
Improving Spark Application Throughput Via Memory
Aware Task Co-location: A Mixture of Experts Approach

Anonymous Author(s)

Abstract

Data analytic applications built upon big data processing
frameworks such as Apache Spark are an important class
of applications. Many of these applications are not latency-
sensitive and thus can run as batch jobs in data centers.
By running multiple applications on a computing host, task
co-location can significantly improve the server utilization
and system throughput. However, effective task co-location
is a non-trivial task, as it requires an understanding of the
computing resource requirement of the co-running applica-
tions, in order to determine what tasks, and how many of
them, can be co-located. State-of-the-art co-location schemes
either require the user to supply the resource demands which
are often far beyond what is needed; or use a one-size-fits-all
function to estimate the requirement, which, unfortunately,
is unlikely to capture the diverse behaviors of applications.

In this paper, we present a mixture-of-experts approach to
model the memory behavior of Spark applications. We achieve
this by learning, off-line, a range of specialized memory mod-
els on a range of typical applications; we then determine
at runtime which of the memory models, or experts, best
describes the memory behavior of the target application. We
show that by accurately estimating the resource level that is
needed, a co-location scheme can effectively determine how
many applications can be co-located on the same host to
improve the system throughput, by taking into consideration
the memory and CPU requirements of co-running application
tasks. Our technique is applied to a set of representative data
analytic applications built upon the Apache Spark frame-
work. We evaluated our approach for system throughput and
average normalized turnaround time on a multi-core clus-
ter. Our approach achieves over 86.4% of the performance
delivered using an ideal memory predictor. We obtain, on
average, 8.75x improvement on system throughput and a
51% reduction on turnaround time over executing applica-
tion tasks in isolation, which translates to a 1.31x and 1.75x
improvement over a state-of-the-art co-location scheme for
system throughput and turnaround time respectively.

CCS Concepts • Computing methodologies → Dis-
tributed algorithms;

Keywords Resource Modeling, Memory Management, Apache
Spark, Task Scheduling, Predictive Modeling

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

Middleware’17,

© 2017 ACM. xxx-xxxx-xx-xxx/xx/xx. . . $xx.00
DOI: xx.xxx/xxx x

ACM Reference format:
Anonymous Author(s). 2017. Improving Spark Application Through-
put Via Memory Aware Task Co-location: A Mixture of Experts

Approach. In Proceedings of ACM/IFIP/USENIX Middleware, ,
(Middleware’17), 14 pages.

DOI: xx.xxx/xxx x

1 Introduction

Big data applications built upon frameworks such as Hive [41],
Hadoop [36] and Spark [49] are commonplace. Unlike inter-
active jobs, many of the data analytic applications are not
latency-sensitive. Therefore, they often run as batch jobs
in a data center. However, how to effectively schedule such
applications to improve the server utilization and the system
throughput remains a challenge.

Specifically, if an application task is given the entirety
of main memory on each host to which it is deployed, it
is effectively preventing the host machine from being used
for any other application until the current one has finished,
even if the task does not use all of the memory. Because
many data analytic tasks do not use 100% of the CPU during
execution [2, 24] there is a significant portion of unused
processing capacity. An alternate approach is to share the
computing host between multiple application tasks (where
each task does not use all of the memory), this could save
time and energy by co-locating processes more effectively on
fewer machines.

Effective task co-locations require knowledge of the appli-
cation’s resource demand. For in-memory data processing
frameworks like Apache Spark, RAM consumption is a major
concern [27]. It is particularly important to understand the
memory behavior of the application. If we co-locate too many
applications or give too much data to a single task, such
that their total memory consumption exceeds the physical
memory of the host, we could cause memory paging onto
the hard disk, or an “out-of-memory” error, slowing down
the overall system. To achieve this we need a technique to
predict the precise memory requirement of any given Spark
application.

Existing task co-location schemes require either: the user
to provide information of the resource requirement [21], or
employ an analytical [17] or statistical model [10, 18, 31] to
estimate the resource requirement based on historical jobs or
runtime profiling. These approaches, however, have significant
drawbacks. Firstly, it is difficult for a user to give a precise
estimation of the application’s requirement; and thus, the
supplied information is often over-conservative, asking far
more resources than the application needs. Secondly, a one-
size-fits-all function is unlikely to precisely capture behaviors
of diverse applications, and no matter how parameterized
the model is, it is highly unlikely that a model developed
today will always be suited for tomorrow.

Middleware’17, , Anon.

In this paper, we present a generic framework to model
the memory behavior of Spark applications. As a departure
from prior work that uses a fixed utility function to model
the resource requirement, we use multiple linear and non-
linear functions to model the memory requirements of various
applications. We then build a machine learning classifier to
select which function should be used for a given application
and dataset at runtime. As the program implementation,
workload and underlying hardware changes, different models
will be dynamically selected at runtime. Such an approach
is known as mixture-of-experts [23]. The central idea is that
instead of using a single monolithic model, we use multiple
models (experts) where each expert is specialized for mod-
eling a subset of applications. Using this approach, each
memory model is used only for the applications for which
its predictions are effective. One of the advantages of our
approach is that new functions can easily be added and are
selected only when appropriate. This means that the system
can evolve over time to target a wider range of applications,
by simply inserting new functions. The result is a new way
of using machine learning for system optimization, with a
generalized framework for a diverse set of applications.

