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Introduction 

“Productivity isn’t everything but in the long run it’s almost everything” (Jones, 2007, p. 1).  
 
Despite being a high priority on the World Tourism Organization (UNWTO) research agenda, 
the productivity analysis of the tourism industry has not received much attention in the tourism 
literature. There is a continuous effort at most tourism destinations to strengthen the 
productivity of their tourism industry (Cvelbar et al. 2015). As stated by Assaf and Dwyer (2013), 
with the tourism industry often perceived as a low productivity industry, productivity analysis is 
“crucial to evaluating tourism sustainability and reshaping tourism activities. There is a direct link 
between productivity and profitability, as when productivity increases, the tourism industry’s 
competitiveness in labour, capital and real estate markets also increase”. 
 
Often misleading is the definition of productivity in the tourism industry. The various league 
tables providing productivity indicators of the tourism industry “neither takes explicit account of 
productivity in tourism” (Blake, 2006, p.1100). Productivity is a complex phenomenon and 
involves several components; hence using simple metrics to reflect the overall tourism 
productivity can be misleading for policy implications (Peypoch et al., 2012). Over the last 
decade, there has been an increasing focus on analysing the performance of the tourism industry 
using the concept of “technical efficiency” (Peypoch and Solonandrasana, 2006; Peypoch et al., 
2012; Assaf and Josiassen, 2012). However, while technical efficiency is a comprehensive 
measure of performance, it is only one component of productivity- productivity growth is not 
driven by technical efficiency alone, but by other factors such as “innovation” and “output 
growth” (Coelli et al. 2005). The concept of “competitiveness “should not also be used to reflect 
the productivity of the tourism industry (Assaf and Josiassen, 2012) - productivity is a major 
driver of “competitiveness”, and not “competitiveness” itself (Cvelbar et al. 2015).  
 
In their recent paper, Assaf and Dwyer (2013) emphasized that the highly popular “Travel & 
Tourism Competiveness Index” published by the World Economic Forum and widely used by 
tourism destinations should not be used as an index of productivity- it does not rank destinations 
based on their tourism productivity (Cvelbar et al. 2015). There is clearly a need to complement 
such index with a robust productivity index that takes into consideration the unique multiple 
input and output characteristics of the tourism industry (Assaf and Josiassen, 2012). The 
Malmquist productivity index, for example, recently used in tourism to measure tourism 
productivity (Barros, 2005, Gracolici et al. 2007; Peypoch, 2008) is an important step in the right 
direction-It is a comprehensive index that takes into account multiple inputs and outputs in the 
measurement of tourism productivity, and can be decomposed into measures of efficiency 
growth and technical growth.   
 
Motivated by the above, the aim of this paper is to extend the current literature on tourism 
productivity, addressing several important gaps in the literature. For the first time, we introduce a 
highly advanced total factor productivity index that allows for a rich decomposition of the 
sources of productivity growth in the tourism industry. We focus on different decompositions 
such as output growth, input growth, efficiency growth and technical growth, with each of these 



components providing an important source of policy implication for the tourism industry1.  As 
our index is highly complicated we use the Bayesian approach based on Sequential Monte Carlo 
/ Particle Filtering (SMC/PF) to perform the computations. 
 
Importantly our index also introduces four important innovations to the tourism literature. First, 
we account for heterogeneity between multiple tourism destinations, something that has been 
completely ignored in related studies. As it is well known that considerable heterogeneity exists 
between tourism destinations, a failure to account for this can result in biased conclusions (Assaf 
and Tsionas, 2015). Second, our index accounts for potential endogeneity in inputs using a 
reduced form equation that also takes into account the fact that productivity and inputs cannot 
be independent of each other. Third, we develop our index at the macro and not at the micro 
level as is the case with most studies in the tourism literature. As stated by Assaf and Dwyer 
(2013) “for productivity measures to be even more useful and relevant to public policy and 
regulation, they need to relate to the overall tourism industry, and not just to particular sectors of 
the industry”. Fourth and finally, we focus on cross-country comparisons; our aim is to provide 
each destination with a more accurate assessment of the international standing of their tourism 
industry. This differentiates the study from most existing tourism benchmarking studies in the 
literature that are limited to one single destination. 
 
The paper will proceed as follow. The next section provides a background of productivity and 
highlights some of the competing methods. Section 3 reviews the current literature on tourism 
productivity and highlights some of the existing gaps.  Section 4 presents the model. Section 5…  
 

Benchmarking and Productivity  

Interest in productivity has revived in econometrics through the work of Olley and Pakes (1996) 
and Levinsohn and Petrin (2003). Across many industries, productivity remains one of most 
comprehensive and reliable benchmark (Coelli et al. 2005). While in tourism, studies have 
benchmarked tourism destinations with respect to several performance indicators such as 
customer satisfaction (Milman and Pizam, 1995), competitiveness (Kozak and Rimmington, 
1999), and market share (Dwyer and Kim, 2003), the use of productivity remains largely limited.  
For tourism policy makers “all these issues are important, but the problem is that they lead to 
subjectivity in selecting the true benchmarking parameters” (Assaf and Dwyer, 2013).  
 
