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Abstract

This paper evaluates the performance of various measures of model-free implied

volatility in predicting returns and realized volatility. The critical role of the out-of-the

money call options is highlighted through an investigation of the relevance of different

components of the model-free implied volatility. The Monte Carlo simulations show

that: first, volatility forecasting performance of various measures can be enhanced

by employing an interpolation-extrapolation technique; second, for most measures

considered, gains in their predictive power for future returns can be obtained by

implementing an interpolation procedure. An empirical application using SPX options

recorded from 2003 to 2013 further illustrates these claims.
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1 Introduction

In an effi cient market, the option price embodies all available useful information about future

movements of the underlying asset. Hence, traders and hedge fund managers are primarily

interested in option-implied volatility when making financial decisions. As a natural forecast

of return variation over the remaining life of the relevant option, option-implied volatility

has been frequently used in forecasting future volatility, see Poon & Granger (2003) for an

extensive review of the studies on this topic. As opposed to the Black-Scholes (BS) implied

volatility, model-free option-implied volatilities have gained substantial popularity because,

relying upon no particular parametric model, they avoid potential mis-specification problems.

See, for example, Britten-Jones & Neuberger (2000), Carr & Wu (2006) and Taylor et al.

(2010).

One of the most widely adopted measures of model-free option-implied volatility is the

V IX volatility index, disseminated by the Chicago Board of Options Exchange (CBOE).

The V IX provides a measure of the expected value of the S&P 500 return variation under

the risk-neutral measure and is designed to closely mimic the model-free implied volatility

(MFIV ). Derived by Britten-Jones & Neuberger (2000), theMFIV is defined as an integral

of cross-section of out-of-the money (OTM) European style put and call options over an

infinite range of strikes for the given maturity. Jiang & Tian (2005) show that the MFIV

is a more effi cient forecast for future realized volatility than the BS implied volatility and

the historical realized volatility. However, Andersen & Bondarenko (2007) argue that the

MFIV and V IX are biased forecasts of future volatility since they contain non-trivial and

time-varying risk premiums. As a more important part of their empirical study, Andersen

& Bondarenko (2007) investigate the properties of the corridor implied volatility index

(CX), which is obtained from the MFIV by truncating the integration domain between

two barriers. Being less sensitive to variation in the market variance risk premium, the CX
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with the narrowest corridor width is found to dominate other implied volatility measures

in the work of Andersen & Bondarenko (2007). Another advantage of the CX is that it

is constructed only over intervals of the risk-neutral density (RND) where price quotes are

directly observable. By contrast, the computation requirements for deriving the MFIV are

not satisfied by the existing data as options are traded only over a finite range of strikes.

Andersen et al. (2015) further improve the construction of the CX by adopting the concept

of an invariant coverage across time, which ensures that the CX is coherent in the time

series dimension. As compared with the V IX, which is based upon strongly time-varying

coverage of the tails of the RND, the CX uses a consistent range of strikes, which serves as

a more accurate volatility indicator over time.

In addition to the use of implied volatilities in forecasting future volatility, prior studies

also indicate that the V IX may carry some predictive power for future returns on stock

market indices. For example, Giot (2005) finds that future returns are always positive

(negative) for very high (low) levels of the V IX. This accords with the work of Guo &

Whitelaw (2006) who provide evidence for the positive relationship between market returns

and implied volatilities. The positive relationship between the V IX and future returns is

also documented in Banerjee et al. (2007) who suggest that both levels and innovations of

the V IX are significantly related to future returns. That finding is indicative of a negative

volatility risk premium, which is consistent with Ang et al. (2006) where stocks with high past

sensitivities to the innovation in the V IX display on average future decreasing returns. The

evidence that the V IX is a priced risk factor in the time series of returns helps to explain why

the V IX may exhibit predictive power for future returns. Although a substantial empirical

literature is devoted to the investigation of risk-return relations (see, e.g., the discussion in

Rossi & Timmermann (2010), and the many references therein), most rely on the V IX as

a directly observable proxy for risk. Other measures of model-free option-implied volatility

are rarely considered.
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Despite the increasing popularity of the V IX, measurement errors in its construction have

been noted by Jiang & Tian (2005). The common problem inherent in the computation of

the V IX as well as other measures of model-free implied volatility is that only a discrete

set of strikes is actually traded in the market and that very low and high strikes are usually

absent. To account for measurement errors induced by the limited number of strikes, Jiang

& Tian (2005) apply the cubic spline method to interpolate between existing strikes and

exploit a flat extrapolation scheme to infer option prices beyond the truncation point.

Andersen & Bondarenko (2007) address the issue induced by the discrete set of strikes via

the positive convolution approximation method proposed by Bondarenko (2003). Although

interpolation and extrapolation techniques are widely accepted, it remains unclear how such

techniques affect the performance of implied volatilities in predicting future returns and

realized volatility. In addition, there appears to be no consensus on the roles played by the

OTM call and put options in the forecast of future volatility and returns. Jackwerth (2000),

Jones (2006) and Bates (2008) suggest that the OTM put options may be irrelevant to known

risk factors affecting stock returns. Using a cubic spline interpolation and flat extrapolation

methods, Dotsis & Vlastakis (2016) also find that the OTM put options, especially deep

OTM puts, do not contain important information with respect to equity volatility risk.

They also show that the OTM call options subsume all useful information embedded in the

OTM puts for forecasting future realized volatility. However, Andersen et al. (2015) show

that the left tail risk, driving a substantial part of the OTM put option dynamics, exhibits

strong predictive power for future excess market returns over long horizons.

Against this background, this study examines the performance of various model-free

option-implied volatilities in predicting future returns and volatility and contribute to the

existing literature in the following ways. First, this paper is among the first to provide

simulation evidence to justify the use of the interpolation/extrapolation procedure for better

forecasting performance of implied volatilities. The usefulness of this procedure is verified
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in both the simulation and empirical studies. The adoption of a stochastic volatility model

with both jumps and volatility risk premium in the present study mimics more closely the

observed data dynamics. This can be seen as an extension of the work of Zhang et al. (2013)

where a simple square-root model of Cox et al. (1985) is employed to investigate the number

of options upon the information content of the MFIV in an in-sample analysis. Distinct

from Zhang et al. (2013), this paper conducts comprehensive out-of-sample (OOS) volatility

forecasts made by different implied volatility measures including the MFIV .

Second, to ascertain the relevance of the OTM call and put options, this paper considers

implied volatility measures constructed entirely from the cross-section of OTM put (call)

options and measures which discard the deep OTM put (call) options. This is achieved

by splitting the MFIV into different components with the use of different intervals of the

cross-section of OTM put and call option prices. Similar constructions of implied volatilities

are conducted in Dotsis & Vlastakis (2016) who examine the price of volatility risk in the

cross-section of stock returns. With a different focus from that of Dotsis & Vlastakis (2016),

the present paper compares the fraction of the time-series variation in future returns that

are explained by various measures of implied volatility. Return predictability provided by

implied volatilities is investigated in the pre- and post-crisis periods, respectively. The impact

of the recent financial crisis is accounted for since the crisis represents an informative period

during which uncertainty and risk aversion may have been more evident than the non-crisis

period, see Hilal et al. (2011) and Bates (2012).

