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Text 

ABSTRACT 

The intestinal epithelium must balance efficient absorption of nutrients with partitioning 

commensals and pathogens from the bodies’ largest immune system. If this crucial barrier 

fails, inappropriate immune responses can result in inflammatory bowel disease or chronic 

infection. Enteroendocrine cells represent 1% of this epithelium and have classically been 

studied for their detection of nutrients and release of peptide hormones to mediate digestion. 

Intriguingly, enteroendocrine cells are the key sensors of microbial metabolites, can release 

cytokines in response to pathogen associated molecules and peptide hormone receptors are 

expressed on numerous intestinal immune cells; thus enteroendocrine cells are uniquely 

equipped to be crucial and novel orchestrators of intestinal inflammation.  

In this review, we introduce enteroendocrine chemosensory roles, summarize studies 

correlating enteroendocrine perturbations with intestinal inflammation and describe the 

mechanistic interactions by which enteroendocrine and mucosal immune cells interact during 

disease; highlighting this immunoendocrine axis as a key aspect of innate immunity.   

 

INTRODUCTION 

The intestinal epithelium represents one of the body’s most important interfaces with the 

environment. Not only must it act as a point of nutrient absorption, but also as a barrier against 

the vast amount of commensal and pathogenic microbes it constantly encounters1, 2. As such, the 

gut hosts the major immune system of the body determining tolerance versus immunity and 

dysregulation leads to inflammatory bowel disease (IBD) in response to commensals3, or 

excessive inflammation in response to infectious pathogens1. This single layer of epithelium forms 

a crucial barrier, but is also believed to play important functions in regulation of the intestinal 

immune system. Within this epithelium reside the enteroendocrine cells (eecs), specialized trans-
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epithelial signal transduction conduits which respond to luminal nutrients by secreting peptide 

hormones to control gastrointestinal enzyme secretion, motility, and appetite regulation4, 5. These 

key sensory cells comprise just 1% of the epithelium and are dispersed throughout the gut, but 

collectively form the largest endocrine system in humans. Their elusive nature coupled with a lack 

of specific surface markers had caused the biology of eecs to remain somewhat enigmatic. 

However, via the use of transgenic reporter mice6-12, and the emergence of Claudin-4 as a 

specific surface marker13, we are now uncovering novel concepts of eec biology and surprisingly 

revealing key interactions between these sensory sentinels and the intestinal mucosal immune 

system.  

 

Enteroendocrine differentiation 

Within the intestinal crypt resides the stem cell niche which is responsible for supplying the 

entire epithelial cell population. These Leucine-rich repeat-containing G-protein coupled 

receptor 5 (LGR5)-positive stem cells14 regularly divide providing highly proliferative transit 

amplifying cells which further differentiate into absorptive or secretory cellular lineages, 

supplying a constant cascade of epithelial renewal every 3-5 days15. Lineage differentiation 

(Fig.1) is based on Wnt, Notch and Mitogen-activated protein kinases (MAPK)-dependent 

signaling16 with the transcription factor hairy and enhancer of split-1 (Hes1) required for 

differentiation into absorptive enterocytes, while Protein atonal homolog 1 (Atoh1) 

expression drives secretory cell fate17-20. Growth Factor Independent 1 Transcriptional 

Repressor (Gfi-1) is required for both goblet cells and Paneth cells21, with Kruppel-like factor 

4 (Klf4)22 and Sox923, 24 essential for each population respectively. Tuft cells require the 

expression of the Pou domain, class 2, transcription factor 3 (Pou2f3)25, 26, while the 

development of Microfold (M)-cells is independent of Hes1/Atoh1, instead relying on SpiB 

transcription factor expression27 and  TNF superfamily member receptor activator of NF-

kappaβ ligand (RankL) induction28, 29. Eecs depend on the transient expression of 
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Neurogenin3 (Neurog3)30, 31 and micro-RNA-37532 followed by a variety of overlapping 

transcription factors18, 19 (Table 1), including Neurogenic differentiation 1 (Neurod1)33-35, 

Paired box (Pax) 4/636-38, Insulin gene enhancer protein (Isl1)39, pancreatic and duodenal 

homeobox 1 (Pdx1)40-42, Nkx6-143 and Nkx2-244, 45, this in turn with spatio-temporal 

expression of transcription factors46, 47 Pdx-1, caudal type homeobox 2 (Cdx-2)48, 49, Gata-4, 

Gata-5, Gata-650-54, Hepatocyte nuclear factor-1α (Hnf-1α)55, Hnf-1β56 and CCAAT-

displacement protein (Cdp)47, 57, determines the eec subset and array of peptide hormones 

they can secrete. Similar to Paneth cells, in Drosophila eecs have been shown to play an 

important role in maintaining the stem cell niche58, 59 , while in both man60 and mouse61 

quiescent, label retaining cells, have the potential to differentiate into Paneth and eecs. 

Therefore eecs can potentially play important roles during the modulation of the epithelium in 

health and disease.  

    

Enteroendocrine subsets 

Eecs respond to luminal stimuli by secreting a variety of peptide hormones, including 

cholecystokinin (CCK), glucagon-like peptide 1 and 2 (GLP-1, GLP-2), glucose dependent 

insulinotropic peptide (GIP), peptide YY (PYY), gastrin, secretin, somatostatin, motilin, leptin, 

nesfatin-1 and ghrelin; as well as bioactive amines such as histamine and serotonin (5-HT). 