A more obvious and established benchmark is productivity (Jones, 2007). Usually measured 
based on multiple inputs and outputs, productivity provides a more comprehensive benchmark 
and reduces the subjectivity in comparing between different industry leaders (Peypoch et al. 
2012). To define productivity, we start with a production function of this form: 
 

 ( )it it itY λ f X=          (1) 

where itY refers to the output, itX is a vector of inputs, and λ  refers to “how much output a given 

input is able to produce from a certain amount of inputs, given the technological level” (Gatto et 
al, 2011). The total factor productivity index (TFP) at a time period “t” is the ratio of produced 
output and total inputs used: 

  
( )

it
it it

it

Y
TFP λ

f X
≡ =  (2) 

As simple as it looks, the estimation of productivity in (2) is not that straightforward- particularly 
when there are multiple and outputs where finding the appropriate weights becomes challenging.  

                                                           
1 Other indices including the Malmquist do not allow for such decomposition. 



There is an array of methodologies, and the distinction between them is not just in terms of 
whether they use a deterministic vs. a parametric approach, but also in terms of whether they 
adapt a micro (i.e. firm) vs. a macro level approach (industry/country, etc.). 
 
The early literature on the measurement of aggregate productivity growth started with “the 
Solow growth theory (1957)2, in which the pattern of productivity growth essentially mirrors that 
of the so-called technologies progress (i.e. Solow residual)” (Gatto et al, 2011). Such approach is 
also known as “growth accounting”, and despite the limitations, is still a very popular 
methodology. Recent extension of this method also includes the “level accounting” 
decomposition (Caselli, 2005), which has the advantage of providing not only growth measures 
but also estimates of productivity levels, and the so called “growth regressions” where 
productivity is not estimated as a residual (like “growth accounting”), and is not dependent on a 
specific functional form (Islam, 1995). This method has also the advantage of not requiring data 
on physical capital, which in most cases, are usually characterized by high measurement errors3.  
 
In tourism and other related industries. frontier methods have been the most popular for 
measuring both aggregate and firm level productivity. In contrast to the non-frontier methods 
they provide two unique advantage. First, they do not assume producers to be always using their 
full existing technology. When technical inefficiency is present, which is often the case, 
productivity is also affected resulting in a productivity change over time (unless technical 
efficiency is constant over time). Frontier methods have also a high flexible capability in 
disentangling the source of productivity change into technical efficiency changes and 
technological change. Technological change results from shift or the frontier of best practices 
over time, where an upward shift reflects a sign of innovation or technological progress, while 
efficiency growth reflects a growing ability of firms to improve their production with a given set 
of inputs. Both these measures have important implications for productivity improvement in the 
tourism industry. For instance, if the main source of productivity decline is negative change in 
technology, this would suggest that policies should be more directed towards investing in 
technological innovation.  
 
To fully understand the difference between frontier and non-frontier methods, one can rewrite 

equation 1 with relative to the frontier function ( )* * *
it it itY λ f X= : 

 

 
( )
( )* *

itit
it

it it

f XY
λ

Y f X
=            (3) 

 
where the difference between the observed output and the frontier in (3) is due to either a lack 
of ability to improve outputs given a input and the technology itλ , or due to a lack of technical 

efficiency with respect to the frontier 
( )
( )*

it

it

f X

f X
. 

The two popular methodologies for estimating productivity using the frontier methodology are 
the Data Envelopment Analysis (DEA) and Stochastic Frontier Analysis (SFA). As both these 
methods are now well established in the tourism literature we do not reiterate their technical 
details here. Generally, DEA is a non-parametric frontier which envelops the input/output 
combination of the data in order to obtain the closest approximation possible of the best-
practice frontier, and from here estimates the measures of productivity change, technological 
change and efficiency change. The main strengths of the method and which overcome several 

                                                           
2 For more details, see Solow (1957). 
3 For a more detailed review of these methods refer to Gatto et al. (2011). 



limitations of the growth accounting literature are that it: 1- does not require functional form for 
the technology, 2- does not impose any assumption on the market structure and does not make 
the hypothesis that markets are perfect (Gatto et al. 2001).   
 
SFA also has the same strengths as DEA but has an additional advantage of accommodating for 
random error that is beyond the control of a firm. Several approaches for estimating productivity 
using SFA have also been proposed in the literature (Kumbhakar, 2000; Orea, 2002). In this 
paper, we build on this SFA literature and provide some important extensions that are of high 
relevance to the tourism industry. In contexts like ours, where the sample involves comparing 
between international and heterogeneous tourism destinations, using DEA may be even more 
sensitive to measurement error. With SFA being an econometric approach, one can also impose 
more advanced assumptions on the model, and produce more robust productivity estimates. 
 

Current Gaps in the Literature     

Before discussing the current gaps in the literature, it is important to emphasize that this review 

focuses mainly on the productivity studies within the tourism literature.  While there are many 

DEA and SFA studies in tourism, these are mainly “efficiency” studies and not productivity 

studies4. To clearly highlight the current gaps, Table 1 lists the existing studies based on several 

criteria, including the methodology and the sample used, the extent of productivity 

decomposition, as well as assumptions made on the model.  

Several trends can be identified from Table 1:  

- First, most studies use the non-parametric DEA approach to estimate productivity, 

adopting well established indices such the Malmquist and Luenberger productivity 

indices5. None of these studies, however, use the SFA approach, which in contexts like 

comparing between international destinations, where the data is usually plagued by 

measurement error, has a clear advantage. 

- Second, most existing studies focus on one tourism destination, or multiple destinations 

within one specific geographic region. Only one study has compared between 

international tourism destinations. 

