all packet transmission rates, the estimated duty cycle is close to the

recorded duty cycle for high interference levels, above p = 0.1. This is because, for high

interference levels, the idle listening incurred by false wakeups dwarfs that incurred due

to packet transmissions. Therefore, the affect on the duty cycle of packet transmissions

is reduced.

In summary, the results in figure 4.6 show that the estimated duty cycle is accurate
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for either low packet transmission rates, or high interference rates.

4.5.4 Discussion

These experiments have evaluated the prediction accuracy of the Monte Carlo solver,

based on interference measurements. The results have shown that, firstly, in the presence

of low WSN traffic rates or high interference levels, the trends of the estimated and the

recorded duty cycle are similar. The results have shown that, with no WSN traffic, the

estimated duty cycle is accurate to within 13.1\%. Consequently, this supports the validity

of the closed for solution and the Monte Carlo solver.

There is some deviation from the recorded and the estimated duty cycle, however.

In figures 4.4 and 4.5, the predicted duty cycle underestimates the recorded duty cycle,

which is not the case under controlled interference. In this case, WSN designers could

underestimate the energy consumption of a network, and therefore overestimate network

lifetime in real deployments.

These absolute differences could be the result of hardware or software components

that affect the listen behaviour of the radio, but are not accounted for in the estimation.

This could include, firstly, hardware differences in the CCA sensitivity between the two

Tmote Sky nodes used in the experiment. This would be the case if, for example, one of

the nodes has greater signal attenuation in the PCB antenna. In hindsight, it would have

been beneficial to include a larger number of WSN nodes to reduce this effect. Secondly,

this could be caused by interference sources that were not included in the controlled

interference experiment, which only evaluated WiFi interference.

Differences between the estimated and the recorded duty could otherwise stem from

timing inconsistencies in the implementation of ContikiMAC, which may not accurately

follow the model shown in figure 4.1. This is due to the timing accuracy of the abstractions

provided by Contiki OS, such as delays and interrupt handlers.
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4.6 Chapter Summary

In chapter 3, it was shown that previous energy estimation techniques do not consider

environmental interference, making it difficult to estimate energy consumption or node

lifetime in such deployments. Accurate energy consumption estimation is important to

validate the feasibility of a deployment, inform hardware selection, and fine tune protocol

parameters.

In this chapter, a method to estimate WSN radio use and energy consumption in

interference environments was sought after, in order to address the first problem, P.1,

raised in section 1.1.

Firstly, methods to measure interference in a deployment were considered, ultimately

choosing channel busy probability, PC . Following this, a method to derive a closed form

model to estimate the radio-on time of a MAC protocol was described, taking PC as

input. This is based on the design of the wakeup procedure for the MAC protocol. Based

on this, energy consumption of the MAC protocol, and of the node, can be estimated.

A Monte-Carlo approach was then presented, based on a MAC protocol simulator, to

demonstrate an easier method to model radio use under CTI. In both cases, ContikiMAC

- a common MAC protocol in WSN - was used as example.

The evaluation in Section 4.5 showed that the latter is able to achieve high prediction

accuracy under controlled and uncontrolled interference, and under typical WSN traffic

conditions.
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In this section, a method to mitigate the effects of CTI, as discussed in section 1.1, is

sought after. The review of current state-of-the-art solutions to CTI in section 3.4 found

that WSN-based detection approaches are able to effectively mitigate the effects of CTI,

without impractical hardware modifications or protocol adaptions. Current solutions,

however, were shown to greatly increase the idle listening cost, impairing energy efficiency.

Consequently, an extension to the standard 802.15.4 CCA is described in this chapter,

in order to address problem P.2 raised in section 1.1, This can indicate the origin of an

interference source, as well as the channel state. This mechanism, termed Differentiating

CCA (DCCA), allows nodes to execute a more systematic response to interference, to

mitigate energy inefficiency and packet loss caused by interference. Two implementations

that are feasible on typical WSN hardware are discussed in Sections 5.2 and 5.3 respec-

tively: Time-DCCA (T-DCCA), which is based on a similar approach in literature, and

Power-DCCA (P-DCCA), presented in this thesis. The accuracy and energy consumption

of these approaches is compared in Sections 5.4 and 5.5. P-DCCA is then implemented

in the ContikiMAC protocol, and evaluated in a typical WSN context in Section 5.7.

Finally, this chapter is concluded in Section 5.8.
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5.1 Differentiating CCA

Contention-based low power WSN MAC protocols, including ContikiMAC and TinyOS

LPL, were shown in Section 2.2 to use CCA for both sending and receiving data. On

most 802.15.4 radio hardware, CCA is provided as ED, whereby the channel energy is

measured, and compared to a preset threshold to infer the channel state. Since this

cannot discern the origin of a signal, MAC protocols must implement a broad policy for

all interference types; this is not optimal in terms of interference coexistence.

MAC protocols would benefit from a more informative indication of channel state,

to include the origin of a detected signal. This would afford MAC protocols a more

systematic response to collisions and interference. The receiver wakeup sequence could

only be initiated after detecting WSN traffic, ignoring all other interference. This would

reduce false wakeups, and improve energy efficiency. Likewise, senders could handle

collisions differently depending on the nature of the channel contention.

Differentiating Clear Channel Assessment (DCCA) is proposed as a conceptual

extension to the standard 802.15.4 CCA mechanism, capable of returning three channel

states: 1) Collision with another device in the same network, 2) Collision with another

device of a different network, 3) Clear Channel. In the following section, implementation

options of DCCA on commodity 802.15.4 hardware are discussed, implemented, and

evaluated.

5.1.1 DCCA Implementations

Three methods of realising DCCA on commodity WSN hardware were considered, and

are described below. Each has tradeoffs in terms of the underlying hardware requirements,

processing overhead, accuracy, and energy cost.

1. Modulation Detection-DCCA (MD-DCCA):

Using hardware components to implement DCCA would be most efficient, as

software resources could be devoted solely to the WSN application. As discussed in

Section 2.1.2, the 802.15.4 standard defines carrier sense as an optional CCA method,
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based on modulation detection. In conjunction with the RSSI, which measures

the channel energy, the requirements of DCCA can be fulfilled by distinguishing

between a clear channel, an 802.15.4 transmission, and non-802.15.4 interference.

This would be ideal for implementing DCCA with little processing overhead.

Using the AVR RF230 radio, which provides carrier sense CCA, the accuracy of

this CCA mode was measured in a lab environment. Almost 100\% true positive,

and 100\% true negative accuracy was recorded, affirming that MD-DCCA would

be a viable option.

Unfortunately, in order for transceivers to provide MD-DCCA, more complex radio

circuitry is required. This increases the manufacturing cost, and also increases

the energy consumption of receiving and idle listening, therefore reducing energy

efficiency. As such, most currently available 802.15.4 transceivers do not implement

this method, and opt instead only for ED CCA. This is the case with the Texas

Instruments family of 802.15.4 transceivers, including the popular CC2420. Con-

sequently, other methods are required to provide similar behaviour through novel

means in software.

2. Time-DCCA (T-DCCA): 802.15.4 transmissions have different modulation and

timing characteristics compared to other interference signals, which can be used for

identification. These characteristics can be captured as a trace of signal power over

time by sampling the RSSI register at high frequency. From this, the origin of a

detected signal can be inferred, meeting the requirements of DCCA.

This method is achievable on most 802.15.4 radio hardware, requiring only an RSSI

register that can be sampled at high frequency. As well, this method requires no

change to the transmitting function, reliant on the characteristics of the 802.15.4

physical layer and the MAC protocol used by the network. However, long listen

durations may be necessary to capture the temporal RSSI characteristics necessary

to identify 802.15.4 packets.

ZiSense [ZCW+14] is an existing approach in literature which adopts this approach
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to identify 802.15.4 packets amongst other interference. ZiSense is used as a

reference implementation of T-DCCA in this thesis.

3. Power-DCCA (P-DCCA):

Building on T-DCCA, P-DCCA also samples RSSI at high frequency to iden-

tify prior-known signal characteristics. However, in order to reduce the required

sampling duration, P-DCCA does not rely on inherent 802.15.4 features, such as

spectral profiles and packet durations. Instead, P-DCCA relies on an additional

signal component that is modulated by the transmitter, and can be detected by

analysing an RSSI trace. This is orthogonal to the data transmission, and is

used only to differentiate signals from interference. Since these features would

be intentionally observable on a smaller timescale, the detection time would be

reduced compared to T-DCCA.

One implementation of P-DCCA, which is described in Section 5.3, achieves this

by varying the output power cyclically throughout packet transmission. P-DCCA

receivers sample the RSSI register at high frequency, detecting this encoded char-

acteristic within the trace. Signals which lack this feature are assumed to be other

interference.

Compared to T-DCCA, the detection accuracy of P-DCCA could be improved

by rendering the transmit power encoding sufficiently distinguishable from other

interference. This approach would have a shorter detection, and thus would have a

lower idle listening cost compared to T-DCCA. However, reducing the transmission

power decreases the SNR of the packet at receivers, which may reduce the probability

of the packet being received correctly. The ability to sample the RSSI register at

high frequency, and vary the output power during packet transmission, are the only

two hardware requirements.
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Figure 5.1: Screenshot from the oscilloscope recording the state packet transmission (probe 1),
CCA Mode 2 (probe 2), CCA Mode 1 (probe 3).

5.1.2 Discussion

Being hardware based, MD-DCCA would likely provide the best detection accuracy, as

well as the shortest detection time. As well, the implementation of MD-DCCA would be

much simpler than the other methods described.

The CC2420 specification states that all three CCA options, described in Section

2.1.2, are implemented, including carrier sense. Under scrutiny, however, this is not the

case. Instead, CCA Mode 2 (Carrier sense), indicates a clear channel when not receiving

valid 802.15.4 data [Ins06]. In order for data to be received on the CC2420, or any

802.15.4 transceiver, it is necessary to detect the packet preamble and SFD. This is

not useful to duty-cycled WSN protocols, since the packet preamble cannot be detected

whilst the radio is powered off.

An experiment was run to confirm that this is the case. A Tmote Sky node was

programmed to transmit packets, raising a General Purpose Input/Output (GPIO) pin

when a packet is being transmitted. Two other nodes in close proximity were programmed

to continuously sample the CCA pin of the CC2420 radio. These nodes were programmed

to use CCA modes 1 (ED) and 2 (CS) respectively, and mirror the state of the pin on

a separate GPIO pin. A logic high on the CC2420 by default indicates a clear channel,

while a logic low indicates a busy channel. All three nodes were then connected to an

oscilloscope, to monitor the state of the CCA simultaneously. A screenshot is shown in

figure 5.1, where both CCA modes are shown to detect packets.

To confirm that the CC2420 is reliant upon detecting the preamble and correct SFD,
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Figure 5.2: Screenshot from the oscilloscope recording the state of packet transmission, with
different SFD value.

the two CCA-sampling nodes were programmed to change the value of the SFD, from

the default 0x7A, to a different value, by modifying the SYNCWORD register. In this

configuration, packets could no longer be received with the default SFD. The same

experiment was repeated, and a screenshot from the oscilloscope is shown in figure 5.2.

As shown, only CCA Mode 1 is able to detect packets. CCA Mode 2 is unable to detect

anything, and indicates a clear channel. Consequently, as with other radio that lack true

carrier sense, MD-DCCA is not possible on the CC2420 radio.

Conversely, T-DCCA and P-DCCA both search for known temporal characteristics in

RSSI traces, which do not require atypical hardware. The use of explicit feature encoding

in P-DCCA is assumed to make these signals more readily recognisable, potentially

improving accuracy and reducing the required detection time. This is weighed against the

cost of this power modulation: reducing the signal strength at receivers and increasing

packet errors. Thus, the use of P-DCCA and T-DCCA is a tradeoff: shorter detection

time of P-DCCA compared to T-DCCA, at the cost of higher error rates as consequence

of the power modulation scheme.