The historical dogma of distinct differentiated eec subsets secreting individual hormone 

peptides mediating biological function (Fig. 2) has been superseded, via the analysis of eecs 

from transgenic reporter mice12, 62-65 as well as cell ablation studies35, 63, to reveal 

considerable overlap of the eec secretome. It now appears that the secretome “cocktail” 

secreted by individual eecs is based on tissue location66, although it is likely that certain 

peptide hormones remain rarely co-expressed66, 67. 

Once secreted these peptide hormones can act in a traditional endocrine fashion on distant 

organs, or in a paracrine action to neighboring cells, including other eecs, and to vagal 



5 
 

afferents and enteric neurons communicating at a central or local level respectively. Eecs 

have classically been studied for their roles in enabling efficient postprandial assimilation of 

nutrients via alterations in gastrointestinal secretion, motility, pancreatic insulin release and 

satiety4, 68 (Fig. 2). However, it is now emerging that eecs have a huge array of 

chemosensory mechanisms to detect stimuli beyond nutrient intake, further indicating their 

importance beyond appetite and digestion. 

 

Chemosensory pathways and peptide secretion 

Eecs express a broad array of sensory machineries, mirroring their ability to respond to a 

diversity of ingested nutrients and other components in the gut lumen5. Gut hormones are 

packaged into secretory vesicles, the release of which is mobilized by elevated 

concentrations of cytoplasmic calcium and enhanced by cyclic adenosine monophosphate 

(cAMP). Central to the detection of ingested food by eecs is a requirement that 

macronutrients are first digested to their component parts, including glucose, amino acids 

and fatty acids. These small molecules are then detected by specific transporters and 

receptors located on the eecs themselves, and stimulate hormone secretion predominantly 

at the sites where nutrient absorption is maximal. The essential role of eecs is notably 

demonstrated by the impaired lipid absorption, reduced weight gain, growth retardation and 

high frequency of mortality in mice lacking the transcription factor Neurog3 and hence all 

intestinal eecs30. 

Important pathways for the detection of glucose, amino acids and dipeptides by eecs are the 

families of brush border transporters that couple substrate absorption to ionic gradients69, 70. 

Coupling of nutrient fluxes to the movement of sodium or hydrogen ions is an effective 

mechanism for driving absorption out of the gut lumen against a concentration gradient, but 

additionally has the consequence of causing small inward movements of positive charge into 

cells, that in turn can trigger membrane depolarization and voltage gated calcium entry. 



6 
 

Glucose uptake by the sodium glucose cotransporter (SGLT1) is a well-studied example of 

this mechanism, and underlies the majority of glucose-triggered GIP and GLP-1 secretion70. 

Fatty acids, bile acids and amino acids are detected by specific G-protein coupled receptors 

(GPCRs) located directly on the eecs69, 71, 72. The majority of nutrient-responsive GPCRs are 

coupled to Gas or Gaq signaling pathways, so their activation results in elevation of 

cytoplasmic cAMP and/or calcium concentrations, respectively, which in turn enhance 

vesicle release from the basolateral eec membrane. It has been recognized recently that 

fatty acids and bile acids, like glucose, must also be absorbed if they are to trigger gut 

hormone secretion. Thus, both the G-protein coupled bile acid receptor (GPBAR1) and the 

long chain free fatty acid receptor 1 (FFAR1/GPR40) appear to be localized and functional 

predominantly on the basolateral membrane of GLP-1 secreting cells72, 73. 

Linking hormone secretion to nutrient absorption generates a robust physiological signal to 

the body about the quantity and quality of substrates entering the bloodstream at any time. 

Eecs also, however, respond to a range of non-nutrient stimuli5, including bacterial 

metabolites74-79, hormonal80, paracrine81 and neurotransmitter signals12, 82. They thus form 

essential components of a network of complex signaling circuits, linking the gut with the rest 

of the body. 

 

ENTEROENDOCRINE ALTERATIONS DURING INTESTINAL INFLAMMATION 

Intestinal inflammation is often associated with microbial dysbiosis, be it inflammatory bowel 

disease, infection, colorectal cancer or food allergies83-86. Interestingly, eecs are the prime 

epithelial expressers of the receptors that sense bacterial metabolites84, 87, such as 

GPR41/43, and therefore have the unique ability to relay dysbiosis into physiological adaptation, 

such as modulating energy homeostasis, glucose metabolism, gut barrier function and mucosal 

immunity77, 78, 88-102.  
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Inflammatory bowel disease-Human studies 

Inflammatory bowel disease, typified by Crohn’s disease (CD) and ulcerative colitis (UC), is 

often linked to reduced appetite, anorexia and abnormal intestinal contractility103. Eecs and 

the peptide hormones they secrete are now being recognized as potential instigators of 

these intestinal pathologies, due to their underlying role in mediating these systems during 

homeostasis. Indeed, genome-wide association studies for CD identified a single nucleotide 

polymorphism in the eec associated transcription factor Paired-like homeobox 2b 

(Phox2B)104, while autoantibodies for the eec ubiquitination factor E4A (UBE4A) are seen as 

a biomarker for CD105. Moreover, both Phox2B and UBE4A are seen to increase in ileal CD 

displaying active inflammation106. An accumulation of studies has now begun to enumerate 

the alterations in eecs and secretions in clinical IBD (Table 2), aiding the ability to properly 

access their function in disease. 