- Third, none of these studies impose a dynamic assumption on the model to allow for 

both short-run and long-run productivity estimates. For policy implications both these 

measures become important as while a destination might be performing well in the short-

run, its long-run estimate may show otherwise. 

- Fourth, with the exception of one study, none of the existing studies has accounted for 

heterogeneity in modelling tourism productivity. It would hard to believe that the 

technology used to produce “tourism” in different tourism destinations is the same. If it 

differs the “… frontier technology of best practices…”, simply doesn’t exist. It is also a 

matter of economic and natural resources available in each country (the "feasible" 

touristic products mix) that prevents to consider “standard” the output of the production 

function. One can think at the different facilities demanded by business or leisure 

                                                           
4
 Assaf and Josiassen (2015) recently indicated that there are now more than 60 studies using SFA and DEA in the 

tourism literature. For a detailed review of these studies, we refer the reader to their paper.  
5 For more details on the Malmquist and Luenberger productivity indices refer to Fare et al. (2008). 



tourists, but also at the differences between leisure tourism in Russia and in Guatemala 

(as an example). This heterogeneity could leads to a strong bias in the estimation of the 

frontier's parameters, in the productivity estimates and hence in the ranking proposed. 

The fact that the recent literature uses one destination (or different regions of a same 

destination) is not also enough to convince that there isn't a problem of heterogeneity in 

the production technology and - consequently - a bias in the evaluation of destination' 

performance.  

- Fifth, most of the existing studies have focused only on two types of productivity 

decomposition: efficiency change and technological change. We believe that providing a 

richer decomposition can help better identify the sources of productivity growth in the 

tourism industry. 

- Sixth, and finally, none of these studies has used the Bayesian approach. In complicated 

models like ours where impose a dynamic assumption on the model and account for 

heterogeneity, the Bayesian approach provides higher flexibility than traditional 

estimation methods such as the Maximum Likelihood.  

The present paper aims to address all the above limitations.  We introduce a unique productivity 

index that takes up the idea that productivity is a dynamic process, and develop appropriate 

methods of estimation in the context of multiple-input, multiple-output production which is, 

typically, the characteristic of the tourism industry. An input distance function is used to describe 

the technology. We address the problem of unobserved heterogeneity, that is not simple and 

cannot be captured using fixed-effects formulations. Full heterogeneity requires that the 

parameters of the input distance function change across individuals and over time. This shift of 

the frontier also generates growth that is different from productivity growth and can be 

identified. Our model also addresses the classical endogeneity problem in inputs by posing a 

reduced form for inputs, taking the assumption that inputs are not necessarily uncorrelated with 

productivity or the random error term in the input distance function. For the time in this area, 

use the Bayesian approach to perform the computation, using highly advanced Sequential Monte 

Carlo / Particle Filtering (SMC/PF) techniques. 

We provide a rich decomposition of the providing index, deriving measures such as input 

growth, output growth, efficiency growth, frontier growth and productivity growth, where each 

of these components provides an important source of policy implication for the tourism 

industry. We also derive short-term and long terms measure of these estimates. Our sample is 

unique in that we compare between more than 100 international tourism destinations, providing 

hence better complement to other international statistical releases published by organizations 

such the United Nations World Tourism Organization (UNWTO) or the World Travel and 

Tourism Council (WTTC).  

 

 

 

 



 

The Model 

As stated, we develop our model here using the frontier approach6. Suppose KX ∈ ℝ  is a vector 

of inputs, MY ∈ ℝ  is a vector of outputs and z
d

Z ∈ ℝ  is a vector of contextual or 

environmental variables. Our starting point is an input-oriented distance function of the form 

( , , ; ) 1,D X Y Z β =                                                           (1) 

where pβ ∈ ℝ  is a vector of parameters. After imposing homogeneity of degree one with 

respect to input and using lower-case letters to denote logs and 
1 1

logx X= , 

( ) ( )2

1 1
2

log ,..., log K
X X

KX X
x x= =   we have: 

 
( )

( )
1 2 1 1 1

( 1) 1

,..., , ,..., , ,..., ;

                   , , ; ,
z

K M d
x f x x y y z z v u

f x y z v u

β

β
−

= + − ≡

+ −
                                (2) 

where 
1

v  is a usual econometric error term, and 0u ≥  represents technical inefficiency (in the 

form of radial input over-utilization). If we denote 
( 1)

, , w
d

w x y z
−

′ ′ ′ ′= ∈  
ℝ  so that the distance 

function takes the form:  

 ( )1 1
,x f w v u= + +                                                            (3) 

We can use the translog functional form: 

 

1
2

1
21 1 1

        ( )

.w w w

o

d d d

o j j jh j hj j h

f w a a w w w

a a w w wγ
= = =

′ ′= + + Γ =

+ +∑ ∑ ∑
                                       (4) 

 

The parameter vector β  consists of the parameters in the above expression, viz. ,
o

a  a  and Γ . 

From these expressions we have the inputs distance function in the form: 

 

1
1 12

1
1 121 1 1

.w w w

o

d d d

o j j jh j hj j h

x a a w w w v u

x a a w w w v uγ
= = =

′ ′= + + Γ + + ⇒

= + + + +∑ ∑ ∑
                              (5) 

Assuming the availability of panel data we can write the equation as follows: 

                                                           
6 As the frontier approach is now well established in the tourism literature, we do not provide so much background 
details here.  For a rich overview refer to Assaf and Josiassen (2016). 