We evaluate our approach on a 40-node multi-core cluster
using 44 Spark applications that cover a wide range of appli-
cation domains. We show that the accurate memory-footprint
prediction given by our approach enables the runtime sched-
uler to make better use of spare computing resources to
improve the overall system throughput via task co-location.
We use two distinct metrics to quantify our results: system
throughput and average normalized turnaround time, and com-
pare our approach against a state-of-art resource and task
scheduler [10]. Experimental results show that our approach
is highly accurate in predicting the application’s memory
requirement, with an average error of 5%. By better utilizing
the memory resources of a host, our system achieves 8.75x
improvement of system throughput and a 51% reduction
in application turnaround time. This translates to a 1.31x
and 1.78x improvement over the state-of-art respectively on
throughput and turnaround time.

This paper makes the following contributions:

∙ We present a novel machine learning based approach to
automatically learn how to model the memory behavior
of Spark applications (Section 3);

∙ Our work is the first to employ mixture-of-experts for
resource demand modeling. Our generic framework allows
new models to be easily added to target a wider range of
applications and performance metrics;

∙ We show how to combine this resource modeling frame-
work with runtime task co-location policies to improve
system throughput for Spark applications (Section 4);

∙ Our system is immediately deployable on real systems
and does not require any modification to the application
source code.

2 Background and Overview

2.1 Apache Spark

Apache Spark is a general-purpose cluster computing frame-
work [49]. with APIs in Java, Scala and Python and libraries

for streaming, graph processing and machine learning [49].
It is one of the most active open source projects for big data
processing, with over 2,000 contributors in 2016. Each Spark
application runs as an independent set of executor processes,
each with dedicated memory space for executing parallel jobs
within the application. The executors are coordinated by the
driver program running on a coordinating node. Input data
of Spark applications is stored in a shared filesystem and or-
ganized as resilient distributed datasets (RDDs) – a collection
of objects that can be operated on in parallel. Each Spark
executor allocates its own heap memory space for caching
RDDs. This work exploits the data parallel property of RDDs
to characterize (or fingerprint) the application’s memory
behavior without wasting computing cycles.

2.2 Problem Scope

Our goal is to develop a framework to accurately predict
the resource requirement of Spark applications for arbitrary
inputs. In this work, we focus on the memory requirement as
RAM resources are a major concern for in-memory data pro-
cessing frameworks like Apache Spark [27]. To demonstrate
the usefulness of our approach, we apply it to perform task
co-location for batched, data-analytic Spark applications. We
do not consider latency-sensitive applications, such as search,
as their stringent response time targets often require isolated
execution [30].

Our approach estimates the memory footprint of a Spark
executor for a given input dataset. It then uses this infor-
mation to determine if there are enough spare resources (i.e.
memory and CPU) to co-locate tasks; if there is, it calculates
how many tasks could be co-located and how much work
should be given to each task. We exploit the fact that many
big data applications do not spend all of their time at 100%
CPU [24] (see also Section 6.6). This observation suggests that
there are opportunities to co-locate Spark tasks without sig-
nificantly increasing the CPU contention and slow down the
performance of co-running applications (see also Section 6.7).
Our approach is applied to a simple task co-location policy
in this work, yet the resulted scheme outperforms the state-
of-the-art task scheduling scheme. We want to stress that
our framework can be used by other scheduling policies to
provide an estimation of the application’s resource demand
to support decision making.

Our current implementation is restricted to applications
whose memory footprint is a function of their input size, this
is a typical behavior for many data analytical applications. In
this work, we do not explicitly model disk and network I/O
contention, because prior research suggests that they have
little impact on the performance of in-memory processing
frameworks including Apache Spark [35]. Nonetheless, our
framework is general and allows new models to be easily
added to target different applications, or other performance
and resource metrics in the future.

2.3 Overview of Our Approach

Our approach, depicted in Figure 1, is completely automated,
and no modification to the application source code is required.

Our mixture-of-experts framework for memory footprint
prediction consists of a range of distinct models built off-line.

Improving Spark Application Throughput Via Memory Aware Task Co-location: A Mixture of Experts Approach Middleware’17, ,

App Feature
Extraction

Model
Calibration

1 2 3 4

Offline
Profiling Runs

Memory footprint

Training
programs

Model Fitting

Feature
Extraction

f

Memory function

Feature values

Task
Scheduling

Func.
Prediction

Figure 1. Overview of how our approach can be used for
task scheduling. For an incoming application, our approach
first extracts the features of the program. Based on the fea-
ture values, it predicts which of the off-line learned memory
functions best describes the memory behavior of the applica-
tion. It then instantiates the function parameters by profiling
the application on some small sets of the input data items.
A runtime scheduler then utilizes the memory function to
perform task co-location.

An expert selector decides which model should be invoked,
based on the runtime information of the application. To
use our resource modeling framework to perform task co-
location, a task scheduler follows a number of steps described
as follows.

