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Abstract. As email workloads keep rising, email servers need to handle this ex-
plosive growth while offering good quality of service to users. In this work, we 
focus on modeling the workload of the email servers of four universities (2 from 
Greece, 1 from the UK, 1 from Australia). We model all types of email traffic, 
including user and system emails, as well as spam. We initially tested some of 
the most popular distributions for workload characterization and used statistical 
tests to evaluate our findings. The significant differences in the prediction accu-
racy results for the four datasets led us to investigate the use of  a Recurrent Neu-
ral Network (RNN) as time series modeling to model the server workload, which 
is a first for such a problem. Our results show that the use of RNN modeling leads 
in most cases to high modeling accuracy for all four campus email traffic datasets. 
 
Keywords: Email Traffic, Model Server Workload, Recurrent Neural Network, 
Time Series Modeling. 

1 Introduction 

The inherently quick way of email communication, together with the ability it offers to 
attach files and multimedia content to messages have led to its worldwide acceptance 
both for personal and for corporate use. Employees tend to view emails within 6 se-
conds from the time they arrive [1]. Misuse of this powerful tool is something that 
naturally occurs, as with every kind of technology. Irresponsible parties use its ability 
to carry files and/or reach numerous customers for their own, sometimes not legal, ac-
tions (spam email). According to [2], Japan’s Gross Domestic Product was reduced by 
0.1% due to the spam traffic. Spam emails can also break the trust in a corporation by 
forcing infected computers to spam as well and causing worldwide servers to block that 
corporation’s servers, hence isolating the corporation temporarily. Spam traffic ac-
counted for 66% of the worldwide email traffic in 2013 [3]. Consequently, Internet 
Service Providers (ISPs), corporations and universities have to deal with millions of 
spam emails every day. Both spam and regular emails arrive at such great volumes that 
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it becomes a matter of crucial importance that servers can cope with the heavy workload 
and do not crash or exhibit degraded email delivery performance.  

All of the above facts, regarding regular and spam email traffic show the urgent need 
for accurate email traffic prediction, which will help system administrators to take ac-
tions to optimize the way they allocate the storage space, processing resources or the 
bandwidth that they have at their disposal. By doing so, they will be able to avoid sys-
tem crashes and failures and offer users a better quality of service. Gomez et al.[4] 
found that message sizes could be represented by lognormal distributions at the body 
and the tail. Their measurement period was one week. They also modeled the arrival 
process and the popularity of various email receivers. The Poisson arrival process was 
shown to fit their workload. The popularity of objects was modeled with a Zipf-like 
distribution. Bertolotti and Calzarossa [5] also collected the SMTP logs from email 
servers and modeled the workload. They modeled the message sizes, interarrival times 
and the number of recipients. The lognormal distribution was found to be the best fit 
for the message sizes. The interarrival times were shown to fit Weibull and Pareto dis-
tributions, in contrast with the conclusions in [4]. In [6] Shah and Noble present a large-
scale study on an email server. They model various parameters from the message sizes 
to the number of words emails consist of. Their measurement period lasted more than 
7 months. Regarding the modeling of message sizes, which is the focus of this study, 
they noticed that the cumulative distribution function (CDF) is symmetric under log 
scale. Hence, they concluded in this empirical way that their data must be distributed 
with a lognormal distribution. The main body was modeled with a lognormal distribu-
tion while the tail was modeled with a Pareto, following the lead of [4]. In this way, the 
workload was modeled with high accuracy. While [4] found that spam emails have 
smaller sizes than regular ones, [6] claims the opposite. However, both of the above 
studies concluded that spam traffic is distributed with a lognormal distribution. Paxson 
modeled wide–area transport Layer Protocol (TCP) connections [7]. SMTP connec-
tions are TCP connections for transferring emails. Unlike the previously mentioned 
studies and in accordance to our work he used goodness of fit tests to back up his find-
ings. Regarding the SMTP connections, he found that the empirical distribution was 
bimodal and justified that from the fact that users sent either simple text mail or files. 
He decided to model it with two lognormal distributions, breaking the data in two pop-
ulations, one below the 80th percentile and the other above. 