 

1
1, , 1,2

1
1, , , , , 1,21 1 1

,w w w

it o it it it it it it
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it o it j j it jh j it h it it itj j h

x a a w w w v u

x a a w w w v uγ
= = =

′ ′= + + Γ + + ⇒

= + + + +∑ ∑ ∑
           (6) 

where 
,o it

a  captures firm and time effects, 1,..., ,  1,..., .i n t T= =  . Our interest here focuses 

on productivity growth (PG) which is equal to technical change (TC) plus efficiency change (EC) 

where TC is, typically, measured by including time effects or a trend in (6).  

Two problems arise and we can solve them at the same time. First, 
( 1),it

x
−

 in (6) is endogenously 

determined. Second, productivity cannot be independent of the inputs used. To proceed we use 

the following reduced form equation for 
( 1),it

x
−

 in (7): 

 
( 1), ( 1),

,
it it it

x z V
− −

= Π +                                                       (7) 

where Π  is a ( )1 z
K d− ×  matrix of reduced form coefficients and 

( 1),it
V

−
 is a 1K ×  error 

term. We assume the following error structure: 

 ( )1, ( 1),
, ~ 0, .

it it K
v V N

−

′  Σ  
                                          (8) 

 In this way endogeneity of 
( 1),it

x
−

is taken into account. 

  

Another problem that empirical researchers often face, and which is of high importance when 

comparing between tourism destinations, is unobserved heterogeneity. The challenge is that 

unobserved heterogeneity cannot be captured using fixed-effects formulation as in (6). For this 

reason we assume that the parameters of the frontier are country-specific and time- specific, as 

follows:  

 

1
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1
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o it j it j it jh it j it h it it it itj j h

x a a w w w v u

a a w w w v u

ω

γ ω
= = =

′ ′= + + Γ + + + ⇒

+ + + + +∑ ∑ ∑
            (9) 

Let us denote 

 ( ),
, , .

d

it o it it it
a a vec ββ

′ ′= Γ ∈  
ℝ                                                (10) 

To model unobserved heterogeneity, we use a dynamic stochastic time-varying parameters 

framework: 

 ( ), 1
,  ~ 0, ,  1,..., , 1,..., ,

it i i i t it it it d
b A z e e N i n t T

β

β β
−

= + + Λ + Ω = =               (11) 



where 
i
b  is a 1d

β
×  vector, A  is a d d

β β
× matrix, Ω  is the d d

β β
×  covariance matrix of the 

error term and Λ  is a 
z

d d
β
× matrix of coefficients. In (11) we allow for stochastic time-varying 

parameters of the distance function where the dynamics of the parameter vector are country-

specific through 
i
b  and 

i
A . The model is quite general but we need shrinkage prior in order to 

estimate the parameters with accuracy. Our hierarchical prior for this model is: 
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i d b
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β

β
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                                    (12) 

The prior covariance matrices 
b

Σ  and 
A

Σ control the degree of shrinkage. Our prior is that the 

it
z s are adequate in modeling the evolution of parameters  so we would like to have 2i d

A O
β

= , 

viz. the zero matrix. Therefore, we set all elements of a   equal to zero depending and we set  

2

2

A A d
h I

β

Σ = where 
A

h  is a shrinkage parameter. We set 10
A

h =  as we do not wish to place 

much confidence in our prior belief about 
i

A  being a zero matrix. We also try a model without 

instruments in which case our prior for 
i

A  is that it is an identity matrix, viz. 2d
I
β

.  

For vector 
i
b  we do not have much prior information so we set 0b = , 2

b b d
h I

β

Σ =  and we set, 

again, 10
b

h =  as we do not wish to place much confidence in our prior belief.  

When the number of exogenous variables is large or when the basic exogenous variables are few 

but we have to consider squares and cross-products, we need some way of controlling the 

proliferation of parameters. In this study, we adopt the procedure of Bayesian Compressed 

Regression (BCR) of Guhaniyogi and Dunson (2015). Specifically we replace the model in (9) 

and (11) by the following: 

 
( 1), ( 1),

,
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x z V
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β
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where  

 ,
it it

z z= Ψɶ                                                              (13) 

is an 1r ×  vector of compressed variables resulting from 
it

z  through the application of a linear 

transformation using the 
z

r d×  matrix Ψ . Here, r  is the rank (dimensionality) of the 

compressed regressors. Guhaniyogi and Dunson (2015) avoid estimation of 
ij

 Ψ = Ψ  
 

altogether by drawing its elements randomly as follows: 
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P
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                                             (14) 

where ψ  is a parameter randomly drawn from (0.1, 1] –the lower bound is 0.1 instead of 0 for 

numerical stability. We search over different random draws, the rank r  and the parameter ψ  for 

610R =  times. We select the appropriate matrix Ψ ,  the rank r  and the parameter ψ  by 

maximizing the marginal likelihood of the model which is a natural byproduct of our Sequential 

Monte Carlo / Particle-Filtering techniques. 

As will be described later, in our application we have 22 z’s including a time trend. Taking 

squares of non-categorical variables and their interactions we have almost 230 exogenous 

variables that cannot possibly be used in conjunction with (9) and (13). In our empirical 

application we find that 12r =  so we have huge dimensionality reduction in effect. The optimal 

parameter ψ  turned out to be 0.31 based on maximizing the marginal likelihood of the model. 