A large number of studies have focused on measuring peptide hormone levels in the serum 

or plasma of IBD patients. Serum and plasma Chromoagranin A (CgA) levels, a pan-eec-

marker107, strongly increases in IBD patients and correlates to tumor necrosis factor (TNF)α 

108, 109, however histological analysis of CgA and mucosal healing are lacking in these 

studies and are required to allow differentiation between cause and effect. The level of fecal 

CgA, has been seen to increase in UC but is not associated with disease index110, while 

other studies demonstrate differences in microscopic colitis but not in UC or CD111. More 

specifically, numerous studies have measured individual peptide hormone serum and 

plasma levels during the course of IBD , with significant changes seen in PYY, somatostatin, 

ghrelin, gastrin, GLP-1, CCK, 5-HT and motilin during IBD (Table 2)112-129. Many of these 

reports also correlate increases of blood detected peptide levels with active disease, with 

somatostatin117, ghrelin115, 120, 122 and gastrin125 decreasing on remission. Moreover, 

ghrelin119, 121 and gastrin125 correlate with levels of the pro-inflammatory cytokine TNFα and 

IL-6. However, once again conflicting reports exist within the literature123, 126 and this is most 

likely explained by the heterogeneity seen in IBD. Indeed, in studies examining gastric 
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emptying, post-prandial plasma CCK was seen to increase in CD128, but not in a follow up 

study by the same investigators129. Another possible explanation for these disparities is that 

as eec alterations are seen to correlate with markers of inflammation they may be restricted 

to the inflammatory niche and are hence too localized to be detected via blood sampling.  

The availability of patient biopsies and resections has allowed precise examination of tissues 

from IBD patients and has identified actual alterations in eec peptide hormone storage 

granules130. Immunohistological quantification, in parallel with blood readings, is the most 

direct measure of eec fluctuation and various reports of changes in PYY, somatostatin, 

gastrin, GLP-1/2 and 5-HT+ cells exist in the literature (Table 2)106, 112, 131-137. Interestingly, 

similar to Paneth cell occurrence in the colon138, gastrin+ cells are strangely found in the 

repairing small intestine of CD patients131 and subsets of  IBD patients have autoantibodies 

to gastrin139. GLP-1140 and GLP-2141 are epithelial growth factors, with GLP-2 also having 

anti-inflammatory action both direct142 and indirect via Paneth cells102. It is therefore a 

possibility that increases in the glucagon-like peptides during IBD are a possible response to 

epithelial damage and play a direct role in repair137. Indeed, long acting analogs of GLP-2 

could potentially be used for the treatment of short-bowel syndrome following CD143.  

Despite the potential benefit that some eec peptide hormones may offer during IBD, they are 

also likely responsible for the reduced appetite, anorexia and nausea that accompanies 

inflammation. Indeed, increases in plasma GLP-1129 and CCK128 are thought to be 

responsible for changes in gastric emptying, while decreased appetite and nausea in small 

bowel CD correlate with increased PYY levels115. Plasma motilin also increases in IBD and is 

related to altered contractility144, 145, with a polymorphism of the motilin gene interestingly 

seen in subsets of patients with CD146. Although the majority of these human studies rely on 

small population sizes, collectively, these data strongly correlate alterations in eec peptide 

release with inflammation in IBD. Going forward, future studies should report the precise 

location of biopsy sampling, given the spatio-temporal expression of eec peptides. There is 

also an urgent need for more mechanistic approaches as overall there remains a lack of 
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human data, besides co-localization, demonstrating direct cross-talk between intestinal 

inflammation and eecs. The varying and often clinically unknown burden in IBD has led to 

the use of animal models to decipher possible pathogenic mechanisms at play.  

 

Inflammatory bowel disease-animal models 

In rodents, chemically induced and genetically prone models of IBD are well associated with 

reduced feeding and weight loss, which is linked to eec function (Table 3)147-152. Similar to 

the observations in human IBD, eec changes are often correlative to inflammation. PYY+ cell 

decreases in the dextran sulfate sodium (DSS) colitis model are restored with prednisolone 

treatment144, while, the interleukin (IL)-2-/- colitis model reductions in PYY+ cells occur on 

activation of inflammation153. Animal models have also begun to demonstrate that alterations 

in eec function are likely to be key factors in disease. Blocking CCK receptors in an acetic 

acid model of colitis reduces TNFα levels and ameliorates pathology154, while 2,4,6-

trinitrobenzenesulfonic acid (TNBS) colitis is inhibited with a CCKB receptor antagonist155.  

Interestingly CCK was a novel and verified hit in a recent zebrafish enterocolitis small 

molecule screen156. Additionally, the regulatory peptide nesfatin-1157 and somatostatin have 

been shown to be anti-inflammatory in the acetic acid model of colitis158, 159. Indeed, 

somatostatin agonists are able to increase intestinal tight junctions in models of dextran 

sulfate sodium (DSS) and Citrobacter rodentium induced colitis160 and modulate the water 

and sodium uptake protein NHE8, associated with UC pathology, via MAPK signaling161. 

Neurotensin+ cells are seen to increase in the mouse DSS model and blocking signaling via 

antagonists increases pathology via a cyclooxygenase (COX)-2 mediated pathway162, 

indicating a protective effect. Indeed, therapeutic use of peptides or agonists has been 

beneficial in mouse models, GLP-2 can rescue DSS colitis163 and small intestinal enteritis164, 

165 possibly by reducing bacterial translocation166, while nanodelivery of GLP-1 is also 
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protective167. Taken together this suggests that eecs play an essential and varied role in the 

pathology of IBD and are strong candidates for therapeutic intervention168.  

As is often the case, the majority of initial observations have arisen from readily available 

chemical models of IBD, and while these results remain valid, new scientific knowledge is 

likely to arise by examining the influence of eecs in more complex models which better relate 

to IBD. It is therefore imperative to begin to examine alterations of eec biology in models 

such as the T-cell transfer model and Helicobacter hepaticus induced models of colitis169. 