A preview of the main findings of this study is as follows. Simulation results show that,

with a wider range of strikes upon which model-free option-implied volatilities are based,

the OOS volatility forecast becomes more accurate while returns tend to be less predictable.

In addition, a finer partition of strikes usually leads to greater predictive power of implied

volatilities for future returns. These findings warrant the application of an interpolation

and extrapolation scheme in the practice of volatility forecast and an interpolation method
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only in return predictions. In the empirical study using SPX options from 2003 to 2013, the

aforementioned procedure, i.e. interpolation/extrapolation methods, significantly improves

the performance of different measures of implied volatility considered in the OOS volatility

forecast and gives rise to higher return predictability for most measures in the post-crisis

period. With the use of this procedure, the OTM SPX call options substantially dominate

the OTM put options with regard to their forecasting performance. The empirical findings

outlined above are in accordance with the simulation evidence. Furthermore, when measures

of implied volatility are derived from the listed options only, the superiority of the OTM SPX

put options over the OTM call options is noted in volatility forecast and post-crisis return

predictions.

The rest of this paper is organized as follows. Section 2 provides the construction of

various model-free option-implied volatility measures and realized volatility adopted in this

study. Section 3 outlines the techniques adopted to address measurement errors in the

construction of various implied volatilities. Section 4 presents the design and settings of the

Monte Carlo study along with the results. Section 5 describes the data and Section 6 reports

the empirical results. Conclusion is provided in Section 7.

2 Construction of Volatility Measures

This section provides an outline of the construction of various measures of volatility. Section

2.1 gives an introduction of the MFIV and its components derived from OTM calls and

OTM puts, respectively. The V IX index is then reviewed as a close approximation of the

MFIV . Section 2.2 discusses the computation of model-free corridor implied volatilities

where three different segments of the cross-section of OTM put and call option prices are

adopted. Finally, in Section 2.3, the high-frequency realized volatility is defined, which is

used to obtain an accurate measure of the ex-post return variation of the underlying asset.
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2.1 Model-Free Implied Volatility and VIX

The concept of theMFIV is derived by Britten-Jones & Neuberger (2000). Its computation

for a given maturity involves market prices for a continuum of European-style options with

strikes from zero to infinity, which takes the form

MFIV =

√
2

τ
erτ
[∫ F

0

P (τ ,K)

K2
dK +

∫ ∞
F

C(τ ,K)

K2
dK

]
(1)

where r is the annualized risk-free interest rate as measured by the corresponding U.S.

Treasury bill rate, τ is time-to-maturity measured in annual units, F is the forward price

for transaction at maturity τ , P (τ ,K) and C(τ ,K) are the mid-quotes for European put

and call options with strike price K and maturity τ . By construction, only OTM options

(call if K > F and put otherwise) are taken into account. Motivated by Dotsis & Vlastakis

(2016), the MFIV can be further divided into two components; i.e., that from the OTM

call options (V C) and that from the OTM put options (V P ), which are given by

V C =

√
2

τ
erτ
∫ ∞
F

C(τ ,K)

K2
dK (2)

and

V P =

√
2

τ
erτ
∫ F

0

P (τ ,K)

K2
dK (3)

where MFIV 2 = V C2 + V P 2.

The V IX index is based on the idea of fair value of future volatility developed by

Demeterfi et al. (1999), which is conceptually equivalent to the MFIV in equation (1)

as shown by Jiang & Tian (2007). The general formula for computation of the V IX index

is given by

V IX =

√
2

τ

∑
i

∆Ki

K2
i

erτQ(τ ,Ki)−
1

τ
(
F

K0

− 1)2 (4)

where τ = 30/365 is the option maturity, Ki is the strike price of the ith OTM option in the
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calculation1, K0 is the first strike price below the forward index level F (K0 ≤ F ), Q(τ , Ki)

is the midpoint of the latest available bid and ask prices of the OTM option at strike Ki,

and ∆Ki stands for the strike price interval as ∆Ki = (Ki+1 −Ki−1)/2.

2.2 Corridor Implied Volatility

The corridor implied volatility index (CX) is initially analyzed in the empirical work of

Andersen & Bondarenko (2007). Unlike theMFIV , which requires the availability of options

with strikes from zero to infinity, the CX only captures volatility over a certain segment of

the underlying RND. For a fixed coverage [BL, BH ], 0 ≤ BL ≤ BH ≤ ∞, the CX is computed

as

CX =

√
2erτ

τ

∫ BH

BL

M(K)

K2
dK (5)

where the time to maturity τ = 30 days and M(K) stands for the minimum of the put and

call prices at current time such as

M(K) = min(P (τ ,K), C(τ ,K))

In order to ensure an invariant portion of the strike range considered in the CX across

time, Andersen et al. (2015) propose the ratio R(K) to determine the integration barriers of

the CX in equation (5) using directly observable prices of OTM call and put options only,

R(K) =
P (τ ,K)

P (τ ,K) + C(τ ,K)
(6)

For given lower and upper percentiles p, q ∈ (0, 1), BL = Kp = R−1(p) and BH = K1−q =

R−1(1− q). In the subsequent simulation and empirical studies, three measures of the CX

computed from equation (5) are used where [BL, BH ] takes the values [R−1(0.25), R−1(0.75)],

[R−1(0), R−1(0.75)] and [R−1(0.25), R−1(1)]. These implied volatilities are respectively

represented by CXNT , CXLT and CXRT . The definitions of implied volatilities considered
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in this paper are listed in Table (1). All the measures are computed from options across

two nearest maturities (less than 30 days and greater than 30 days) and the 30-day implied

volatilities is computed by interpolating between the two separate maturities.

2.3 Realized Volatility

In addition to implied volatilities, this study employs monthly realized volatility and historical

volatility. A simple realized variance estimator proposed by Barndorff-Nielsen & Shephard

(2002) is employed, which is equal to the sum of intraday squared returns

rvt =
M∑
j=1

r2
t,j (7)

where rt,j stands for intraday returns within each 5-minute interval. The realized variance

is then calculated over a period of one month in order to match the maturities of the

corresponding implied volatilities

RVt =
1

22

22∑
i=1

rvt+i (8)

The measure RVt is recorded daily but contains monthly (future) variance. The substantial

serial correlation induced by the construction of RVt in equation (8) will be accounted for in

the subsequent analysis. Furthermore, the realized variance on the latest trading day, rvt−1,

is used as a proxy for historical variance, which may contain useful information for future

return variation.