The shorter detection time required by P-DCCA would be closer to the 802.15.4

standard CCA duration, and so would be more easily implemented on existing MAC

protocols. Further, if the power variation sequence were unique enough, it is less likely

that other sources of interference could be mistaken for P-DCCA transmissions. By

contrast, the temporal signal characteristics relied upon by T-DCCA cannot be assumed

unique when considering all possible interference sources.
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The reduced link performance assumed in P-DCCA is mitigated when the operation

of LPL-based MAC protocols is considered. These require that the signal strength of

incoming packets exceed the preset CCA threshold, in order to be received. Since 802.15.4

receivers have notably good performance even near the noise floor, it is plausible that

link performance is restricted sooner by this threshold, than by the performance of the

physical layer.

The operation of P-DCCA and an implementation on the Tmote Sky is described in

Section 5.3. The accuracy of this approach is then measured against T-DCCA, following

an implementation based on ZiSense which is described in Section 5.2.

5.2 T-DCCA

For this work, the accuracy of the P-DCCA and T-DCCA mechanisms are evaluated in

different interference conditions. The closest approach to T-DCCA in previous literature

is ZiSense [ZCW+14], which is therefore used as a baseline here. ZiSense is designed to

be incorporated into the wakeup sequence of low power WSN MAC protocols, to improve

the detection of incoming packets. Although ZiSense was not directly designed as a

DCCA mechanism, it can be employed in this capacity as representation of T-DCCA

and is used in this thesis for comparison against P-DCCA.

ZiSense samples the RSSI register at high frequency into a buffer, generating a signal

strength trace over time. This trace is analysed and segments are identified as contiguous

subsets of RSSI samples when the signal differs from the noise floor. For each segment

detected, a feature-set is constructed describing:

1. On-air time

2. Peak to Average Power Ratio (PAPR)

3. Inter Packet Spacing (IPS)

4. Under Noise Floor (UNF)
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(1) and (3) describe temporal features of the signal, which are typically specific to the

MAC protocol. The original authors of ZiSense used TinyOS LPL as the MAC protocol

in their evaluation. (2) stems from the modulation used by the transmitter. (4) is an

indicator if the RSSI drops significantly below the noise floor. This is used to detect

MWO interference, wherein this phenomenon is caused by saturation of the intermediate

amplified chain in the CC2420 transceiver.

ZiSense requires that the sampling frequency is sufficient to detect these features; the

author's work is based on a 32Khz sample rate. As well, the sampling duration must at

least match the IPS of the MAC protocol in use. The author's work is evaluated for the

TinyOS LPL MAC protocol which requires a 2.9ms sampling period, 90 RSSI samples.

Having constructed a feature set for each segment detected within the sample, each

is then classified as either 802.15.4 traffic, or other interference. In [ZCW+14], three

algorithms are described: ZiSense-1, ZiSense-2, and ZiSense-C4.5.

\bullet ZiSense-1 : A classifier manually derived from strict interpretation of 802.15.4 PHY

and TinyOS LPL.

\bullet ZiSense-2 : A more forgiving classifier manually derived to identify segments that

have collided with other interference.

\bullet ZiSense-C4.5 : A classifier built using the C4.5 algorithm, which builds a decision

tree classifier from a prior-known data set - in this case from segments which were

identified manually.

T-DCCA detects the presence of incoming packets using ZiSense as described. If

the algorithm indicates any 802.15.4 packets, a collision with another WSN device is

indicated. Conversely, if the algorithm detects only non-802.15.4 signals, a collision with

another interference source is indicated. An empty sample set, detecting no signals,

indicates a clear channel.

Since no implementation of ZiSense is currently available, an offline approach was

implemented based on the author's original description, in order to evaluate T-DCCA.

An RSSI sample set was collected by the Tmote Sky hardware into a temporary 4000-
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value buffer, at the same frequency as described in [ZCW+14]. Once full, sampling

is paused whilst the contents of the buffer is transmitted to a host computer. The

three ZiSense classification algorithms are then run on this data set, on each contiguous

set of 90 samples. This approach avoids the complexity of implementing ZiSense on

limited-resource hardware, while still being able to evaluate classification accuracy.

5.3 P-DCCA

P-DCCA consists of two components. Firstly, as packets are being transmitted, the radio

is set to vary the output power in a set sequence. Secondly, this power modulation must

be detected and correctly identified during a P-DCCA check.

802.15.4 radio transceivers provide an interface to configure the transmission power.

On the TI CC2420, for example, a five-bit register setting permits values in the range

0-31, corresponding to the output power range from -25dBm to 0dBm. Experiments with

two 802.15.4 radios, the TI CC2420 and also the AVR RF230, confirmed that transmit

power can be altered during transmission.

The 802.15.4 standard requires radios to provide an RSSI interface for the purposes

of channel selection; for example, to choose the most idle channel. As with the CCA, this

is calculated by averaging the channel energy over time. On the TI CC2420, the average

window, Av, is fixed to 128\mu s, however, some other radios allow this to be customised.

By sampling the RSSI register at high frequency, a trace of the RSSI in the time domain

is generated. In a P-DCCA check, this trace is searched for features indicative of an

802.15.4 signal transmitted with P-DCCA power modulation.

The P-DCCA transmission power variation consists of a square wave signal, defined

by two parameters:

\bullet PT - the amplitude of the signal.

\bullet TT - the period of the square wave.

.

Likewise, the sampling component of P-DCCA is defined by three parameters:
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\bullet TR - the sample duration.

\bullet SP - the sample frequency.

\bullet NR - the number of RSSI samples taken.

The amplitude of the square wave signal, PT , determines the two transmit powers

that are used in P-DCCA transmissions. For example, assuming that the maximum

transmit power is used, the minimum for P-DCCA is set PT dBm lower. The relationship

between TR, SP , and NR is defined as: NR = TRSP .

The specifics of the radio hardware must be accounted for when selecting these

parameters. So that either extrema is recognisable within the averaged sample window,

TT must not be less than 2Av. To be able to distinguish a P-DCCA signal from any

other signal with increasing or decreasing signal strength, the recorded sample set must

encapsulate at least two extremas of the power variation signal. Thus:

2Av \leq TT \leq TR (5.1)

To conserve energy, a minimal sampling duration in a P-DCCA check is desirable,

so TT and TR can be set to 2Av. As consequence, the square wave of the P-DCCA

transmitted signal (see figure 5.3a) is perceived as a triangle wave at the receiver, as

shown in figure 5.3b. This has the added benefit of keeping the RSSI continuously

increasing or decreasing, which simplifies the detection algorithm.

The P-DCCA detection algorithm must be able to reliably detect the waveform as

shown in figure 5.3b. In order not to draw resources from the other functions of a sensor

node, the algorithm must be minimal in terms of computation time. This is more so the

case in WSN MAC protocols that implement a CCA check multiple times in order to

receive or send a packet. Likewise, the P-DCCA algorithm must have a small memory

footprint in order to run on resource constrained hardware.

The body of a P-DCCA check is illustrated in algorithm 2, which first collects the

RSSI trace, then iterates through the sample set to calculate characteristics indicative

of P-DCCA. These include the number of extrema, measured amplitude, and change
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(a) P-DCCA Transmitter power modulation

(b) P-DCCA Receiver detection of signal

Figure 5.3: P-DCCA operation: transmission and detection

between individual samples. In big-O notation, the running time and memory use are

both O(n), where n is the number of samples.

Lines 1-3 collect and compare the RSSI samples - stopping once NR have been

collected, or a sample is below the minimum threshold, \tau RSSI . The frequency of this loop

must be sufficiently predictable, as measured by SP . If only a single sample is recorded

below \tau RSSI , a clear channel is indicated. Therefore, in response to a clear channel, the

operation of P-DCCA is no different from standard Energy-Detection CCA. If fewer than

NR samples are detected above the threshold, an inconclusive result is indicated. This is

discussed in more detail later.

Lines 5-12 iterate through the sample set to compute the minimum, maximum, and

extrema count. This processing is separate to the sampling loop in order to allow the

sampling frequency to optimised. As well, the conditional statements herein do not allow

for a predictable computation time per iteration.

Lines 13-15 check the amplitude of the signal, and the number of extrema, against

predefined thresholds. A signal falling within these thresholds is indicated as a valid

P-DCCA modulated signal, otherwise as interference.

Summarised, the thresholds used by this algorithm are discussed below:

1. Pmin and Pmax - the maximum and minimum range thresholds, within which the

measured range of the sample set must fall between. These effectively measure the
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amplitude of the triangle wave. The measured amplitude is subject to variations

as consequence of imperfections in the antenna and radio components, and signal

propagation in the environment. The thresholds must account for this.

2. P\Delta - the maximum allowable absolute difference between adjacent samples.

3. NE - the maximum number of detected extrema in a sample set. Unlike the signal

amplitude, this should not be affected by signal propagation or radio properties.

4. \tau RSSI - The minimum RSSI threshold operates identically to the RSSI threshold as

used by the standard ED CCA. However, when selecting this threshold, considera-

tion must be given to the variation in signal strength that is part of the P-DCCA

design.

1: for i = 1 to NR do
2: if (s[i] = RSSI()) < \tau RSSI then break
3: if i = 1 then return CLEAR
4: if i < NR then return BUSY INCONCLUSIVE
5: for i=1 to (NR  - 1) do
6: if | s[i] - s[i+ 1]| > P\delta then return BUSY OTHER
7: if s[i] > s[i+ 1] \wedge slope \not = SLOPE INCREASING then
8: slope\leftarrow SLOPE INCREASING
9: counter \leftarrow counter + 1

10: if s[i] < s[i+ 1] \wedge slope \not = SLOPE DECREASING then
11: slope\leftarrow SLOPE DECREASING
12: counter \leftarrow counter + 1
13: if (range(s) < Pmin \vee (range(s) > Pmax) \vee (counter > NE)) then
14: return BUSY OTHER
15: return BUSY 154
Algorithm 2: Power Differentiating Clear Channel Assessment (P-DCCA).

5.3.1 P-DCCA Outcome

P-DCCA can have four distinct outcomes:

1. CLEAR: indicates that the medium is currently free.

2. BUSY PDCCA: indicates that a transmission with P-DCCA power modulation

was detected.
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Figure 5.4: P-DCCA outcomes: 1) One sample: channel is clear (CLEAR) 2) Complete sample
set: channel either BUSY PDCCA or BUSY OTHER 3) Incomplete sample set:
channel busy, unknown origin: BUSY INCONCLUSIVE

3. BUSY OTHER: indicates that another signal without P-DCCA was detected, such

as WiFi, Bluetooth, or another 802.15.4 device outside the network.

4. BUSY INCONCLUSIVE : indicates that the medium is busy but the channel

occupier cannot be determined.

P-DCCA requires NR RSSI samples, above the threshold, to identify a signal. There-

fore, if a P-DCCA check coincides with the end of a busy period, an incomplete RSSI

set may be recorded and no source may be definitively identified. This results in a

BUSY INCONCLUSIVE result, the interpretation of which is left to the MAC layer.

Situations leading to these P-DCCA outcomes are shown in figure 5.4.

The probability of an INCONCLUSIVE result, PI , is inversely proportional to the

size of the packet, as given in equation 5.2. PPayload is the size of the packet payload,

and PHeader is the size of the packet header - include preamble, SFD and length field,

both in bytes.

PI(PPayload) =
SP

 - 1(NR  - 1)

32 \cdot 10 - 6 \cdot (PPayload + PHeader) + SP
 - 1(NR  - 1)

(5.2)

Node behaviour after obtaining a P-DCCA result is to be decided by upper layers.

