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Abstract
Cross-view retrieval, which focuses on searching
images as response to text queries or vice versa,
has received increasing attention recently. Cross-
view hashing is to efficiently solve the cross-view
retrieval problem with binary hash codes. Most ex-
isting works on cross-view hashing exploit multi-
view embedding method to tackle this problem,
which inevitably causes the information loss in
both image and text domains. Inspired by the
Generative Adversarial Nets (GANs), this paper
presents a new model that is able to Turn Cross-
view Hashing into single-view hashing (TUCH),
thus enabling the information of image to be p-
reserved as much as possible. TUCH is a novel
deep architecture that integrates a language mod-
el network T for text feature extraction, a generator
network G to generate fake images from text fea-
ture and a hashing network H for learning hash-
ing functions to generate compact binary codes.
Our architecture effectively unifies joint generative
adversarial learning and cross-view hashing. Ex-
tensive empirical evidence shows that our TUCH
approach achieves state-of-the-art results, especial-
ly on text to image retrieval, based on image-
sentences datasets, i.e. standard IAPRTC-12 and
large-scale Microsoft COCO.

1 Introduction
While multimedia big data of massive volumes and high

dimensions are pervasive in search engines and social net-
works, it has attracted increasing attention to approximate n-
earest neighbors search across different media modalities that
brings both computation efficiency and search quality. Since
correspondence data from different modalities may endow se-
mantic correlations, it has a tendency to support cross-view
retrieval that returns relevant search results from one view as
response to query of another view, e.g. retrieval of images
of text query. An effective solution to cross-view retrieval is
hashing method that learns compact binary codes with sim-
ilar binary codes for similar objects from high-dimensional
data. This paper focuses on cross-view hashing that builds
isomorphic hash codes for efficient cross-view retrieval. So

far, effective and efficient cross-view hashing remains a big
challenge, because of the heterogeneity across different views
[Ou et al., 2013; Wei et al., 2014], and the semantic gap be-
tween low-level features and high-level semantics [Smeulders
et al., 2000].

Several recent models for cross-view hashing [Bronstein et
al., 2010; Zhen and Yeung, 2012a; 2012b; Lin et al., 2015;
Wu et al., 2015; Cao et al., 2016a] have followed the same
multi-view embedding framework, which integrates both im-
age data and text data into an independent semantic embed-
ding space. The multi-view embedding framework basically
learns projection matrixes from image space and text space
to the embedding space as Figure 1 (a). Due to this unnec-
essary intermediate transformation, the information leak is u-
navoidable. Intuitively, a single-view problem may be easier
to solve than a cross-view problem. And if we can convert a
cross-view hashing problem into a single-view hashing prob-
lem on a specific domain, at least the information loss on this
domain will be minimized. Generative Adversarial Networks
(GANs) approach is originally used for text to image synthe-
sis [Reed et al., 2016], which provides a ready-to-use solution
to convert text data into image domain, making it possible to
solve cross-view hashing problem with single-view method.

In this work, we strive for the goal of efficient cross-modal
retrieval of images in response to natural sentence queries or
vice versa. Inspired by the idea of GANs, this paper presents
a new model which turns cross-view hashing into single-view
hashing on image domain with NO multi-view embedding
required, whose overview is illustrated in Figure 1 (b). It
will keep the information of image as much as possible and
result in good aggregation characteristics of image features
so that we can achieve a better retrieval result in cross-view
retrieval. TUCH architecture constitutes a language model
network T for text feature extraction, a generator network G
to generate fake images from text feature and a discriminate
hashing network H for learning hashing functions, eventu-
ally generating compact binary codes, while distinguishing
correlation of image and text. Net G and net H constitute
an end-to-end multi-task deep learning model to train gener-
ative adversarial model and hashing function simultaneous-
ly. Most of the deep hashing models for image retrieval tried
to add a regularization term to minimize the quantization er-
ror into loss function [Lai et al., 2015; Zhu et al., 2016;
Cao et al., 2016b] or insert a gradient snapping layer into



