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Abstract

This paper evaluates the performance of various measures of model-free implied
volatility in predicting returns and realized volatility. The critical role of the out-of-the
money call options is highlighted through an investigation of the relevance of different
components of the model-free implied volatility. The Monte Carlo simulations show
that: first, volatility forecasting performance of various measures can be enhanced
by employing an interpolation-extrapolation technique; second, for most measures
considered, gains in their predictive power for future returns can be obtained by
implementing an interpolation procedure. An empirical application using SPX options
recorded from 2003 to 2013 further illustrates these claims.
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1 Introduction

In an efficient market, the option price embodies all available useful information about future
movements of the underlying asset. Hence, traders and hedge fund managers are primarily
interested in option-implied volatility when making financial decisions. As a natural forecast
of return variation over the remaining life of the relevant option, option-implied volatility
has been frequently used in forecasting future volatility, see Poon & Granger (2003) for an
extensive review of the studies on this topic. As opposed to the Black-Scholes (BS) implied
volatility, model-free option-implied volatilities have gained substantial popularity because,
relying upon no particular parametric model, they avoid potential mis-specification problems.
See, for example, Britten-Jones & Neuberger (2000), Carr & Wu (2006) and Taylor et al.
(2010).

One of the most widely adopted measures of model-free option-implied volatility is the
VIX volatility index, disseminated by the Chicago Board of Options Exchange (CBOE).
The VIX provides a measure of the expected value of the S&P 500 return variation under
the risk-neutral measure and is designed to closely mimic the model-free implied volatility
(MFIV). Derived by Britten-Jones & Neuberger (2000), the M FIV is defined as an integral
of cross-section of out-of-the money (OTM) European style put and call options over an
infinite range of strikes for the given maturity. Jiang & Tian (2005) show that the M FIV
is a more efficient forecast for future realized volatility than the BS implied volatility and
the historical realized volatility. However, Andersen & Bondarenko (2007) argue that the
MFIV and VIX are biased forecasts of future volatility since they contain non-trivial and
time-varying risk premiums. As a more important part of their empirical study, Andersen
& Bondarenko (2007) investigate the properties of the corridor implied volatility index
(CX), which is obtained from the MFIV by truncating the integration domain between
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with the narrowest corridor width is found to dominate other implied volatility measures
in the work of Andersen & Bondarenko (2007). Another advantage of the C'X is that it
is constructed only over intervals of the risk-neutral density (RND) where price quotes are
directly observable. By contrast, the computation requirements for deriving the M F'IV are
not satisfied by the existing data as options are traded only over a finite range of strikes.
Andersen et al. (2015) further improve the construction of the C X by adopting the concept
of an invariant coverage across time, which ensures that the C'X is coherent in the time
series dimension. As compared with the VIX, which is based upon strongly time-varying
coverage of the tails of the RND, the C'X uses a consistent range of strikes, which serves as
a more accurate volatility indicator over time.

In addition to the use of implied volatilities in forecasting future volatility, prior studies
also indicate that the VIX may carry some predictive power for future returns on stock
market indices. For example, Giot (2005) finds that future returns are always positive
(negative) for very high (low) levels of the VIX. This accords with the work of Guo &
Whitelaw (2006) who provide evidence for the positive relationship between market returns
and implied volatilities. The positive relationship between the VX and future returns is
also documented in Banerjee et al. (2007) who suggest that both levels and innovations of
the VIX are significantly related to future returns. That finding is indicative of a negative
volatility risk premium, which is consistent with Ang et al. (2006) where stocks with high past
sensitivities to the innovation in the VI X display on average future decreasing returns. The
evidence that the VI X is a priced risk factor in the time series of returns helps to explain why
the VIX may exhibit predictive power for future returns. Although a substantial empirical
literature is devoted to the investigation of risk-return relations (see, e.g., the discussion in
Rossi & Timmermann (2010), and the many references therein), most rely on the VIX as
a directly observable proxy for risk. Other measures of model-free option-implied volatility

are rarely considered.



Despite the increasing popularity of the V' I X', measurement errors in its construction have
been noted by Jiang & Tian (2005). The common problem inherent in the computation of
the VIX as well as other measures of model-free implied volatility is that only a discrete
set of strikes is actually traded in the market and that very low and high strikes are usually
absent. To account for measurement errors induced by the limited number of strikes, Jiang
& Tian (2005) apply the cubic spline method to interpolate between existing strikes and
exploit a flat extrapolation scheme to infer option prices beyond the truncation point.
Andersen & Bondarenko (2007) address the issue induced by the discrete set of strikes via
the positive convolution approximation method proposed by Bondarenko (2003). Although
interpolation and extrapolation techniques are widely accepted, it remains unclear how such
techniques affect the performance of implied volatilities in predicting future returns and
realized volatility. In addition, there appears to be no consensus on the roles played by the
OTM call and put options in the forecast of future volatility and returns. Jackwerth (2000),
Jones (2006) and Bates (2008) suggest that the OTM put options may be irrelevant to known
risk factors affecting stock returns. Using a cubic spline interpolation and flat extrapolation
methods, Dotsis & Vlastakis (2016) also find that the OTM put options, especially deep
OTM puts, do not contain important information with respect to equity volatility risk.
They also show that the OTM call options subsume all useful information embedded in the
OTM puts for forecasting future realized volatility. However, Andersen et al. (2015) show
that the left tail risk, driving a substantial part of the OTM put option dynamics, exhibits
strong predictive power for future excess market returns over long horizons.

Against this background, this study examines the performance of various model-free
option-implied volatilities in predicting future returns and volatility and contribute to the
existing literature in the following ways. First, this paper is among the first to provide
simulation evidence to justify the use of the interpolation/extrapolation procedure for better

forecasting performance of implied volatilities. The usefulness of this procedure is verified



in both the simulation and empirical studies. The adoption of a stochastic volatility model
with both jumps and volatility risk premium in the present study mimics more closely the
observed data dynamics. This can be seen as an extension of the work of Zhang et al. (2013)
where a simple square-root model of Cox et al. (1985) is employed to investigate the number
of options upon the information content of the M FIV in an in-sample analysis. Distinct
from Zhang et al. (2013), this paper conducts comprehensive out-of-sample (OOS) volatility
forecasts made by different implied volatility measures including the M FIV .