For each “new” application that is ready to run, we predict
which of the off-line learned experts, termed ‘memory func-
tion’ in this paper, best describes its memory behavior, i.e.
how the memory footprint changes as the input size varies.
The selection of the memory function is based on runtime
information of the program, such as the number of L1 data
and instruction cache misses. This information is collected by
running the application on a small portion (around 100MB)
of the input data items1.

We then calibrate the selected function to tailor its pa-
rameters to the target program and input. We do so by
first profiling the application with two small different-sized
parts of the application input to instantiate two function
parameters; we then use the measured memory footprints
to instantiate the parameter values. The calibrated memory
function is then used to determine how many unprocessed
data items should be allocated to an executor under a given
memory budget. During the profiling run, we also record the
average CPU usage of the application. After determining
which memory function to use and obtaining the CPU usage
of the application, the runtime scheduler can spawn new
executors to run on servers that have spare memory, and
if the aggregate CPU load of co-running tasks will go over
100% (i.e. to avoid CPU contention).

Since runtime information collection and model calibra-
tion are all performed on some unprocessed data items and
contribute to the final output, no computing cycle is wasted
on profiling. Furthermore, we will re-run an executor process
in isolation if it fails because of an “out-of-memory” error,
but this was not observed in our experiments.

The key to our approach is choosing the right memory func-
tion and then using lightweight profiling to instantiate the
function parameters. An alternative is to use extensive pro-
filing runs at runtime to find a model to fit the application’s
memory behavior. However, doing so will incur significant
overhead and could outweigh the benefit (see Section 6.4).

1We choose this modest input size as an input of this size typically
takes a short time to process, while at the same time, it is sufficiently
large (i.e. this often results in a working set that is larger than the
size of the L3 data cache in most of the high-end CPUs) to capture
the cache behavior of the application.

App Feature
Extraction

Func.
Exam.

1 2 3 4

Offline
Profiling RunsMemory footprint

Training programs

Model Fitting

Feature
Extraction

f
Memory function

Feature values

Task
Scheduling

5

Func.
Prediction

Figure 2. The training process.

Table 1. Memory functions used in this work

Modeling Technique Formula

(Piecewise) Linear Regression 𝑦 = 𝑚 * 𝑥𝑏

Exponential Regression 𝑦 = 𝑚 * (1− 𝑒(−𝑏*𝑥))
Napierian Logarithmic Regression 𝑦 = 𝑚+ 𝑙𝑛(𝑥) * 𝑏

1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 30
2
4
6
8

Me
m.

 (G
B)

I n p u t S i z e (G B)

 O b e s e r v e d
 P r e d i c t e d

(a) Sort

1 0 - 2 1 0 0 1 0 2
0
8

1 6
2 4
3 2

Me
m.

 (G
B)

I n p u t S i z e (G B)

 O b e s e r v e d
 P r e d i c t e d

(b) PageRank

Figure 3. The observed and predicted memory footprints
for Sort and PageRank from HiBench. The memory footprint
of the two applications can be accurately described using one
of the memory functions listed in Table 1.

In the next section, we will describe how supervised ma-
chine learning [1] can be used to construct the memory func-
tions (experts) and the expert selector to choose which func-
tion to use for any “unseen” applications.

3 Predictive Modeling

Our approach involves using multiple memory functions (ex-
perts) to capture the memory requirement of an application
for a specific runtime input. The set of memory functions are
constructed offline on a set of example programs, and then
an expert selector dynamically chooses the best expert to
use at runtime.

Our expert selector for determining the memory function
is a K-nearest neighbour (KNN) classifier [25]2. The input to
the classifier is a set of runtime features. Its output is a label
to the memory function that describes the memory behavior
of the target application and the specific dataset.

3.1 Learning Memory Functions

Our memory functions and expert selector are trained off-
line using a set of training benchmarks. The learned expert
selector can then be used to predict which memory function
to use for any new, unseen application. Figure 2 depicts
the process of collecting training data to learn the memory
functions to build the KNN classifier. This involves finding a
mathematical function to model the memory footprint for
each benchmark and collecting feature values of each training
program.

2We have also explored several alternative classification techniques,
including decision trees and neural networks. This is discussed in
Section 6.8.

Middleware’17, , Anon.

During the training process, we run selected training pro-
grams in isolation on a computing host. We profiled each
training application with different sized inputs. For each pro-
gram input, we record the memory footprint of the Spark
executor process. Next, we try different mathematical mod-
eling techniques to discover which model best describes the
relationship between input size and memory allocation, that
is, as the input size increases, how does the memory alloca-
tion change. In this training phase, we record the memory
function used to describe each training program. Our intu-
ition is that the memory behavior for programs with similar
characteristics will be similar. This hypothesis is confirmed
in Section 6.8.

We use a set of linear and non-linear regression techniques
to model the application’s memory behavior. Table 1 gives
the full list of modeling techniques we used in this work. Each
of our models has two parameters, 𝑚 and 𝑏, to be instanti-
ated during runtime model calibration. Here 𝑥 and 𝑦 are the
input size (i.e. the number of RDD objects in our case) and the
predicted memory footprint respectively. It is worth mention-
ing that all the memory functions are automatically learned
from training data, treating the applications as black boxes;
new applications would similarly be learned automatically,
potentially causing the addition of new memory functions.