3 Error Adjustment Mechanisms

As introduced in Section 2, the MFIV is computed as an integral of option prices over an

infinite range of strikes; and all the measures of implied volatility that are considered require

numerical integration using the trapezoidal rule. However, only a limited number of strikes
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are actually traded in the market, which may result in inaccuracies in the computation of

the option-implied volatilities, so further affecting their performance in predicting future

volatility and returns. Specifically, very low and high strikes are usually not available in

practice, which leads to the so-called truncation errors; and the set of discrete strikes can be

rather sparse, which gives rise to the discretization errors. For more details2, see Jiang & Tian

(2005). To account for the measurement errors discussed above, the use of an interpolation

and extrapolation scheme is essential. The interpolation of option prices within the boundary

of actual strikes is relatively straightforward, which can be carried by fitting a natural cubic

spline as in the work of Jiang & Tian (2005). The major challenge is how to extrapolate

option prices towards the tails of the RND with precision. The following section provides an

introduction of the extrapolation procedure adopted in the present paper.

In line with Andersen & Bondarenko (2007), this paper estimates the RND using a

nonparametric approach, the so-called positive convolution approximation (PCA) proposed

by Bondarenko (2003) and then extracts prices beyond the truncation point from the estimated

RND3. The PCA method for estimating the RND offers several benefits: (1) it guarantees

no-arbitrage density estimates; (2) it avoids overfitting while allowing for small samples; (3)

it involves simple computation algorithm only; (4) it is insensitive to the data generating

process. The main idea of the PCA is to construct a set of admissible densities containing

functions which can be expressed as a convolution of a fixed positive kernel and another

density. The optimal density is that obtained from the admissible densities which generates

the best fit to the listed option prices. The sub-section below briefly describes the RND

estimation using the PCA approach.

The relationship between the RND and call/put options can be expressed as

h0(Sτ ) =
1

e
∫ τ
0 rsds

∂2C(τ ,K)

∂K2

∣∣∣∣
K=Sτ

=
1

e
∫ τ
0 rsds

∂2P (τ ,K)

∂K2

∣∣∣∣
K=Sτ

(9)
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where Sτ represents the value of an underlying asset on trading date τ and rs is the risk-free

rate. For simplicity, it is assumed that the asset pays no dividends and rs = 0 and thus

e
∫ τ
0 rsds = 1. In the PCA approach, the first step is to construct the approximating set Wh

representing all admissible or candidate densities, from which the optimal density is selected.

Let Ld denote the set of all probability densities, i.e., nonnegative functions that integrate

to one. For a basis density φ(K) ∈ Ld, a new density φm(K) := 1
m
φ(K

m
) can be obtained by

smoothing φ(K) with the bandwidth parameter m. Once φm(K) is fixed, the approximating

set Wm = Wφm is given by

Wm :=
{
g ∈ Ld

∣∣ g = φm ∗ µ, for µ ∈ Ld
}

(10)

which contains functions g, expressed as a convolution of φm with positive functions µ.

Although the space Ld accommodates very general shapes of densities, Wm is made up of

only smooth and well-behaved densities. If functions h (the true RND) and g are both

integrable, the following equation holds.

h ∗ g :=

∫ ∞
−∞

h(K − y)g(y)dy (11)

An estimator of the RND is the function of ĥ(K) ∈ Wm which provides the best fit to a

certain cross-section of options {Pi}, i.e. it achieves the objective function as follows

Minimize
ĥ∈Wm

n∑
i=1

(
Pi −D−2ĥ (Ki)

)2

(12)

where D−2g(K) represents the second integral of g(K) such as

D−2g(K) :=

∫ K

−∞
(

∫ y

−∞
g(z)dz)dy (13)

The optimization problem in equation (12) can be solved numerically by discretizing the
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admissible set Wm as follows

Minimize
ĥ∈W∆z

m ([v,w])

n∑
i=1

(
Pi −D−2ĥ (Ki)

)2

(14)

with ∆z = 0.5m, where [v, w] is a large but finite interval on which the underlying density

h is approximated and ∆z is the grid step. Further details on the construction of the PCA

estimator can be found in Bondarenko (2003). Once the estimated RND is obtained, option

prices can be inferred for a continuum of strikes through the relationship in equation (9).

4 Monte Carlo Simulation

This section presents a Monte Carlo simulation study where different numbers of option

prices are considered as the strike range and increment vary. The aim of this experiment

is (i) to ascertain the impact of discrete strike prices on the performance of various implied

volatility measures in forecasting future volatility and returns and (ii) to provide guidance

for the use of interpolation and extrapolation technique in forecasting.

4.1 Simulation Design

The simulation exercise conducted in the present paper is motivated by Zhang et al. (2013)

who examine the effect of the number of strikes on the information content of the MFIV

using a simple model without jumps and volatility risk premium. In a departure from

Zhang et al. (2013), this study concentrates on the OOS volatility forecasting performance

of implied volatilities and the predictive power of implied volatilities for future returns. A

jump-diffusion model adopted by Duan & Yeh (2010) is used to simulate the asset price and
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the latent stochastic volatility by

d lnSt = [r − q + δsVt −
Vt
2

]dt+
√
VtdWt + JtdNt − λµJdt (15)

dVt = κ(θ − Vt)dt+ υV γ
t dBt

where Wt and Bt are correlated Wiener processes, having correlation coeffi cient equal to ρ;

Nt denotes a Poisson process with intensity λ, which is independent of Wt and Bt; Jt is an

independent normal random variable with mean µJ and standard deviation σJ . The price,

St, and volatility, Vt, processes are dependent through the correlated diffusive terms—Wt and

Bt. The other parameters, r, q and δs are the risk-free rate, the dividend yield and the asset

risk premium, respectively4.

Option valuation is implemented using the corresponding model under the risk-neutral

probability measure given by

d lnSt = [r − q − Vt
2

+ λ∗(µ∗J + 1− eµ∗J+σ2
J )]dt+

√
VtdW

∗
t + J∗t dN

∗
t − λ∗µ∗Jdt (16)

dVt = (κθ − κ∗Vt)dt+ υV γ
t dB

∗
t

where κ∗ = κ+ δV and B∗t = Bt+ δV /υ
∫ t

0
V 1−γ
s ds with δV being the volatility risk premium.

Again,W ∗
t and B

∗
t are the Wiener processes correlated with the coeffi cient ρ; N

∗
t is a Poisson

process with intensity λ∗ independent of W ∗
t and B∗t ; the independent normal random

variable J∗t has a new mean µ
∗
J but an unchanged standard deviation σJ . The empirical

martingales simulation method5 developed by Duan & Simonato (1998) is used to compute

option prices, given that there is no closed-form option pricing formula for equation (16).