Second, to ascertain the relevance of the OTM call and put options, this paper considers
implied volatility measures constructed entirely from the cross-section of OTM put (call)
options and measures which discard the deep OTM put (call) options. This is achieved
by splitting the M F IV into different components with the use of different intervals of the
cross-section of OTM put and call option prices. Similar constructions of implied volatilities
are conducted in Dotsis & Vlastakis (2016) who examine the price of volatility risk in the
cross-section of stock returns. With a different focus from that of Dotsis & Vlastakis (2016),
the present paper compares the fraction of the time-series variation in future returns that
are explained by various measures of implied volatility. Return predictability provided by
implied volatilities is investigated in the pre- and post-crisis periods, respectively. The impact
of the recent financial crisis is accounted for since the crisis represents an informative period
during which uncertainty and risk aversion may have been more evident than the non-crisis
period, see Hilal et al. (2011) and Bates (2012).

A preview of the main findings of this study is as follows. Simulation results show that,
with a wider range of strikes upon which model-free option-implied volatilities are based,
the OOS volatility forecast becomes more accurate while returns tend to be less predictable.
In addition, a finer partition of strikes usually leads to greater predictive power of implied
volatilities for future returns. These findings warrant the application of an interpolation

and extrapolation scheme in the practice of volatility forecast and an interpolation method



only in return predictions. In the empirical study using SPX options from 2003 to 2013, the
aforementioned procedure, i.e. interpolation/extrapolation methods, significantly improves
the performance of different measures of implied volatility considered in the OOS volatility
forecast and gives rise to higher return predictability for most measures in the post-crisis
period. With the use of this procedure, the OTM SPX call options substantially dominate
the OTM put options with regard to their forecasting performance. The empirical findings
outlined above are in accordance with the simulation evidence. Furthermore, when measures
of implied volatility are derived from the listed options only, the superiority of the OTM SPX
put options over the OTM call options is noted in volatility forecast and post-crisis return
predictions.

The rest of this paper is organized as follows. Section 2 provides the construction of
various model-free option-implied volatility measures and realized volatility adopted in this
study. Section 3 outlines the techniques adopted to address measurement errors in the
construction of various implied volatilities. Section 4 presents the design and settings of the
Monte Carlo study along with the results. Section 5 describes the data and Section 6 reports

the empirical results. Conclusion is provided in Section 7.

2 Construction of Volatility Measures

This section provides an outline of the construction of various measures of volatility. Section
2.1 gives an introduction of the M FIV and its components derived from OTM calls and
OTM puts, respectively. The VIX index is then reviewed as a close approximation of the
MFIV. Section 2.2 discusses the computation of model-free corridor implied volatilities
where three different segments of the cross-section of OTM put and call option prices are
adopted. Finally, in Section 2.3, the high-frequency realized volatility is defined, which is

used to obtain an accurate measure of the ex-post return variation of the underlying asset.



2.1 Model-Free Implied Volatility and VIX

The concept of the M FIV is derived by Britten-Jones & Neuberger (2000). Its computation
for a given maturity involves market prices for a continuum of European-style options with
strikes from zero to infinity, which takes the form

MFIV = \/ %e” { /0 ) P<;{12K)4K + /F ) C<[T(Z2K>dK} (1)

where r is the annualized risk-free interest rate as measured by the corresponding U.S.
Treasury bill rate, 7 is time-to-maturity measured in annual units, F' is the forward price
for transaction at maturity 7, P(7, K) and C(7, K) are the mid-quotes for European put
and call options with strike price K and maturity 7. By construction, only OTM options
(call if K > F and put otherwise) are taken into account. Motivated by Dotsis & Vlastakis
(2016), the M FIV can be further divided into two components; i.e., that from the OTM
call options (V') and that from the OTM put options (V P), which are given by

|2 [*C(1,K)
VC’—\/;e/F o ax (2)

2 FP(r,K)

where MFIV? =V(C? 4+ VP2,

and

The VIX index is based on the idea of fair value of future volatility developed by
Demeterfi et al. (1999), which is conceptually equivalent to the MFIV in equation (1)
as shown by Jiang & Tian (2007). The general formula for computation of the VX index

is given by
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where 7 = 30/365 is the option maturity, K; is the strike price of the ith OTM option in the



calculation!, Kj is the first strike price below the forward index level F' (Ky < F), Q(7, K;)
is the midpoint of the latest available bid and ask prices of the OTM option at strike K,
and AK; stands for the strike price interval as AK; = (K;41 — K;-1)/2.

2.2 Corridor Implied Volatility

The corridor implied volatility index (CX) is initially analyzed in the empirical work of
Andersen & Bondarenko (2007). Unlike the M F IV | which requires the availability of options
with strikes from zero to infinity, the C'X only captures volatility over a certain segment of

the underlying RND. For a fixed coverage [By, By|, 0 < B, < By < o0, the CX is computed

ox \/26” /BHM -

where the time to maturity 7 = 30 days and M (K) stands for the minimum of the put and

as

call prices at current time such as

M(K) =min(P(1,K), C(1,K))

In order to ensure an invariant portion of the strike range considered in the C'X across
time, Andersen et al. (2015) propose the ratio R(K) to determine the integration barriers of
the C'X in equation (5) using directly observable prices of OTM call and put options only,

P(r,K)

RE) = s 7001

(6)

For given lower and upper percentiles p, ¢ € (0,1), B, = K, = R™*(p) and By = K;_, =
R7Y(1 — ¢). In the subsequent simulation and empirical studies, three measures of the C'X
computed from equation (5) are used where [By, By| takes the values [R71(0.25), R~1(0.75)],
[R71(0), R71(0.75)] and [R7!(0.25), R~%(1)]. These implied volatilities are respectively
represented by CX NT, CX LT and CX RT'. The definitions of implied volatilities considered



in this paper are listed in Table (1). All the measures are computed from options across
two nearest maturities (less than 30 days and greater than 30 days) and the 30-day implied

volatilities is computed by interpolating between the two separate maturities.

2.3 Realized Volatility

In addition to implied volatilities, this study employs monthly realized volatility and historical
volatility. A simple realized variance estimator proposed by Barndorff-Nielsen & Shephard

(2002) is employed, which is equal to the sum of intraday squared returns

M
_ 2
U = Z T (7)
=1

where 7, ; stands for intraday returns within each 5-minute interval. The realized variance
is then calculated over a period of one month in order to match the maturities of the
corresponding implied volatilities

22

1
RV, = ﬁ ; TVt (8)

The measure RV, is recorded daily but contains monthly (future) variance. The substantial
serial correlation induced by the construction of RV, in equation (8) will be accounted for in
the subsequent analysis. Furthermore, the realized variance on the latest trading day, rv;_1,
is used as a proxy for historical variance, which may contain useful information for future

return variation.