(a) Multi-view Embedding Framework

Semantic Hamming Space

(b) TUCH Framework

Figure 1: Multi-view hashing framework embeds both image
data and text data into an independent semantic hamming s-
pace while TUCH framework generates fake image with text
to image synthesis method and applies single-view hashing
method on the image domain (with generated fake images).

the network to achieve it [Liu and Lu, 2016]. But the quan-
tization error cannot be avoided in those framework. We add
a discrete layer in our TUCH framework which directly out-
puts binary codes for loss computation and adopt a simple
backpropagation algorithm for optimization. In summary, we
make the following contributions in this paper:

• We put forward a novel end-to-end deep learning ap-
proach termed as TUCH for cross-view hashing, which
is the first to transfer multi-view problem into a single-
view hashing problem in image domain with GANs.

• A multi-task architecture is adopted simultaneously con-
sidering the tag information from the retrieval similarity
and the description information for sentence to image
generation.

• We add a discrete layer in TUCH, which directly outputs
binary codes via loss computation. By doing so, the in-
formation loss during the feature quantization is avoid-
ed, which is unachievable in previous works. A simple
and efficient algorithm is adopted for loss backpropaga-
tion at the discrete layer.

• Extensive empirical evidence shows that our TUCH ap-
proach achieves the state-of-the-art results, especially on
text to image retrieval, on image-sentences datasets, i.e.
standard IAPRTC-12 and large-scale Microsoft COCO.

2 Related Work
2.1 Hashing for Cross-View Retrieval

Hashing is a widely used indexing technique for image re-
trieval [Wang et al., 2016]. Locality Sensitive Hashing [Gio-
nis et al., 1999] can be regarded as the seminal hashing work
which adopts random splits in the feature space to generate
binary codes. Thereafter, a number of learning based hash-
ing approaches are proposed, which fall into two categories:
unsupervised hashing and supervised hashing. No supervi-
sion but only statistics information of data is taken into con-

sideration in unsupervised hashing approaches, such as man-
ifold structure [Weiss et al., 2008; Liu et al., 2011; 2014;
Shen et al., 2015b], variance of features [Gong et al., 2013;
Xu et al., 2013; Kong and Li, 2012] and cluster property [He
et al., 2013]. On the contrary, supervised hashing approach-
es take advantage of the supervised knowledge so as to bet-
ter capture the intrinsic semantic property of data, in which
the representatives include Supervised Hashing with Kernels
[Liu et al., 2012], Supervised Discrete Hashing [Shen et al.,
2015a] and Latent Factor Hashing [Zhang et al., 2014].

Several recent models for cross-view hashing [Bronstein et
al., 2010; Zhen and Yeung, 2012a; 2012b; Lin et al., 2015;
Wu et al., 2015] have followed the multi-view embedding
framework, which embeds both image data and text data into
an independent semantic embedding space. The multi-view
embedding framework basically learns projection matrixes
from image space and text space to the embedding space.

Recent years, researchers are trying to apply deep neural
networks in hashing problem. A two-stage training strategy
was proposed that generates hash codes via a combination of
disjoint CNN network and discrete code learning [Xia et al.,
2014]. Alternatively, some end-to-end deep hashing models
for image retrieval were proposed by minimizing the quanti-
zation error [Lai et al., 2015; Zhu et al., 2016] or inserting a
gradient snapping layer into the network [Liu and Lu, 2016]
while simultaneously minimizing the sample similarity loss.
Benefiting from the power of CNN, these approaches achieve
significant improvement over the traditional approaches, but
they can only be applied to single-view retrieval. DVSH mod-
el [Cao et al., 2016a] is the first end-to-end deep learning
approach for cross-view hashing that enables efficient cross-
view retrieval of images in response to sentence queries and
vice versa. Following the multi-view embedding framework,
it applies deep hashing method in cross-view retrieval prob-
lem and achieves the state-of-the-art results. However, the
projection from image view and text view to the semantic em-
bedding space will cause the information loss in both views
and poor cross-view retrieval result. That is to say, both deep
and non-deep multi-view embedding based cross-view hash-
ing methods still have room for improvement.