CLEAR may be treated similar to a clear resulting from a normal CCA. BUSY PDCCA

would trigger the back-off procedures designed to coordinate competition for the channel

among nodes of the same network. The reaction to BUSY OTHER may depend on

knowledge of the deployment area. For example, it might be known that other interference

is likely to stem from a co-located WiFi network. Likewise, to receive a packet, nodes

can only enter the listen phase after a BUSY PDCCA indication.
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In case of BUSY INCONCLUSIVE, the decision may depend on worst-case or best-

case assumptions. For example, a prudent node listening to the channel for incoming

packets may treat this result as normal 802.15.4 traffic, leaving the radio powered on

to receive data, while an energy-conscious node may ignore altogether any interference

except confirmed 802.15.4 traffic.

Alternatively, BUSY INCONCLUSIVE results can be avoided altogether by stipulat-

ing design requirements on the MAC protocol. Knowing the duration between packet

transmissions, two P-DCCA checks can be arranged so that at least one will fall within

a packet transmission. Thus, inconclusive results can be ignored entirely. This approach

ensures that at least one sample set captures a P-DCCA signal, ensuring reliable opera-

tion. This is already the case with ContikiMAC, which uses between two and six CCA

checks to detect ongoing packet transmissions.

5.3.2 Implementation on CC2420 Transceiver

P-DCCA was implemented on the Moteiv Tmote Sky [She04] hardware. The basic

CC2420 radio driver in Contiki implements CCA very simply: checking the radio is

powered on then checking the GPIO pin connected to the CCA pin on the CC2420. In

the P-DCCA implementation, this was replaced with the algorithm described above. The

maximum RSSI register sampling frequency achieved was 33Khz, which was reduced

to 31.2Khz in order to coincide with every second symbol, providing more predictable

timing. This was calibrated by raising and lowering a GPIO output pin on each loop

iteration, and measuring the signal frequency on an external oscilloscope. This code code

remained in the CC2420 driver after calibration.

In the CC2420, the average window size, AV , is 128\mu s, thus the driver requires upto

128\mu s to calculate RSSI and CCA, depending on how long the radio has been powered on,

and in receive mode. In the P-DCCA implementation, the driver requires between 256\mu s

and 384\mu s, to capture eight RSSI samples in total, the processing time being negligible.

The parameter settings used for the CC2420/Tmote Sky implementation are given in

table 5.1. The minimum TT and TR are used, based on the CCA average window size.
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Parameter Description CC2420

SP The sample frequency 31.2Khz
PT Difference between the two used power levels 5dBm
TT Transmit power variation period 256\mu s
TR Duration of a P-DCCA check 256\mu s
NR Number of RSSI samples taken during a

P-DCCA check
8

Pmin Minimum power range of the P-DCCA sample
set

2dBm

Pmax Maximum power range of the P-DCCA sample
set

7 dBm

P\delta Maximum power difference between two consec-
utive P-DCCA samples

4dBm

NE Maximum number of extrema in the P-DCCA
sample set

2

\tau RSSI The minimum threshold for each RSSI sample -75dBm

Table 5.1: P-DCCA parameters and values for CC2420 802.15.4 Transceiver.

Based on the sample frequency, eight samples are recorded per P-DCCA check. A power

difference of PT = 5dBm was used, as this was observed to be the lowest setting yielding

good detection accuracy. The transmit power alters between 0dBm and  - 5dBm.

To transmit, the standard CC2420 driver strobes the TRX ON register, which

initiates the packet transmission. The driver then waits in a busy-loop until the CC2420

status returns to idle, indicating that the packet has finished transmitting. In the

P-DCCA implementation, the body of this loop was utilised instead to vary the output

transmission power, with a set period TT = 256\mu s. Consequently, there is no change in

the semantics of the radio driver API call to transmit a packet. The P-DCCA function

call was measured to take up to 260\mu s, as opposed to the immediate response with

normal CCA; this timing component must be accounted for in the implementation of

MAC protocols.

5.4 P-DCCA Detection Evaluation

The DCCA response to interference relies the underlying mechanism (such as T-DCCA

and P-DCCA), in order to react correctly and reliably. It must be able to accurately
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classify interference and non-interference (WSN communication) accordingly. If this is

not the case, DCCA may wrongly interpret WSN data as interference, or vice versa.

For example, this could cause a given receiver node to ignore transmitted WSN data,

making worse the performance of the network under interference. In either case, it is

likely that packet reception or energy efficiency could be adversely affected, even under

interference-free conditions.

Therefore, it is the objective of this section to evaluate the outcome of the P-DCCA

classification method in two regards. Firstly, in regard to the rate of inconclusive results,

as a function of packet size. This is used to evaluate the accuracy of the model described

earlier in equation 5.2. Secondly, in regard to the classification accuracy of P-DCCA and

T-DCCA, for different interference types. In this case, the classification algorithms of

P-DCCA and T-DCCA are dependent on interference type, radio propagation properties,

receiver hardware, among other variables. Theoretical and simulation-based models

are not able to encompass all of these possible variables. Therefore, an experimental

evaluation is required. This must include a transmission type - either interference or

non-interference (WSN data) - as input to the DCCA classification algorithm. Therefore,

two metrics for measuring classification accuracy are considered for this evaluation:

1. True Positive (TP) Rate - the rate of WSN transmission detection by the DCCA

algorithm when WSN transmissions are present.

2. False Positive (FP) Rate - the rate of WSN transmission detection by the

DCCA algorithm in the presence of non-WSN interference.

For this evaluation, the input to the classification mechanism is the independent

variable, and must therefore be controlled. In the following sections, accuracy is therefore

measured by controlling the interference environment, by injecting either WSN traffic (to

measure TP-accuracy), or interference (to measure FP-accuracy). The outcome of both

P-DCCA and T-DCCA was then recorded.

To remove the effects of other interference outside of the experiment, all experiments

were conducted in environments with few other wireless devices. In each case, this was
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verified to confirm that external interference was minimised.

5.4.1 Rate of inconclusive results

In the first experiment, the rate of inconclusive results indicated by P-DCCA was

measured, using 802.15.4 packet size as the independent variable. The objective of this

experiment was to evaluate the assumptions of the model presented in equation 5.2.

Two Tmote Sky nodes were placed in an unused office: one node acted as the

sender, and transmitted packets with the P-DCCA power variation. This experiment

measured only the physical and link layers with regard to P-DCCA, and not higher

network layers. Therefore, no MAC protocol was used, and packets were sent without

any CCA. The second node acted as the receiver, and continuously called the P-DCCA

function, as described above. The outcome of the P-DCCA check was transmitted via

wired connection to a host computer, where the results were processed.

In this experiment, the RSS of a WSN packet - and consequently the range between

transmitter/receiver - is not included as a variable (this is evaluated separately, in section

5.6). Instead, only the timing of P-DCCA packet transmissions and RSSI samples is

considered - as in equation 5.2. The RSS must therefore be above the minimum RSSI

threshold, \tau RSSI . To ensure this, the distance between the two Tmote Sky nodes was

4m, and the maximum transmission power was used.

The rate of inconclusive results is shown in figure 5.5, alongside the earlier model in

equation 5.2. The results show, firstly, that the predicted inconclusive function PI and

the actual recorded inconclusive rate share similar trends: the inconclusive result rate

decreases as packet size increases; and this behaviour appears to be asymptotic, as per

equation 5.2.

The results do not closely follow the predicted model, however. For packet sizes in the

range [40, 80], the model underestimates the recorded inconclusive error rate; the average

deviation from PI is 1.4\%, within this range. The largest deviation from the model

occurs for packet size 80 bytes, where the predicted and recorded inconclusive rates are

7.5\% and 9\% respectively. In applying this model, this may consequently underestimate
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Figure 5.5: Rate of inconclusive classification in P-DCCA as function of packet size.

the rate of inconclusive results. Therefore, correct classification of WSN data may be

reduced below that predicted by the model, which may subsequently impair operation of

DCCA in the MAC protocol.

The model and recorded results cross in two locations: the former overestimates the

inconclusive result rate for packet size below 40 bytes, and above 80 bytes. The model

therefore presents an upper-bound of inconclusive result rate, in these cases.

These deviations may be due to timing variations in the implementation of the

algorithm which are not accounted for in the model. Alternatively, this may be due to

other interference in the environment. Observing the graph in figure 5.5, the deviation

from the model seems to increase as a function of packet size. This may be because the

probability of observing an inconclusive result decreases with packet size, and therefore

variation within the results increases. A longer experiment duration for each packet size

may have mitigated this.

In this experiment the accuracy of the predicted inconclusive function, PI , could

not be verified. However, based on the similarity between trends in figure 5.5, the

underlying assumptions used to derive equation 5.2 are supported. Namely, that PI

stems from the ratio of two durations in receiving a packet: the duration susceptible

to inconclusive detection (S - 1
P (NR  - 1)), and the duration of transmitting the packet

payload. Therefore, the objective of this experiment has been met. The model predicts
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an asymptotic relationship between packet size and the inconclusive result probability:

as packet size increases, the rate of inconclusive results approaches zero. This is seen in

figure 5.5.

The standard CCA mechanism is not an instantaneous calculation, calculating the

average channel energy over 128\mu s, although a signal only needs to occupy this long

enough to raise the calculated average above the threshold. Thus, the standard energy-

detection CCA similarly requires the transceiver to have captured a minimum duration

of the transmitted signal.

5.4.2 True Positive (TP) Rate

The objective of this experiment is to evaluate the TP-accuracy of the P-DCCA and

T-DCCA classification algorithms. This measures the ability of the classification algorithm

to identify correctly WSN traffic, such as from another WSN node, correctly.

For this experiment, two Tmote Sky nodes (transmitter and receiver) were placed

in an unused computer laboratory during quiet office hours. The TP accuracy of the

receiver node was measured by its ability to detect these packets sent by the transmitter.

While the objective of this experiment focuses only on the accuracy of the classification

algorithm, this hardware is typical of WSNs. Alternatively, more specialised channel

sampling hardware could have been used to achieve greater sample resolution and

frequency. However, this is not realistic in typical deployments.

RSS and also range between transmitter/receiver was not included as a variable in

this experiment. Instead all DCCA variants were evaluated under the same condition:

incoming packet RSS is reliably above the RSSI threshold. Consequently, the range

between devices in this section was set as 4m, and the maximum transmission power was

used. This is based on the assumption that variations in RSS over time - which both

algorithms use to classify interference - is independent of range between transmitter and

receiver.

The experiment was repeated five times and in each iteration the P-DCCA and

T-DCCA variants were tested separately. This duration was chosen based on the assump-
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tion that there is no network or initialisation overhead implemented in the WSN nodes.

Hence there is no initialisation period at the start of each experiment to account for: the

results are immediately valid. Since the interference is strictly controlled, no temporal

variance within the duration of each experiment is expected, therefore allowing for a

shorter test duration. The nodes were reprogrammed over USB by the host computer to

change the DCCA variant as required.

To evaluate T-DCCA, the offline implementation of ZiSense described in Section 5.2 is

used. The duration of a T-DCCA check and its relation to the LPL transmission timing

ensures that each T-DCCA check can obtain sufficient data to identify the ongoing WSN

transmission.

To evaluate P-DCCA, it is ensured that the P-DCCA check is carried out while

a packet transmission is ongoing. To achieve this, transmitter and receiver node are

synchronised via a cable connection. Thus, T-DCCA and P-DCCA have both the chance

to correctly identify an ongoing transmission within the DCCA check. However, it has

to be noted that both DCCA checks have very different time scales (2.9ms compared to

256\mu s).

To achieve this synchronisation, a wire was run from the transmitter to the receiver,

connecting GPIO pins on both nodes. The transmitter set the pin high immediately

before transmitting, and low immediately after, for every packet. The receiver node then

sampled the pin status before and after each P-DCCA function call, and communicated

both to the host computer as well as the P-DCCA return value. To measure TP accuracy,

only P-DCCA calls that completely coincided with a packet were included.

The results are shown in figure 5.6. The results show, firstly, that P-DCCA achieves

higher TP accuracy than all ZiSense classifications. ZiSense-2 measured the highest TP

accuracy, compared to ZiSense-1 and ZiSense-C4.5. P-DCCA TP-accuracy is 88\%, while

ZiSense-1, ZiSense-2, and ZiSense-C4.5 have 78\%, 86\% and 78\% respectively.