Example. Figure 3 shows the observed memory footprint
and the prediction given by our memory function for Sort
and PageRank. For these two applications, the memory func-
tions used in this work can accurately model their memory
behaviors. Specifically, the memory footprint, 𝑦, of Sort and
PageRank for a given input size, 𝑥, can be precisely described

using an exponential function , 𝑦 = 𝑚 * (1− 𝑒(−𝑏*𝑥)), where
𝑚 = 5.768, 𝑏 = 4.479 and a Napierian logarithmic function,
𝑦 = 𝑚+ 𝑙𝑛(𝑥) * 𝑏, where 𝑚 = 16.333, 𝑏 = 1.79 respectively.

After building the memory functions, we need to have a
mechanism to decide which of the functions to use. One of
the key aspects in building a successful expert predictor is
finding the right features to characterize the input application
task. This process of feature selection is described in the next
section. This is followed by sections describing training data
generation and then how to use the expert selector at runtime.

3.2 Runtime Features

Raw Features. Expert selection is based on runtime char-
acteristics of the application task. These characteristics,
called features, are collected using system-wide profiling tools:
vmstat, Linux perf and performance counter tool PAPI. Col-
lected feature values are encoded to a vector of real values.
We considered 22 raw features in this work, which are given in
Table 2. Some of these features are selected based on our intu-
ition, while others are chosen based on prior work [11, 48]. All
these features can be automatically and externally observed,
without needing access to the source code.

Feature Scaling. Supervised learning typically works better
if the feature values lie in a certain range. Therefore, we
scaled the value for each of our features between the range
of 0 and 1. We record the maximum and minimum value of
each feature found at the training phase, and use these values

P C 5
3 %

P C 4
4 %

P C 3
7 %

P C 2
1 0 %

P C 1
7 1 %

R e s t P C s - 5 %

(a) Principal components

L1
_T

CM
L1

_D
CM

vca
ch

e
L1

_S
TM bo cs0

5
1 0
1 5
2 0
2 5
3 0
3 5
4 0

%
of

co
ntr

i. t
o v

ari
an

ce

(b) Most important raw features

Figure 4. The percentage of principal components (PCs) to
the overall feature variance (a), and contributions of the 5
most important raw features in the PCA space (b).

to scale features extracted from a new application during
runtime deployment.

Feature Reduction. Given the relatively small number of
training applications, we need to find a compact set of features
in order to build an effective predictor. Feature reduction is
automatically performed through applying Principal Compo-
nent Analysis (PCA) on the scaled raw features. This technique
removes the redundant features by linearly aggregating fea-
tures that are highly correlated. After application of PCA, we
use the top 5 principal components (PCs) which account for
95% of the variance of the original feature space. We record
the PCA transformation matrix and use it to transform the
raw features of the target application to PCs during runtime
deployment. Figure 4a illustrates how much feature variance
that each component accounts for. This figure shows that
prediction can accurately draw upon a subset of aggregated
feature values.

Feature Analysis. To understand the usefulness of each raw
feature, we apply the Varimax rotation [32] to the PCA space.
This technique quantifies the contribution of each feature to
each PC. Figure 4b shows the top 5 dominant features based
on their contributions to the PCs. Cache features, L1 TCM,
L1 DCM and L1 STM, are found to be important for describing
memory behaviors. This is not supervising as cache hit/miss
rates are shown to be useful in characterizing the application
behavior in prior works [6, 37]. Other features of virtual
memory usage (vcache), I/O (bo) and thread contention
(cs) are also considered to be useful, but are less important
compared to cache features. Using this technique, we sort the
raw features listed in Table 2 according to the importance.
The advantage of our feature selection process is that it
automatically determines what features are useful when tar-
geting a new computing environment where the importance
of features may change.

3.3 Collect Training Data

We use cross-validation to construct memory functions and
the KNN classifer to select which function to use. This standard
evaluation technique works by picking some target programs
for testing and using the remaining ones for training.

In this work, we use benchmarks from the HiBench [22]
and BigDataBench [16] suites to build the memory models.
Later we show that our approach works well on benchmarks

Improving Spark Application Throughput Via Memory Aware Task Co-location: A Mixture of Experts Approach Middleware’17, ,

Table 2. Raw features, sorted by their importance

Feature Description Feature Description

L1 TCM L1 total cache miss rate L1 DCM L1 data cache miss rate

vcache % of memory used as cache L1 STM L1 cache store miss rate

bo # blocks sent (/s) L2 TCM L2 data cache miss rate
L3 TCM L2 total cache miss rate cs # context switches / s
FLOPs # floating point operations /s in # interrupts / s

L2 DCM L3 cache total miss rate L2 LDM L2 cache load miss rate
L1 ICM L1 instr. cache miss rate swpd % of virtual memory used

L2 STM L2 cache store miss rate IPC instruction per cycle
L1 LDM L1 cache load miss rate L2 ICM L2 instr. cache miss rate

ID % of idle time WA % of time on IO watting
US % spent on user time SY % spent on kernel time

E1 E2 E3 E4 E5 E6

T1
T2
T3
T4
T5

TimeCo
mp

utin
g N

ode
s

Tas
kQ

ueu
e f

...