In addition, the theoretical V IX index, represented by V IXTheo, is computed by following

equation (13) from the work of Duan & Yeh (2010).

This study assumes one year has 252 trading days and that one day consists of 6.5 hours

of open trading, as is the case on the NYSE and NASDAQ. A sparse sampling at a frequency
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of once every 5 minutes is used in this simulation study and therefore one day can be divided

up into 78 intraday intervals, i.e., 6.5×3600
300

= 78. A daily series is extracted by sampling

once every 78 data points. The asset price and the latent stochastic volatility are simulated

according to the Euler discretized version6 of equation (15). The simulation is simplified by

assuming no dividends and a zero interest rate. The initial stock price and latent stochastic

volatility7 are set respectively as 1000 and 0.08. The sample size of daily series is 2000. The

parameter values are similar to those adopted by Duan & Yeh (2010).

κ θ λ µJ(%) σJ(%) υ ρ γ δs κ∗ φ∗(%) δV δJ(%)

2.500 0.080 55.000 0.300 0.500 1.400 -0.800 0.900 0.420 -13.000 0.035 -15.500 -0.059

Option prices are computed corresponding to two nearby maturities, 23 and 37 days. This

experiment considers two fixed strike price increments (∆K=5 and ∆K=1) and attempts

with different moneyness ranges ([0.8, 1.2], [0.7, 1.3] and [0.6, 1.4]).

4.2 Simulation Results

Table (2) reports the summary statistics of various volatility measures. It is evident that the

mean of the implied volatility estimates increases with the moneyness range. This accords

with the work of Jiang & Tian (2007), where the truncation errors usually result in an

underestimation of the true volatility. The mean of the V IX, MFIV , CXNT , CXLT

and CXRT decreases as the strike increment becomes smaller, which is consistent with

the finding of overestimation of the underlying volatility induced by discretization errors in

Jiang & Tian (2007). For all measures considered, the mean squared error8 (MSE) decreases

with the strike range. Table (2) also shows that measures of implied volatility become more

volatile with the range of strikes while they, except the V C, tend to appear less volatile as

the partition of strikes is smaller.

To evaluate the OOS volatility forecasting performance of various option-implied volatilities,
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a univariate Mincer-Zarnowitz regression is adopted as follows

yt+1 = αj + βjxj,t + µj,t+1 (17)

where yt+1 represents the realized volatility containing the information of month t + 1 and

where xj,t indicates the volatility estimate j among all candidate estimates. To obtain

OOS forecasts of the realized volatility measure, this study employs a rolling window of

1000 observations for the one-step-ahead forecasts. The daily realized volatility in equation

(8) contains substantial induced serial correlation, which seriously affects the standard

errors of the coeffi cient estimates. To overcome this problem, the Bartlett/Newey-West

heteroskedasticity consistent covariance matrix estimator with 44 lags is used, see Andersen

et al. (2007). Regressions are examined for both volatility and logarithms of volatility. The

forecasts are evaluated by the MSE, which is robust to the presence of noise in the volatility

proxy, see Patton (2011). The OOS R2 of the Mincer-Zarnowitz regression is also taken

into account, which corrects for bias by reflecting the variance but not the bias-squared

component of the MSE.

Forecasting results9 are reported in Table (3). Clearly, the V IXTheo dominates all the

other candidate measures in terms of the volatility forecasting performance10. Forecasting

performance increases with the strike range for all the measures, except that of the CXNT

and CXLT . It is not surprising that the CXNT performs the same for different moneyness

ranges since the options within the barriers BL = K0.25 and BH = K0.75 are not affected by

the variation in the strike range. The worse performance of the CXLT with a wider range

of strikes may be attributed to the poor forecasting power of the deep OTM put options

for future volatility. In addition, Table (3) shows that the strike increment ∆K tends to

have a negative impact on the volatility forecasting power of the V IX, MFIV , CXNT ,

CXLT and CXRT but exerts a positive impact on that of the V C and V P . Overall, the
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effect of the strike range on the forecasting performance is considerable and that of the

strike increment is negligible. The use of different loss functions, i.e. MSE and OOS R2,

gives the identical conclusion in terms of the role of the strike range and increment in the

forecasting practice as well as the ranking of forecast performance among implied volatility

candidates. These findings motivate the application of an extrapolation procedure to extend

the tails of the RND in an attempt to improve the volatility forecast accuracy. On the other

hand, an interpolation method is considered necessary since the number of listed options

may be rather small in practice. The lack of observed options may lead to inaccuracies in

the estimation of the RND using the PCA method and thus result in failure in inferring the

options beyond the truncation points. Moreover, the critical role of the OTM call options is

noted in Table (3) where the V C serves as the top forecaster and the CXRT substantially

outperforms the CXLT .

The next step is to apply the natural cubic spline to interpolate between available strikes

and to implement the PCA method in order to obtain the option values beyond the range

of listed strikes. The corresponding measures computed by options with the use of such

procedure are prefixed by CP -. To examine the performance of the CP -measures in the

forecasting practice for future volatility, this study focuses on the case of ∆K = 5 and

moneyness range=[0.8, 1.2] only. Specifically, a step of one unit of the index is used to

numerically compute the integral in the interpolation procedure and four standard deviations

from forward prices are adopted as an integration range11. The interval of strikes that

are needed to extrapolate is ([F0 − 4SD, Kmin] and [Kmax, F0 + 4SD]) where Kmin(Kmax)

represents the minimum (maximum) listed strike price in the market. Table (4) reports

the volatility forecast performance, measured by both the MSE and OOS R2, of various

implied volatility measures and their corresponding CP -measures. The values in parentheses

below the MSE are the mean difference of squared forecasting errors between the original

implied volatility measure and its corresponding CP -measure. Numbers in bold indicate
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statistically significant differences at 5% by the Diebold-Mariano test. Columns 1-4 show

that the CP -MFIV , CP -CXRT , CP -V C and CP -V P achieve significant gains in the

forecasting performance for future volatility and that the ranking of forecasting power of the

CP -measures remains unchanged from that of the original measures. Columns 5-8 present

values of the OOS R2 where the percentage changes of the R2 are represented by the numbers

in parentheses and where the gains of the CP -measures are indicated in bold. With the single

exception of CXNT , the use of the interpolation and extrapolation method brings higher

OOS R2 for all the measures considered.

Another important application of the implied volatility is to predict future market returns.