Figure 5.6 also shows a larger standard deviation for P-DCCA, compared to ZiSense.

This may be due to differences in the sample size between ZiSense and P-DCCA eval-

uation methods. ZiSense was evaluated offline for all contiguous sub-samples within
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Figure 5.6: True Positive rate of P-DCCA and ZiSense.

the recorded RSSI trace, while P-DCCA was evaluated via an online implementation.

This experiment shows that using P-DCCA, high classification accuracy can be achieved

despite a comparably shorter sampling duration (2.9ms compared to 256\mu s).

5.4.3 False Positive (FP) Rate

The objective of this experiment was to evaluate the FP-accuracy of the DCCA classifi-

cation algorithm. This measured the ability of the classification algorithm to identify

correctly non-WSN interference, such as WiFi. For this experiment, two Tmote Sky

nodes were programmed to act as P-DCCA and T-DCCA receivers, and placed in an

unused computer laboratory. As in the previous experiment, this hardware was preferred

as is it more representative of actual an WSN deployment. No MAC protocol was used

in this experiment, since no data is communicated and energy consumption is not being

evaluated.

As previously, the environmental interference was strictly controlled, therefore allowing

for a short test duration. The experiment took place during quiet office hours, with

minimal external Radio Frequency (RF) activity. The interference sources in this

experiment are less predictable in terms of behaviour due to the complexity of the

underlying state machine. Therefore, the number of iterations in this experiment was

increased to ten, each iteration taking five minutes.
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Five types of 2.4Ghz interference were included in this experiment. To best represent

typical interference sources, the configuration of each interferer was left at the default

setting, where applicable. As previously, RSS of interference is not included in this

experiment. Therefore, the interference sources - described below - were placed 5m from

each WSN node.

\bullet WiFi: An 802.11 AP and station were placed at opposite corners of the room.

Both were connected to a host computer over a wired connection, which acted as

the control channel for the experiment. Interference was generated using the D-ITG

tool [AGE+04]. 1000-byte UDP packets were transmitted at a uniformly random

rate as specified. This was done to ensure there was no unintended synchronisation

between the WiFi data packets and the DCCA sampling, which could skew the

results. 802.11 b, g, and n variants were used in the experiments, as configured

by the host computer. These were chosen as the most common 802.11 variants in

typical 2.4Ghz deployments.

\bullet Bluetooth: Bluetooth traffic was generated by sending a large file between two

devices: a MacBook Pro laptop computer and a Google Nexus 5 Android smart-

phone.

\bullet Microwave Oven: MWO interference was generated using a household microwave

oven, heating 500ml of water in a pyrex bowl at 800 Watts.

Both nodes continuously called the DCCA function, the outcome of the detection

mechanisms recorded on the host computer. A false positive result is recorded whenever

an 802.15.4 packet is detected.

The results are shown in Figure 5.7. The results show, firstly, that for all interference

sources, P-DCCA recorded a lower FP rate than all ZiSense variants. ZiSense-2 recorded

the highest FP rate for all interference sources, while in most cases ZiSense-1 and

ZiSense-C4.5 were similar.

Secondly, figure 5.7 shows that 802.11b is the most susceptible to false positives, for

all DCCA implementations. This is particularly the case for ZiSense implementations,
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Figure 5.7: False Positive rate for P-DCCA and ZiSense.

however. This is due to the closer observable similarity between 802.15.4 and 802.11b

signals: the slower transmit rate and DSSS modulation causes the packet duration and

PAPR to fall within ZiSense thresholds.

Conversely, 802.11g and n have the lowest FP rate across all DCCA approaches.

This is because, in both cases, the transmission duration is well below the threshold

for P-DCCA and T-DCCA. Likewise, 802.11g and n use OFDM modulation, which has

different RSSI trace features, compared to DSSS [ZCW+14].

For the MWO interference, the false positives in P-DCCA maybe caused by the inher-

ent power oscillation of MWO interference being perceived as a P-DCCA transmission.

Similarly, false positives in T-DCCA may be the result of MWO signals falling within

the defined thresholds.

This experiment has shown that P-DCCA is more accurate in terms of TP and FP

accuracy, compared to ZiSense, in these conditions. This is beneficial, since DCCA

requires correct classification of interference signals, in order to mitigate the effects of

CTI. However, it has to be noted that P-DCCA can return BUSY INCONCLUSIVE. In

this case an FP is avoided but not enough information is available to discern the interferer

type. Inconclusive results can be mitigated by applying multiple P-DCCA checks.
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5.4.4 Discussion

The TP and FP accuracy of ZiSense shown in figure 5.6 and figure 5.7 is less than

reported in [ZCW+14], wherein much higher accuracy was measured. However, these

results bare similar trends relative to the author's findings in [ZCW+14]. ZiSense-2 is

the most susceptible to FP error, but achieves the highest TP accuracy. Conversely,

ZiSense-1 and ZiSense-C4.5 have better FP rate for a reduced TP rate.

This discrepancy could be due to differences in the WSN hardware, such as RSSI

accuracy, used in the evaluation. Alternatively, this could stem from environmental

factors, such as other interference or RF propagation effects. To the best of the author's

knowledge, this implementation of ZiSense matches the original, and the same method was

used to evaluate accuracy. Given that the similar trends between ZiSense implementations

have also been observed here, it is likely that the difference in absolute accuracy stems

from environmental and hardware differences.

The author's original evaluation did not factor 802.11b interference, a standard that

is now considered obsolete compared to later g, and n, standards. Despite this, the rate

selection algorithms of many 802.11 devices - which is manufacturer specific - may fall

back to 802.11b PHY in adverse channel conditions. This was observed to be the case

where an AP is vying for channel access under heavy 802.15.4 interference.

In implementing DCCA in a WSN MAC protocol, the implications of a high FP

rate must be considered. False wake-ups - where non-802.15.4 signals are classified as

incoming WSN traffic, cause increased idle listening and hamper energy efficient operation.

When using DCCA, the probability of a false wake-up occurring is a function of the

FP rate. BUSY INCONCLUSIVE results can occur as well but can be interpreted as

BUSY OTHER to improve energy efficiency.

In P-DCCA, the sampling duration is variable: samples are recorded only whilst the

RSSI is above the threshold. Conversely, the ZiSense sampling duration is fixed and

much longer (2.9ms for ZiSense compared to a maximum P-DCCA duration of 256\mu s).

Furthermore, it has been shown that P-DCCA has better TP and FP rates compared to

ZiSense.
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5.5 Energy Evaluation

P-DCCA, T-DCCA, and standard CCA implementations all use the radio differently,

have different listen durations, and therefore have different energy consumption profiles

during a channel check. This affects the energy efficiency and battery life of the node

- possibly offsetting the benefits of using DCCA in practice. Therefore, it is necessary

to evaluate and compare these in terms of energy consumption. The objective of this

evaluation is also to gain further insight into the underlying channel sensing mechanisms

of each DCCA method.

In this section, a theoretical model of the energy consumption incurred by T-DCCA,

P-DCCA, and standard CCA is produced. A theoretical evaluation is chosen over an

empirical evaluation due to lack of an available ZiSense implementation for the Tmote Sky.

Also, the channel sensing behaviour of P-DCCA is variable depending on the nature and

type of local interference; hence a theoretical model is beneficial because this behaviour

can be deliberately isolated. Likewise, this evaluation method is immune to differences

between MAC and network protocols of different DCCA implementations. ZiSense is

again used as a comparable reference for T-DCCA, as described in [ZCW+14]. The

P-DCCA implementation described in Section 5.3 is assumed here. The idle listening

duration per channel check is modelled - since this is the greatest source of energy

consumption in low-traffic deployments.

Any transceiver activity within the P-DCCA mechanism is assumed to have the same

energy consumption; energy consumption during transceiver start-up and during RSSI

sampling is the same. This is a realistic approximation for transceivers such as the

CC2420 commonly used. Thus, energy consumption of a P-DCCA check depends on the

transceiver-on duration, T , which is modelled.

The behaviour of the P-DCCA algorithm described depends on the interference

encountered, which must be provided as input to this model. The probability of finding

the channel busy at any instant is represented as p; when busy, the channel is then

occupied by an interference signal with fixed duration t. For example, when considering

a WiFi interferer an intensity of p and an average WiFi packet length of t is modelled.
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This model of interference is less rigorous than other statistical models and approaches.

However it simplifies the mathematical models that follow, and is sufficient to derive an

upper-bound for T to enable comparison.

The expected duration T of a P-DCCA check (shown in Equation 5.3) is the sum

of the transceiver start up time, Tst; the duration of the first RSSI sample, which is

always taken; and the time taken to carry out the sequence of (NR  - 1) RSSI samples

as described in Algorithm 2. The latter stems from two possible outcomes. Firstly, TA

models the case where the P-DCCA check starts sooner than (NR  - 1) RSSI samples

before the end of the interference. Otherwise, fewer samples are taken (TB).

T (t, p) = Tst + TRSSI + p \cdot 
\bigl( 
TA(t) + TB(t)

\bigr) 
(5.3)

TA is given in Equation 5.4, and is the product of the total duration of all RSSI

samples: TRSSI \cdot (NR  - 1), and the probability.

TA(t) =
\Bigl( 
TRSSI \cdot (NR  - 1)

\Bigr) 
\cdot 
\Bigl( t - (NR  - 1) \cdot TRSSI

t

\Bigr) 
(5.4)

The remaining interference duration, modelled by TB, has duration t - TRSSI \cdot (NR - 2);

this is considered as (NR  - 2) discrete intervals. The probability of each is given by

TRSSI/t, and the duration of the subsequent n samples is given by n \cdot TRSSI . Therefore,

TB is the sum expected duration of these (NR  - 2) intervals.

TB =

NR - 2\sum 
n=1

n \cdot TRSSI \cdot 
\Bigl( TRSSI

t

\Bigr) 
(5.5)

This model assumes firstly that t \geq N \cdot TRSSI : that the duration of the interference

signal is greater than the number of RSSI checks in P-DCCA. This is not necessarily

true for all types of interference, in which case T represents an upper-bound. Secondly,

the model assumes that p and t are independent variables.

As discussed earlier, implementing P-DCCA in a MAC Protocol requires consideration

of the packet timing: a minimum number, n, P-DCCA checks are required to ensure

reliable detection. The time between P-DCCA checks must be shorter than the minimum
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packet length, and greater than the inter-packet spacing.

The ZiSense implementation was originally based and evaluated on the TinyOS LPL

MAC protocol, whose inter-packet spacing is 2.9ms. Assuming an arbitrary minimum

packet size of at least 500\mu s, n = 6 checks spaced 500\mu s apart, over 3ms, is sufficient for

implementing P-DCCA.

Based on this, the radio-on time per DCCA check for ZiSense and P-DCCA are shown

in figure 5.8, for channel conditions p = 0.1, 0.25, 0.5. For comparison, the radio-on time

for plain CCA check is shown also (negating false wakeups). However, plain CCA would

not be able to infer the nature of the channel occupier and any observation of interference

would lead to a false wake-up contributing significantly to energy consumption; this is

not considered here, and plain CCA is included only as a reference point.

This model shows the relationship between environmental interference and the idle

listening in P-DCCA. As shown, P-DCCA requires less radio-on time to sample the

channel than ZiSense. Under quiet channel conditions, the idle listening duration, per

wakeup, approaches that of plain CCA. As the interference intensity increases, the idle

listening of P-DCCA increases asymptotically, and does not exceed 1.5ms, for these

parameters. The reason for this behaviour is apparent considering TA and TB. The

former can be rearranged as in equation 5.6.