Computing Nodes

Predictive
Model

Job
Dispatcher

f

Resource
Monitor

f

Coordinating Node

f

Figure 5. Our system predicts the memory function for each
application and monitors the memory resources of computing
nodes. The runtime scheduler creates new executors to run
on computing nodes that have spare memory, and uses the
memory function to determine how much data should be
given to the executor under a memory budget.

from the Spark-Perf [9] and the Spark-Bench [27] suites,
although we did not directly train our models on them. The
process of collecting training data is described in Figure 2.
To collect training data, we first extract the feature values of
each training program by running a single executor process in
isolation, using inputs with an average size of 100MB. Next,
we run each training program with different sized inputs
(ranging from ∼300MB to ∼1TB) and record the observed
memory footprints. We then find a memory function to closely
fit the curve. For each training program, we store its principal
component values and the memory function in a database.
Since training is only performed once, it is a one-off cost.

4 Runtime Deployment

Once we have learned the memory functions as described
above, we can use a KNN algorithm to choose an appropriate
function to estimate the memory footprint for any unseen
applications with a given input, and to use the prediction to
co-locate Spark executor tasks at runtime.

Our runtime system built upon YARN [42], a task and
resource manager for Spark. The co-location scheme will be
triggered when more than one Spark application is waiting
to be scheduled. Figure 5 illustrates the architecture of our

system. For each application task, we predict its memory func-
tion for its input dataset, and then use the memory function
to co-locate Spark executor processes whenever possible.

4.1 Memory Requirement Prediction

To determine the memory function for an application task, a
runtime system follows two steps, described as follows.

Memory Function Prediction. We run the incoming ap-
plication on a small set of the input RDD objects (with an
aggregated size of around 100MB) to collect and normal-
ize feature values, and to perform the PCA transformation.
We then calculate the Euclidean distance between the trans-
formed input program feature vector and the feature vector
of each training program to find out the nearest neighbor,
i.e. the training program that is closest to the input pro-
gram in the feature space (see also Section 6.8). We use the
memory function of the nearest neighbor as the prediction.
We also record the average CPU usage during this profiling
run, and use this information later to determine whether co-
location will cause CPU contention among co-running tasks.
Our current implementation performs feature extraction by
running the application on the lightly-loaded coordinating
node (where the driver program runs). The results generated
in the feature extraction phase will contribute to the final
output of the application.

Model Calibration. After we have determined the memory
function, we need to instantiate the function coefficients (i.e.
𝑚 and 𝑏 in Table 1). We calculate these by running the ap-
plication on two sets of unprocessed input data items, where
the first and the second sets contain 5% and 10% of the input
items, respectively. To determine the function parameters,
we measured the memory footprints during profiling runs,
and use them together with the corresponding input sizes
(i.e. the number of data objects) to solve the memory func-
tion equation. At this stage, we are only concerned with the
application’s memory footprint but not runtime. Therefore,
profiling runs can be performed by either grouping different
application tasks to run on a single host or running the target
application with other latency-insensitive tasks. Again, the
results generated during this phase will contribute to the
final output of the application, no computing cycle is wasted.

Middleware’17, , Anon.

Furthermore, since the input and output data of the Spark
application typically stored in a shared filesystem, we do not
need to explicitly move the data in or out from the profiling
host.

4.2 Resource Monitor

Each computing node runs a daemon that periodically reports
to the resource monitor its memory usage and CPU load. Our
current implementation reports the average memory usage
and system load within a 5-minute window. The information
is retrieved from the Linux “/proc” system. Since this is per-
formed at a coarse-grained level (i.e. minutes), the overhead
of monitoring and communication is negligible. With this
monitoring scheme in place, a task scheduler can respond
to execution phase changes and load variations, avoiding
over-subscribing the computing resources.

4.3 Job Dispatcher

By default, we use the dynamic allocation scheme of Spark
to determine how many free server nodes to use to run
an application. However, the Spark dynamic scheme is not
perfect, so we utilize spare memory to spawn additional
executors to run on servers that have spare resources. Also,
instead of waiting for the servers to become completely free,
our approach starts executing waiting applications as soon
as possible, reducing the turnaround time.

Once we have the memory function of the highest-priority
application, the job dispatcher will spawn a new executor
for the application to run on severs that have spare memory
and if the aggregate CPU load of all co-running tasks will
not go over 100%. The dispatcher uses the memory function
to determine how much memory is needed for the remaining
input (to allow us to co-locate more applications if possible),
and how many data items can be cached by the executor un-
der a given memory budget. To estimate the aggregate CPU
load, we add up the CPU load of the computing host (which
is reported by the resource monitor) and the average CPU
usage of the application to be scheduled (which is obtained
during the profiling run for feature collection). Furthermore,
the number of data items to give to the co-located executor
is dynamically adjusted over time, adapting to the changes of
execution stages and memory resources. A naive alternative
is to statically set the executor heap size to the size of free
memory. But doing so can over-subscribe the memory re-
sources than necessary and precludes co-locating more than
two applications (see Section 6.1).