3 Error Adjustment Mechanisms

As introduced in Section 2, the M FIV is computed as an integral of option prices over an
infinite range of strikes; and all the measures of implied volatility that are considered require

numerical integration using the trapezoidal rule. However, only a limited number of strikes
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are actually traded in the market, which may result in inaccuracies in the computation of
the option-implied volatilities, so further affecting their performance in predicting future
volatility and returns. Specifically, very low and high strikes are usually not available in
practice, which leads to the so-called truncation errors; and the set of discrete strikes can be
rather sparse, which gives rise to the discretization errors. For more details?, see Jiang & Tian
(2005). To account for the measurement errors discussed above, the use of an interpolation
and extrapolation scheme is essential. The interpolation of option prices within the boundary
of actual strikes is relatively straightforward, which can be carried by fitting a natural cubic
spline as in the work of Jiang & Tian (2005). The major challenge is how to extrapolate
option prices towards the tails of the RND with precision. The following section provides an
introduction of the extrapolation procedure adopted in the present paper.

In line with Andersen & Bondarenko (2007), this paper estimates the RND using a
nonparametric approach, the so-called positive convolution approximation (PCA) proposed
by Bondarenko (2003) and then extracts prices beyond the truncation point from the estimated
RND?. The PCA method for estimating the RND offers several benefits: (1) it guarantees
no-arbitrage density estimates; (2) it avoids overfitting while allowing for small samples; (3)
it involves simple computation algorithm only; (4) it is insensitive to the data generating
process. The main idea of the PCA is to construct a set of admissible densities containing
functions which can be expressed as a convolution of a fixed positive kernel and another
density. The optimal density is that obtained from the admissible densities which generates
the best fit to the listed option prices. The sub-section below briefly describes the RND
estimation using the PCA approach.

The relationship between the RND and call/put options can be expressed as

1 820(7—7}() 1 82P(T>K)
hO(ST) o elo Tsds 0K? K=S; a eo rsds OK? K=S; (9)
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where S, represents the value of an underlying asset on trading date 7 and r; is the risk-free
rate. For simplicity, it is assumed that the asset pays no dividends and ry, = 0 and thus
elo 7@ — 1. In the PCA approach, the first step is to construct the approximating set 1,
representing all admissible or candidate densities, from which the optimal density is selected.
Let L¢ denote the set of all probability densities, i.e., nonnegative functions that integrate
to one. For a basis density ¢(K) € L?, a new density ¢,,(K) := L¢(£) can be obtained by

smoothing ¢(K') with the bandwidth parameter m. Once ¢,,(K) is fixed, the approximating

set W,, = W, is given by
Wm::{geLd|g:¢m*,u, for p € L} (10)

which contains functions g, expressed as a convolution of ¢,, with positive functions .
Although the space L? accommodates very general shapes of densities, W,, is made up of
only smooth and well-behaved densities. If functions h (the true RND) and g are both

integrable, the following equation holds.

hxg:= /_Oo h(K —y)g(y)dy (11)

o0

An estimator of the RND is the function of E(K ) € W,, which provides the best fit to a

certain cross-section of options {P;}, i.e. it achieves the objective function as follows

Minimize i (B — D% (Ki)>2 (12)
=1

heWn,

where D™2g(K) represents the second integral of g(K') such as

Dy = [ ([ oz (13)

o0 —00

The optimization problem in equation (12) can be solved numerically by discretizing the
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admissible set W,,, as follows

Minimize i (Pi — D% (Ki)>2 (14)

heWA*(lvw]) 5

with Az = 0.5m, where [v,w] is a large but finite interval on which the underlying density
h is approximated and Az is the grid step. Further details on the construction of the PCA
estimator can be found in Bondarenko (2003). Once the estimated RND is obtained, option

prices can be inferred for a continuum of strikes through the relationship in equation (9).

4 Monte Carlo Simulation

This section presents a Monte Carlo simulation study where different numbers of option
prices are considered as the strike range and increment vary. The aim of this experiment
is (i) to ascertain the impact of discrete strike prices on the performance of various implied
volatility measures in forecasting future volatility and returns and (ii) to provide guidance

for the use of interpolation and extrapolation technique in forecasting.

4.1 Simulation Design

The simulation exercise conducted in the present paper is motivated by Zhang et al. (2013)
who examine the effect of the number of strikes on the information content of the M FIV
using a simple model without jumps and volatility risk premium. In a departure from
Zhang et al. (2013), this study concentrates on the OOS volatility forecasting performance
of implied volatilities and the predictive power of implied volatilities for future returns. A

jump-diffusion model adopted by Duan & Yeh (2010) is used to simulate the asset price and
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the latent stochastic volatility by

dlnS, = [r—q+0,V,— %]dt + V/VidW, + J,dNy — Ayt (15)

AV, = r(0—V,)dt+ vV, dB,

where W; and B; are correlated Wiener processes, having correlation coefficient equal to p;
N, denotes a Poisson process with intensity A, which is independent of W; and By; J; is an
independent normal random variable with mean x; and standard deviation o;. The price,
S, and volatility, V;, processes are dependent through the correlated diffusive terms-W; and
B;. The other parameters, r, ¢ and J, are the risk-free rate, the dividend yield and the asset
risk premium, respectively?.

Option valuation is implemented using the corresponding model under the risk-neutral

probability measure given by

1% i
dlnS, = [r—q— Et + N (i + 1= eI dt 4+ \/VidW; + JEdNy — Npddt (16)

AV, = (k0 — k*V3)dt + 0V, dB;

where £* = k+ 0y and Bf = By + 0y /v f(f V1=7ds with &y being the volatility risk premium.
Again, W} and B; are the Wiener processes correlated with the coefficient p; N} is a Poisson
process with intensity A* independent of W/ and Bj; the independent normal random
variable J;" has a new mean p% but an unchanged standard deviation o;. The empirical
martingales simulation method® developed by Duan & Simonato (1998) is used to compute
option prices, given that there is no closed-form option pricing formula for equation (16).
In addition, the theoretical VI X index, represented by VI X7, is computed by following
equation (13) from the work of Duan & Yeh (2010).

This study assumes one year has 252 trading days and that one day consists of 6.5 hours

of open trading, as is the case on the NYSE and NASDAQ. A sparse sampling at a frequency
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of once every 5 minutes is used in this simulation study and therefore one day can be divided

6.5x3600

350~ = (8. A daily series is extracted by sampling

up into 78 intraday intervals, i.e.,
once every 78 data points. The asset price and the latent stochastic volatility are simulated
according to the Euler discretized version® of equation (15). The simulation is simplified by
assuming no dividends and a zero interest rate. The initial stock price and latent stochastic

volatility” are set respectively as 1000 and 0.08. The sample size of daily series is 2000. The

parameter values are similar to those adopted by Duan & Yeh (2010).