TA(t) =
\Bigl( 
TRSSI \cdot (NR  - 1)

\Bigr) 
\cdot 
\Bigl( 
1 - (NR  - 1) \cdot TRSSI

t

\Bigr) 
(5.6)

As t increases, the second term in equation 5.6 approaches one, while TB approaches

zero. Consequently, the behaviour as t\rightarrow \infty is shown in equations 5.7 and 5.8 respectively.

lim
t\rightarrow \infty 

TA(t) = TRSSI \cdot (NR  - 1) (5.7)

lim
t\rightarrow \infty 

TB(t) = 0 (5.8)

Hence, this leads to the observed asymptotic behaviour. By contrast, the idle listening

of ZiSense remains fixed under all conditions, at 2.9ms.

This estimation incorporates only the cost of listening to the channel. The response to
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Figure 5.8: Modelled energy consumption of P-DCCA and T-DCCA under interference.

false positives - which is MAC protocol-specific - is not accounted for, however P-DCCA

was shown in Section 5.4.3 to have greater detection accuracy compared to ZiSense. Also,

the signal processing cost - negligible for P-DCCA - is excluded.

In this section, the energy consumption of P-DCCA and ZiSense implementations

have been compared theoretically. P-DCCA has been shown to have a lower idle listening

cost, leading to better energy efficiency. While this model of energy consumption is not

supported empirically, it is sufficient to gain further insight into the effect of interference

on T-DCCA and P-DCCA mechanisms. Namely, that the energy efficiency of P-DCCA is

determined by the interference, and idle listening will be minimised in quiet environments.

This relationship between interference and idle listening is asymptotic, and hence idle

listening cannot exceed this limit. Consequently, regardless of the intensity of interference,

the idle listening of P-DCCA is expected to be lower compared to T-DCCA for these

parameters. This is observable in figure 5.8. The energy efficiency benefits to WSNs of

P-DCCA are evaluated in real experiments in section 5.7.

5.6 Range Evaluation

The transmission power variation used by P-DCCA reduces the signal strength, and

consequently the SNR of the received signal. As consequence, this may prevent the
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802.15.4 receiver from being able to correctly decode a received signal. This may lead to

increased bit- and packet-errors for a given link. SNR is a function of the distance from

the transmitter to the receiver, and therefore the maximum range for P-DCCA links may

be impaired by P-DCCA power variation. The objective of this section is therefore to

gain insight into, and to evaluate, the effect of P-DCCA transmission power variation on

link quality.

This evaluation is twofold. Firstly, a theoretical model of packet-error rate is produced,

based on previous work by Shin et al [SCPK05]. This takes as input the distance between

transmitter and receiver, d, and the transmit power variation setting, PT , in order to

estimate the packet error rate, P . Secondly, an experimental evaluation is described to

complement the theoretical model. This approach allows firstly external factors - such as

environmental conditions and hardware imperfections - to be excluded in the theoretical

model, in order to isolate and study the input variables. It also provides greater insight

into how the P-DCCA power modulation affects link quality. The experimental evaluation

then allows this model to be validated empirically, and also provide a more rigorous

range evaluation under realistic conditions.

The packet error rate, P , is modelled as a function of distance and the P-DCCA

transmit power variation setting, PT . P is described later as a function of SNR, which is

determined by the RSS of the received signal. For a non-P-DCCA transmission, this is

defined in equation 5.9 as a function of the transmission power, PTX , and distance from

the sender, d.

R(PTX , d) = PTX  - L(d) (5.9)

The path loss function, L(d), is independent of the signal transmission power. Equa-

tion 5.10 expresses the path loss, L, based on a log distance model, taken from [SCPK05].

L(d) =

\left\{       
40.2 + 20 log10(d), if d \leq 8

58.5 + 33 log10(
d
8), if d > 8

(5.10)
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The Bit Error Rate (BER) is modelled as B, and for an Additive White Guassian

Noise (AWGN) channel can be modelled as in equation 5.11 [SCPK05].

B = Q
\Bigl( 2SNR

0.083

\Bigr) 
(5.11)

Where SNR is defined as ratio between the incoming signal strength, R, and the

noise power, PN . The noise power is the sum of all other signals, including thermal noise,

hardware noise, and interference from other devices.

Q(x) is the Gaussian error integral, which can be approximated as:

Q(x) =
e - (x2/2)

1.64x+
\surd 
0.76x2 + 4

(5.12)

For a uniform signal power, the packet reception rate, P , can be modelled from B by

the equation 5.14.

P (s) = (1 - B)8s (5.13)

Then, after incorporating 5.11 and 5.12, P becomes:

P (d, s) =

\biggl( 
1 - Q

\Bigl( 2R(PTX ,d)
PN

0.83

\Bigr) \biggr) 8s

(5.14)

The function P , described in equation 5.14, predicts the PRR as a function of distance,

for a standard 802.15.4 transmission. Here, s is the size of the packet to be transmitted,

in bytes, including the packet header, and d is the distance between the two nodes. The

remaining variables, PTX , and PN can be fixed.

The model for a P-DCCA transmission is similarly defined in equation 5.15, which is

the product of P , for both packet components as transmitted by the P-DCCA square

wave. Since the path loss experienced by a signal is independent of the transmission

power, the received signal strength of the packet, transmitted at the P-DCCA lower

transmit power, is defined as R(PTX  - PT , d).
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PPDCCA(d, s) =

\biggl( 
1 - Q

\Bigl( 2R(PTX ,d)
PN

0.83

\Bigr) \biggr) 4s \biggl( 
1 - Q

\Bigl( 2R(PTX - PT ,d)
PN

0.83

\Bigr) \biggr) 4s

(5.15)

PPDCCA is plotted in figure 5.9, for the distance \{ d : 0 \leq d \leq 200\} , for values of PT

in the range [0,9]; PT = 0 is uniform transmission. The packet size, s, is set to 90-bytes.

The model shows that for various PT , link reliability exhibits the same behaviour: P is

stable to a point, where it drops quickly and becomes unusable. P-DCCA affects the

distance at which this occurs, and hence affects the maximum communicable distance

of the link. For example, P is negligibly degraded for PT = 5 compared to uniform

transmission power, up to 109m.

This simplistic model firstly does not include the effects of environment properties,

such as humidity, air pressure, hardware characteristics, antenna design and multi-path

fading. These can significantly affect RF propagation characteristics. Secondly, this

model of P-DCCA assumes that the two terms in 5.15 are independent, which may not

be the case.

An experiment was run to evaluate the accuracy of this model. Two telosB nodes

were configured as sender and receiver; the former was programmed to transmit 90 byte

packets at a rate of 16 packets/second; the latter logged each packet received to a buffer
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in RAM. The choice of packet size is arbitrary and - as suggested by the exponential

nature of the model presented - has little effect on the packet error rate. In this case, 90

bytes is chosen since this is typical of WSN applications based on a TCP/IP and IPv6

architecture.

The experiment took place outside in an empty sports field, absent of any wireless

electronic devices in order to minimise interference. The maximum range of P-DCCA

and standard 802.15.4 transmissions was previously established to be approximately 90m

and 180m respectively. Hence, the distance between the nodes in this experiment was

varied between 90m and 180m, in increments of 15m. Both nodes were elevated 75cm

from the ground to ensure line of sight. This range evaluation is not representative of all

possible deployments: indoor environments, for example, are subject to RF propagation

effects.

Due to the absence of other interference sources, there was little variation in this

experiment. Therefore, packet delivery rates were recorded for three minutes, for each

distance. For each increment, the packet reception rate - as measured at the receiver,

and not considering acknowledgements - was calculated. The transmitter node did not

implement CCA checks or retransmissions, and neither node duty cycled the radio.

Two configurations of the P-DCCA transmit function were used, PT = 0 - which

is the uniform transmission power, as standard, and PT = 5 - the setting used in the

CC2420 implementation in this thesis.

The results of the experiment and the model of P are shown in figure 5.9. A number

of observations can be drawn from these results. Firstly, all values of PT and the recorded

results exhibit the same behaviour: PRR stays close to 100\% until a threshold is met,

after which PRR drops to 0\%. From the model, this threshold - which is termed the

maximum link range - is inversely proportional to PT . For example, this threshold is

approximately 80m for PT = 9dBm.

Secondly, for PT = 5dBm, the recorded PRR closely follows the model: close to 100\%

PRR is recorded for distances up to 105m, beyond which no packets are received. This is

not the case for PT = 0dBm, where close to 100\% PRR was measured in the experiment,
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and predicted by the model, up to 105m. Beyond this, the model and the experiment

results deviate however, as the experiment observed above 0\% PRR up to 200m. The

latter represents standard 802.15.4 transmission, without P-DCCA power modulation.

Consequently, the model in equation 5.15 presents a lower bound of PRR as a function of

distance. Therefore, the range impairment of P-DCCA, compared to standard 802.15.4,

may be greater than that predicted based on this model.

Discrepancies between the model and the experiment results may stem, firstly, from

environmental factors not included in the model. These include humidity, hardware

properties, battery voltage and radio propagation effects. Secondly, the model separates

the packet into two components, and calculates the PRR of each as a function of

transmission power. These are assumed independent, and their product is used to

derive the PRR of the P-DCCA transmission. This assumption was not verified by the

experiment results.

The accuracy of the model is not supported by the results in figure 5.9. However,

the model and experiment results share similarities, and therefore some of the insights

gained from the model are supported. Firstly, that below the maximum link range, the

PRR of P-DCCA links is unaffected compared to standard 802.15.4. Consequently, only

the maximum link range is affected by P-DCCA. Secondly, that maximum link range

of P-DCCA is determined by PT . Consequently, implementations of P-DCCA should

minimise this as much as possible, without reducing classification accuracy.

Based on this model, the maximum link range is defined as the distance, d, at which

PRR drops below 99\%. In many routing protocols, links which do not meet this threshold

are avoided, and hence, such links are a requirement of a stable routing topology. For

values of PT in the range [0,9], the maximum link range is plotted in figure 5.10. Here, a

linear relation between PT and link range is apparent.

As discussed in Section 5.1.2, the reduced link performance is the main drawback

of P-DCCA. In a large, multi-hop network, more hops may be needed to communicate,

increasing energy consumption and offsetting the benefits of P-DCCA. Otherwise, if

nodes are too sparsely deployed, P-DCCA may fragment the network and prevent
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Figure 5.10: Modelled Link Distance of P-DCCA for various PT

communication entirely. P-DCCA may therefore be better suited to either smaller

networks, with few nodes, or large, multi-hop networks, with many possible links.

However, when considering the design of sender-initiated asynchronous MAC protocols,

it becomes apparent that the link performance is not the only parameter determining

maximum link distance. Receivers implementing these MAC protocols periodically sample

the channel energy using CCA checks: if the set CCA threshold is exceeded, an incoming

packet is inferred, and the radio remains powered on to receive a packet. Otherwise,

the radio is powered off, until the next wakeup sequence. Therefore, for a packet to be

received it is necessary that the RSS exceeds the CCA threshold. Since the 802.15.4

PHY is designed to operate even at low SNR levels, it is plausible that this may be the

limiting factor of maximum link range in sensor networks.

For example, for the maximum link distance distance of a uniform-transmission power,

the received signal strength modelled in figure 5.9 is -100.1dBm, far below the default

CCA threshold. Further, it would be counter-intuitive to set the CCA threshold so close

to the noise floor - as receivers would not be able to reliably distinguish incoming signals

from the noise floor.
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5.7 Application Evaluation

In section 5.4, the TP and FP classification accuracy of the P-DCCA detection mechanism

was evaluated and compared against T-DCCA. This was done in the absence of any MAC

protocol or DCCA response policy. It was shown that while P-DCCA is able to provide

accurate (subjectively speaking, and compared to current state-of-the-art alternatives)

classification of interference, false-positives and false-negatives are still possible. This

may have adverse consequences on a WSN. Similarly, the benefits of employing DCCA

in a WSN should be evaluated empirically. Therefore, in this section, it is the objective

to evaluate how a DCCA implementation and simple interferer response policies affect

link performance and energy efficiency of a WSN under interference.