2.2 Generative Adversarial Networks (GANs)
Two challenges in multi-modal learning include: 1) learn-

ing a shared representation across modalities, and 2) estimat-
ing missing data (e.g. by retrieval or synthesis) in one modal-
ity conditioned on another. Generative adversarial networks
(GANs) [Goodfellow et al., 2014] have benefited from convo-
lutional decoder networks for the generator network module.
A Laplacian pyramid of adversarial generator and discrim-
inators is used to synthesize images at multiple resolutions
[Denton et al., 2015]. A standard convolutional decoder in-
corporating batch normalization is adopted [Radford et al.,
2015], which developed a highly effective and stable archi-
tecture to achieve striking image synthesis results. An end-
to-end differentiable architecture from the character level to
pixel level is proposed using model conditions on text de-
scriptions to achieve sentence text to corresponding image
synthesis [Reed et al., 2016], which provide a good way to
convert sentence text into fake image, making it possible to



transfer a cross-view sentence-image retrieval problem into
a single-view problem. In this work we adopt a multi-task
GAN architecture which aims to generate fake image with
specific tag features from sentence text, so that we can em-
bed text domain into image domain for a single-view hashing
method.

3 Background
3.1 Generative Adversarial Networks (GANs)

Generative adversarial networks (GANs) consist of a gen-
erator G and a discriminator D that compete in a two-player
minimax game: The discriminator tries to distinguish real
training data from synthetic images, while the generator tries
to fool the discriminator. Specifically, D and G play the fol-
lowing game on V(D,G):

max
G

min
D

V (D,G) = Ex∼pdata(x)[log(D(x))]

+Ez∼pg(z)[log(1−D(G(z)))]
(1)

where x represents image sample from dataset, z represents
random noise vetor. It is proved that this minimax game has
a global optimum precisely when pg(z) = pdata, and that
under mild conditions (e.g. G and D have enough capacity)
pg(z) converges to pdata.

3.2 Conditional Generative Adversarial Networks
for Text to Image Synthesis

Conditional Generative Adversarial Networks have been
used for text to image synthesis by small modification over
GANs as stated in [Reed et al., 2016]. The objective function
is as below:

max
G

min
D

V (D,G) = Ex∼pdata(x)[log(D(x, t))]

+λ1Ex∼pdata(x)[1− log(D(x̂, t))]

+λ2Ez∼pg(z)[log(1−D(G(z, t), t))]

(2)

where t represents the feature of sentence text, x refers to
true image sample relevant to t, x̂ represents image sample
inrelevant. In brief, generator generates a fake image with
random noise and text feature to fool the discriminator, and
the discriminator tries to distinguish real text-relevant training
data from synthetic images and irrelevant ones.

4 Turning Cross-view Hashing into
Single-view Hashing via GANs

4.1 Problem Definition
The definition of cross-view hashing between image and

sentence based text in this paper follows [Cao et al., 2016a].
We are given n training images{I1,. . . ,In} and each image
Im has ktm visual concept tags and a set of kdm sentence de-
scriptions Dm = {D1, . . . , Dkd

m
}. Each visual concept tag

belongs to set T = {T1, . . . , TK}, where K is the size of T .
For each image there is a label vector ym ∈ {0, 1}K where
ymj = 1 if Im has tag Tj and ymj = 0 otherwise. The set
of all descriptions is D =

∪n
i=1 Di. We aim to learn hashing

models hI : I → {−1, 1}KH and hD : D → {−1, 1}KH to
map image and sentence description to KH -bit hash codes. It

is desired that hI and hD can preserve the semantic similarity
in both visual domain and text domain in the same Hamming
space {−1, 1}KH .

4.2 Network Architecture
We use the following notation. The generator network is

denoted G: RZ × RKt → RI . The discriminative hashing
network as H: RI × RKt → {0, 1} × RK , where Kt is the
dimension of the text description encoding. I is the dimension
of the image, and Z is the dimension of the noise input to G.
We illustrate our network architecture in Figure 2.