In our previous work in [13] we modeled the email traffic data collected over nine 
weeks from the Technical University of Crete (TUC). We evaluated various well-known 
distributions from the relevant literature on workload characterization, in terms of their 
fitting accuracy to our data. By using leave-one-out cross validation in order to predict 
the incoming and outgoing traffic, we achieved in certain cases high accuracy in our 
email message size predictions, with the exception of some outliers which could not be 
predicted. In contrast with previous work in the field, we found that the lognormal dis-
tribution does not provide the best fit for any of the categories that we divided our traffic 
into. Instead, the best fit is provided by the log-logistic and Generalized Extreme Value 
distributions.  
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However, as it will be explained in the following sections, when evaluating the same 
methodology over three new datasets from other universities, we found that the predic-
tion accuracy was smaller. For this reason, we decided to use a Recurrent Neural Net-
work (RNN) and treat this as a time series problem.  

To the best of our knowledge from the literature review, this is the first time that 
RNN is used for modeling email traffic, and the use of time series modeling for email 
size prediction is proposed for the first time as well. We anticipated that time series 
modeling could be an option given that the email traffic can be viewed as a series of 
events over a time period. The email traffic prediction accuracy with the use of the RNN 
time series prediction was found to be substantially higher, for all four datasets, than the 
probabilistic modeling approach. 

The only work in the literature that is slightly relevant to our work is the study in 
[14], where the authors try to extract information from individual email histories, fo-
cusing on understanding how an individual communicates over time with recipients in 
their social network. 

2 Methodology 

2.1 Data Collection and Processing 

With the invaluable help of academic colleagues and of the technical staff of four uni-
versities, we have collected a vast amount of email logs. The four universities were the 
Technical University of Crete (TUC), Greece, the University of Peloponnese (UoP), 
Greece, Murdoch University, Australia and Liverpool John Moores University 
(LJMU), UK. 

We got two separate kinds of logs, for the non-spam and the spam emails. The non-
spam emails are the emails that arrived at the server and were not stopped by the filter 
or classified later as spam. The spam traffic that is blocked from the anti-spam filter is 
not recorded because the connection is closed before the email actually arrives. The 
emails that arrive at the servers but are classified as spam are saved into folders with 
their whole body.  

We decided to break our data into 4 categories depending on whether they represent 
system or users’ emails, and whether they are incoming or outgoing. The system emails 
consist mainly of server to server communication or diagnostic emails as well as no-
reply messages sent to various users. The decision to break the data into categories was 
based on the fact that the system emails are sent out in bulk, usually to the whole uni-
versity to inform everyone about events. Therefore, these emails are of a different na-
ture, so we decided to consider them as a different category and model them separately, 
to achieve higher accuracy. 

More information on the data we collected from each university is presented in Sec-
tion 4. 



4 

2.2 Modeling with probability distributions 

We wanted to study whether our servers' workloads could be modeled with any of the 
well-known, from the literature, distributions for workload characterization and mod-
eling. This approach serves as an implicit comparison of our conclusions with those of 
the previous works in the literature, on email traffic modeling. We should mention that 
the email datasets for those works were not available, to the best of our knowledge, for 
a direct comparison. The only email corpuses that are available on the web contain 
actual text from emails, to be used for linguistic analysis. Hence, we relied on our four 
datasets, which were significantly large.  

We used the maximum likelihood estimation method to obtain the parameters which 
lead the distributions to produce size populations with the same mean and standard 
deviation as those for each week of our study. The distributions used were the uniform, 
exponential, gamma, weibull, log-logistic, lognormal and Generalized Extreme Value 
(GEV). The maximum likelihood estimation method returns a vector with the estimated 
parameters at the 95% significance level. Simulations were run in Matlab.    