P-DCCA was implemented in ContikiMAC, alongside simple interferer-detection

policies. ContikiMAC was chosen since this represents the current state-of-the-art among

WSN MAC protocols, and is a common choice WSN deployments. ContikiMAC is similar

in operation to other duty-cycled WSN MAC protocols that rely on CCA to detect

incoming traffic and prevent collisions, and hence these findings are assumed to be similar

to other MAC protocols in the WSN domain.

The experiments in this section include firstly, small scale experiments to precisely

measure link performance and energy efficiency on individual links - absent from the

effects of any network or routing protocols; secondly, large scale WSN deployments

to evaluate, also, the compounded effect when network and routing are also included.

The experiments in this section take place under controlled interference - to measure

performance under known channel conditions, and uncontrolled interference - to measure

performance under realistic conditions.

5.7.1 ContikiMAC implementation

To measure the effects of P-DCCA on a WSN in the presence of interference, two varia-

tions of the standard ContikiMAC protocol were included in all experiments: standard

ContikiMAC - to provide a baseline comparison; and ContikiMAC with P-DCCA - to

measure the improvement yielded by DCCA.
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For the latter, deliberately simple response policies were implemented in order to

evaluate the DCCA concept. In the future, more complex policies and mitigation

strategies may follow from this. The DCCA outcome is used in both transmitter and

receiver modes:

\bullet Transmitter Collisions with other WSN traffic during the transmission sequence

are followed by the familiar deferral and back off strategy. However, collisions

with other interference sources are ignored. This is to prevent transmitters from

aborting a packet transmission which may otherwise be received, while still being

able to arbitrate channel access amongst WSN nodes.

\bullet Receiver During the receiver wakeup sequence, incoming data is only inferred

after detecting WSN traffic. All other interference is ignored, and treated the same

as a clear channel. This is to prevent ContikiMAC from falsely inferring incoming

data from spurious interference on the channel.

The standard transmission policy of ContikiMAC, upon detecting a collision, is to

abort the transmission sequence and initiate a random back off. This is sufficient to

arbitrate access to the channel between multiple competing WSN nodes.

In cases of collisions with other RF devices which follow different collision policies

with vastly different timescales, this approach is likely to be suboptimal - as channel

arbitration is unevenly weighted between competing devices. Consequently, this motivates

the transmission policy described above: interference outside the WSN is ignored, and

packet transmission persists until an acknowledgement is received, or times out. The

receiver policy is intended to reduce false wakeups, and preserve energy efficiency of

ContikiMAC under interference.

As discussed in Chapter 5, inconclusive P-DCCA results - occurring when an incom-

plete RSSI sample set is recorded - are ignored in this implementation. Instead, P-DCCA

checks take place in pairs, and packet transmissions are predictably timed to ensure that

at least one P-DCCA check will coincide with a packet and record a full sample set. This

approach is identical to the standard ContikiMAC mechanism.
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To evaluate ContikiMAC with, and without P-DCCA, two metrics are used throughout

the evaluation:

\bullet PRR To evaluate the effect of DCCA on link quality, Packet Reception Rate (PRR)

is used. This is a reflection of the link performance, and is the ratio of successful

packet transmissions (where an acknowledgement is received by the sender) to total

attempts. This is chosen because, from this, the effects on other components of the

WSN, such as routing protocols and user applications, can be broadly extrapolated.

For example, increased PRR is likely to correlate to improved performance of data

collection applications. This is not necessarily the case with other metrics.

\bullet Radio-on time per packet received This metric is used to measure the energy

efficiency of ContikiMAC under interference. This metric is used since it encom-

passes the energy expenditure of transmitting, and receiving packets, including the

idle listening cost. As false wakeups and collisions necessitating retransmissions

increase, so does this metric.

5.7.2 Controlled interference evaluation

In order to evaluate the hypothesis that the DCCA response policies described will improve

performance under interference, the objective of the first experiment was to evaluate

the link performance and energy efficiency of ContikiMAC in controlled interference

conditions.

Two Tmote Sky nodes were placed in opposite corners in an unused office testbed.

The effect of signal RSS - which is determined by transmission power and range, of both

WSN traffic and interference, was not included in this experiment. In both cases, RSS

was intended to be reliably above the CCA threshold. Therefore, the distance between

the transmitter and receiver was 6m, and the maximum transmission power was used.

In the same office, an 802.11g access point and station were placed in opposite corners,

and were connected to the host computer over a wired connection. Interference was

generated using the D-ITG traffic generation tool [AGE+04], sending UDP traffic. In

order to reduce the effect of other interference from other sources within the building, the
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experiment took place during quiet office hours. Likewise, WiFi channel 11 and 802.15.4

channel 22, which were found to be the quietest overlapping channels in the environment,

were used for the experiment.

90-byte packets were sent at a rate of 4 packets per second, and sent without

retransmissions. This packet size is used to represent a typical WSN data collection

application. PRR and radio-on time per packet transmitted - as measured at the

receiver, were recorded throughout the experiment. No routing protocol was employed,

and therefore the network incurred no initialisation delay. Each interference level was

therefore run for five minutes.

The results are shown in figure 5.11. Figure 5.11a shows that, for both standard

and P-DCCA ContikiMAC, there is a negative correlation between interference rate and

PRR. This is firstly due to the rate of packet collisions increasing as the interference rate

increases. Secondly, due to CCA collisions in ContikiMAC, which stop the transmission

sequence. The graph shows that the PRR of ContikiMAC is markedly improved with

P-DCCA: under the heaviest interference tested, PRR of standard ContikiMAC falls

below 5\%, while P-DCCA achieves above 50\%. This improvement stems from the simple

DCCA interference policy, which ignores non-WSN CCA collisions.

When subjected to the lowest interference level, there is a significant difference between

standard and P-DCCA ContikiMAC. This may be the result of other interference in the

environment which could not be controlled. In future controlled interference experiments,

the range of interference levels will include zero - to be able to evaluate this objectively.

These results are still sufficient however to evaluate the performance of ContikiMAC with

and without P-DCCA, therefore meeting the objective of this experiment.

Figure 5.11b shows, for standard ContikiMAC, that the radio-on time per packet

received increases proportionally with the interference rate. This firstly stems from

reduced idle listening caused by false wakeups, and secondly from reduced PRR which

affects this measure. By contrast, P-DCCA is much less affected: standard ContikiMAC

increases radio-on time to 65ms under interference, while P-DCCA increases to only

12ms. In both cases, 10ms is the minimum achieved radio-on time; this reflects the
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guard time in ContikiMAC when a sender begins transmitting packets, before the receiver

is expected to wake up. The improvement yielded by P-DCCA stems firstly from the

improvement in PRR, and secondly due to the DCCA response policy, which avoids false

wakeups.

Observing standard ContikiMAC in figures 5.11a and 5.11b, PRR is worse affected

than radio on-time under low interference rates. This is likely due to the fast sleep

optimisation implemented in the ContikiMAC protocol, which mitigates against false

wakeups.

5.7.3 Collision policy evaluation

The previous experiment showed that P-DCCA is able to improve the performance of

a single wireless link in an environment subject to interference. In this case, only one

ContikiMAC node was transmitting. Therefore, the simple response policy improves

packet delivery by ignoring collisions. This may not be the case in a deployment

with multiple ContikiMAC nodes trying to access the channel - since this collision

policy may prevent efficient channel arbitration between WSN nodes. In these cases,

channel arbitration may be improved with P-DCCA. For example, upon collision with

a WiFi signal, the more optimal approach in this implementation is to persist with

the transmission. Conversely, collision with another ContikiMAC packet should result

in a random back off to try again. Therefore, the objective of this experiment is to

evaluate the simple DCCA collision policies described, in a multiple WSN transmitter

environment.

In this experiment, an 802.11g network transmitted 1500 byte packets, at a rate

of 37.5KB/s. This interference rate was chosen following the results of the previous

experiment. At this interference rate, measurable packet loss within the WSN network is

ensured, however communication is not prevented entirely and therefore the effects of

P-DCCA can be measured.

Nodes in the WSN were programmed with CSMA to handle retransmissions, initiating

a random backoff after every unsuccessful transmission attempt. On each node, upon an
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acknowledgement being received or packet timeout, a new transmission was initiated -

attempting maximum throughput, which is then recorded.

In a single-node environment, where all interference is known to have originated

outside the network, a trivial solution is to ignore all collisions during packet transmissions.

In a multiple-node environment, this is no longer the case since interference may be due

to environmental interference or another device in the same network. Consequently, it

is expected that DCCA should provide greater benefit. Therefore, as well as standard

and P-DCCA ContikiMAC, a third derivative was included to evaluate this: NO-CCA.

Here, no CCA checks are conducted either before, or during transmission. In a single

transmitter use case, this would be advantageous, since the only source of interference is

guaranteed to have originated from outside the network, and an aggressive policy will

likely not have a negative impact on the network.

The results are shown in figure 5.12. The results show, firstly, that average throughput

per node decreases as the number of transmitters increases. This is to be expected, as

there is more channel contention between nodes.

For the case of only one transmitter, NO-CCA achieves higher throughput than

P-DCCA. This is due to false positives in P-DCCA - incorrectly detecting 802.15.4

packets and backing off. With multiple transmitters, however, P-DCCA achieves higher

throughput compared to both NO-CCA and standard ContikiMAC. This stems from

the simple DCCA policy, which avoids collisions only with other WSN transmissions.

Also, for more than one transmitter, NO-CCA achieves lower throughput compared to

standard ContikiMAC. This is because the NO-CCA collision policy is detrimental to

channel arbitration between WSN nodes.

This experiment has evaluated the benefits of P-DCCA in a multiple-transmitter

environment. The results have shown that the simple DCCA policy to interference

collisions is sufficient to mitigate the effects of interference, while still allowing channel

arbitration between WSN nodes.

129



Chapter 5 Improving WSN Channel Sensing

 50

 100

 150

 200

 250

 300

 350

 400

P-D
C
C
A

N
O
-C

C
A

Standard

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t 

p
e
r 

n
o
d
e

(B
y
te

s
/S

e
c
)

Num. TX.
1
2
4
8

Figure 5.12: ContikiMAC performance with multiple transmitters under WiFi interference

5.7.4 Large scale testbed evaluation

Implementing P-DCCA with simple interferer-detection policies has been shown to reduce

the energy costs and improve the packet reception and energy efficiency under interference.

Previous experiments have evaluated P-DCCA for small, single-hop networks, with no

routing protocol implemented. In a larger network spanning multiple hops, the effect

of reduced transmission range of P-DCCA may reduce the number of usable links in a

network. Likewise, the inclusion of a routing protocol above the link layer may behave

differently with P-DCCA. Therefore, the objective of this experiment is to evaluate the

performance of P-DCCA in unison with a routing protocol and multi-hop links.

In order to use a large number of nodes in an automated fashion, the WISEBED

[CPC+12] testbed at the University of L\"ubeck was used. This testbed is based on the

2nd floor of an office building, and consists of 162 nodes arranged in clusters of three.

Each node is connected to a host laptop, and the testbed is coordinated over an Ethernet

back-end, which allows for node communication and reprogramming. To aid network

configuration, all of the nodes have pre-allocated MAC addresses. For this experiment,

only the telosB nodes were used.

In order to coordinate communication across the entire network, all nodes were

programmed with the RPL routing protocol. RPL was chosen because it supports
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Figure 5.13: WISEBED WSN testbed

the IPv6 protocol stack, and because it is common in real WSN deployments. Also,

because the design of RPL is similar to other common routing protocols such as collection

tree protocol. RPL establishes an acyclic graph from a sink node to each node in the

network. Each node then has a single parent, to forward data toward the sink, and a

number of children, for downstream traffic. The IPv6 protocol stack was used to handle

packet forwarding and address assignment. The default Contiki CSMA protocol and

configuration was used to handle retransmissions This uses an exponentially increasing

backoff and a maximum retry limit of three.