Furthermore, given the high concentration of eecs in the small intestine, examining eec 

changes in the SAMP1/YitFc model170, which most closely resembles human ileal CD, 

should be a priority. 

 

Non-infectious enteropathies  

Beyond IBD, there is strong evidence that eecs are involved in multiple inflammatory driven 

diseases of the gut and may again be potential therapeutic targets. Coeliac disease is 

associated with changes in eec number171, 172 as well as peptide granule storage130. Serum 

levels of GLP-1, GIP173 and plasma CCK, thought to be responsible for the pancreatic 

dysfunction seen in celiac patients174, are seen to be reduced in celiac blood. However, 

increases in CgA+ cells are also observed174, with increased ghrelin+ cells seen in the 

duodenum that correlate with inflammation175, 176. Increased serum somatostatin177 and GLP-

2178, plasma oxyntomodulin179, neurotensin180 and motillin181 are also reported despite the 

villous blunting seen in the disease. In particular, 5-HT+ cell increases are thought to prolong 

inflammation via increased IFN-y in tissue samples of refractory celiac patients174, again 

pointing to a direct role for eecs in pathology. 

With their close links to intestinal function it is unsurprising that eec alterations are also 

linked to irritable bowel syndrome (IBS). CD remission patients with IBS-like symptoms have 

increased levels of markers for 5-HT biosynthesis, rather than an increase in actual 
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enterochromaffin cells182. Somatostatin also increases in IBS post-IBD183, while post-

infectious IBS is strongly linked to changes in nerve sensitivity to peptide hormones184-187. 

Interestingly, high correlations of Chlamydia antigens are associated with eecs in IBS 

sufferers188, further linking eecs not only to inflammation but also to intestinal infection. 

 

Infection models and human correlation 

Helminth infections in particular show alterations in eec function, perhaps due to the close 

association of helminths with the epithelium. Initial correlations were revealed in the livestock 

industry, with increases in serum CCK levels correlating with weight loss in pigs and lambs 

infected with the helminths Ascaris suum and Trichostrongylus colubriformis respectively189, 

190. Calves infected with Ostertagia ostertagi have elevated gastrin191 while sheep infected 

with Ostertagia circumcincta have reduced gastrin and somatostatin+ cells and this is linked 

to the development of hypergastrinaemia in parasitized animals192. Furthermore, helminth 

induced alterations are not limited to mammal livestock with increases in CCK cells seen in 

Eubothrium crassum infected trout193 and Anisakis simplex infected flounders194; while CCK  

and gastrin+ cell increase, but GLP-1/2 reduce in Eubothrium crassum infected trout193. 

Experimental murine models have been used to further dissect the association of helminth 

infection with alterations in eec function.  

CCK+ cell hyperplasia195 and hypersecretion196 are seen during Trichinella spiralis mouse 

infection and this correlates with hypophagia during enteritis. Furthermore, mice lacking CCK 

display no period of hypophagia associated with inflammation, identifying CCK as the sole 

mediator of hypophagia during this infection195. This does not seem to be the case in all 

helminth infections as serum CCK levels are reduced in Nippostrongylus brasilliensis 

infection in rats197, while increased serum gastrin is seen during T. spiralis, but not tape 

worm infection198; furthermore decreased somatostatin+ cells are seen during intestinal 

inflammation resulting from intestinal schistomiasis in mice199.  
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Importantly, alterations in eec function during infection are also reported in the clinic and are 

not limited to helminth infection, with increases in CCK+ cells occurring in patients with 

upper intestinal infection, such as Giardia lambia200. Alterations are also seen in bacterial 

and viral infection with reduced CgA+ cells seen in Helicobacter pylori patients201. In 

particular reductions in ghrelin are associated with disease pathology202, with eradication of 

H. pylori associated with increased ghrelin which correlates with abatement of dyspepsia203. 

Importantly, in mouse models, changes occur prior to any general epithelial damage caused 

by the infection204, while reduced 5-HT and somatostatin+ cells in HIV-1 infected individuals 

are associated with lower survival prognosis205, again correlating alterations in eec function 

to pathology. Indeed, upon sensing chlamydia infection, eecs respond via a distinct 

transcript alteration206, supporting their role as innate sensors of disease.  

Collectively, the specific alterations of peptide secretion during inflammation indicates an 

uncoupling of eec subtype differentiation in disease, which holds promising therapeutic 

potential given the diverse functional roles of individual eec peptide hormones. In the case of 

infection, it will be interesting to resolve if peptide hormone release is driven by a detection 

of the parasites themselves or the microbial dysbiosis that often accompanies disease. 