In generator G, first we sample from the noise prior z ∈
RZ ∼ N (0, 1) and we concatenate the text query encoding t
with z. Following this, inference proceeds as in a normal de-
convolutional network: we feed-forward it through the gener-
ator G; a synthetic image ẋ is generated via ẋ← G(z, t). Im-
age generation corresponds to feed-forward inference in the
generator G conditioned on query text and a noise sample.

In the discriminative hashing network H, we perform a C-
NN network with multi-task objective functions. There are
two input branches,, where the first one is an image branch
with a standard 18 layers Deep Residual Network (Resnet)
[He et al., 2016], while the other is a fully-connected text
branch. The discrete layer which outputs binary hash codes
follows right after the last fully-connected layer (FC-I) of the
image branch. The semantic embedding loss is calculated by
the discrete layer. We concatenate the last layer of text branch
with FC-I and put a discriminative loss after it. The semantic
embedding loss is to preserve the similarity of both image do-
main and text domain. The discriminative loss is to judge if
an image (real or fake) is relevant to the given text encoding.

4.3 Loss Function
Semantic Embedding Loss

Given an input image Im, suppose the output of the hash-
ing layer hm ∈ {−1, 1}KH is the KH -bit hash codes. Then
the hash codes are projected to the final semantic vector space
by the parameter Wh and the output is denoted as ϕm. The
semantic embedding loss mostly focuses on improving the
generalize ability of the hashing model. Meanwhile, it is al-
so desired that the samples with common concept have very
similar hash codes whereas samples without common con-
cept have dissimilar hash codes. The image branch of H can
be regarded as a single-view hashing network. The objective
function of G and H is the same. That is to say, G aims to gen-
erate similarity-preserving fake image and H aims to extract
similarity-preserving hash codes. We take Wh as a projection
matrix from Semantic Hamming space {−1, 1}KH to the tag
space RK . The semantic embedding loss is as follow:

LS(I) = −
∑
m

K∑
i=1

(ymilog(
eϕmi

1 + eϕmi
)

+(1− ymi)log(
1

1 + eϕmi
))

(3)

where ym refers to the label vector of Im, ϕm = Whhm ∈
RK , hm is the KH bit hash code of Im.
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Figure 2: Our multi-task TUCH architecture. Generator network and discriminative sub-network constitute a normal conditional
GANs. Semantic hashing sub-network is a normal image hashing network based on CNN. Text encoding t extracted by language
model T is used in both generator network and discriminative hashing network. x is real relevant image, ẋ is fake image
generated by G with t,x̂ is real irrelevant image.

Discriminative Loss
Given a text encoding t, suppose the image relevant to t is

x, the image irrelevant to t is x̂. The discriminative branch of
H is referred as HD : RI ×RKt → {0, 1}.

The generator G tries to generate fake images to fool the
discriminative branch of H. The discriminative branch of H
tries to distinguish real relevant images from synthetic images
and real irrelevant images. According to Equ (2), we can get
LH and LG from V (HD, G), which donate the discrimina-
tive loss to be minimized for generator G and discriminative
hashing network H.

LD
H = λ2log(1−HD(G(z, t), t)) + λ1(1− log(HD(x̂, t)))

+log(HD(x, t))
(4)

LD
G = log(HD(G(z, t), t)) (5)

The combined multi-task loss is as below:

LH = LS({x, x̂, G(z, t)}) + λHLD
H (6)

LG = LS({G(z, t)}) + λGLD
G (7)

4.4 Optimization
With the overall loss function, we adopt the backpropa-

gation algorithm with mini-batch stochastic gradient descent
method to train the network. The optimization is a 2-step pro-
cedure, in which we optimize G and H in turn. Algorithm 1
summarizes the training procedure.

There is no other problem during backpropagation except
that we adopt a discrete hashing layer in the network whose
discretion operation by sign function is non-differentiable at
0 and the derivative at the other part is also zero such that
the gradient vanishes when propagated through this layer. To

Algorithm 1 Training algorithm with step size α, using mini-
batch SGD for simplicity.