’ 0 A py (%) os(%) v P gl ds K" o (%) v 0s(%)

2.500 0.080 55.000  0.300 0.500 1.400 -0.800 0.900 0.420 -13.000 0.035 -15.500 -0.059

Option prices are computed corresponding to two nearby maturities, 23 and 37 days. This
experiment considers two fixed strike price increments (AK=5 and AK=1) and attempts

with different moneyness ranges ([0.8, 1.2], [0.7, 1.3] and [0.6, 1.4]).

4.2 Simulation Results

Table (2) reports the summary statistics of various volatility measures. It is evident that the
mean of the implied volatility estimates increases with the moneyness range. This accords
with the work of Jiang & Tian (2007), where the truncation errors usually result in an
underestimation of the true volatility. The mean of the VIX, MFIV G CXNT, CXLT
and CXRT decreases as the strike increment becomes smaller, which is consistent with
the finding of overestimation of the underlying volatility induced by discretization errors in
Jiang & Tian (2007). For all measures considered, the mean squared error® (MSE) decreases
with the strike range. Table (2) also shows that measures of implied volatility become more
volatile with the range of strikes while they, except the V(' tend to appear less volatile as
the partition of strikes is smaller.

To evaluate the OOS volatility forecasting performance of various option-implied volatilities,
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a univariate Mincer-Zarnowitz regression is adopted as follows

Yer1 = QG + BT + 141 (17)

where y;,1 represents the realized volatility containing the information of month ¢ + 1 and
where z;, indicates the volatility estimate j among all candidate estimates. To obtain
OOS forecasts of the realized volatility measure, this study employs a rolling window of
1000 observations for the one-step-ahead forecasts. The daily realized volatility in equation
(8) contains substantial induced serial correlation, which seriously affects the standard
errors of the coefficient estimates. To overcome this problem, the Bartlett/Newey-West
heteroskedasticity consistent covariance matrix estimator with 44 lags is used, see Andersen
et al. (2007). Regressions are examined for both volatility and logarithms of volatility. The
forecasts are evaluated by the MSE, which is robust to the presence of noise in the volatility
proxy, see Patton (2011). The OOS R? of the Mincer-Zarnowitz regression is also taken
into account, which corrects for bias by reflecting the variance but not the bias-squared
component of the MSE.

Forecasting results’ are reported in Table (3). Clearly, the VIX7p., dominates all the

other candidate measures in terms of the volatility forecasting performance'’.

Forecasting
performance increases with the strike range for all the measures, except that of the CXNT
and CXLT. It is not surprising that the C X NT performs the same for different moneyness
ranges since the options within the barriers By, = K95 and By = K75 are not affected by
the variation in the strike range. The worse performance of the C' X LT with a wider range
of strikes may be attributed to the poor forecasting power of the deep OTM put options
for future volatility. In addition, Table (3) shows that the strike increment AK tends to
have a negative impact on the volatility forecasting power of the VIX, MFIV, CXNT,

CXLT and CXRT but exerts a positive impact on that of the VC' and V P. Overall, the
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effect of the strike range on the forecasting performance is considerable and that of the
strike increment is negligible. The use of different loss functions, i.e. MSE and OOS R2,
gives the identical conclusion in terms of the role of the strike range and increment in the
forecasting practice as well as the ranking of forecast performance among implied volatility
candidates. These findings motivate the application of an extrapolation procedure to extend
the tails of the RND in an attempt to improve the volatility forecast accuracy. On the other
hand, an interpolation method is considered necessary since the number of listed options
may be rather small in practice. The lack of observed options may lead to inaccuracies in
the estimation of the RND using the PCA method and thus result in failure in inferring the
options beyond the truncation points. Moreover, the critical role of the OTM call options is
noted in Table (3) where the V(' serves as the top forecaster and the C' X RT substantially
outperforms the CX LT

The next step is to apply the natural cubic spline to interpolate between available strikes
and to implement the PCA method in order to obtain the option values beyond the range
of listed strikes. The corresponding measures computed by options with the use of such
procedure are prefixed by C'P-. To examine the performance of the C' P-measures in the
forecasting practice for future volatility, this study focuses on the case of AK = 5 and
moneyness range=[0.8, 1.2] only. Specifically, a step of one unit of the index is used to
numerically compute the integral in the interpolation procedure and four standard deviations
from forward prices are adopted as an integration range!!. The interval of strikes that
are needed to extrapolate is ([Fy — 45D, Kuyin) and [Kpax, Fo + 4SD]) where Kyin(Kmax)
represents the minimum (maximum) listed strike price in the market. Table (4) reports
the volatility forecast performance, measured by both the MSE and OOS R?, of various
implied volatility measures and their corresponding C' P-measures. The values in parentheses
below the MSE are the mean difference of squared forecasting errors between the original

implied volatility measure and its corresponding C'P-measure. Numbers in bold indicate
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statistically significant differences at 5% by the Diebold-Mariano test. Columns 1-4 show
that the CP-MFIV, CP-CXRT, CP-VC and CP-V P achieve significant gains in the
forecasting performance for future volatility and that the ranking of forecasting power of the
C P-measures remains unchanged from that of the original measures. Columns 5-8 present
values of the OOS R? where the percentage changes of the R? are represented by the numbers
in parentheses and where the gains of the C'P-measures are indicated in bold. With the single
exception of C X NT', the use of the interpolation and extrapolation method brings higher
OO0S R? for all the measures considered.

Another important application of the implied volatility is to predict future market returns.
As in the work of Banerjee et al. (2007), the 30- and 60-day future returns are regressed on

daily levels'? of the implied variance estimates as follows

S

h
Z Ter(-1)t+5 = Q1+ Brv + Uren (18)
j=1

where v; indicates various measures of implied variance levels. To account for residual
correlation caused by overlapping returns, this study considers the Newey-West standard
errors. The adjusted R? is employed to indicate the degree of return predictability; the
values are reported in Table (5). First, results indicate that the return predictions by
implied volatility measures deteriorate with the strike range. Second, with a finer partition
of strikes, return predictive power generally improves, with the one exception of VC'. From
this evidence, only the interpolation method, which provides a smaller partition of strikes,
is needed to achieve better return predictions by measures of implied volatility. Consistent
with the work of Andersen et al. (2015), the deep OTM put options dominate the deep
OTM call options in predicting future returns. This is indicated by the higher R?s given
by the C X LT relative to those by the CX RT'. In addition, the V' C' displays the strongest

predictive power for future returns in most cases while the V' P serves as the top performer
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only in the case of AK = 1 when short horizon is considered. This suggests that OTM call
options exhibit superior predictive power overall to that of the OTM put options for future
returns. This is despite the superiority of the deep OTM puts over the deep OTM calls in
this exercise.