As in the work of Banerjee et al. (2007), the 30- and 60-day future returns are regressed on

daily levels12 of the implied variance estimates as follows

1

h

h∑
j=1

rt+(j−1),t+j = α1 + β1vt + ut,t+h (18)

where vt indicates various measures of implied variance levels. To account for residual

correlation caused by overlapping returns, this study considers the Newey-West standard

errors. The adjusted R2 is employed to indicate the degree of return predictability; the

values are reported in Table (5). First, results indicate that the return predictions by

implied volatility measures deteriorate with the strike range. Second, with a finer partition

of strikes, return predictive power generally improves, with the one exception of V C. From

this evidence, only the interpolation method, which provides a smaller partition of strikes,

is needed to achieve better return predictions by measures of implied volatility. Consistent

with the work of Andersen et al. (2015), the deep OTM put options dominate the deep

OTM call options in predicting future returns. This is indicated by the higher R2s given

by the CXLT relative to those by the CXRT . In addition, the V C displays the strongest

predictive power for future returns in most cases while the V P serves as the top performer
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only in the case of ∆K = 1 when short horizon is considered. This suggests that OTM call

options exhibit superior predictive power overall to that of the OTM put options for future

returns. This is despite the superiority of the deep OTM puts over the deep OTM calls in

this exercise.

Finally, the cubic spline is applied to achieve a finer partition of strikes in the case

of return predictions. Measures of implied volatility based upon the options using the

interpolation method are prefixed by C-. To examine the effect of the interpolation procedure

on return predictions, this study takes the case of ∆K = 5 and moneyness range=[0.8, 1.2]

as an example and reports the results of the return predictability in Table (6). Gains in the

predictive power for future returns are only observed for C-CXNT , C-CXLT , C-CXRT

over 30-day and 60-day horizons, and for C-V P over 30-day horizon. However, given the

positive impact of the strike increment on return predictions in Table (5), the interpolation

procedure is expected to lead to more evident gains in the predictive power of various implied

volatilities for future returns, where the partition of strikes is often much more sparse, i.e.

greater than 5. Findings in Section 6 confirm this hypothesis.

5 Data

The data sample spans from January 02, 2003—December 31, 2013, encompassing 2769

trading days. Data are taken from several sources. Closing bid and ask SPX option prices

and dividend yield are obtained from Optionmetrics via the WRDS system. High-frequency

data at 5-minute intervals for the SPX13 are collected from the Tick Data Inc.. Daily

one-month and three-month Treasury-bill yields14, taken as the risk-free rates, are extracted

from the Federal Reserve Bulletin. In addition, the average of bid and ask is taken as the

best available measure of the option price to alleviate the bid-ask bounce problem. For the

two nearby maturities, there is an average of 34 out of 97 (63 out of 97) OTM call (put)
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option quotes per day. Two commonly used data filters are applied. First, options with

less than seven days remaining to maturity are excluded. These options may be subject to

problems of liquidity and market microstructure. Second, options violating the boundary

conditions, i.e. with BS implied volatilities below zero or above 100%, are excluded from the

sample. Only OTM options are included since in-the-money options are less liquid and thus

may induce bias into the computation of implied volatilities.

The CBOE calculates the V IX index using option prices updated every five minutes.

However, the Optionmetrics database includes the last daily bid-ask quote only, which might

not correspond to the data published by CBOE for their final end-of-day computation.

Hence, as a more direct benchmark, this paper derives a replicated V IX index, RX, using

the exact CBOE procedure every day. Thereby, it follows the work of Andersen et al.

(2015). The RX provides an equivalent of the V IX using the SPX option prices from

the Optionmetrics data set. It is well known that the CBOE adopts a particular rule to

exclude OTM options: once two puts (calls) with consecutive strikes are found to have zero

bid option prices, no puts (calls) with lower (higher) strikes are taken into account. The

model-free implied volatility index with a broader strike range, denoted by MFIV , can be

obtained by discarding any options with a zero bid price and employing all OTM options

with a positive bid quote, i.e. ignoring the cutoff rule by the CBOE. Hence, the MFIV

provides an upper bound for RX. In addition, the same notations are adopted for the other

candidate measures as those in the simulation study15.

For the 2769 trading days under consideration, the implied volatility measures are not

available at some points due to a variety of reasons, including: (1) the requirement for the

two nearby maturities is not satisfied; (2) the lack of OTM options; (3) boundary conditions

are violated, which reduces the sample size to 2330. The construction of the RVt leads to

the loss of one month at the end. Finally, the sample data under analysis contains 2307

observations, for the period from January 02, 2003 to November 27, 2013.
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6 Empirical Results

This section starts by reporting the basic statistical properties of different volatility measures.

It then investigates their performance as predictors of the future realized volatility and

market returns of the underlying S&P 500 index.

Table (7) reports the summary statistics16 of the monthly volatility measures which are

annualized and recorded daily. First, the unconditional mean of most implied volatility

measures clearly exceeds the mean of the RV . This is consistent with the extant literature

establishing the presence of a substantial positive risk premium for bearing volatility risk.

Note also that the RV has the highest skewness and kurtosis statistics. This erratic nature is

attributed to the unpredictable innovation term of the RV as noted in the work of Andersen

& Bondarenko (2007). Second, the CXLT (V P ) is found to be more volatile and higher

in magnitude than the CXRT (V C) because deep OTM puts generally have the highest

implied volatility, i.e. volatility smile. A similar phenomenon is observed in the case of the

CP -measures. Such evidence is also given in Figure (1) which depicts the time-variation of

various implied volatility candidates. In particular, the RX overlaps the MFIV closely and

thus high similarity is expected in their forecasting power for future realized volatility and

returns. Finally, all volatility measures exhibit substantial persistence with extremely slow

decay in their autocorrelations.

The correlation between various measures of implied volatility and realized volatility

is provided in Table (8). Compared with the measures extracted from the listed options

only, the corresponding CP -measures display higher correlation with the RV . This is

indicative of superior forecasting power for future volatility. Contrast to the work of Zhang

et al. (2013) and Dotsis & Vlastakis (2016) who examine the information content17 of

implied volatilities in in-sample regressions, this study concentrates on their OOS volatility

forecasting performances. The results of the volatility forecasts are presented in Table (9)
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where the forecasting performance is measured by the MSE and OOS R2. Gains achieved by

the CP -measures are generally more evident than those in the simulation study. In almost

all cases, gains in MSE are significant at 5% level. The CXNT dominates other measures

that are based on the existing options. The CP -CXNT ranks best among all CP -measures.

As shown in the upper panel of Table (9), CXLT (V P ) outperforms the CXRT (V C) in

the forecasting of future volatility. This can be attributed to the fact that only a very small

number of OTM calls (34 out of 97 per day on average) are available in this empirical study.

However, in the lower panel, where more options are involved with the use of interpolation

and extrapolation scheme, the OTM call options are superior to the OTM puts, indicated by

the better forecasting performance of the CP -CXRT (CP -V C) than that of the CP -CXLT

(CP -V P ). The evidence for the advantage of the OTM calls is in line with the simulation

result discussed in Section 4. Moreover, conclusions drawn from Table (9) remain intact

when different loss functions for OOS forecasts are considered.