In this study we use Sequential Monte Carlo / Particle Filtering (SMC/PF) to perform the 

computations, see Technical Appendix. We use 106 particles per iteration for 15,000 iterations 

the first 5,000 of which are discarded to mitigate possible start-up effects. Our results remained 

the same when we used an additional 10,000 iterations with 107 particles per iteration. 

Convergence was monitored using the standard diagnostics (Geweke, 1992) and obtain within 

the first 5,000 iterations we discard. To ensure convergence further we use random initial 

conditions from the prior and run 100 different SMC chains for the baseline prior. We impose 

monotonicity and concavity restrictions in the translog functional form using rejection sampling. 

Specifically, we first impose these restrictions at the means of the data say d . Then we impose 

the same conditions at  h±d s for 0.1,  0.2,  0.3,..., .h h=  At 1.5h =  led to acceptance of 

the constraints at almost every observed point. 

 

Decomposition 

Suppose we have a distance function  

 ( )D x y u vβ ω, ; = + + ,  (15) 

 

a la OP and LP, where β  is parameters, u  is inefficiency and w  is productivity all in log terms, 

v  is the  error term. We have:  
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where tfpg  is a “modified Solow residual” or TFP growth. Also 
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change as we already have logs. So we end up with  
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where, as usually, we omit efficiency change. However, we do not omit the last term in (17) 

which is:  

 
1 1 1

1
k

K K K

k k
kk

k k kk k k

D D
e

t t β

β β
β β

β β β

•

= = =

 ∂ ∂∂ ∂  = = . ∂ ∂ ∂ ∂  
∑ ∑ ∑         (18) 

Growth can be decomposed to the following components in (17). The first component 

corresponds to change in the inputs.  The second component corresponds to change in the 

outputs. The third component corresponds to a change in the frontier due to parameter changes.  

To summarize, first, we have an input change component: 
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where x

it
β  contains the appropriate elements of 

it
β  from (11). 

Second, an output change component: 
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where y

it
β  contains the appropriate elements of 

it
β  from (11). 

Third, a frontier change component: 

 
1

.
j

p

jit
j

FC e
β
β
•

=

= ∑                                                      (21)                                             

Of course, apart from these, we have an efficiency change component: 
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Data  

To estimate the frontier model in (2) we need first to define the inputs (
it

x ), outputs (
it

y ), as 

well as the vector of environmental variables (
it

z ). Following the majority of studies in the 

literature (Barros et al. 2011; Cracolici et al. 2007), we select the following inputs: the number 

employees working in the tourism industry, capital investments made on the tourism industry, 

and number of rooms in accommodation properties7, and outputs: the number of international 

tourism arrivals, receipts per capita from domestic tourism, receipts from international tourism, 

and average length of stay of international tourists.  For the environmental variables 
it

z , we 

follow closely Assaf and Tsionas (2015) and define twenty one variables that we think can affect 

the production process in the tourism industry. These include variables reflecting the 

“infrastructure”, “human resource and natural and environmental quality” of a tourism 

destination.  The study by Assaf and Tsionas (2015) has shown that all the variables play “a 

critical role in attracting tourism outputs and hence ignoring them represent an important 

shortcoming that might bias the benchmarking outcomes”8.  We provide in Table 2 a more 

detailed breakdown of these quality variables, as well as descriptive statistics of all variables 

included in the model.  We used several sources to collect our data including the United Nations 

World Tourism Organization, Euromonitor database, tourism satellite accounts of some 

countries, as well as Eurostat database.  Most of the quality variables were collected from the 

World Economic Forum, Executive Opinion Survey. The final sample included 101 tourism 

destinations over 4 years of data (2008-2012). 

 

 

                                                           
7 Tourism accommodation represents any facility that regularly (or occasionally) provides overnight 
accommodation for tourists.            
8 We thank the authors for making the data available. 



Table 1. Review of Productivity Studies in the Tourism Literature  

 

Barros, C. P., & Alves, F. P. 
(2004). Productivity in the 
tourism industry. 
International Advances in 
Economic Research, 10(3), 
215-225. 

Chen, C. F., & Soo, K. T. 
(2007). Cost structure and 
productivity growth of the 
Taiwanese international 
tourist hotels. Tourism 
Management, 28(6), 1400-
1407. 

Sun, J., Zhang, J., Zhang, 
J., Ma, J., & Zhang, Y. 

(2015). Total Factor Productivity Assessment of Tourism Industry: Evidence from China. Asia Pacific Journal of Tourism Research, 20(3), 280-294

Study Methodology Sample Heterogeneity Dynamic Structure  
Barros (2005) Malmquist DEA Index  42 Portuguese Hotels  No No 

Cracolici et al. (2001) Malmquist DEA Index 103 Italian Regions No No 
Peypoch and 

Solonandrasana (2008) 
Luenberger DEA 
productivity index 

10 French Hotels  No No 

Barros et al. (2008) Luenberger DEA 
productivity index 

15 Portuguese Hotels No No 

Assaf and Dwyer 
(2013) 

Metafrontier DEA 
approach  

97 International 
Tourism Destinations  

Yes No 

Goncalves (2013) Luenberger DEA 
productivity index 

64 French Ski Resorts No No 

Barros and Alves 
(2007) 