 

Intestinal neoplasia 

As eec precursor cells are label retaining, Lgr5+ quiescent cells that have the potential to be 

recalled to the stem cell fate, they have a potential role in neoplasia61. Indeed, increased eec 

numbers in UC have been suggested to act as promoters for the neoplasia associated with 

IBD207, with animal models demonstrating GLP-1 agonists as regulators of intestinal 

tumorigenesis140. Moreover, at rest a subset of eecs express the cancer-associated 

transcription factor Brachyury208 and although rare, neuroendocrine tumors (NETs) are the 

most common cancer of the small intestine. Around 29% of small intestinal NETs carry 

amplifications or activating mutations in the PI3K/AKT/ mammalian target of rapamycin 
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(mTOR) pathway209 and recent data demonstrating that EGF signaling is inhibited during eec 

differentiation16, suggests it is reactivated during NET neoplasia210. Therefore, the current 

targeting of the mTOR pathway in intestinal neoplasia211 is perhaps suggestive of a future 

focus on eecs in tumor pathology.  Beyond the well-defined NETs, eecs have a long 

observed differentiation with sporadic colorectal cancer, occurring in 35% of colorectal 

carcinomas212, 213 and are often associated with the proliferative compartments of 

adenocarcinomas214, 215. There is much debate regarding the clinical impact of eec 

differentiation on colorectal cancer, reviewed in216. Of particular interest is the production of 

VEGF from eecs during cancer212, 217, a factor whose targeting has been shown to prolong 

survival in colorectal cancer patients218, 219, and promising results are again coming from 

drug trials blocking mTOR220, 221. In line with the observations in IBD, the heterogeneity of 

intestinal neoplasia may account for some of the discrepancies seen, but beyond a strong 

correlation we are again in need of mechanistic studies, as well as stricter terminology within 

the intestinal cancer field222. 

 

MECHANISTIC CROSS-TALK BETWEEN ENTEROENDOCRINE CELLS AND IMMUNE 

CELLS DURING INTESTINAL INFLAMMATION 

Inflammatory driven alterations in enteroendocrine cells 

Numerous of the above studies correlate inflammation to alterations in eecs, and changes in 

IBD-mouse models are prevented with prior treatment of NFκβ or AP-1 inhibitors,  which 

although not exclusively activated by immune cells, suggests the changes as immune 

driven148, 223. There is a close physical association of immune cells with eecs224 and infection 

driven 5-HT+ cell hyperplasia observed during Citrobacter rodentium infection is absent in 

severe combined immunodeficiency (SCID) mice225, as is the CCK and 5-HT+ cell 

hyperplasia seen in helminth infection195, 226. 5-HT+ cell increases seen during T. muris 

infection are also driven by specific T-helper (Th)2 CD4+ T-cell responses227, 228. Recent 
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studies have shown that the pro-inflammatory cytokines interferon (IFN)γ and TNFα increase 

CgA+ eecs in an autophagy and protein kinase B (Akt) dependent manner229. 

Bromodeoxyuridine (BrdU) pulse-chase labelling of proliferative cells has demonstrated that 

increases in 5-HT+ cells during TNBS-colitis are due to alterations in the stem cell niche 

rather than division of existing eecs230. Collectively this points to cytokine mediated 

alterations of specific eec subsets via adaptation at the stem cell niche as opposed to 

proliferation of existing eecs. Indeed, IL-33 derived from pericryptal fibroblasts during 

Salmonella infection has been shown to downregulate notch signaling in epithelial 

progenitors and increase CgA+ cells231. Due to the high turnover of intestinal epithelial cells 

eec hyper/hypoplasia can therefore quickly influence the inflammatory state. Cytokines can 

also directly mediate peptide hormone secretion with TNFα decreasing GLP-2 expression by 

up-regulating G-protein-coupled receptor 120 in CD232, IL-6 increasing GLP-1 release233,  

while IL-1β has been shown to cause 5-HT secretion from CD enterochromaffin cells ex 

vivo234. Immune cells and cytokines therefore directly influence eec biology and can mediate 

anorexia, which is now seen as a key modulator of specific immune responses195, 235. 

Furthermore, eec signaling can be protective to the gut, with peptide hormones shown to 

modulate barrier function and therefore potentially limit antigenic load (Fig. 3A). Moreover, 

this immunoendocrine crosstalk is unidirectional with chemosensory eecs able to mediate 

mucosal immunity, both direct and indirectly, acting as “cytokines” (Fig.3B) andor initiating 

vagal anti-inflammatory pathways. 

 

Direct Immune Modulation 

Enteroendocrine production of cytokines 

Similar to recent findings in the chemosensory Tuft cells subset26, 236-238, eecs are a source of 

cytokines and play roles in intestinal disease progression. Enteroendocrine cells have 

functional toll-like receptors and secrete cytokines following toll-like receptor (TLR) 1, 2 and 
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4 stimulation resulting in increased NF-κβ, MAPK signaling, as well as Ca2+ flux culminating 

in TNFα, transforming growth factor (TGF)β,macrophage inflammatory protein-2 and CCK 

release74. Importantly, eecs are able to modulate their secretome in response to pathogenic 

detection, secreting chemokine (CXC-motif) 1/3 and IL-32 in response to flagellin and 

lipopolysaccharide (LPS), but not to fatty acids239.  In the case of IBD eecs are key 

producers of the pro-inflammatory cytokine IL-17C and therefore are involved in the 

pathogenesis of active disease240. Mice lacking the exopeptidase carboxypeptidase E 

(CPE), an eec specific processing peptide, demonstrate reduced levels of PYY and are more 

susceptible to DSS-induced colitis241. Moreover, at rest these mice display elevated IL-6 and 

KC levels from the epithelium as a whole, suggesting a CPE mediated immunosuppressive 

effect on intestinal barrier function by influencing the processing of specific neuropeptides241.  