Input: minibatch text encoding t, matching images x, mis-
matching images x̂, number of training batch steps S

Output: generator G and discriminative hashing network H
1: procedure TRAIN(α, t, x, x̂, S)
2: Init(G)
3: Init(H)
4: for i = 1 to S do
5: z ∼ N (0, 1)Z {Draw sample of random noise}
6: ẋ← G(z, t) {Forward through generator}
7: Calculate LH with x, ẋ, x̂, t, according to Equ (6)
8: H ← H − ∂LH

∂H {Update H}
9: Calculate LG with ẋ, t, according to Equ (7)

10: G← G− α∂LG

∂G {Update G}
11: end for
12: return G, H;
13: end procedure

address this issue, we adopt the straight-through estimator to
compute the gradients. Specifically, suppose the input of the
hashing layer is r ∈ RKH , the output of the layer is b where
bi = sign(ri). According to the chain rule we can obtain
the gradient ∂L

∂r = ∂L
∂b

∂b
∂r = 0 , because ∂b

∂r = 0. We adopt
the following straight-through estimator to propagate the loss
through the hashing layer instead.

∂L
∂ri

=


∂L
∂bi

, if − 1 ≤ ri ≤ 1

0, otherwise

(8)

Moreover, when |ri| > 1 , we set the gradient to 0. To be
clear, we consider |ri| as the confidence coefficient of bi =
sign(ri). If the confidence coefficient is large enough while
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Figure 3: Precision-recall curves of cross-modal retrieval on
Microsoft COCO and IAPR TC-12 @ 32 bits.

training, we don’t try to change this bit. Obviously, when we
take output of the discrete hashing layer directly as the hash
codes, the quantization error is 0. And the loss is computed
directly by the binary codes, so that the loss can reflect fitting
the degree of hashing codes on the training set well.

5 Experiments
We conduct extensive experiments to evaluate the efficien-

cy of the proposed TUCH model with several state-of-the-art
hashing methods on two widely-used benchmark datasets.

5.1 Data Preparation
The evaluation is conducted on two benchmark cross-view

datasets: Microsoft COCO [Lin et al., 2014] and IAPR TC-
12 [Grubinger et al., 2006].

Microsoft COCO The current release of the recently pro-
posed dataset contains 82783 training images and 40137 val-
idation images. For each image, it provides at least five sen-
tences annotations, belonging to 80 most frequent categories
as ground truth labels. After pruning images with no catego-
ry information, we get 82081 training images and randomly
sample 5000 query images from the validation set along with
their meta data.

IAPR TC-12 This dataset consists of 20000 images col-
lected from a wide variety of domains, such as sports and
actions, people, animals, cities, landscapes and so on. There
are at least 1 sentence annotations for each image. Besides, it
provides category annotations generated from segmentation
tasks with 275 concepts. We prune the original IAPR TC-12
to form a new dataset, which consists of 18673 images with
22 most frequent concept tags.

5.2 Baseline and Evaluation Setup
We compare the cross-view retrieval performance of our

approach with nine state-of-the-art cross-view hashing meth-
ods including three unsupervised methods IMH [Song et al.,
2013], CVH [Kumar and Udupa, 2011] and CorrAE [Feng
et al., 2014], and six supervised methods CMSSH [Bronstein
et al., 2010], CM-NN [Masci et al., 2014], SCM [Zhang and
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Figure 4: Precision@top-R curves of cross-modal retrieval on
Microsoft COCO and IAPR TC-12 @ 32 bits.

Li, 2014], QCH [Wu et al., 2015], SePH [Lin et al., 2015]
and DVSH [Cao et al., 2016a], in which CorrAE,CM-NN
and DVSH are deep methods. The experiment details and re-
sults of above baseline methods are reported in [Cao et al.,
2016a].