Malmquist DEA Index 42 Portuguese Hotels No No 

Peypoch and Sbai 
(2011) 

Luenberger DEA 
productivity index 

15 Moroccan Hotels No No 

Chen and Soo (2007) Stochastic Cost 
Frontier 

47 Taiwanese Hotels No No 

Sun et al. (2015) Malmquist DEA Index 31 Chinese Provinces No No 



 

 Table 2. Descriptive Statistics of All Model Variables 

 

 

 

Variable Mean Std. Dev. Min Max 

Inputs         

Number of rooms in accommodation properties 194.77 540.61 1.00 4932.80 

Capital spending on tourism 6.17 18.35 0.02 164.47 

Number of employees working in the tourism industry 2113.86 7391.92 13.30 63779.20 

Outputs 

Number of international tourism arrivals 8563.77 13588.25 21.40 83168.50 

Receipts per capita from domestic tourism  17437.45 69882.41 0.90 681780.00 

Receipts from international tourism 8701.64 17235.30 32.00 160289.00 

Average length of stay of international tourists 7.20 5.65 1.10 35.10 

Infrastructure Quality Indicators (1-7 scale)         

Quality of road infrastructure 3.51 1.07 1.63 6.35 

Quality of air infrastructure 4.09 1.20 2.05 6.74 

Quality of ICT infrastructure 3.50 1.28 1.28 6.04 

Human Resource Quality Indicators (1-7 scale)         

Quality of education 3.88 0.96 1.97 6.24 

The existence of specialized research and training  4.27 0.86 2.43 6.47 

Quality of labour training 4.09 0.76 2.22 5.95 

Availability of qualified labour 5.23 0.51 2.69 6.39 

The flexibility of recruiting foreign employees 4.45 0.73 2.21 6.18 

Attitude of population toward international tourists 6.26 0.42 4.09 6.90 

Natural & Environmental Quality Indicators         

 No. of world heritage natural sites 4.21 1.03 2.18 6.63 

Quality of the natural environment 3.97 1.05 2.25 6.38 

Total known species 4.61 0.84 2.06 6.38 

No. of world heritage cultural sites 2.18 0.95 1.00 7.00 

Access to improved sanitation. 1.60 0.99 1.00 7.00 

Access to improved drinking water 4.51 0.94 2.08 6.75 

Stringency of environmental regulation 2.37 1.22 1.00 7.00 

Enforcement of environmental regulation 1.65 0.90 1.00 7.00 

Sustainability of T&T industry development 5.78 1.56 1.00 7.00 

Threatened species 6.10 1.33 1.00 7.00 

Environmental treaty ratification 4.93 1.22 1.00 7.00 

Carbon dioxide emission  5.36 1.25 1.00 7.00 



 





TECHNICAL APPENDIX 

Particle filtering 

The particle filter methodology can be applied to state space models of the general form:  

 1( ) ( )T t t t t ty p y x s p s s−| , | ,∼ ∼  (A.1) 

where ts  is a state variable. For general introductions see Gordon (1997), Gordon et al. (1993), 

Doucet et al (2001) and Ristic et al. (2004).  

Given the data tY  the posterior distribution ( )t tp s Y|  can be approximated by a set of (auxiliary) 

particles { }( ) 1i
ts i N, = ,...,.  with probability weights { }( ) 1i

tw i N, = ,...,  where ( )

1
1

N i
ti

w
=

=∑ . The 

predictive density can be approximated by:  

 ( ) ( )
1 1 1

1

( ) ( ) ( ) ( )
N

i i
t t t t t t t t t t

i

p s Y p s s p s Y ds p s s w+ + +
=

| = | | | ,∫ ∑≃  (A.2) 

and the final approximation for the filtering density is:  

 ( ) ( )
1 1 1 1 1 1 1

1

( ) ( ) ( ) ( ) ( )
N

i i
t t t t t t t t t t t

i

p s Y p y s p s Y p y s p s s w+ + + + + + +
=

| ∝ | | | | .∑≃  (A.3) 

 

The basic mechanism of particle filtering rests on propagating { }( ) ( ) 1i i
t ts w i … N, , = , ,  to the next 

step, viz. { }( ) ( )
1 1 1i i

t ts w i … N+ +, , = , ,  but this often suffers from the weight degeneracy problem. If 

parameters kθ ∈Θ∈ℜ  are available, as is often the case, we follow Liu and West (2001) 

parameter learning takes place via a mixture of multivariate normals:  

 ( ) ( ) 2

1

( ) ( (1 ) )
N

i i
tt t t t

i

p Y w N a a b Vθ θ θ θ
=

| | + − , ,∑≃  (A.4) 

where ( ) ( )

1

N i i
t t ti

w θθ =
= ∑ , and ( ) ( ) ( )

1
( )( )

N i i i
t tt t t ti

V w θ θθ θ=
′= − −∑ . The constants a  and b  are 

related to shrinkage and are determined via a discount factor (0 1)δ ∈ ,  as 2 1 2(1 )a b /= −  and 

2 21 [(3 1) 2 ]b δ δ= − − / .  See also Casarin and Marin (2007).  

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide the Particle 

Metropolis-Hastimgs (PMCMC) technique which uses an unbiased estimator of the likelihood 

function ˆ ( )N Yp θ|  as ( )p Y θ|  is often not available in closed form.  