 

Enteroendocrine peptide modulation of barrier function 

Further to producing cytokines, peptide hormones themselves have innate roles in 

maintaining barrier function (Fig. 3A). At the most basic level they play a role in detecting 

toxins, with eecs releasing CCK following activation of the T2R38 bitter receptor limiting the 

absorption of toxic substances through modulation of gut efflux membrane transporters in 

neighboring epithelium242. Moreover, chemotherapy drug induced emesis is dependent on 5-

HT release and  5-HT3 receptor triggering243, while more recently rotavirus toxin induced 

emesis was hypothesized to act via a similar mechanism244. Interestingly, CCK and motilin 

can alter the behavior and movement of the liver fluke Fasciola hepatica 245 , while ghrelin 

also has direct anti-parasitic246 and anti-bacterial effects247, although the basolateral release 

of peptide hormones brings this suggested anti-microbial function into question. Moreover, 

eecs modulate production and secretion of classical anti-microbials, Drosophila have been 

shown to respond to Pseudomonas entomophila by expressing the peptide hormone 

allatostatin A which in turn regulates epithelial cell antimicrobial peptides and survival248. The 
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process of peptide hormones influencing anti-microbial production also extends to Paneth 

cells. GLP-2 receptor null mice have increased bacterial colonization of the small intestine 

and reduced expression of Paneth cell antimicrobial gene products102, although it remains to 

be ascertained if this is a result of other cellular phenotypes arising in the GLP-2 receptor 

null mouse102.  

Beyond anti-microbial effects, GLP-2 has been seen to maintain barrier function in mouse97, 

249, and human250 models, via the modulation of intestinal tight junction mechanisms and 

hence directly influences intestinal permeability. The most well studied role of peptide 

hormones influencing barrier function is that of GLP-2141, and more recently GLP-1140, as 

potent epithelial growth factors. GLP-2s trophic affects act via myofibroblast produced 

insulin-like growth factor141 and keratinocyte growth factor251 as well as the ErbB signaling 

network in intestinal tissue252; while GLP-1 mediates growth via fibroblast growth factor 7140.    

 

Enteroendocrine peptides as “cytokines” 

Intriguingly, immune cells express a vast array of receptors for eec secreted hormone 

peptides253 suggesting the potential for peptide hormones to act as “cytokines” (Fig. 3B). 

Most notably the adipokine leptin and the amines histamine and 5-HT, although not 

exclusively produced from eecs, have well established direct immunomodulatory roles on 

numerous innate and adaptive cell types; reviewed in254-256.  

Similarly to leptins role in influencing CD4+ T-cell responses, eec peptides have been shown 

to modulate T-cell polarization; nesfatin-1 has been linked to Th17 cell activation257, while 

conversely ghrelin inhibits Th17 formation258 via mTOR259, being beneficial in EAE models260, 

261. CCK has been shown to promote a Th2262 and regulatory T-cell (Treg) phenotype in 

vitro262, as does GLP-1263 via decreased MAPK activation264. As well as influencing T-cell 

differentiation, peptide hormones can also shape T-cell proliferation and migration. The 

orexigenic peptide hormone ghrelin increases T-cell proliferation via Phosphatidylinositol-
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4,5-bisphosphate 3-kinase, extracellular signal–regulated kinases and protein kinase C265 

and has an anti-inflammatory effect in DSS colitis266; with CD patients interestingly 

demonstrating a reduction of the ghrelin receptor GHSR-1a on T-cells267. Somatostatin is 

also inhibitory to T-cell proliferation 268, downregulates LFA-1 expression269 and is ultimately 

involved in thymus development270. Apart from CD4+ T-cells, GLP-1 signals to intraepithelial 

lymphocytes ameliorating the inflammation in DSS induced colitis271 and signals to fat 

resident invariant NKT-cells mediating weight loss272 and psoriasis at the skin barrier273. A 

number of these effects seem to be tissue specific with somatostatin inhibiting Peyer’s patch, 

but not splenic natural killer activity274; and CCK altering lamina propria but not blood 

sourced cells275. 

B-cells are also under the control of peptide hormones with CCK driving acetylcholine (Ach) 

production to recruit neutrophils independently of vagal stimulation276. CCK277 and 

somatostatin278 can reduce B-cell activation, while ghrelin279 and neurotensin280 are able to 

enhance B-cell activation and proliferation respectively. CCK277, somatostatin278 and GLP-

2281 also influence immunoglobulin production and strikingly, the huge reduction in 

Immunoglobulin A production, seen during parenteral feeding can be rescued via the 

infusion of CCK253, 282, although the mechanism remains undefined. 

Eec peptide hormones also modulate innate immunity and hence quickly relay 

chemosensory detection of microbial metabolites and pathogens to the immune system.  

CCK has been shown to inhibit TLR9 stimulation of plasmacytoid DCs via TNF receptor 

associated factor 6 signaling283, while somatostatin284 and neurotensin285 are also reported to 

be inhibitory to DC activation. Conversely CCK can promote IL-12 production286 and secretin 

acts as a chemoattractant to DCs287 suggesting more than a simple, global peptide hormone 

anti-inflammatory signal. Similarly, macrophages and monocytes are influenced by peptide 

hormones. CCK can inhibit macrophage activation288-290, including inducible nitric oxide 

synthase production291, and cause monocytes to produce inflammatory cytokines and 

eicosanoids292. Several studies have importantly also deciphered the intracellular pathways 
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involved,GLP-1 receptor agonists reduce endoplasmic reticulum stress and decrease 

inflammation-associated gene expression in macrophages293, 294, while GLP-2 inhibits 

macrophage LPS stimulation via reduced NFκβ295 in an IL-10 independent manner142. 

Discrepancies in these in vitro studies exist, with monocytes releasing IL-6 in response to 

somatostatin296, while it can be anti-inflammatory in other settings297, similar to GLP-1298 and 

ghrelin299, 300. Peptide hormones appear to play an important role in transferring luminal 

signals during obesity, be it nutritional or microbial, to the immune system. GLP-1 agonists 

can inhibit monocyte to foam cell transition via altering autophagy, but this occurs only in 

obese patients301, placing eecs under the spot light in this growing epidemic.  