Finally, the cubic spline is applied to achieve a finer partition of strikes in the case
of return predictions. Measures of implied volatility based upon the options using the
interpolation method are prefixed by C-. To examine the effect of the interpolation procedure
on return predictions, this study takes the case of AK = 5 and moneyness range=[0.8, 1.2]
as an example and reports the results of the return predictability in Table (6). Gains in the
predictive power for future returns are only observed for C-CXNT, C-CXLT, C-CXRT
over 30-day and 60-day horizons, and for C-V' P over 30-day horizon. However, given the
positive impact of the strike increment on return predictions in Table (5), the interpolation
procedure is expected to lead to more evident gains in the predictive power of various implied
volatilities for future returns, where the partition of strikes is often much more sparse, i.e.

greater than 5. Findings in Section 6 confirm this hypothesis.

5 Data

The data sample spans from January 02, 2003—December 31, 2013, encompassing 2769
trading days. Data are taken from several sources. Closing bid and ask SPX option prices
and dividend yield are obtained from Optionmetrics via the WRDS system. High-frequency
data at 5-minute intervals for the SPX'? are collected from the Tick Data Inc.. Daily
one-month and three-month Treasury-bill yields!#, taken as the risk-free rates, are extracted
from the Federal Reserve Bulletin. In addition, the average of bid and ask is taken as the
best available measure of the option price to alleviate the bid-ask bounce problem. For the

two nearby maturities, there is an average of 34 out of 97 (63 out of 97) OTM call (put)
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option quotes per day. Two commonly used data filters are applied. First, options with
less than seven days remaining to maturity are excluded. These options may be subject to
problems of liquidity and market microstructure. Second, options violating the boundary
conditions, i.e. with BS implied volatilities below zero or above 100%, are excluded from the
sample. Only OTM options are included since in-the-money options are less liquid and thus
may induce bias into the computation of implied volatilities.

The CBOE calculates the VX index using option prices updated every five minutes.
However, the Optionmetrics database includes the last daily bid-ask quote only, which might
not correspond to the data published by CBOE for their final end-of-day computation.
Hence, as a more direct benchmark, this paper derives a replicated VX index, RX, using
the exact CBOE procedure every day. Thereby, it follows the work of Andersen et al.
(2015). The RX provides an equivalent of the VIX using the SPX option prices from
the Optionmetrics data set. It is well known that the CBOE adopts a particular rule to
exclude OTM options: once two puts (calls) with consecutive strikes are found to have zero
bid option prices, no puts (calls) with lower (higher) strikes are taken into account. The
model-free implied volatility index with a broader strike range, denoted by M F IV, can be
obtained by discarding any options with a zero bid price and employing all OTM options
with a positive bid quote, i.e. ignoring the cutoff rule by the CBOE. Hence, the M FIV
provides an upper bound for RX. In addition, the same notations are adopted for the other
candidate measures as those in the simulation study!®.

For the 2769 trading days under consideration, the implied volatility measures are not
available at some points due to a variety of reasons, including: (1) the requirement for the
two nearby maturities is not satisfied; (2) the lack of OTM options; (3) boundary conditions
are violated, which reduces the sample size to 2330. The construction of the RV, leads to
the loss of one month at the end. Finally, the sample data under analysis contains 2307

observations, for the period from January 02, 2003 to November 27, 2013.
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6 Empirical Results

This section starts by reporting the basic statistical properties of different volatility measures.
It then investigates their performance as predictors of the future realized volatility and
market returns of the underlying S&P 500 index.

Table (7) reports the summary statistics'® of the monthly volatility measures which are
annualized and recorded daily. First, the unconditional mean of most implied volatility
measures clearly exceeds the mean of the RV. This is consistent with the extant literature
establishing the presence of a substantial positive risk premium for bearing volatility risk.
Note also that the RV has the highest skewness and kurtosis statistics. This erratic nature is
attributed to the unpredictable innovation term of the RV as noted in the work of Andersen
& Bondarenko (2007). Second, the CX LT (V P) is found to be more volatile and higher
in magnitude than the CXRT (VC) because deep OTM puts generally have the highest
implied volatility, i.e. volatility smile. A similar phenomenon is observed in the case of the
C'P-measures. Such evidence is also given in Figure (1) which depicts the time-variation of
various implied volatility candidates. In particular, the RX overlaps the M F' IV closely and
thus high similarity is expected in their forecasting power for future realized volatility and
returns. Finally, all volatility measures exhibit substantial persistence with extremely slow
decay in their autocorrelations.

The correlation between various measures of implied volatility and realized volatility
is provided in Table (8). Compared with the measures extracted from the listed options
only, the corresponding C P-measures display higher correlation with the RV. This is
indicative of superior forecasting power for future volatility. Contrast to the work of Zhang
et al. (2013) and Dotsis & Vlastakis (2016) who examine the information content!” of
implied volatilities in in-sample regressions, this study concentrates on their OOS volatility

forecasting performances. The results of the volatility forecasts are presented in Table (9)
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where the forecasting performance is measured by the MSE and OOS R?. Gains achieved by
the C'P-measures are generally more evident than those in the simulation study. In almost
all cases, gains in MSE are significant at 5% level. The CX NT dominates other measures
that are based on the existing options. The C'P-C X NT ranks best among all C'P-measures.
As shown in the upper panel of Table (9), CXLT (V P) outperforms the CXRT (VC) in
the forecasting of future volatility. This can be attributed to the fact that only a very small
number of OTM calls (34 out of 97 per day on average) are available in this empirical study.
However, in the lower panel, where more options are involved with the use of interpolation
and extrapolation scheme, the OTM call options are superior to the OTM puts, indicated by
the better forecasting performance of the CP-CX RT (C'P-V (') than that of the CP-CX LT
(CP-VP). The evidence for the advantage of the OTM calls is in line with the simulation
result discussed in Section 4. Moreover, conclusions drawn from Table (9) remain intact
when different loss functions for OOS forecasts are considered.