Finally, the return predictability is evaluated by various implied volatilities using equation

(18) where the excess returns are considered as opposed to raw returns. To better understand

the predictive power of implied volatilities for future returns in different market conditions,

this study further splits the data sample into pre-crisis and post-crisis periods. The beginning

of the financial crisis is set at September 01, 2007. As discussed in the simulation study,

only interpolation is needed in the exercise of return predictions. Values of the adjusted R2

implied by different return regressions are reported in Table (10). In the pre-crisis period,

the interpolation improves the return predictive power for 4 out of 12 measures. In the

post-crisis period, this result holds for 7 out of 12 measures. Moreover, the C-V C dominates

all the other implied volatilities in terms of the performance for predicting future returns

in the post-crisis period. The CXRT performs the best in such forecasting practice in the

pre-crisis period. Hence, the results suggest a few good substitutes for the V IX index as

predictors for future returns. In the upper panel of Table (10), where measures are derived
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from the observed option prices only, the OTM call options exhibit greater predictive power

for future returns than the OTM put options in the pre-crisis period while the OTM put

options play a more dominant role in the post-crisis period. In the lower panel, where the

cubic spline is used to interpolate between available strikes, OTM call options outperform

OTM put option in predicting future returns in both pre- and post-crisis periods. This is

consistent with the evidence found in the simulation study.

7 Conclusion

This paper examines the forecasting power of various model-free option-implied volatilities

for future returns and realized volatility via both Monte Carlo simulations and an empirical

study using SPX options. By decomposing the model-free implied volatility into different

components using various segments of the out-of-the money (OTM) put and call options,

this study ascertains the role of each of the components. The paper provides a simulation

study on the impact of the strike range and increment on the predictive power of the implied

volatilities. Results show that: first, the forecast accuracy for future volatility improves

with the range of strikes; second, the strike range exerts a negative impact on the predictive

power of the implied volatilities for future returns; third, a smaller partition of strikes tends

to result in greater performance of implied volatilities in predicting returns. These findings

warrant the application of an interpolation and extrapolation scheme in order to enhance

the forecasting power of implied volatilities for future volatility while only an interpolation

method is needed in the case of return predictions.

In both simulation and empirical studies, the superiority of the aforementioned technique,

i.e. interpolation/extrapolation methods, is observed for most measures considered in forecasts

of future returns and volatility. More interestingly, once this technique is implemented in

the empirical case to overcome the problem of the lack of strikes, the OTM SPX call options
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clearly exhibit higher forecasting power than the OTM put options. This accords with the

evidence from the simulation experiment. On the other hand, the advantages of the OTM

SPX put options are noted when implied volatilities are derived from the listed options only.
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Notes

1The forward price is calculated from at-the-money options according to put-call parity,

F = K∗ + erτ [C(K∗, τ) − P (K∗, τ)] and K∗ is determined as the strike price for which

the difference between the call and put prices is minimal. It is worth noting that, at the

boundaries of strike prices, ∆Ki is adjusted as the difference between the two highest (or

lowest ) strike prices. In addition, at the strike price K0, the option price Qi(τ ,Ki) is

modified to be the average of call and put prices. The CBOE computes the VIX from an

interpolation of two volatility indices with respect to two different maturities: τ lt and τ
u
t .

The VIX index is finally obtained by taking a weighted average of these two VIX measures

based on τ lt and τ
u
t

V IX = 100×
√[

w1(V IX2
t (τ lt)τ

l
t) + w2(V IX2

t (τut )τ
u
t )
]
× 365

30
(19)

where w1 =
τut −τ
τut −τ lt

and w2 =
τ−τ lt
τut −τ lt

so that w1 + w2 = 1.

2Other measurement errors noted by Jiang & Tian (2007) are widely regarded as negligible

and therefore are unlikely to have any material impact on the forecasting performance of

implied volatilities.

3Different ways of interpolation and extrapolation were attempted in this study. For

example, the clamped cubic spline interpolation and the smoothing spline delivered results

similar to those based on the natural cubic spline technique. In addition, attempts were

made to extend the tails of the RND using the flat-line extrapolation and to approximate

the tails of the RND following a generalized extreme value distribution. These methods are

dominated by the use of the PCA approach as introduced in the main text.

4The mean of JtdNt − λµJdt is zero due to the introduction of the term λµJdt, which

serves to center the Poisson innovation.

5The simulation sample path is set to 1000. Put option prices are computed through

put-call parity.

6The asset price and volatility path will be discretized into constant-increment time steps

of∆t = 1
78×252

. The discretization for the price and volatility processes through Euler scheme
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is given by

Si+1 = Si exp[(r − q + δsVi − 0.5Vi)∆t+
√
Vi∆tWt + JtNt − λµJ∆t]

Vi+1 = Vi + (κθ − κVi)∆t+ ρυV γ
i

√
∆tWt +

√
1− ρ2υV γ

i

√
∆tBt

where Jt is i.i.d. N(µJ , σJ), Nt is Poiss(λ∆t),Wt andBt are two Brownian-motion processes,

and ρ represents the instantaneous correlation between the return process and the volatility

process. As introduced in the main text, S0 = 1000 and V0 = 0.08.

7This study also considers a low volatility setting by letting the initial latent stochastic

volatility equal 0.02. Conclusions remain unchanged.

8This is defined as the time-series average of the squared differences between the certain

volatility estimate and the theoretical V IX index, V IXTheo.

9Motivated by the study of Andersen et al. (2015), this study also attempts to construct

the realized variance using the sum of a weighted average of the log and simple squared

returns, represented by RV w. Values of the MSE for the forecasts of RV w remain virtually

unchanged.

10In several situations, the rvt−1 outperforms option-implied volatility estimates, which

seems to contradict the findings of Jiang & Tian (2005) and Andersen & Bondarenko (2007).

The explanation is that this experiment considers the case of very high volatility, i.e. V0 =

0.08. When the initial latent stochastic volatility is set lower, the performance of daily lagged

RV falls as compared with the other implied volatility measures.

11The choice of the truncation point is motivated by the finding of Jiang & Tian (2005)

who show that the truncation errors are virtually zero beyond 3.5SD from F0.

12As a robustness check, the analysis of return predictions is also conducted by regressing

future returns on the innovations of the implied variances, motivated by the work of Banerjee

et al. (2007). Conclusions remain unchanged.

13In order to measure the return variation during the overnight period, the squared

overnight returns, computed as the squared close-to-open logarithmic price change, are added

to the realized variance obtained over the trading day.

14Following the work of Jiang & Tian (2007), the risk-free rate is linearly interpolated
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between these two yields. However, when the maturity is shorter (longer) than one (three)

month, the one-month (three-month) yield is adopted.

15Throughout the empirical work, this paper makes use of the robust forward F as in

the work of Andersen et al. (2015) rather than the "implied" forward F determined by the

CBOE according to put-call parity. However, the CBOE F is still employed in computing

the RX in order to approximate the V IX.