 

Granulocytes are generally inhibited by peptide hormone signaling; with basophils and 

eosinophils immunosuppressed by somatostatin113 and GLP-1302 respectively. Neutrophil 

phagocytosis303-305, elastase release306 and adhesion305, 307  are all inhibited by multiple 

peptide hormones,  of particular interest is the role of GIP in ameliorating obesity-induced 

adipose tissue inflammation via modulation of neutrophil function308. Most notably mast cells 

are strongly responsive to peptide hormones, with CCK309, gastrin310 and somatostatin311 

inhibitory for degranulation, while ghrelin312 and PYY313 increase histamine release. CCK 

also induces intestinal contraction via mast cells during Giardia infection314, demonstrating 

distinct fine tuning of mast cell function over other granulocytes. Interestingly, mast cells can 

populate 5-HT+ producing cells in the Neurog3 null mouse315, and under homeostatic 

conditions share a transcriptome similar to mast cells316, presenting an evolutionary link 

between these cellular populations. Eecs therefore have a unique ability to sense the 

intestinal environment and directly interact with the underlying innate and adaptive immune 

system through cytokines and peptide hormone signaling.  

The purest evidence of peptide hormone immune cell influence is via in vitro assays, 

especially given the numerous pathways and tissues these hormones may affect. However, 
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older studies may have been susceptible to endotoxin contamination317 and cell specific 

peptide receptor-null studies are required to fully decipher the overall importance of the 

immunoendocrine axis. 

 

Indirect immune modulation 

Vagal anti-inflammatory reflex 

Eec released peptide hormones may also influence immunity via signaling to vagal afferents 

and influence the intestinal cholinergic anti-inflammatory pathway318 via the release of Ach 

from vagal efferents. Recent evidence has demonstrated that eecs possess a direct contact 

with neurons and this “neuropod” allows direct neuroepithelial communication319, a portal 

that pathogens may have evolved to target infection of the nervous system320-322.. This anti-

inflammatory pathway was originally highlighted in an LPS model of hemorrhagic shock; 

prior nutritional stimulation of mice with a high-fat diet induced a vagal reflex and Ach 

release which inhibited LPS-induced cytokine secretion and reduced pathology. This was 

seen to be dependent on vagal CCK stimulation and resulting Ach stimulation of 

macrophage alpha7-nAch receptor323. This pathway is also dependent on post-absorptive 

chylomicron formation, lipoprotein formations shown to release endogenous CCK324 and 

also requires GLP-1 receptor activation325 and potentially ghrelin326. GLP-2 also acts via 

enteric nerves to increase the secretion of immunomodulatory vasoactive intestinal peptide 

during animal models of IBD327.  

Others have demonstrated similar CCK-induced vagal anti-inflammatory pathways in a 

variety of inflammatory settings, such as post-operative ileus328  and lung damage during 

endotoxemia329. Furthermore, interfering with the vagal reflex has also been shown to 

exacerbate DSS colitis330.  Although not thought to be B or T-cell dependent331, CCK 

induced Ach release has also been shown to influence other innate cells such as mast 

cells332. Recently vagally released Ach has been shown to influence the level of a key host-
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protective mediator, PCTR1, in group 3 innate lymphoid cells (ILCs) regulating tissue 

resolution tone and myeloid cell responses in an E.coli peritonitis model333. However, it 

remains to be seen if eec peptides can influence Ach production to effect intestinal specific 

cell types or directly modulate ILC function. This anti-inflammatory role of the vagus nerve, 

and therefore eec peptide hormone stimulation, is an exciting and growing area of 

research334. 

 

Control of appetite  

Beyond the vagal reflex response is the concept of altered feeding itself as an immune 

modulator. This is not a new concept with the adage “starve a fever, feed a cold” familiar to 

many, however growing evidence has demonstrated that anorexia is an essential aspect of 

certain335-337 , but not all338, acute infections. Most recently, Medzhitov and colleagues have 

confirmed that although anorexia is beneficial in Listeria monocytogenes infection, it is 

detrimental during influenza. This was shown to be due to the differing stress pathways 

elicited during the distinct immunopathology associated with each disease, and therefore 

explains why anorexia does not always supply the correct metabolic requirements for 

tolerance in each disease setting235. This offers the intriguing hypothesis that feeding 

behavior induced by altered eec dynamics is an attempt to influence immunity and minimize 

immunopathology. 

Utilizing the helminth T. spiralis model of T-cell induced eec driven hypophagia196, 

Worthington and colleagues investigated the possible molecular mechanisms and actual 

purpose of the hypophagia seen during this parasitic infection. During infection CD4+ T-cells 

hijack classical cholecystokinin feeding pathways to reduce food intake during enteritis195, 196. 

Increased c-Fos brain expression during helminth infection339, 340, supports that hypophagia 

relies on increased gut-brain axis signaling, as opposed to intestinal hypomotility. This 

hypophagia results in significant weight loss and visible reduction of visceral fat pads, which 
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are a key source of adipokines such as leptin255, 341. As T-cells express functional leptin 

receptors342 and leptin stimulation polarizes T-cells towards a pro-inflammatory Th1 state343, 

it was postulated that the immune driven reduction in leptin driven by CCK during T. spiralis 

infection, would be beneficial in allowing a helminth expelling Th2 immune response to 

develop. Indeed, delayed expulsion of Heligmosomoides bakeri is seen in protein deficient 

mice and is linked to higher levels of leptin344. Restoration via recombinant leptin treatment, 

resulted in a significant reduction in CD4+ Th2 cytokine production and accompanying 

mastocytosis, which is essential for worm expulsion345. This restoration of basal leptin levels 

and shift in immune response culminated in a significant delay in parasite expulsion. Hence, 

identifying immune driven alterations in eec mediated feeding mechanisms, as a novel 

mechanism in helminth expulsion195.  