To minimize the potential thread contention, we dynami-
cally adjust the number of threads (tasks) created by each
executor to evenly distribute processor cores across currently-
running executors on a single host. Furthermore, to enforce
a certain degree of fairness, it is important to make sure that
the new co-running task does not use the resources that are
deemed to be essential for the currently running application.
While fairness is not a focus of this work, our prediction
framework helps the scheduler in this endeavor.

Table 3. Application task mixes used in the experiments

Label #App. Label #App. Label #App. Label #App.

L1 2 L2 6 L3 7 L4 9
L5 11 L6 13 L7 19 L8 23
L9 26 L10 30

5 Experimental Setup

5.1 Platform and Benchmarks

Hardware. We use a multi-core cluster with 40 nodes, each
with an 8-core Xeon E5-2650 CPU @ 2.6GHz (16 threads
with hyper-threading), 64GB of DDR4 RAM, and 16GB of
swap. Nodes have SSD storage and are connected through
10Gbps Ethernet, precluding disk and network contention.

Software. Each computing node runs CentOS 7.2 with Linux
kernel 3.12. We rely on the local OS to schedule processes
and do not bind tasks to specific cores. We use Apache
Spark 1.3.0 with Hadoop Yarn 2.4 as the cluster manager
and HDFS as the Spark file management system. We use
the Oracle Java runtime, Java SE 8u. We run Spark in the
cluster mode. We also use the dynamic resource allocation
scheme, so that memory will be given back to Spark when
an application task completes. We run the Spark driver on a
dedicated coordinating node and try to run multiple Spark
executors on a single host to improve the system throughput.
Finally, we use the Spark default configuration for memory
management.

Workloads. We used 44 Java-based Spark applications from
four widely used suites: HiBench [22], BigDataBench [16],
Spark-Perf [9] and Spark-Bench [27]. These benchmarks im-
plement the core algorithms used in real-life applications e.g.
machine learning, image and natural language processing,
and web analysis.

5.2 Evaluation Methodology

Runtime Scenarios. We evaluated our scheme using ten
runtime scenarios with a mix of 2 to 30 randomly selected ap-
plications, detailed in Table 3. For each scenario, we try ∼100
different application mixes and make sure all benchmarks
are included in each scenario. The input size ranges from
small (∼300MB) and medium (∼30GB) to large (∼1TB). In-
puts were generated using the input generation tool provided
by each benchmark suite. In the experiments, all tasks are
scheduled on a first come first serve basis, but we stress that
our technique can be applied to any scheduling policy.

Predictive Model Evaluation. Our memory functions and
predictor are trained using 16 benchmarks from HiBench and
BigDataBench. We then apply the trained models to all 44
benchmarks from the four benchmark suites. When there
are benchmarks from HiBench and BigDataBench present
in the task group, we use the standard leave-one-out-cross-
validation, i.e. to exclude the target applications from the
training program set and use the remaining benchmarks from
HiBench and BigDataBench to build our model. To provide
a fair comparison, when testing an application from one
benchmark suite that has an equivalent implementation in
the other suite, we also exclude the benchmark from other

Improving Spark Application Throughput Via Memory Aware Task Co-location: A Mixture of Experts Approach Middleware’17, ,

suite from the training set. For example, when testing Sort

from HiBench, we exclude Sort from BigDataBench from
training.

Performance Report. For each test case, we report the
performance as the geometric mean across all configurations.
We replay the schedule decisions for each test case multi-
ple times, until the difference between the upper and lower
confidence bounds under a 95% confidence interval setting
is smaller than 5%. Furthermore, the time spent on feature
extraction, model calibration, and prediction is included in
our results.

5.3 Evaluation Metrics

We use two standard evaluation metrics for multi-programmed
workloads: system throughput and turnaround time. We use
the definitions given in [13], defined as follows.

1. System throughput (STP) is a higher is better metric.
It describes the aggregated progress of all jobs under co-
location execution over running each job one by one using
isolated execution. This is calculated as:

𝑆𝑇𝑃 =

𝑛∑︁
𝑖=1

𝐶𝑖𝑠
𝑖

𝐶𝑐𝑙
𝑖

(1)

where n is the number of application tasks to be scheduled,
and 𝐶𝑖𝑠

𝑖 and 𝐶𝑐𝑙
𝑖 are the execution time for task 𝑖 under the

isolated execution mode (is) where the task uses all available
memory; and the co-locating mode (cl) where there may be
multiple tasks running on the same host.

2. Average normalized turnaround time (ANTT) is
a smaller is better metric. It quantifies the time between a
task being created and its completion, indicating the average
user-perceived delay. This metric is defined as:

𝐴𝑁𝑇𝑇 =
1

𝑛

𝑛∑︁
𝑖=1

𝐶𝑐𝑙
𝑖

𝐶𝑖𝑠
𝑖

(2)

5.4 Comparative Approaches

Quasar. This is a state-of-the-art co-location scheme [10].
Quasar uses classification techniques to determine the char-
acteristics of the application to perform resource allocation,
and task assignment and co-location. Similar to our dynamic
scheme, Quasar monitors workload performance to adjust
resource allocation and assignment when needed. Unlike our
approach, Quasar uses a single model for resource estima-
tion. To provide a fair comparison, we have implemented the
Quasar classification scheme using the same set of training
programs that we used to build our models.