Finally, the return predictability is evaluated by various implied volatilities using equation
(18) where the excess returns are considered as opposed to raw returns. To better understand
the predictive power of implied volatilities for future returns in different market conditions,
this study further splits the data sample into pre-crisis and post-crisis periods. The beginning
of the financial crisis is set at September 01, 2007. As discussed in the simulation study,
only interpolation is needed in the exercise of return predictions. Values of the adjusted R?
implied by different return regressions are reported in Table (10). In the pre-crisis period,
the interpolation improves the return predictive power for 4 out of 12 measures. In the
post-crisis period, this result holds for 7 out of 12 measures. Moreover, the C-VVC dominates
all the other implied volatilities in terms of the performance for predicting future returns
in the post-crisis period. The C' X RT performs the best in such forecasting practice in the
pre-crisis period. Hence, the results suggest a few good substitutes for the VX index as

predictors for future returns. In the upper panel of Table (10), where measures are derived
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from the observed option prices only, the OTM call options exhibit greater predictive power
for future returns than the OTM put options in the pre-crisis period while the OTM put
options play a more dominant role in the post-crisis period. In the lower panel, where the
cubic spline is used to interpolate between available strikes, OTM call options outperform
OTM put option in predicting future returns in both pre- and post-crisis periods. This is

consistent with the evidence found in the simulation study.

7 Conclusion

This paper examines the forecasting power of various model-free option-implied volatilities
for future returns and realized volatility via both Monte Carlo simulations and an empirical
study using SPX options. By decomposing the model-free implied volatility into different
components using various segments of the out-of-the money (OTM) put and call options,
this study ascertains the role of each of the components. The paper provides a simulation
study on the impact of the strike range and increment on the predictive power of the implied
volatilities. Results show that: first, the forecast accuracy for future volatility improves
with the range of strikes; second, the strike range exerts a negative impact on the predictive
power of the implied volatilities for future returns; third, a smaller partition of strikes tends
to result in greater performance of implied volatilities in predicting returns. These findings
warrant the application of an interpolation and extrapolation scheme in order to enhance
the forecasting power of implied volatilities for future volatility while only an interpolation
method is needed in the case of return predictions.

In both simulation and empirical studies, the superiority of the aforementioned technique,
i.e. interpolation/extrapolation methods, is observed for most measures considered in forecasts
of future returns and volatility. More interestingly, once this technique is implemented in

the empirical case to overcome the problem of the lack of strikes, the OTM SPX call options
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clearly exhibit higher forecasting power than the OTM put options. This accords with the
evidence from the simulation experiment. On the other hand, the advantages of the OTM

SPX put options are noted when implied volatilities are derived from the listed options only.
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Notes

!The forward price is calculated from at-the-money options according to put-call parity,
F = K, + ¢7[C(K,,7) — P(K,,7)] and K, is determined as the strike price for which
the difference between the call and put prices is minimal. It is worth noting that, at the
boundaries of strike prices, AK; is adjusted as the difference between the two highest (or
lowest ) strike prices. In addition, at the strike price Ky, the option price Q;(7, K;) is
modified to be the average of call and put prices. The CBOE computes the VIX from an
interpolation of two volatility indices with respect to two different maturities: 71 and 7.
The VIX index is finally obtained by taking a weighted average of these two VIX measures

based on 7! and 7Y

VIX =100 x \/ [wn (VIX2(H)7H) + wa(VIXZ(r)r)] % (19)

T T*Té
where w; = 1 and wy = —
t 't t 't

— so that w; +wy = 1.

2Other measurement errors noted by Jiang & Tian (2007) are widely regarded as negligible
and therefore are unlikely to have any material impact on the forecasting performance of

implied volatilities.

3Different ways of interpolation and extrapolation were attempted in this study. For
example, the clamped cubic spline interpolation and the smoothing spline delivered results
similar to those based on the natural cubic spline technique. In addition, attempts were
made to extend the tails of the RND using the flat-line extrapolation and to approximate
the tails of the RND following a generalized extreme value distribution. These methods are

dominated by the use of the PCA approach as introduced in the main text.

4The mean of J;dN; — A\ dt is zero due to the introduction of the term Au;dt, which

serves to center the Poisson innovation.

’The simulation sample path is set to 1000. Put option prices are computed through

put-call parity.

6The asset price and volatility path will be discretized into constant-increment time steps

of At = m. The discretization for the price and volatility processes through Euler scheme
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is given by

Siv1 = Siexpl(r — ¢+ 0,V; — 0.5V)) At + / V;AtW, + J, Ny — Ay At
Visr = Vi+ (k0 — KV)At + po V' VAW, + /1 — p>0V"V At B,

where J; isii.d. N(puy, 0;), Ny is Poiss(AAt), W; and B; are two Brownian-motion processes,
and p represents the instantaneous correlation between the return process and the volatility
process. As introduced in the main text, So = 1000 and Vy = 0.08.

"This study also considers a low volatility setting by letting the initial latent stochastic

volatility equal 0.02. Conclusions remain unchanged.

8This is defined as the time-series average of the squared differences between the certain
volatility estimate and the theoretical VIX index, VIXrpeo-

9Motivated by the study of Andersen et al. (2015), this study also attempts to construct
the realized variance using the sum of a weighted average of the log and simple squared
returns, represented by RV"™. Values of the MSE for the forecasts of RV* remain virtually

unchanged.

9Tn several situations, the rv,_; outperforms option-implied volatility estimates, which
seems to contradict the findings of Jiang & Tian (2005) and Andersen & Bondarenko (2007).
The explanation is that this experiment considers the case of very high volatility, i.e. Vj =
0.08. When the initial latent stochastic volatility is set lower, the performance of daily lagged

RV falls as compared with the other implied volatility measures.

The choice of the truncation point is motivated by the finding of Jiang & Tian (2005)

who show that the truncation errors are virtually zero beyond 3.55D from Fj.

12 A5 a robustness check, the analysis of return predictions is also conducted by regressing
future returns on the innovations of the implied variances, motivated by the work of Banerjee

et al. (2007). Conclusions remain unchanged.

BIn order to measure the return variation during the overnight period, the squared
overnight returns, computed as the squared close-to-open logarithmic price change, are added

to the realized variance obtained over the trading day.

UFollowing the work of Jiang & Tian (2007), the risk-free rate is linearly interpolated
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between these two yields. However, when the maturity is shorter (longer) than one (three)

month, the one-month (three-month) yield is adopted.

B Throughout the empirical work, this paper makes use of the robust forward F as in
the work of Andersen et al. (2015) rather than the "implied" forward F' determined by the
CBOE according to put-call parity. However, the CBOE F is still employed in computing
the RX in order to approximate the VIX.