Given the current state of the parameter ( )jθ  and the current estimate of the likelihood, say 
( )ˆ ( )j j

NL Yp θ= | , a candidate cθ  is drawn from ( )( )c jq θ θ|  yielding ˆ ( )c c
NL Yp θ= |  . Then, we 

set ( 1)j cθ θ+ =  with the Metropolis - Hastings probability:  



 
( )

( ) ( )

( ) (
min 1

( ( )

c c j c

j j c j

p L q
A

p L q

θ θ θ
θ θ θ

 |
= , , 

| 
 (A.5) 

otherwise we repeat the current draws: ( 1) 1 ( )j j j jL Lθ θ+ +   
   
   

, = , .  

Hall, Pitt and Kohn (2014) propose an auxiliary particle filter which rests upon the idea that 

adaptive particle filtering (Pitt et al., 2012) used within PMCMC requires far fewer particles that 

the standard particle filtering algorithm to approximate ( )p Y θ| . From Pitt and Shephard (1999) 

we know that auxiliary particle filtering can be implemented easily once we can evaluate the state 

transition density 1( )t tp s s−| . When this is not possible, Hall, Pitt and Kohn (2014) present a 

new approach when, for instance, 1( )t t ts g s u−= ,  for a certain disturbance. In this case we have:  

 1 1( ) ( ) ( )t t t t t t tp y s p y s p s s ds− −| = | | ,∫  (A.6) 

 

 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t t tp u s y p y s u p u s p y s− − − −| ; = | , | / | .  (A.7) 

If one can evaluate 1( )t tp y s−|  and simulate from 1( )t t tp u s y−| ;  the filter would be fully 

adaptable (Pitt and Shephard, 1999). One can use a Gaussian approximation for the first-stage 

proposal 1( )t tg y s−|  by matching the first two moments of 1( )t tp y s−| . So in some way we find 

that the approximating density ( )1 1 1( ) ( ) ( )t t t t t tp y s N E y s V y s− − −| = | , | . In the second stage, we 

know that 1 1( ) ( ) ( )t t t t t t tp u y s p y s u p u− −| , ∝ | ,  . For 1( )t t tp u y s−| ,  we know it is multimodal so 

suppose it has M  modes are ˆm
tu , for 1m … M= , , . For each mode we can use a Laplace 

approximation. Let [ ]1( ) ( ) ( )t t t t tl u log p y s u p u−= | ,  . From the Laplace approximation we 

obtain:  

 21
2( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆm m m m

t t t tt t tl u l u l uu u u u′+ − ∇ − .≃  (A.8) 

 

Then we can construct a mixture approximation:  

 { }2 1 2 11
1 2

1

( ) (2 ) exp ( ) (ˆ ˆ
M

d m m
t tt t t m m t m t

m

g u x s u uu uλ π − / − / −
−

=

′| , = | Σ | − Σ − ,∑  (A.9) 

where mΣ = −
12 ( )ˆm

tl u
−

 ∇   and { }exp ( )m
m tl uλ ∝  with 

1
1

M

m=
=∑ . This is done for each particle 

i
ts .  This is known as the Auxiliary Disturbance Particle Filter (ADPF).  

An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms a 

proposal for ts  directly from the measurement density ( )t tp y s|  although Hall, Pitt and Kohn 

(2014) are quite right in pointing out that the state equation can be very informative.  



In the standard particle filter of Gordon et al. (1993) particles are simulated through the state 

density 1( )i i
t tp s s−|  and they are re-sampled with weights determined by the measurement density 

evaluated at the resulting particle, viz. ( )it tp y s| .  

The ADPF is simple to construct and rests upon the following steps:  

For 0 1t … T= , , −  given samples 1( )k
t t ts p s Y:|∼  with mass k

tπ  for 1k N= ,..., .  

1) For 1k … N= , ,  compute 1 1( )k k k
t t t t tg y sω π| + += | ,  1 1 11

Nk k i
t t t t t ti

π ω ω| + | + | +=
= /∑  .  

2) For 1k … N= , ,  draw 11
( )

t

N i ik
t t t s ti

dss π δ| +=∑∼ɶ .  

3) For 1k … N= , ,  draw 1 1 1( )k k
tt t tu g u ys+ + +| ,∼ ɶ  and set 1 1( )k k k

t t ts h s u+ += ; .  

4) For 1k … N= , ,  compute  

 1 1 1 1
1 1

1 1 1 11

( ) ( )

( ) ( )

k k k
k kt t t t
t t Nk k k i

tt t t t ti

p y s p u

g y s g u ys

ω
ω π

ω
+ + + +

+ +
+ + + +=

|
= , = .

| | , ∑ɶ

 (A.10) 

 

It should be mentioned that the estimate of likelihood from ADPF is:  

 1
1 1

1 11

( )
T N N

i i
T t t t

i it

p Y Nω ω
   
   −
   : − |   

= ==    

= .∑ ∑∏  (A.11) 

 

Particle Metropolis adjusted Langevin filters 

Nemeth, Sherlock and Fearnhead (2014) provide a particle version of a Metropolis adjusted 

Langevin algorithm (MALA). In Sequential Monte Carlo we are interested in approximating 

1( )t tp s Y θ:| , . Given that:  