Pairwise. This pairwise co-location scheme looks for servers
with spare memory to co-locate an additional task on the host.
It sets the maximum heap size of the co-locating task to the
size of free memory, and relies on the Spark default scheduler
to determine how many RDD data items to be allocated to
the co-running task. This represents the default resource
allocation policy used by many co-location schemes [29].

Oracle. We also compare our approach to the performance
of an ideal predictor (Oracle) that gives the perfect memory
prediction for an application. This comparison indicates how

close our approach is to the theoretically perfect solution.
The prediction given by the Oracle scheme is obtained
through profiling the application on a given set of input RDD
data items, but the profiling overhead is not included in the
results since we assume the Oracle predictor has the ability
to make prophetic prediction. Using the Oracle predictor,
the runtime scheduler can then search for the optimal number
of data items to be given to a co-running task.

5.5 Highlights

The highlights of our evaluation are as follows:

∙ With the help of our mixture-of-experts approach, a sim-
ple task co-location scheme achieves, on average, a 8.75x
improvement on STP and a 51% reduction on ANTT
over isolated execution. This translates to a 1.31x and
1.75x improvement on STP and ANTT respectively, when
compared to Quasar. See Section 6.1;

∙ Our approach is highly accurate in predicting the memory
footprint of Spark applications, with an error of less than
5% for most cases. See Section 6.8;

∙ Our scheme is low-overhead. The time spent on feature
extraction and model calibration is less than 10% of the
total application execution time, and the profiling runs
contribute to the final results. See Section 6.5;

∙ We thoroughly evaluate our scheme by comparing it
against several alternative task co-location schemes and
modeling techniques, and performing a detailed analysis
on the working mechanism of the approach.

6 Experimental Results

In this section we first show the overall performance of our ap-
proach against alternative schemes. We then provide analysis
of the working mechanism of our approach.

Unless stated otherwise, we report each approach’s perfor-
mance on STP and ANTT, by normalizing the results to a
baseline that schedules the applications one by one with each
application exclusively using all the memory of each allo-
cated computing node. The normalized STP and ANTT are
referred to as normalized STP and ANTT reduction (shown
in percentage) respectively.

6.1 Overall Performance

STP. Figure 6 (a) confirms that task co-location improves
system throughput. As the number of tasks to be scheduled
increases, we see an overall increase in the STP. Pairwise
performs reasonably well for small task groups, but it misses
significant opportunities for large task groups. For L9 and
L10, Pairwise only delivers half of the Oracle performance.
This is because Pairwise does not scale up beyond pair-
wise co-location. Quasar performs significantly better than
Pairwise by using a classifier model to coordinate resources
among co-locating tasks, but it is not as good as our ap-
proach. By employing multiple functions to model diverse
applications, our approach constantly outperforms Pairwise
and Quasar across all task groups. For large task groups (L8
- L10), our approach delivers over 1.8x and 1.51x improve-
ment on the STP over Pairwise and Quasar respectively.
Overall, Quasar gives on average 6.6x improvement on STP,

Middleware’17, , Anon.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 Geomean
0
2
4
6
8
10
12
14
16

N
or

m
al

iz
ed

 S
TP

 Pairwise
 Quasar
 Our Approach
 Oracle

(a) STP

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 0 G e o m e a n0
2 0
4 0
6 0
8 0

AN
TT

 Re
du

ctio
n %

 P a i r w i s e
 Q u a s a r
 O u r A p p r o a c h
 O r a c l e

(b) ANTT

Figure 6. Our approach outperforms Pairwise and Quasar
on STP (a) and ANTT (b). The baseline is running the
applications one by one using isolated execution. The min-
max bars show the range of performance achieved across task
mixes for each runtime scenario.

which translates to 65.7% of the Oracle performance. Our
approach achieves 8.75x improvement on STP, which trans-
lates to a 1.31x improvement over Quasar or 86.4% of the
Oracle performance.

ANTT. Figure 6 (b) shows the ANTT reduction over the
baseline. By maximizing the system throughput, task co-
location in general leads to favorable ANTT results, par-
ticularly for large task groups. Quasar and our approach
outperforms Pairwise on ANTT by a factor of over 4x from
L2 onward. Our approach delivers better turnaround time
over Quasar, by avoiding memory contention among co-
locating Spark tasks. On average, our approach reduces the
turnaround time by 51% across different task groups. This
translates to 94.6% of the Oracle performance. When com-
pared to the 54% Oracle performance given by Quasar,
our approach achieves 1.75x better turnaround time.

Summary. We achieve 86.4% and 94.6% of the Oracle
performance for STP and ANTT respectively, outperforming
Pairwise, a widely used co-location policy, and Quasar,
a state-of-the-art co-location policy. The advantage of our
approach is largely attributed to its use of multiple mod-
els instead of just one to precisely capture an applications’
memory behavior. Without this accurate information, the
alternative scheme often over- or under-provisions resources,
leading to worse performance.