16In the empirical study, the MFIV is computed in the same way as the CBOE VIX in

equation (4) but it ignores the cutoff rule by the CBOE. The V C and V P are computed as

equations (2) and (3). This explains whyMFIV 2 6= V C2 +V P 2 in Table (7). The reason for

the use of the CBOE computation procedure, instead of the traditional MFIV calculatoin

method, is that the latter results in poorer forecasting performance compared with the RX.

All the other measures are computed in the same way as in our simulation study. The results

for the MFIV constructed by equation (1) can be obtained from the author upon request.

17This paper also conducts in-sample regressions to examine the volatility forecasting

ability of various measures of implied volatility. Results show that the interpolation and

extrapolation procedure largely improves the explanatory power of the implied volatilities

in all cases. For the sake of brevity, results are not reported but can be obtained from the

author upon request.
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Table 2
Simulation study: summary Statistics. This table reports the mean, standard deviation, lower
quartile (25%), median (50%), and upper quartile (75%) of daily annualized volatility estimates
over 2000 days. All the values are percentages. The mean squared estimation error, MSE, is the
average of the squared differences between the volatility estimates and the theoretical V IX index,
V IXTheo. The strike price increment is denoted by ∆K and NK refers to the number of available
options on each estimation day.

Mean StdDev 25% 50% 75% MSE
V IXTheo 39.1297 14.3567 29.4363 35.3602 43.8213
RV 23.6841 9.4726 17.2824 21.5069 26.7618

∆K = 5 NK Moneyness Range
V IX 86 [0.8,1.2] 36.2688 11.3866 28.1721 33.8260 41.4539 29.1182

128 [0.7,1.3] 37.7167 12.9644 28.6248 34.6614 43.2231 16.8826
167 [0.6,1.4] 38.2435 13.8219 28.6925 34.8117 43.7395 14.2855

MFIV 86 [0.8,1.2] 36.9711 11.3161 28.8961 34.5055 42.2275 25.6308
128 [0.7,1.3] 38.6101 13.0396 29.4648 35.5447 44.2569 14.7022
167 [0.6,1.4] 39.2324 13.9959 29.5486 35.7811 44.8681 13.1674

CXNT 86 [0.8,1.2] 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
128 [0.7,1.3] 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968
167 [0.6,1.4] 27.9266 10.2982 20.9701 25.4019 31.7878 150.4968

CXLT 86 [0.8,1.2] 34.2586 10.9680 26.5616 31.8153 39.0299 47.3269
128 [0.7,1.3] 35.6924 12.3049 27.0270 32.7474 40.9577 30.1992
167 [0.6,1.4] 36.2805 13.1204 27.1798 32.9743 41.6377 24.6749

CXRT 86 [0.8,1.2] 31.2108 10.6210 23.8673 28.6452 35.5908 84.5573
128 [0.7,1.3] 31.5717 11.1677 23.8923 28.7841 36.0049 74.6089
167 [0.6,1.4] 31.6768 11.4019 23.8933 28.8077 36.0561 71.2892

V C 86 [0.8,1.2] 22.9491 7.2992 17.7665 21.2982 26.0928 316.1882
128 [0.7,1.3] 23.4417 8.0621 17.8222 21.4521 26.5423 289.5784
167 [0.6,1.4] 23.5835 8.3822 17.8222 21.4761 26.6604 280.8594

V P 86 [0.8,1.2] 28.4255 8.5915 22.2635 26.6314 32.5155 161.1815
128 [0.7,1.3] 30.1422 10.2282 22.8413 27.8142 34.7325 113.4245
167 [0.6,1.4] 30.8299 11.1983 23.0182 28.0057 35.4366 95.2843

∆K = 1
V IX 422 [0.8,1.2] 36.1206 11.2236 28.1317 33.7444 41.3216 31.0087

629 [0.7,1.3] 37.6563 12.8712 28.6170 34.6308 43.1692 17.3348
1239 [0.6,1.4] 38.2166 13.7685 28.6902 34.8077 43.7299 14.3939

MFIV 422 [0.8,1.2] 36.8572 11.1951 28.8665 34.4344 42.1000 26.8896
629 [0.7,1.3] 38.5635 12.9668 29.4599 35.5384 44.2100 14.9503
1239 [0.6,1.4] 39.2117 13.9525 29.5504 35.7789 44.8443 13.1920

CXNT 422 [0.8,1.2] 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
629 [0.7,1.3] 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750
1239 [0.6,1.4] 27.6792 10.2485 20.7987 25.1750 31.5773 156.4750

CXLT 422 [0.8,1.2] 34.0638 10.8394 26.4723 31.6732 38.8431 50.1150
629 [0.7,1.3] 35.5644 12.2193 26.9314 32.6610 40.8070 31.4616
1239 [0.6,1.4] 36.1791 13.0634 27.0938 32.8640 41.5633 25.4219

CXRT 422 [0.8,1.2] 31.0706 10.5707 23.7608 28.5266 35.5119 87.1688
629 [0.7,1.3] 31.4414 11.1297 23.8061 28.6810 35.9053 76.8183
1239 [0.6,1.4] 31.5491 11.3691 23.8061 28.6948 35.9247 73.3751

V C 422 [0.8,1.2] 23.2036 7.3257 18.0626 21.5130 26.4031 307.5802
629 [0.7,1.3] 23.7030 8.0965 18.0836 21.6831 26.9452 280.9600
1239 [0.6,1.4] 23.8465 8.4200 18.0880 21.6981 27.0022 272.2445

V P 422 [0.8,1.2] 28.5067 8.5052 22.4153 26.7591 32.5390 160.2375
629 [0.7,1.3] 30.2902 10.1843 23.0286 28.0615 34.8485 110.9583
1239 [0.6,1.4] 31.0050 11.1826 23.1910 28.3104 35.7387 92.3282



Table 3
Simulation study: out-of-sample forecast losses. This table reports the ratio of the losses (MSE
and R2) for different predictive regressions for future monthly realized volatility and logarithm
of volatility, respectively. Different strike price increments and ranges of strikes are considered
here. Data are obtained for every trading day and the forecasts are based on re-estimating the
parameters of the different regressions each day with a fixed length Rolling Window (RW ) made
up of the previous 1000 days. Ranking is obtained for different cases of strike increments and
represents the average volatility forecasting performances of implied volatilities across different
strike ranges.