In order to generate sufficient traffic within the WSN to measure the effects of

interference, eight of the 49 nodes in the network were configured as sources. These

generated a 60-byte packet every 30 seconds, sent to a single source node located at

one end of the deployment. This network architecture is typical of a data collection

WSN deployment. The remaining nodes were part of the network, forwarding packets as

required to the sink.

It was necessary to generate repeatable and reliable interference under controlled

parameters in the testbed. The WISEBED deployment only supports IEEE 802.15.4-

based devices, and therefore other interference - such as WiFi - cannot be generated.

Therefore, WiFi interference was simulated by other telosB nodes in the testbed, based

on the approach described in JamLab [BVN+11]. These nodes used the test transmission

mode of the CC2420, whereby psuedo-random data is transmitted continuously on the

same IEEE 802.15.4 channel. The nodes alternate between maximum and minimum

transmission power, to simulate packetized IEEE 802.11g traffic. It was desirable to
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Figure 5.14: ContikiMAC packet reception rate in a large scale testbed, under simulated
interference

simulate similar interference conditions to previous experiments, therefore data packets

of fixed sized 1500-bytes, transmitted at 54MB/s, were simulated. The timing between

each packet was calculated randomly over a time window that is changed to throttle the

degree of interference. Due to technical limitations, this approach does not simulate the

IEEE 802.11g MAC protocol. This approach allows for an evaluation of P-DCCA over a

multi-hop network in the presence of an interference source. In JamLab [BVN+11], the

authors showed that this approach is able to achieve high accuracy of WSN performance

compared to the real interferer.

The arrangement of sink, sources, other nodes, and interferer nodes in the testbed

is shown in figure 5.13. The sink node was deliberately placed at the periphery of the

network, to allow for longer routes across the network. The source nodes were randomly

distributed across the network.

The source and sink nodes reported each packet transmission and reception event

respectively. Also, all nodes in the network periodically reported the radio-on time from

the beginning of the experiment. This is used to calculate the average-radio on time, per

packet received at the source. This metric is used since it represents the network-wide

energy cost of communicating a packet to the sink. P-DCCA and standard ContikiMAC

variants were tested in 15 minute iterations, for each interference level. The experiment

was repeated four times.
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Figure 5.15: ContikiMAC radio-on time per packet received in a large scale testbed, under
simulated interference.

The results are shown in figures 5.14 and 5.15. The graphs show that for all simulated

interference levels, ContikiMAC with P-DCCA achieves better PRR and radio-on time

compared to standard ContikiMAC. A number of other observations can be made from

these graphs.

Firstly, from observation, figure 5.14 appears to exhibit a linear relationship between

interference rate and PRR, for both ContikiMAC variants. This is not the case with

radio-on time in figure 5.15, which does not appear to be linear in either case. This may

be attributed to the radio-on time metric being more sensitive to interference in two

regards: firstly, due to false wakeups in the MAC protocol; secondly, due to fewer packets

being received, thus increasing the per-packet measurement.

Secondly, figure 5.14 shows that even with no simulated interference, some packet loss

is still present: PRR of standard and P-DCCA ContikiMAC is 83\% and 97\% respectively.

This is most likely due to other interference sources in the testbed environment. Such

interference sources were out of control of the testbed configuration. A longer experi-

ment duration over multiple days may have dampened the effect on the results of this

interference. However the results remain sufficient to meet the experiment objectives.

Similarly, the PRR measurements shown in figure 5.14 appear to show noticeable

variance. This also may the the result of other interference sources in the testbed

environment.

133



Chapter 5 Improving WSN Channel Sensing

Thirdly, in this experiment, interference is shown to have a greater effect on P-DCCA,

compared to previous experiments. PRR is reduced from 97\% to 28\%, and radio on time

is increased from 1290ms to 9296ms, a 71\% decrease and 620\% increase respectively.

This may be due to the cumulative reduction in PRR which is felt across all links on

a path - as opposed to the affect on an individual link as measured previously. Also,

this experiment simulated interference originating from multiple 802.11 interferers, as

opposed to a single, albeit higher power, interferer. This may more greatly affect WSN

links.

The energy consumption (figure 5.15) shows similar trends to earlier experiments.

The baseline under no interference is measured as 1.3ms. This is lower than the radio-on

time measured for a single link (as in figure 5.11b), as this is averaged across all nodes in

the network - including nodes that do not participate in packet forwarding.

These results confirm that P-DCCA benefits link quality and energy efficiency, on

an individual link level, and also in large multi-hop networks. Importantly, the reduced

transmission range stemming from P-DCCA power modulation does not impair packet

delivery. This is due to either link availability and quality being relatively unimpaired by

this power modulation, or whose affects are negligible in large networks. Consequently,

these results show that the drawbacks of employing P-DCCA are far outweighed by the

benefits, in this case.

5.7.5 Uncontrolled environment evaluation

In previous experiments, P-DCCA has been shown to improve the link performance

and energy efficiency of ContikiMAC. In these cases, the interference environment was

controlled by injecting controlled WiFi interference. In a real deployment, the interference

may differ from these conditions, and may be the product of many combinations of

interference devices and their interactions. For example, this may include Bluetooth

and WiFi devices, or other devices emitting interference in the 2.4Ghz frequency range.

This cannot be trivially modelled or generated in a controlled interference experiment.

Therefore, the objective of this experiment is to evaluate P-DCCA in uncontrolled
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interference conditions.

A busy office was chosen as the location for this experiment. Prior measurements

observed WiFi interference from nearby laptops and smartphones, as well as other

background sources. This location was therefore ideal for evaluating P-DCCA under

strenuous uncontrolled interference conditions.

The sender attempted to transmit packets at a fixed rate of four packets/second. This

high data rate - in comparison to previous experiments - was chosen to maximise the

stress on the network, in order to compare the two ContikiMAC variants. Two variants

were compared: standard ContikiMAC and ContikiMAC with P-DCCA, each running

on both nodes for five minute intervals.

This experiment only evaluated single-hop link conditions, and therefore only two

nodes were used. Likewise, no routing protocol is implemented. In order to capture a

range of interference types and intensities, the experiment lasted 24 hours and took place

during the work week. Therefore, activity within the office varied as people arrived at

work, attended meetings, etc. As previously, PRR and Radio-on time were recorded.

The results are shown in figure 5.16. Both graphs firstly show variation in energy

efficiency and PRR through the 24-hour period. This stems from interference from

wireless laptops, smartphones, and other 2.4Ghz interference. This varies throughout

the day as people arrive into work, attend meetings, have lunch etc. The observations

from the PRR and radio-on time results coincide in the time domain, as expected. The

worst interference seems to occur between 10:00, and 20:00, and spikes in interference

appear at 13:00 and 18:00.

The first observation from these graphs is that the variation in PRR and radio on

time is noticeably less for the case of P-DCCA, compared to standard ContikiMAC. This

is due to implemented DCCA policies not being effected by interference, as per previous

experiments.

Secondly, even during quiet office hours, standard ContikiMAC performed worse

compared to P-DCCA. PRR was at least 38\% higher, and radio-on time at least 6/6\%

lower with P-DCCA. This shows that during the experiment, there was a minimal level
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(a) ContikiMAC Packet Reception Rate in an uncontrolled interference environment
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(b) ContikiMAC Radio-on time per packet received in an uncontrolled interference environment

Figure 5.16: Packet Reception Rate and Radio on-time over a 24-hour deployment
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of background interference in the office - sufficient to degrade performance of standard

ContikiMAC.

Both graphs show asymmetry between the beginning of the experiment and the end.

For example, PRR of standard ContikiMAC is 48\% at the beginning, and 71\% at the

end of the experiment. This suggests that the level of background interference was not

the same for both days. Reflecting on these results, extending the experiment over a

number of days may have provided more insight into the interference patterns in this

environment.

Broadly speaking, the results mirror earlier experiments: P-DCCA improves link

performance and energy efficiency in ContikiMAC under wireless interference. At peak

office hours during the experiment, PRR was improved by upto 180\%, and energy

efficiency improved by upto 40\%.

5.7.6 Discussion

In this section, P-DCCA was implemented in the ContikiMAC WSN MAC protocol, in

order to evaluate the prospective improvement DCCA may have on WSN communications

under interference. Only simple interferer-detection policies were implemented, whereby

all non-WSN traffic is ignored when receiving or transmitting.

More complex policies could seek to optimise coexistence between WSN and other

devices further. For example, transmitters could employ a random backoff after any

collision, whose duration is dependant on the type of interferer. Likewise, receivers could

extend, on demand, the listen duration in ContikiMAC if a packet has been detected but

not correctly received - possibly due to packet corruption.

ContikiMAC with, and without, P-DCCA has been tested in controlled, and uncon-

trolled interference environments. In both cases, P-DCCA was shown to improve link

performance - as measured by packet delivery and throughput. The energy efficiency of

ContikiMAC was shown to be improved on nodes using P-DCCA, as measured by the

radio-on time per packet received. This is due to reduced false wakeups, and consequently

less idle listening, as well as the improved packet reception rate.
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These results were replicated as well in a large scale testbed experiment, although

the improvement in energy efficiency is dampened due to the large number of nodes

participating in the network. The quality and availability of links using P-DCCA power

variation is unaffected compared to standard, full power transmission. RPL was used to

implement the routing protocol, however the semantics, from a link-level perspective, are

no different from other such routing protocols - such as collection tree protocol.

5.8 Chapter Summary

In this chapter, a detection solution to mitigate the effects of CTI has been presented, in

order to address the problem P.2 raised in section 1.1. Previous detection solutions are

known to require higher idle listening cost, reducing energy efficiency in WSN deployments.

In this chapter, DCCA was presented as a detection solution which is compatible with

existing MAC protocols, requires no special hardware, and does not significantly increase

the energy cost.

DCCA is a conceptual extension to the standard 802.15.4 CCA mechanism, which is

able to indicate both the presence, and the type, of another signal on the same channel.

P-DCCA implements DCCA by varying the output power during transmission, then

detecting this during short receiver-checks.

The accuracy of P-DCCA was compared empirically with a similar approach in

literature in Section 5.4, and the benefits and drawbacks of each approach discussed in

Section 5.4.4. The radio use of P-DCCA was modelled, and shown to achieve greater

energy efficiency than current state-of-the-art alternatives to mitigate CTI. P-DCCA

was evaluated under controlled and uncontrolled interference conditions, and was shown

to improve packet delivery and energy efficiency metrics compared to the standard

implementation. In a large-scale multi-hop WSN deployment, P-DCCA was shown to

improve both metrics again compared to the standard implementation.
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Conclusion

The conclusions of this thesis are presented in this chapter. Firstly, the premise - which is

the effects of CTI acting upon WSN - is revisited from the perspective of the background

and related work discussed in Chapter 3. This was described in section 1.1 as packet loss

and energy efficiency impairment under interference conditions.

Following this, the problem statement described in section 1.1 - which was derived

from these adverse effects - is reviewed. The contributions of this thesis are then reflected

upon, with regard to the original problem statement. The scope for future work extending

these contributions is then discussed, before some closing remarks which bring the chapter

and thesis to a conclusion.

6.1 Thesis Discussion

Due to the advancement of hardware and software design, the ongoing realisation

of the IoT, and broader demand, WSNs have become more prominent over the past

decade. Deployments have stretched beyond academic fields of interest, to also include

industrial, office, and residential applications. Combined with the proliferation of wireless

technologies operating in the 2.4Ghz ISM band, the issue of CTI is now unavoidable for

some WSN designers. Likewise, other technologies which share similarities with WSN,

such as home automation, vehicular sensor networks, and the IoT, face the same issues.

In this thesis, the costs of CTI on WSNs were considered twofold: packet delivery and
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energy inefficiency. Based on the 802.15.4 PHY protocol, LPL protocols were considered as

a specific subclass of WSN MAC protocols - common in applications favouring low energy

consumption and data rate. Here, CCAs are used for transmitting and receiving, enabling

low duty cycles and long deployment lifetimes. As discussed in Chapter 2, the standard

CCA mechanism - Energy Detection - is susceptible to other interference. Previous works,

discussed in Chapter 3, have shown this may lead to suboptimal performance.