 

CONCLUSIONS  

In summary, the eec secretome encompasses cytokines as well as peptide hormones that 

have the ability to directly and indirectly influence the majority of the intestinal mucosal 

immune system. Novel transgenic reporter models are now allowing the scientific community 

to fully investigate this exciting crosstalk between our intestinal endocrine and immune 

systems, opening up the possibility to repurpose current drugs used for metabolic 

syndromes in wider immune inflammatory settings such as IBD, infection and cancer. 

Indeed, as eecs transpose microbial signals it may be possible to utilize eec peptide 

agonist/antagonists over and above microbial interventions in the treatment of disease. 

Moreover, the expression and role of epithelial endocrine cells at other mucosal sites such 

as the lung is hugely understudied. Indeed, this potential may go beyond diseases of the 

intestine with peptide agonists showing potential in models of psoriasis, multiple sclerosis 

and rheumatoid arthritis260, 273, 286, highlighting the huge therapeutic potential of the 

immunoendocrine axis. 
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Figure 1. Intestinal epithelial cell differentiation. Epithelial cells arise from the same LGR-

5+ pluripotent stem cell found in the crypt niche and based on the expression of the Notch-

dependent basic helix loop helix transcription factors Hes-1 or Atoh-1 develop into 

absorptive enterocytes or secretory epithelial lineages, or via SpiB transcription factor 

expression to antigen-sampling M-cells. The secretory cells further differentiate into mucin 

secreting goblet cells, anti-microbial peptide secreting Paneth cells, opioid and alarmin 

secreting Tuft cells and peptide hormone secreting enteroendocrine cells, whose peptide 

hormone secretome further depends on spatio-temporal expression of further transcription 

factors. 

 

Figure 2. Spatio-temporal expression of enteroendocrine peptide hormones. The 

dogma of terminally differentiated enteroendocrine cells secreting individual peptide 

hormones has been superseded with a secretome that contains a comprehensive array of 

peptide hormones altering based on their location within the gut. However, the traditional 

lettering nomenclature helps to demonstrate the role and function of individual peptide 

hormones.  

 

Figure 3. Enteroendocrine cell influence on epithelial barrier function and immune 

cells. (A) Enteroendocrine cells possess multiple chemosensory apparatus and are uniquely 

equipped to sense microbial metabolites and PAMPs. In response they secrete both peptide 

hormones and cytokines which directly influence barrier function. (B) Furthermore, as 

mucosal immune cells have numerous receptors for peptide hormones they can act as 

“cytokines” and can therefore be directly influenced by enteroendocrine cells. Reference 

numbers are indicated in superscript and black arrows indicate increase or decrease in 

specified cell activation. 
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Table 1. Transcription factors required for enteroendocrine differentiation. The 

following table has been produced from published literature based on observations from 

genetic knockdown of specific transcription factors in mice. Reference numbers are indicated 

in superscript. X indicates non-present, arrows indicate increase or decrease in detection, 

NE= not examined, NC= No change, If only specific tissues are examined brackets indicate 

which, with, st, d, j, i identifying stomach, duodenum, jejunum and ileum respectively. 

 

Table 2. Alterations in enteroendocrine peptides during IBD. The following table has 

been produced from published literature based on observations in the clinic. Reference 

numbers are indicated in superscript and arrows indicate increase or decrease in measured 

parameter for specified peptide hormone. * importantly in all of these studies patients were 

free from the use of protein pump inhibitors. 

 

Table 3. Alterations in enteroendocrine peptides during murine models of IBD. The 

following table has been produced from published literature based on observations in 

indicated IBD models. Reference numbers are indicated in superscript and arrows indicate 

increase or decrease in measured parameter for specified peptide hormone.  
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Ulcerative colitis Crohn’s Disease 

Microscopic 

colitis 

 

Serum Plasma Histology Serum Plasma Histology Histology 

Ghrelin ↑118-121 

  

↑115, 118—121 

   Gastrin* ↑124 

  

↑123 ↑125 ↑131 

 Somatostatin 

 

↑116, 117 ↓136 

  

↓136 

 5-HT 

  

↓134 

  

↓134 ↑135 

CCK 

    

↑127, 128 

  GLP-1 ↑126 ↑128,129 

 

↑126 

 

↑106 

 GLP-2 

  

↑137 

  

↑137 

 PYY ↓112 

 

↓112, 133 ↑112, 114, 115 

 

↓132 ↑135 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

 

Chemical Genetically prone Immunocompromised 

 

TNBS DSS TCRα-/- IL-2-/- T-cell transfer 

CgA ↓148     

Somatostatin ↑148 ↓160 

   5-HT ↑148, 149 

 

↓152 ↓153 

 Neurotensin  ↑162 ↓152   

CCK 

  

↓152 

  GLP-1 

    

↑151 

GLP-2 ↑149 

   

↓150 

PYY ↓148 ↓144 

 

↓153 

 Oxyntomodulin ↑148     

 

 

 

 

 

 

 

 



58 
 

 

 

 

 

 

 

 

 

 

 

 

 



59 
 

 

 



60 
 

 