We follow [Wu et al., 2015; Zhang and Li, 2014; Cao
et al., 2016a] to evaluate the retrieval performance with
Mean Average Precision (MAP), precision-recall curves, and
precision@top-R curves. We adopt MAP@R=500 following
the baseline method [Wu et al., 2015; Cao et al., 2016a]. And
the sampled training set includes 5000 images along with all
labels and sentences annotations for both Microsoft COCO
and IAPR TC-12.

For Microsoft COCO, we randomly select 5000 images
with annotations as training set for hashing, 1000 images with
annotations as validation set and 1000 images with annota-
tions as query set. For IAPR TC-12, we randomly selec-
t 5000 images with annotations as training set for hashing,
1000 images with annotations as validation set and 100 im-
ages with annotations per class as query set. The pairwise
similarity labels for training are randomly constructed using
semantic labels or concepts, and each pair is considered simi-
lar (dissimilar) if they share at least one (none) semantic label.

5.3 Training Details
We implement the TUCH model in the open-source

Torch7 framework. We take the text encoding model in
[Reed et al., 2016] to extract text encoding t. For training net-
work, the generator G is a normal deconvolutional network as
stated in [Reed et al., 2016], and we employ the ResNet ar-
chitecture as the image branch of the discriminative hashing
network. We take pre-trained 18 layers ResNet as the initial
value of the image branch to fine-tune.

For both datasets, we first train the unsupervised text en-
coding model with all the sentences descriptions except for
query set. And then we train an unsupervised GAN mod-
el with G and discriminative sub-network of H . The train-
ing data is all the sentence-image pairs without tag excep-
t for query set. Finally, we add the hashing layer and the



Table 1: Mean Average Precision (MAP) Comparison of Cross-View Retrieval Tasks on Two Datasets

Task Method Microsoft COCO IAPR TC-12
16bit 32bit 64bit 128bit 16bit 32bit 64bit 128bit

I→ T

CMSSH [Bronstein et al., 2010] 0.4047 0.4886 0.4405 0.4480 0.3445 0.3371 0.3478 0.3738
CVH [Kumar and Udupa, 2011] 0.3731 0.3677 0.3657 0.3570 0.3788 0.3686 0.3620 0.3540
IMH [Song et al., 2013] 0.6154 0.6505 0.6573 0.6770 0.4632 0.4901 0.5104 0.5212
CorrAE [Feng et al., 2014] 0.5498 0.5559 0.5695 0.5809 0.4951 0.5252 0.5578 0.5890
CM-NN [Masci et al., 2014] 0.5557 0.5602 0.5847 0.5938 0.5159 0.5419 0.5766 0.6003
SCM [Zhang and Li, 2014] 0.5699 0.6002 0.6307 0.6487 0.5880 0.6110 0.6282 0.6370
QCH [Wu et al., 2015] 0.5723 0.5954 0.6132 0.6345 0.5259 0.5546 0.5785 0.6054
SePH [Lin et al., 2015] 0.5813 0.6134 0.6253 0.6339 0.5070 0.5130 0.5151 0.5309
DVSH [Cao et al., 2016a] 0.5870 0.7132 0.7386 0.7552 0.5696 0.6321 0.6964 0.7236
TUCH 0.6280 0.7135 0.7349 0.7660 0.5953 0.6372 0.6902 0.7144

T→ I

CMSSH [Bronstein et al., 2010] 0.3747 0.3838 0.3400 0.3601 0.3633 0.3770 0.3645 0.3482
CVH [Kumar and Udupa, 2011] 0.3734 0.3686 0.3645 0.3711 0.3790 0.3674 0.3636 0.3560
IMH [Song et al., 2013] 0.6068 0.6793 0.7280 0.7403 0.5157 0.5259 0.5337 0.5274
CorrAE [Feng et al., 2014] 0.5593 0.5807 0.6109 0.6262 0.4975 0.5195 0.5329 0.5495
CM-NN [Masci et al., 2014] 0.5793 0.5984 0.6195 0.6448 0.5119 0.5394 0.5487 0.5649
SCM [Zhang and Li, 2014] 0.5581 0.6188 0.6583 0.6858 0.5876 0.6045 0.6200 0.6262
QCH [Wu et al., 2015] 0.5742 0.6057 0.6375 0.6669 0.4997 0.5364 0.5652 0.5885
SePH [Lin et al., 2015] 0.6127 0.6496 0.6723 0.6929 0.4712 0.4801 0.4812 0.4955
DVSH [Cao et al., 2016a] 0.5906 0.7365 0.7583 0.7673 0.6037 0.6395 0.6806 0.6751
TUCH 0.6493 0.7602 0.7864 0.8117 0.6239 0.6563 0.6876 0.7088