16Tn the empirical study, the M FIV is computed in the same way as the CBOE VIX in
equation (4) but it ignores the cutoff rule by the CBOE. The VC and V P are computed as
equations (2) and (3). This explains why M FIV? £ VC?+V P% in Table (7). The reason for
the use of the CBOE computation procedure, instead of the traditional M F IV calculatoin
method, is that the latter results in poorer forecasting performance compared with the RX.
All the other measures are computed in the same way as in our simulation study. The results

for the M FIV constructed by equation (1) can be obtained from the author upon request.

I"This paper also conducts in-sample regressions to examine the volatility forecasting
ability of various measures of implied volatility. Results show that the interpolation and
extrapolation procedure largely improves the explanatory power of the implied volatilities
in all cases. For the sake of brevity, results are not reported but can be obtained from the

author upon request.
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Table 2

Simulation study: summary Statistics. This table reports the mean, standard deviation, lower
quartile (25%), median (50%), and upper quartile (75%) of daily annualized volatility estimates
over 2000 days. All the values are percentages. The mean squared estimation error, MSE, is the
average of the squared differences between the volatility estimates and the theoretical VIX index,
VIXTheo The strike price increment is denoted by AK and Ny refers to the number of available
options on each estimation day.

Mean StdDev 25% 50% 75% MSE
VIXTheo . . . . .
RV 23.6841 9.4726 17.2824  21.5069  26.7618
AK =5 Nk Moneyness Range
VIX 86 0.8,1.2 36.2688 11.3866  28.1721 33.8260  41.4539 29.1182
128 0.7,1.3 37.7167 12,9644  28.6248  34.6614  43.2231 16.8826
167 0.6,1.4 38.2435  13.8219  28.6925  34.8117  43.7395 14.2855
MFIV 86 0.8,1.2 36.9711  11.3161  28.8961  34.5055  42.2275 25.6308
128 0.7,1.3 38.6101 13.0396  29.4648  35.5447  44.2569 14.7022
167 0.6,1.4 39.2324  13.9959  29.5486  35.7811  44.8681 13.1674
CXNT 86 0.8,1.2 27.9266  10.2982  20.9701  25.4019 31.7878  150.4968
128 0.7,1.3 27.9266  10.2982  20.9701  25.4019 31.7878  150.4968
167 0.6,1.4 27.9266  10.2982  20.9701  25.4019  31.7878  150.4968
CXLT 86 0.8,1.2 34.2586  10.9680  26.5616  31.8153  39.0299  47.3269
128 0.7,1.3 35.6924 12.3049  27.0270  32.7474  40.9577 30.1992
167 0.6,1.4 36.2805  13.1204  27.1798  32.9743  41.6377  24.6749
CXRT 86 0.8,1.2 31.2108  10.6210 23.8673  28.6452  35.5908  84.5573
128 0.7,1.3 31.5717  11.1677  23.8923  28.7841  36.0049 74.6089
167 0.6,1.4 31.6768 11.4019 23.8933  28.8077  36.0561 71.2892
vCe 86 0.8,1.2 22.9491 7.2992 17.7665 21.2982 26.0928  316.1882
128 0.7,1.3 23.4417 8.0621 17.8222 21.4521 26.5423  289.5784
167 0.6,1.4 23.5835 8.3822 17.8222 21.4761 26.6604  280.8594
vP 86 0.8,1.2 28.4255 8.5915 22.2635 26.6314  32.5155 161.1815
128 0.7,1.3 30.1422 10.2282 22.8413  27.8142  34.7325 113.4245
167 0.6,1.4 30.8299  11.1983  23.0182  28.0057 35.4366  95.2843
AK =1
VIX 422 0.8,1.2 36.1206 11.2236  28.1317  33.7444  41.3216 31.0087
629 0.7,1.3 37.6563  12.8712  28.6170 34.6308  43.1692 17.3348
1239 0.6,1.4 38.2166  13.7685  28.6902  34.8077  43.7299 14.3939
MFIV 422 0.8,1.2 36.8572 11.1951 28.8665  34.4344  42.1000 26.8896
629 0.7,1.3 38.5635  12.9668  29.4599  35.5384  44.2100 14.9503
1239 0.6,1.4 39.2117  13.9525 29.5504  35.7789  44.8443 13.1920
CXNT 422 0.8,1.2 27.6792  10.2485  20.7987  25.1750  31.5773  156.4750
629 0.7,1.3 27.6792  10.2485  20.7987  25.1750  31.5773  156.4750
1239 0.6,1.4 27.6792  10.2485  20.7987  25.1750  31.5773  156.4750
CXLT 422 0.8,1.2 34.0638 10.8394 26.4723 31.6732  38.8431 50.1150
629 0.7,1.3 35.5644  12.2193  26.9314  32.6610 40.8070  31.4616
1239 0.6,1.4 36.1791  13.0634  27.0938  32.8640 41.5633  25.4219
CXRT 422 0.8,1.2 31.0706  10.5707  23.7608 28.5266  35.5119  87.1688
629 0.7,1.3 31.4414  11.1297 23.8061 28.6810  35.9053 76.8183
1239 0.6,1.4 31.5491  11.3691 23.8061  28.6948  35.9247 73.3751
vc 422 0.8,1.2 23.2036 7.3257 18.0626  21.5130  26.4031  307.5802
629 0.7,1.3 23.7030 8.0965 18.0836  21.6831 26.9452 280.9600
1239 0.6,1.4 23.8465 8.4200 18.0880  21.6981 27.0022 272.2445
VP 422 0.8,1.2 28.5067  8.5052 22.4153  26.7591  32.5390  160.2375
629 0.7,1.3 30.2902  10.1843  23.0286  28.0615  34.8485  110.9583
1239 0.6,1.4 31.0050 11.1826  23.1910 28.3104 35.7387  92.3282




Table 3

Simulation study: out-of-sample forecast losses. This table reports the ratio of the losses (MSE
and R?) for different predictive regressions for future monthly realized volatility and logarithm
of volatility, respectively. Different strike price increments and ranges of strikes are considered
here. Data are obtained for every trading day and the forecasts are based on re-estimating the
parameters of the different regressions each day with a fixed length Rolling Window (RW) made
up of the previous 1000 days. Ranking is obtained for different cases of strike increments and
represents the average volatility forecasting performances of implied volatilities across different
strike ranges.