 1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t tp s Y g y x f s s p s y dsθ θ θ θ: − − : − −| , ∝ | , | , | , ,∫  (A.12) 

where 1 1 1( )t tp s y θ− : −| ,  is the posterior as of time 1t − . If at time 1t −  we have a set set of 

particles { }1 1i
ts i … N− , = , ,  and weights { }1 1i

tw i … N− , = , .  which form a discrete approximation for 

1 1 1( )t tp s y θ− : −| ,  then we have the approximation:  

 1 1 1 1 1
1

ˆ ( ) ( )
N

i i
t t t t t

i

p s y w f s sθ θ− : − − −
=

| , ∝ | , .∑  (A.13) 

 



See Andrieu et al. (2010) and Cappe at al. (2005) for reviews. From (A.13) Fernhead (2007) 

makes the important observation that the joint probability of sampling particle 1
i
ts−  and state ts  

is:  

 1 1

1

( ) ( )

( )

i i
t t t t

t i i
t t t t

w g y s f s s

q s s y

θ θ
ω

ξ θ
− −

−

| , | ,
= ,

| , ,
 (A.14) 

where 1( )i
t t tq s s y θ−| , ,  is a density function amenable to simulation and  

 1 1( ) ( ) ( )i i i
t t t t t t t tq s s y cg y s f s sξ θ θ θ− −| , , | , | , ,≃  (A.15) 

and c  is the normalizing constant in (A.12).  

In the MALA algorithm of Roberts and Rosenthal (1998)9 we form a proposal:  

 
2( ) ( )

12 log ( )c s s
Tz p Yλθ θ λ θ := + + ∇ | ,  (A.16) 

where (0 )z N I,∼  which should result in larger jumps and better mixing properties, plus lower 

autocorrelations for a certain scale parameter λ . Acceptance probabilities are:  

 
( )

( ) 1
( ) ( )

1

( ) ( )
( ) min 1

( ) ( )

c s c
c s T

s c s
T

p Y q
a

p Y q

θ θ θ
θ θ

θ θ θ
:

:

 | |
| = , . 

| | 
 (A.17) 

Using particle filtering it is possible to create an approximation of the score vector using Fisher’s 

identity:  

 [ ]1 1 1 1log ( ) log ( )T T T Tp Y E p s Y Yθ θ θ: : : :∇ | = ∇ , | | , ,  (A.18) 

which corresponds to the expectation of:  

 1 1 1 1 1 1 1log ( ) log ( ) log ( ) log ( )T T T T T T T Tp s Y p s Y g y s f s sθ θ θ θ: : : − : − −∇ , | = ∇ | , | +∇ | , +∇ | | , ,  

over the path 1Ts : . The particle approximation to the score vector results from replacing 

1 1( )T Tp s Y θ: :| ,  with a particle approximation 1 1ˆ ( )T Tp s Y θ: :| ,  . With particle i at time t-1 we can 

associate a value 1 1 1 1 1log ( )i i
t t tp s Yα θ− : − : −= ∇ , |  which can be updated recursively. As we sample iκ  

in the APF (the index of particle at time 1t −  that is propagated to produce the i th particle at 

time t) we have the update:  

 1 1log ( ) log ( )ii i i i
t t t t t ta g y s f s sκα θ θ− −= +∇ | , +∇ | , .  (A.19) 

                                                           
9The benefit of MALA over Random-Walk-Metropolis arises when the number of parameters 
n  is large. This happens because the scaling parameter λ  is 1 2( )O n− / for Random-Walk-

Metropolis but it is 1 6( )O n− /  for MALA, see Roberts et al. (1997) and Roberts and Rosenthal 
(1998)  



To avoid problems with increasing variance of the score estimate 1log ( )tp Y θ:∇ |  we can use the 

approximation:  

 1 1 1( )i i
t t tN m Vα − − −, .∼  (A.20) 

The mean is obtained by shrinking 1
i
tα −  towards the mean of 1tα −  as follows:  

 1 1 1 1
1

(1 )
N

i i i i
t t t t

i

m wδα δ α− − − −
=

= + − ,∑  (A.21) 

where (0 1)δ ∈ ,  is a shrinkage parameter. Using Rao-Blackwellization one can avoid sampling 

i
tα  and instead use the following recursion for the means:  

 1 1 1 1
1

(1 ) log ( ) log ( )i i

N
i i i i i
t t t t t t t t

i

m m w m g y s f s sκ κδ δ θ θ− − − −
=

= + − +∇ | , +∇ | , ,∑  (A.22) 

which yields the final score estimate:  

 1
1

ˆlog ( )
N

i i
t t t

i

p Y w mθ:
=

∇ | = .∑  (A.23) 

 

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking 0 95δ = . . 

Furthermore, they show the important result that the algorithm should be tuned to the 

asymptotically optimal acceptance rate of 15.47% and the number of particles must be selected 

so that the variance of the estimated log-posterior is about 3. Additionally, if measures are not 

taken to control the error in the variance of the score vector, there is no gain over a simple 

random walk proposal.  

Of course, the marginal likelihood is:  

 1 1 1 1
2

( ) ( ) ( )
T

T t t
t

p Y p y p y Yθ θ θ: : −
=

| = | | , ,∏  (A.24) 

where  

 1 1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t T t tp y Y g y s f s s p s Y ds dsθ θ θ: − − − : − −| , = | | , | , ,∫ ∫  (A.25) 

provides, in explicit form, the predictive likelihood.  
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