semantic embedding loss into H along with the discrimina-
tive loss, and perform a supervised training on small labeled
training set. The TUCH approach involves 4 penalty pa-
rameters λ1, λ2, λH and λG for trading off the relative im-
portance of irrelevant image, fake image, discriminative loss
for H and discriminative loss for G in Equ (6) and Equ (7).
And we can achieve good results with λ1 = λ2 = 0.5 and
λH = λG = 0.01.

5.4 Results and Discussions
We compare our approach TUCH with the nine baseline

methods on the two datasets in term of MAP, precision-recall
curve and precision@top-R curves of two cross-view retrieval
tasks: image query on sentence database (I → T ), and sen-
tence query on image database (T → I).

We evaluate all methods with 16, 32, 64 and 128 bits hash
codes. The results are reported in Table 1. From the experi-
mental results, we can observe that TUCH nearly outperforms
all baseline methods for most cross-view tasks on the bench-
mark datasets. Specifically, compared to the state-of-the-
art sentence-image hashing retrieval baseline DVSH, TUCH
achieves absolute increases of 1.1%/3.9% and 0.4%/1.9% in
average MAP of different code length for two cross-view re-
trieval tasks I → T and T → I on Microsoft COCO and I-
APR TC-12 datasets. The performance of unsupervised base-
line methods differs on the two benchmark datasets. Com-
pared to the best unsupervised method IMH on Microsoft
COCO, TUCH get absolute increases of 5.6% and 6.3% on
I → T and T → I tasks, while the data on IAPR TC-12
is 11.8% and 14.4% which is compared with CorrAE. We
can observe that TUCH gains more increases in the T → I
task on both benchmark datasets. It is because the hashing
function is directly over image domain, and the information
of image is reserved as much as possible, so that hash codes

of images shows good aggregation characteristics. Once the
hash codes of texts are place in the right semantic position,
the relevant images can be found easily.

The precision-recall curves with 32 bits for the two cross-
view tasks I → T and T → I on two datasets Microsoft
COCO and IAPR TC-12 are shown in Figure 3, respectively.
TUCH shows the best cross-view retrieval performance at al-
l recall levels on T → I task, and almost best performance
on I → T task. Figure 4 shows the precision@top-R curves
of all comparison methods with 32 bits on the two dataset-
s, which shows how the precision changes with the number
R of top-retrieved results. TUCH outperforms other baseline
method again and shows effectiveness and stability on differ-
ent levels of R value.

6 Conclusion
This paper presents a novel deep model that is able to

turn cross-view hashing into single-view hashing on image
domain via GANs (TUCH) for sentence-image cross-view
hashing, thus enabling the information of image to be pre-
served as much as possible. Our TUCH model converts sen-
tences into images and then solves the multi-view hashing
problem with a multi-task and end-to-end generative adver-
sarial learning architecture. Besides, we add a discrete hash-
ing layer in TUCH which directly outputs binary codes via
loss computation, which avoids the information leak during
the feature quantization. Comprehensive empirical evidence
shows that our TUCH approach achieves state-of-the-art re-
sults, especially on text to image retrieval task, on image-
sentences datasets, i.e. standard IAPRTC-12 and large-scale
Microsoft COCO. In the future, we plan to extend TUCH on
mobile computing, which relies on good model compression
approach and parallel computing algorithm with high speed
on mobile device.
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