2.3 Time Series Modeling using Recurrent Neural Network  

As explained in Section 1, we used Recurrent Neural Network (RNN) for creating the 
model and treated the problem as a time series prediction. We combined all the weeks, 
except one, for each category separately and tried to predict the last week’s email traffic 
sizes. We assumed that the data in different weeks have time series patterns that can be 
used to predict the remaining part of the dataset. 

A RNN simulates a discrete dynamic system that has input (Xt), output (Yt) and hid-
den layers [15]. In general, a RNN takes the input sequence to the hidden layers to work 
out the information about the history of all the past elements. As a result, the output of 
the hidden layers can have some form of discrete time series similar to the output of the 
deep multilayer networks. The idea of RNN is that it can connect prior information to 
the present task, such as using previous data sequences to inform the understanding of 
the present data sequence to predict future data sequences. 

Längkvist et al., [16] discuss various techniques using deep learning for time series 
as well as the recursive strategies performance in time series. Rather et al. [17] show 
the use of a traditional Recurrent Neural Network (RNN) with a hybrid model to 
achieve high time series prediction. The time series predictions are based on previous 
data, where memory networks and recurrent networks have a higher efficiency than any 
other deep learning method [18].  

In this work, a RNN with 2 hidden layers was implemented with a sigmoid function. 
We used a batch size of 25 and ran the RNN for 10000 epochs. All these parameters 
were decided based on a trial and error approach. We used the leave-one-out cross val-
idation technique when assessing the model. For each dataset, the data from all weeks 
except one were used for training, and this procedure was repeated as many times as 
the number of weeks of each dataset. The established model from the training is then 
used to predict the data in the last week of the dataset for testing. 
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3 Statistical Tests 

We used five statistical tests to evaluate the accuracy of our two main approaches (prob-
abilistic and RNN time series). 

The first test is the Q-Q plot, a powerful goodness-of-fit test [9] which graphically 
compares two datasets in order to determine whether the datasets come from popula-
tions with a common distribution (if they do, the points of the plot should fall approxi-
mately along a 45 degree reference line). More specifically, a Q–Q plot is a plot of the 
quantiles of the data versus the quantiles of the fitted distribution. A z-quantile of X is 
any value x such that P((X ≤ x) = z. We have plotted the quantiles of the real data with 
the respective quantiles of the various distribution fits. 

The second test is the Kolmogorov–Smirnov (KS) test [10], which tries to determine 
if two datasets differ significantly. The KS-test has the advantage of making no as-
sumption about the distribution of data, i.e., it is non-parametric and distribution-free. 
The KS-test uses the maximum vertical deviation between the two curves as its statistic 
D.  

The third test is the Anderson-Darling (AD) test [8], which is a modification of the 
Kolmogorov-Smirnov test. It places more weight to the tails in comparison to the K-S 
Test. The test statistic belongs, like the Kolmogorov-Smirnov test, to the family of 
quadratic empirical distribution function statistics, which measure the distance between 
the hypothesized and the empirical CDF.  
The fourth test is the Kullback-Leibler (KL) Divergence test [11] which measures the 
information loss between two distributions. 

It indicates how many extra bits we are going to need if we code samples using the 
Q probability distribution function instead of P. The test is non-symmetric meaning that 
if we reverse the P and Q (probability distributions functions) we get different results.  

The fifth test is the Relative Percentage Error (RPE) [12], which gives a metric on 
how different one population is from another. By measuring the absolute difference 
between the two populations, we do not discriminate which one is bigger or smaller. 
Of course, we wish to achieve results as close to 0% as possible in order to find a mod-
eling approach that has high accuracy. 
RPE is defined as: 
!"# = |&'(|

( ∗ 100%, 
where Y is the predicted value and X the real observation. 