MSE Ranking Out-of-sample RZ (%) Ranking
Volatility Log Volatility Volatility Log Volatility Volatility Log Volatility Volatility Log Volatility

VIXTheo 0.0387 0.0190 74.5090 76.8332

TUL—1 0.0558 0.0287 63.2640 65.1061

AK =5 Nk Moneyness Range

VIX 86 0.8,1.2 0.0568 0.0269 5 5 62.6171 67.2937 5 5
128 0.7,1.3 0.0553 0.0267 63.5527 67.5413
167 0.6,1.4 0.0544 0.0265 64.2093 67.7660

MFIV 86 0.8,1.2 0.0564 0.0266 4 4 62.8468 67.6101 4 4
128 0.7,1.3 0.0551 0.0265 63.7494 67.7624
167 0.6,1.4 0.0541 0.0264 64.3901 67.9136

CXNT 86 0.8,1.2 0.0519 0.0258 3 3 65.8194 68.6326 3 3
128 0.7,1.3 0.0519 0.0258 65.8194 68.6326
167 0.6,1.4 0.0519 0.0258 65.8194 68.6326

CXLT 86 0.8,1.2 0.0577 0.0280 6 6 62.0262 65.9059 6 6
128 0.7,1.3 0.0582 0.0283 61.6691 65.5402
167 0.6,1.4 0.0578 0.0283 61.9562 65.5705

CXRT 86 0.8,1.2 0.0504 0.0244 2 2 66.8396 70.3366 2 2
128 0.7,1.3 0.0489 0.0239 67.7939 70.9327
167 0.6,1.4 0.0483 0.0238 68.1703 71.0847

vc 86 0.8,1.2 0.0496 0.0231 1 1 67.3493 71.8709 1 1
128 0.7,1.3 0.0467 0.0224 69.2267 72.6933
167 0.6,1.4 0.0457 0.0223 69.9102 72.8904

VP 86 0.8,1.2 0.0662 0.0311 7 7 56.3911 62.1576 7 7
128 0.7,1.3 0.0651 0.0310 57.1374 62.2606
167 0.6,1.4 0.0635 0.0307 58.1738 62.6052

AK =1

VIX 422 0.8,1.2 0.0574 0.0270 5 5 62.1791 67.1571 5 5
629 0.7,1.3 0.0556 0.0267 63.3723 67.4821
1239 0.6,1.4 0.0545 0.0265 64.1190 67.7361

MFIV 422 0.8,1.2 0.0569 0.0267 4 4 62.5251 67.5176 4 4
629 0.7,1.3 0.0553 0.0265 63.6167 67.7243
1239 0.6,1.4 0.0542 0.0264 64.3310 67.9012

CXNT 422 0.8,1.2 0.0522 0.0259 3 3 65.6335 68.4597 3 3
629 0.7,1.3 0.0522 0.0259 65.6335 68.4597
1239 0.6,1.4 0.0522 0.0259 65.6335 68.4597

CXLT 422 0.8,1.2 0.0582 0.0281 6 6 61.6776 65.7394 6 6
629 0.7,1.3 0.0586 0.0284 61.4355 65.4086
1239 0.6,1.4 0.0580 0.0284 61.8023 65.4760

CXRT 422 0.8,1.2 0.0505 0.0244 2 2 66.7138 70.2520 2 2
629 0.7,1.3 0.0490 0.0239 67.7127 70.8682
1239 0.6,1.4 0.0484 0.0238 68.1058 71.0259

vCc 422 0.8,1.2 0.0487 0.0227 1 1 67.9035 72.3489 1 1
629 0.7,1.3 0.0460 0.0221 69.7165 73.1407
1239 0.6,1.4 0.0450 0.0219 70.3702 73.3265

VP 422 0.8,1.2 0.0664 0.0310 7 7 56.2748 62.3124 7 7
629 0.7,1.3 0.0649 0.0308 57.2576 62.4827
1239 0.6,1.4 0.0632 0.0305 58.3920 62.8674
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Table 5

Simulation study: multi-period return prediction. This table shows the adjusted R? from the daily
regressions of the h-period returns on the current implied variance levels. Ranking is obtained
for different cases of strike increments and represents the average ability of implied volatilities for
predicting returns across different strike ranges.

Return Predictability (Adj RZ %) Ranking
30-day 60-day 30-day  60-day
VIXTheo 0.7611 7.4725
AK =5 Ng Moneyness Range

VIX 86 0.8,1.2 1.4033 8.5224 4 4
128 0.7,1.3 1.2048 8.3069
167 0.6,1.4 1.0217 8.0018

MFIV 86 0.8,1.2 1.4689 8.6001 2 3
128 0.7,1.3 1.2625 8.3965
167 0.6,1.4 1.0648 8.0852

CXNT 86 0.8,1.2 0.7559 7.4092 7 7
128 0.7,1.3 0.7559 7.4092
167 0.6,1.4 0.7559 7.4092

CXLT 86 0.8,1.2 1.1687 8.1426 5 5
128 0.7,1.3 1.0992 8.0754
167 0.6,1.4 0.9731 7.8621

CXRT 86 0.8,1.2 1.0860 8.1113 6 6
128 0.7,1.3 0.9967 7.9809
167 0.6,1.4 0.9164 7.8265

vc 86 0.8,1.2 1.6091 8.8549 1 1
128 0.7,1.3 1.3245 8.5471
167 0.6,1.4 1.1319 8.2404

VP 86 0.8,1.2 1.4520 8.6069 3 2
128 0.7,1.3 1.2745 8.4381
167 0.6,1.4 1.0611 8.1023

AK=1 VIX 422 0.8,1.2 1.4875 8.6919 4 4
629 0.7,1.3 1.2448 8.3953
1239 0.6,1.4 1.0541 8.0624

MFIV 422 0.8,1.2 1.5257 8.7259 2 2
629 0.7,1.3 1.2881 8.4596
1239 0.6,1.4 1.0907 8.1320

CXNT 422 0.8,1.2 0.7798 7.4631 7 7
629 0.7,1.3 0.7798 7.4631
1239 0.6,1.4 0.7798 7.4631

CXLT 422 0.8,1.2 1.2324 8.2971 5 5
629 0.7,1.3 1.1336 8.1630
1239 0.6,1.4 1.0068 7.9322

CXRT 422 0.8,1.2 1.1023 8.1470 6 6
629 0.7,1.3 1.0128 8.0122
1239 0.6,1.4 0.9320 7.8527

vc 422 0.8,1.2 1.4980 8.8190 3 1
629 0.7,1.3 1.2473 8.5171
1239 0.6,1.4 1.0707 8.2103

VP 422 0.8,1.2 1.5611 8.6914 1 3
629 0.7,1.3 1.3228 8.4411
1239 0.6,1.4 1.1071 8.0958
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