MSE Ranking Out-of-sample R2 (%) Ranking
Volatility Log Volatility Volatility Log Volatility Volatility Log Volatility Volatility Log Volatility

V IXTheo 0.0387 0.0190 74.5090 76.8332
rvt−1 0.0558 0.0287 63.2640 65.1061

∆K = 5 NK Moneyness Range
V IX 86 [0.8,1.2] 0.0568 0.0269 5 5 62.6171 67.2937 5 5

128 [0.7,1.3] 0.0553 0.0267 63.5527 67.5413
167 [0.6,1.4] 0.0544 0.0265 64.2093 67.7660

MFIV 86 [0.8,1.2] 0.0564 0.0266 4 4 62.8468 67.6101 4 4
128 [0.7,1.3] 0.0551 0.0265 63.7494 67.7624
167 [0.6,1.4] 0.0541 0.0264 64.3901 67.9136

CXNT 86 [0.8,1.2] 0.0519 0.0258 3 3 65.8194 68.6326 3 3
128 [0.7,1.3] 0.0519 0.0258 65.8194 68.6326
167 [0.6,1.4] 0.0519 0.0258 65.8194 68.6326

CXLT 86 [0.8,1.2] 0.0577 0.0280 6 6 62.0262 65.9059 6 6
128 [0.7,1.3] 0.0582 0.0283 61.6691 65.5402
167 [0.6,1.4] 0.0578 0.0283 61.9562 65.5705

CXRT 86 [0.8,1.2] 0.0504 0.0244 2 2 66.8396 70.3366 2 2
128 [0.7,1.3] 0.0489 0.0239 67.7939 70.9327
167 [0.6,1.4] 0.0483 0.0238 68.1703 71.0847

V C 86 [0.8,1.2] 0.0496 0.0231 1 1 67.3493 71.8709 1 1
128 [0.7,1.3] 0.0467 0.0224 69.2267 72.6933
167 [0.6,1.4] 0.0457 0.0223 69.9102 72.8904

V P 86 [0.8,1.2] 0.0662 0.0311 7 7 56.3911 62.1576 7 7
128 [0.7,1.3] 0.0651 0.0310 57.1374 62.2606
167 [0.6,1.4] 0.0635 0.0307 58.1738 62.6052

∆K = 1
V IX 422 [0.8,1.2] 0.0574 0.0270 5 5 62.1791 67.1571 5 5

629 [0.7,1.3] 0.0556 0.0267 63.3723 67.4821
1239 [0.6,1.4] 0.0545 0.0265 64.1190 67.7361

MFIV 422 [0.8,1.2] 0.0569 0.0267 4 4 62.5251 67.5176 4 4
629 [0.7,1.3] 0.0553 0.0265 63.6167 67.7243
1239 [0.6,1.4] 0.0542 0.0264 64.3310 67.9012

CXNT 422 [0.8,1.2] 0.0522 0.0259 3 3 65.6335 68.4597 3 3
629 [0.7,1.3] 0.0522 0.0259 65.6335 68.4597
1239 [0.6,1.4] 0.0522 0.0259 65.6335 68.4597

CXLT 422 [0.8,1.2] 0.0582 0.0281 6 6 61.6776 65.7394 6 6
629 [0.7,1.3] 0.0586 0.0284 61.4355 65.4086
1239 [0.6,1.4] 0.0580 0.0284 61.8023 65.4760

CXRT 422 [0.8,1.2] 0.0505 0.0244 2 2 66.7138 70.2520 2 2
629 [0.7,1.3] 0.0490 0.0239 67.7127 70.8682
1239 [0.6,1.4] 0.0484 0.0238 68.1058 71.0259

V C 422 [0.8,1.2] 0.0487 0.0227 1 1 67.9035 72.3489 1 1
629 [0.7,1.3] 0.0460 0.0221 69.7165 73.1407
1239 [0.6,1.4] 0.0450 0.0219 70.3702 73.3265

V P 422 [0.8,1.2] 0.0664 0.0310 7 7 56.2748 62.3124 7 7
629 [0.7,1.3] 0.0649 0.0308 57.2576 62.4827
1239 [0.6,1.4] 0.0632 0.0305 58.3920 62.8674
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Table 5
Simulation study: multi-period return prediction. This table shows the adjusted R2 from the daily
regressions of the h-period returns on the current implied variance levels. Ranking is obtained
for different cases of strike increments and represents the average ability of implied volatilities for
predicting returns across different strike ranges.

Return Predictability (Adj R2 %) Ranking
30-day 60-day 30-day 60-day

V IXTheo 0.7611 7.4725
∆K = 5 NK Moneyness Range

V IX 86 [0.8,1.2] 1.4033 8.5224 4 4
128 [0.7,1.3] 1.2048 8.3069
167 [0.6,1.4] 1.0217 8.0018

MFIV 86 [0.8,1.2] 1.4689 8.6001 2 3
128 [0.7,1.3] 1.2625 8.3965
167 [0.6,1.4] 1.0648 8.0852

CXNT 86 [0.8,1.2] 0.7559 7.4092 7 7
128 [0.7,1.3] 0.7559 7.4092
167 [0.6,1.4] 0.7559 7.4092

CXLT 86 [0.8,1.2] 1.1687 8.1426 5 5
128 [0.7,1.3] 1.0992 8.0754
167 [0.6,1.4] 0.9731 7.8621

CXRT 86 [0.8,1.2] 1.0860 8.1113 6 6
128 [0.7,1.3] 0.9967 7.9809
167 [0.6,1.4] 0.9164 7.8265

V C 86 [0.8,1.2] 1.6091 8.8549 1 1
128 [0.7,1.3] 1.3245 8.5471
167 [0.6,1.4] 1.1319 8.2404

V P 86 [0.8,1.2] 1.4520 8.6069 3 2
128 [0.7,1.3] 1.2745 8.4381
167 [0.6,1.4] 1.0611 8.1023

∆K = 1 V IX 422 [0.8,1.2] 1.4875 8.6919 4 4
629 [0.7,1.3] 1.2448 8.3953
1239 [0.6,1.4] 1.0541 8.0624

MFIV 422 [0.8,1.2] 1.5257 8.7259 2 2
629 [0.7,1.3] 1.2881 8.4596
1239 [0.6,1.4] 1.0907 8.1320

CXNT 422 [0.8,1.2] 0.7798 7.4631 7 7
629 [0.7,1.3] 0.7798 7.4631
1239 [0.6,1.4] 0.7798 7.4631

CXLT 422 [0.8,1.2] 1.2324 8.2971 5 5
629 [0.7,1.3] 1.1336 8.1630
1239 [0.6,1.4] 1.0068 7.9322

CXRT 422 [0.8,1.2] 1.1023 8.1470 6 6
629 [0.7,1.3] 1.0128 8.0122
1239 [0.6,1.4] 0.9320 7.8527

V C 422 [0.8,1.2] 1.4980 8.8190 3 1
629 [0.7,1.3] 1.2473 8.5171
1239 [0.6,1.4] 1.0707 8.2103

V P 422 [0.8,1.2] 1.5611 8.6914 1 3
629 [0.7,1.3] 1.3228 8.4411
1239 [0.6,1.4] 1.1071 8.0958
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