4 Results 

4.1 Incoming Traffic for Users 

This section focuses on our modeling results for the incoming users’ traffic. The range 
of the total number of incoming emails per week and the total number of bytes con-
tained in the emails is presented for each university’s dataset in Table 1, together with 
the number of weeks during which the data was collected. 
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Table 1. Incoming Users Emails' Numbers and Total Size 

 Min 
#emails 

Max 
#emails 

Min 
Gbytes 

Max 
Gbytes 

# of 
weeks 

TUC 72379 134864 4.34 23.87 9 
LJMU 142884 359020 11.6 31.3 4 
Murdoch 1132 410672 0.03 56.2 52 
UoP 37735 51726 2 4.7 4 

 
Our statistical tests agreed that the log-logistic distribution provides the closest fit to 

our data for Murdoch and TUC, while GEV provided the closest fit to our data for UoP 
and LJMU. The fact that the KS test and AD test agreed with each other confirmed that 
the log-logistic/GEV distribution, respectively, is closest to both the tails and the main 
body of the distribution. 

For the probabilistic approach, we found that the RPE results are significantly dif-
ferent between the 98% and the 100% of the quantiles because of the outliers, which 
tend to have extremely large sizes, something that the distribution methods cannot pre-
dict. Therefore, these outliers, usually amounting to 1-2% of our traffic in terms of 
bytes, cause very large errors. The results presented in Table 2 and for the rest of the 
paper for the probabilistic modeling approach in this section correspond to 98% of the 
traffic, excluding the outliers. On the contrary, the results presented throughout the pa-
per for RNN have been derived without removing any outliers from the training or 
testing datasets, since RNN is resilient to the existence of outliers. 

As shown in Table 2, despite modeling the whole dataset (including the outliers) 
RNN is able to largely outperform the probabilistic approach for all datasets, based on 
the RPE metric.  

Table 2. Prediction Error for Incoming Users’ Traffic 

 RPE (%) 
 RNN Probabilistic 

TUC 13.9 21.5 
LJMU 4.2 8.4 

Murdoch 14.2 32.7 
UoP 9.2 16.7 

 

4.2 Incoming System Traffic 

This section focuses on our modeling results for the incoming system traffic. The range 
of the total number of incoming emails per week and the total number of bytes con-
tained in the emails is presented for each university’s dataset in Table 3. It should be 
noted that our dataset from LJMU contained data only for incoming users’ email and 
for spam traffic, therefore we had no data for incoming system traffic. 
 

 

 



7 

Table 3. Incoming System Emails’ Numbers and Total Size 

 Min 
#emails 

Max 
#emails 

Min 
Gbytes 

Max 
Gbytes 

# of weeks 

TUC 49985 318944 0.2 2.1 9 

LJMU - - - - - 

Murdoch 3149 77686 0.03 6 52 

UoP 838 7166 0.003 0.06 4 
 

As shown in Table 4, RNN again largely outperforms the probabilistic approach for 
all datasets, based on the RPE metric. 

 
Table 4. Prediction Error for Users’ Incoming System Traffic 

 RPE (%) 
 RNN Probabilistic 

TUC 2.1 20.8 
Murdoch 4.2 9.3 

UoP 7 23 

4.3 Outgoing Users’ Traffic 

This section focuses on our modeling results for the outgoing users’ traffic. The range 
of the total number of outgoing users’ emails per week and the total number of bytes 
contained in the emails is presented for each university’s dataset in Table 5. 

 

Table 5. Outgoing Users Emails’ Numbers and Total Size 

 Min 
#emails 

Max 
#emails 

Min 
Gbytes 

Max 
Gbytes 

# of 
weeks 

TUC 16611 74222 2.3 11.3 9 
LJMU - - - - - 
Mur-

doch 
573 103205 0.01 13.6 52 

UoP 4730 102396 0.2 3.8 4 
 
As shown in Table 6, RNN again clearly outperforms the probabilistic approach for 

all datasets. 
Table 6. Prediction Error for Outgoing Users’ Traffic 

 RPE (%) 
 RNN Probabilistic 

TUC 9.4 14.7 
Murdoch 25.3 40.8 

UoP 13.7 29.6 
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4.4 Outgoing Traffic for System emails 

This section presents our modeling results for the outgoing system traffic. The range of 
the total number of outgoing system emails per week for each university’s dataset is 
presented in Table 7. The vast majority (almost 99%) of these emails have a size smaller 
than 6 Kbytes. This means that the servers rarely send attachments. Instead, they send 
short plain messages. 
 