In chapter 3, previous work relating to WSN and other 802.15.4 network coexistence

with interference was discussed. This included experimental and theoretical studies of

the effects of interference; models of interference and energy consumption in WSN; and

solutions to mitigate the effects of CTI.

This firstly reaffirmed in section 3.2 the adverse effects of interference on WSN.

Namely, for IEEE 802.15.4 networks, packet loss and energy efficiency of WSN are

impaired under CTI conditions. This is exacerbated for WSN MAC protocols, also

further reducing the lifetime of battery-powered networks. The findings in this chapter

motivated the remaining work in the rest of the thesis.

Following this, previous simulation and theoretical models of energy consumption for

WSN were reviewed in section 3.3. These tools allow the energy consumption of WSN

to be estimated before deployment, to allow devices to be adequately provisioned and

tuned to meet network lifetime requirements. It was shown that currently link quality

can be modelled under interference conditions, and energy consumption under general

terms. However, it was shown that there is no intersection of these domains: to model

energy consumption of WSN under interference. Consequently, predicting the energy

consumption and lifetime of a WSN prior to deployment in interference conditions is not

possible with existing state-of-the-art tools. This constitutes problem P.1, which was

described in section 1.1.

Then, current solutions to mitigating the effects of CTI in 802.15.4 networks and

WSN were discussed in chapter 3. Solutions were classed based on their strategy: drawn

from avoidance, detection, and resilience approaches. The tradeoffs in each case were

considered. Avoidance approaches were shown to offer the greatest potential to mitigate
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interference, but require reliable communication between nodes. Detection and resilience

approaches are orthogonal, and may be deployed in parallel. It was concluded here that

no current state-of-the-art WSN-based detection approaches exist that are sufficiently

accurate; do not rely on atypical hardware; and do not significantly increase idle listening.

This constitutes problem P.2, which was described in section 1.1.

The two primary contributions of this thesis followed from these problems, P.1 and

P.2, and are discussed in detail in the remainder of this section.

Problem P.1: Accurate energy consumption estimation of WSN

In Chapter 4, tools were presented which enable WSN designers to estimate the duty

cycle of LPL protocols, based on measurements of interference. This chapter began with

a discussion of interference measurement techniques available, which have previously been

used for link reliability modelling and interference classification. This section concluded

that it is sufficient to measure PC , the channel busy probability.

Following this, a closed form estimation of WSN duty cycle was presented, based

on the popular ContikiMAC protocol. The complexity of this approach stemmed from

the ContikiMAC state machine, through which numerous paths exist for the receiver to

take. This approach is largely inflexible to modifications of how ContikiMAC detects and

responds to a busy channel. Therefore, modifying this approach to account for changes

to the MAC protocol wakeup or channel sensing mechanism is inherently difficult.

These drawbacks motivated the development of a Monte Carlo solver approach, which

takes as input a Lua script representing the MAC protocol wakeup sequence. This

approach more closely follows the actual implementation in software of ContikiMAC,

and is more accommodating to MAC protocol changes. Both approaches were shown to

predict closely the impact of PC on the duty cycle.

The accuracy of the Monte Carlo solver was then evaluated under controlled interfer-

ence conditions in a testbed, and uncontrolled conditions in realistic deployments. For

typical WSN traffic rates, the solver was shown to be accurate. While the ContikiMAC

MAC protocol was used in this chapter as an example, the techniques presented are
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applicable to any WSN MAC protocol that relies on CCA for synchronisation.

Problem P.2: Improved detection mechanism in WSN MAC protocols

DCCA was presented in Chapter 5 as a detection solution to mitigate the effects of CTI.

DCCA is a conceptual extension to the standard CCA mechanism. As well as indicating

the channel as busy/free, DCCA can indicate the source of channel contention. This can

then be used to optimise collision response policies, and eliminate false wakeups in the

receiving sequence - therefore able to mitigate the main consequences of CTI.

Three methods of implementing DCCA were considered. MD-DCCA was considered

the most efficient, although not possible on typical WSN hardware. T-DCCA and

P-DCCA were then considered as alternatives not reliant on atypical hardware. The

former was based on a similar approach in literature [ZCW+14], while the latter was

developed in this thesis. P-DCCA works by varying the output transmission power, then

detecting this characteristic feature at the receiver.

An application evaluation then followed, wherein P-DCCA was implemented in

ContikiMAC, and evaluated in terms of PRR and radio on-time. For a small, single-

hop network, P-DCCA was shown to improve packet delivery performance and energy

efficiency, compared to standard ContikiMAC. These results were mirrored in an office

environment subject to realistic interference conditions. The same experiment was then

repeated on a large, 49-node WSN testbed, where similar results were achieved.

In this chapter, DCCA was shown firstly to be an effective approach to mitigating

interference in heterogeneous network environments. This is a novel concept to mitigating

channel contention in WSNs: even simple interference response policies were able to

significantly improve performance of ContikiMAC under interference. Regardless of the

specific implementation, MAC protocols are afforded the ability to arbitrate channel

access more efficiently with other devices. How to fully realise this potential remains an

open research question.

Secondly, P-DCCA was shown to be an implementation of DCCA that is feasible on

current WSN hardware. Compared to T-DCCA, P-DCCA was shown in section 5.4 to
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achieve better True Positive- and False Positive- accuracy, despite a shorter sampling

duration. This is closer to the standard 802.15.4 CCA implementation, simplifying

the process of incorporating DCCA into existing MAC protocols. The tradeoffs of

transmission power and range were quantified; these drawbacks were shown to be

outweighed by the benefits of DCCA in the application evaluation.

6.2 Future work

Several areas of future work have been identified that extend from the work in this

thesis. These range from more advanced CTI-mitigation methods, to potential uses of

the transmit power variation mechanism beyond implementing DCCA.

6.2.1 Interferer-response policies

In Chapter 5, the potential benefits of DCCA were demonstrated via simple interferer-

response policies. This was sufficient to demonstrate the use case of DCCA in practice,

and was able to improve packet delivery and energy efficiency of the WSN in interference

environments. More comprehensive policies may, however, yield better performance, or

target specific optimisations.

For example, the policies described in Section 5.7 ignore non-WSN devices before

transmitting. While this decreased the rate of CCA collisions, and subsequently led to

higher packet delivery, packet collisions may increase. Therefore, a more robust approach

could be to implement a 1-persistent CSMA policy (similar to 802.11, see figure 2.6)

This would ensure a collision with 802.11 is avoided, without an expensive retransmission

interval. Similarly, DCCA could further improve the wakeup process by responding

differently to packet corruption. If a packet is detected originating from the WSN, the

receiver could extend the listen duration even after a corrupted packet is received. This

would further improve packet delivery under interference.

It would be beneficial to explore the optimal response policies to various types of in-

terference. The same conclusion has been reached previously by interference classification

studies [HRV+13].
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6.2.2 Channel prioritisation via P-DCCA

In this thesis, P-DCCA has been used to differentiate WSN traffic from other interference.

However, in deployments where CTI is not a concern, P-DCCA may be used to differen-

tiate traffic within a network. This could be used to distinguish source, destination, or

types of packet, within a DCCA check.

For example, one application would be to implement distinct traffic priorities, in

order to meet design requirements. Downstream traffic may include software updates,

network configurations, and node instructions. If this traffic were valued higher than

upstream traffic, such as sensor data, it would be advantageous for nodes to distinguish

the two, and afford the former greater priority in channel contention. This mechanism

would be similar to the 802.11 DCF (see figure 2.6), wherein packet priorities are afforded

by the IFS duration. Likewise, traffic priorities could be implemented on a single link,

between nodes. For unsuccessful packet transmissions, retransmissions could be afforded

higher priority. This would be beneficial in realtime applications, with strict deadlines

for packet delivery.

This area of study is only applicable to the transmission power variation used in

P-DCCA, and not other DCCA implementations.

6.2.3 Orthogonal channel communication via Transmit power variation

Transmit power variation is used in P-DCCA in order for packets to be differentiated from

other interference. This simple modulation method could be extended to encapsulate

additional information, in order to provide an orthogonal communication channel. This

could be implemented using available amplitude modulation techniques, such as On Off

Keying (OOK), and Pulse Width Modulation (PWM). Alternatively, a more specialised

modulation technique could be developed.

This could be used firstly to expand the link bandwidth, without requiring a change

to the hardware. This could serve a specific purpose, such as forward error correction

or security information. Likewise, the receiving mechanism of this channel would not

be bound by the same constraints of the 802.15.4 PHY; namely, it is not necessary to
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receive and decode the preamble and SFD. This could be leveraged to communicate

high priority information, without having to reserve capacity within the 802.15.4 channel.

An example of this would be broadcasting TDMA schedules or security keys. In both

cases, a new node would be able to join an existing network by overhearing other network

traffic.

This area of study would require research to extend the power variation technique,

and also a receive mechanism. In both cases, there would be a likely tradeoff between

communication bandwidth, and error rate.

6.2.4 Interference mitigation aware energy estimation

The techniques presented in Chapter 4 to estimate energy consumption could be extended,

to also model various CTI-mitigation mechanisms. For example, the idle listening of

a WSN node could be estimated and compared for various mitigation methods. These

could include P-DCCA, T-DCCA, and other approaches from literature [SHL13]. This

would similarly be an intersection between energy estimation techniques and interference

coexistence studies.

WSN designers would benefit from being able to compare mitigation approaches before

deployment. Likewise, it would be possible to optimise parameters for each approach

without exhaustive testing. This would be able to account for the respective tradeoffs

in each approach to suit the deployment environment. For the case of P-DCCA and

T-DCCA, evaluated in Chapter 5, it would be trivial to extend these energy estimation

techniques. This would require firstly accounting for the change in CCA duration; for

example, in T-DCCA this would be 2.9ms. Secondly, the CCA function would need to

account for the respective False Positive accuracy - as measured in Section 5.4.

6.2.5 Reactive MAC protocol duty cycling

In Chapter 4 it was shown that the idle listening time of a node can be accurately

estimated from interference measurements in an environment. This is useful to predict

sensor network lifetimes before deployment, allowing for proactive measures to meet
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lifetime goals.

To complement this, reactive measures can be used in response to variable interference

conditions. To achieve this, the channel can be periodically sampled to measure the

channel busy probability. From this, the idle listening can be calculated, either from

a closed-form estimation (as in Section 4.3), or from a lookup table. The wakeup

frequency can then be adjusted on demand, to meet energy consumption requirements.

Consequently, WSNs would be able to ensure lifetime requirements are met, without

having to commit to statically configured suboptimal network parameters.

6.3 Concluding Remarks

From smartphones equipped with WiFi to Bluetooth-enabled kettles, advances in wireless

communication have delivered innovations to consumer, academic, and research appli-

cations. This has led to an abundance of devices communicating in, among others, the

2.4Ghz ISM frequency domain. For WSNs, which are dependent on reliable, low power

operation, this cost is incurred via packet loss, and energy inefficiency. How to predict in

advance and mitigate the affects of CTI are therefore pressing questions amongst WSN

research.

In this thesis, it has been shown that the idle listening of a WSN node can be accurately

predicted in a known interference environment. This enables network designers to optimise

design parameters to meet lifetime goals, without extensive testing or development work

prior.

Secondly, DCCA has been developed as a novel extension to the standard 802.15.4

CCA, to cater for more efficient MAC protocol responses to interference. This has been

shown to improve link performance, and reduce the energy consumption of affected

WSNs. P-DCCA was presented as one possible implementation of DCCA, applicable to

current WSN hardware. This work has carved a path for WSN MAC protocols to avoid

the one-size-fits-all approach to collision response, in favour of a source-specific approach.

In a truly heterogeneous interference environment, this is likely to be a fundamental

building block of CTI-resilient WSN.
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