Table 7. Outgoing System Emails’ Numbers and Total Size 

 Min 
#emails 

Max 
#emails 

Min 
Gbytes 

Max 
Gbytes 

# of weeks 

TUC 50480 233653 0.22 2.7 9 
LJMU - - - - - 
Mur-

doch 
770 305947 0.007 1.31 52 

UoP 2630 8996 0.01 0.05 4 
 
As shown in Table 8, RNN once again largely outperforms the probabilistic ap-

proach for the TUC and UoP datasets. For the Murdoch dataset the probabilistic ap-
proach is shown to have a marginally smaller error, however the results for the proba-
bilistic approach refer to 98% of the traffic, excluding the outliers. If the outliers are 
included, as they are for RNN, the RPE for the probabilistic approach becomes very 
high for all types of traffic of all datasets. 

 
 

Table 8. Prediction Error for Outgoing System Traffic 

 RPE (%) 
 RNN Probabilistic 

TUC 5.3 10.0 
Murdoch 23.3 22.6 

UoP 4.4 20.4 

4.5 Spam Traffic 

This section focuses on our modeling results for the spam traffic. The range of the total 
number of outgoing system emails per week for each university’s dataset is presented 
in Table 9. It should be noted that our dataset from Murdoch University did not contain 
data for spam traffic. 

 
Table 9. Spam Emails’ Numbers and Total Size 

 Min 
#emails 

Max 
#emails 

Min 
Gbytes 

Max 
Gbytes 

# of weeks 

TUC 1577 2372 0.029 0.089 9 
LJMU 27116 77110 0.94 2.68 4 
Murdoch - - - - - 
UoP 5469 8182 0.07 0.26 4 
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This is the only case where for one of the datasets (UoP) the probabilistic modeling 
outperforms RNN, as shown in Table 10 (for the TUC and LJMU datasets again RNN 
excels). One reason for this different result is that the outliers of the specific spam da-
taset make the accurate prediction over the whole dataset difficult, whereas the result 
presented for the probabilistic approach, as explained earlier, focuses on 98% of the 
traffic, excluding the outliers. The effect of DNS black list settings (which eliminate 
spam messages at the initial handshake phase, before any data are received, examined 
and stored), as well as the efficiency of spam detection filters in UoP will be investi-
gated further, to gain insight on the reasons behind the high errors of RNN for the UoP 
dataset. 

 

Table 10. Prediction Error for Spam Traffic 

 RPE (%) 
 RNN Probabilistic 

TUC 17.1 17.7 
LJMU 18.7 36.9 
UoP 57.1 25 

5 Conclusions 

In this work, we model the workload of the email servers of four universities. We ini-
tially evaluated various well-known distributions from the relevant literature on work-
load characterization, in terms of their fitting accuracy to our data. We found that the 
accuracy varied, depending on the email traffic category (incoming/outgoing, us-
ers/system email or spam) and that even in the cases where a significant accuracy was 
achieved for the vast majority of the email traffic sizes, there were outliers which could 
not be accurately predicted. 

For this reason, we implemented a Recurrent Neural Network using time series pre-
diction, as an alternative method, and we found that it was able to achieve a significantly 
higher accuracy for all types of email traffic, by treating the datasets as time series. The 
impressive result with the use of the RNN is that it outperforms the probabilistic ap-
proach in terms of accuracy although the RNN models the entirety of the datasets, in-
cluding outliers, whereas the probabilistic approach is not used for the outliers, where 
it fails completely in their modeling. 

We believe that our results offer a solid basis for larger scale future work on email 
traffic modeling and prediction, which will acquire data from a much larger pool of 
servers. In our view, it will be very interesting for ISPs to clarify whether these new 
results are associated with the current nature of emails in general, or if they are limited 
by the type of the dataset, i.e., if campus email traffic has different characteristics than 
that of a private Internet Service Provider. 
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