6.2 Server Utilization

Figure 7 shows the CPU utilization across 40 computing
nodes for Pairwise, Quasar and our approach when sched-
uling 30 Spark applications (L10), and Figure 8 presents the

0
5

1 0
1 5
2 0
2 5

ST
P

 P a i r w i s e
 Q u a s a r
 O u r a p p r o a c h

(a) STP (higher is better)

0
1 0 0
2 0 0
3 0 0

 Tu
rna

rou
nd

 Ti
me

 (m
in)

 P a i r w i s e
 Q u a s a r
 O u r a p p r o a c h

(b) Turnaround Time (lower is bet-
ter)

Figure 8. Resultant STP (a) and turnaround time (b) for
the scheduling scenario in Figure 7. Our approach gives
better STP and faster turnaround time when compared to
alternative co-location schemes.

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 0 G e o m e a n0
2
4
6
8

1 0
1 2
1 4

No
rm

aliz
ed

 ST
P L i n e a r R e g r e s s i o n E x p o n e n t i a l R e g r e s s i o n

 N a p i e r i a n L o g . R e g r e s s i o n
 A N N O u r A p p r o a c h

(a) STP

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 0 G e o m e a n0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

AN
TT

 Re
du

ctio
n %

 L i n e a r R e g r e s s i o n E x p o n e n t i a l R e g r e s s i o n
 N a p i e r i a n L o g . R e g r e s s i o n
 A N N O u r A p p r o a c h

(b) ANTT

Figure 9. Compare to unified model based approaches that
use a single modeling technique to describe the application’s
memory behavior.

turnaround time (i.e. the wall clock time to finish the set of
jobs) given by each approach. By carefully co-locating tasks
using memory footprint predictions, our approach gives the
best server utilization, which in turn leads to the highest STP
(1.84x and 1.43x higher STP over Pairwise and Quasar
respectively) quickest turnaround time (1.5x and 1.32x faster
turnaround time over Pairwise and Quasar respectively).

6.3 Compare to Unified Models

Figure 9 compares our scheme to approaches that use one
modeling technique to predict the application’s memory foot-
print. In addition to the three memory functions listed in
Table 1, we also compare our scheme to a 3-layer artificial
neural network (ANN) trained using a backpropagation al-
gorithm. We use the same training data to build the ANN
model to predict the memory footprint. The input to the
ANN model is the same set of features used by our approach.
Among the single model approaches, the ANN gives the best
performance due to its ability to model linear and non-linear

Improving Spark Application Throughput Via Memory Aware Task Co-location: A Mixture of Experts Approach Middleware’17, ,

0 64 124 186 250 314 384
Time (min)

5
10
15
20
25
30
35
40

N
od

es

0

20

40

60

80

100

S
er

ve
r

U
til

is
at

io
n

(%
)

(a) Pairwise

0 64 124 186 250 314 384
Time (min)

5
10
15
20
25
30
35
40

N
od

es

0

20

40

60

80

100

S
er

ve
r

U
til

is
at

io
n

(%
)

(b) Quasar

0 64 124 186 250 314 384
Time (min)

5
10
15
20
25
30
35
40

N
od

es

0

20

40

60

80

100

S
er

ve
r

U
til

is
at

io
n

(%
)

(c) Our approach

Figure 7. CPU utilization across servers when scheduling 30 Spark applications (L10). The right-most non-zero point indicates
the time when all applications finish. Our approach leads to the highest server utilization and quickest turnaround time.

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 0 G e o m e a n0
2
4
6
8

1 0
1 2
1 4

No
rm

aliz
ed

 ST
P O n l i n e S e a r c h

 O u r A p p r o a c h

(a) STP

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 0 G e o m e a n0
2 0
4 0
6 0
8 0

1 0 0

AN
TT

 Re
du

ctio
n % O n l i n e S e a r c h

 O u r A p p r o a c h

(b) ANTT

Figure 10. Compare to using online search to allocate in-
put for a given memory budget. Our approach significantly
outperforms the online search scheme, because it avoids the
runtime overhead associated with finding the optimal number
of data items to be given to the co-running task.

behaviors. Our approach outperforms ANN and all other
approaches on STP and ANTT. The results suggest the need
for using multiple modeling techniques to capture the di-
verse application behaviors. This work develops a generic
framework to support this.

6.4 Compare to Online Search

Figure 10 compares our approach to a method that uses
descent gradient search to dynamically adjust the right input
size for a given memory budget. The online search based
approach gives rather disappointing results due to the large
overhead involved in finding the right input size. Further-
more, this approach also suffers from a scalability issue, i.e.
the searching overhead grows as the number of computing
nodes increases. Our approach avoids the overhead by di-
rectly predicting the memory footprint, leading to 2.4x and
2.6x remarkably better performance on STP and ANTT
respectively.

L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0

Ru

nti
me

 (M
in)

 M o d e l C a l i b r a t i o n
 F e a t u r e E x t r a c t i o n
 T o t a l E x e c u t i o n T i m e

Figure 11. Average profiling time to total task execution
time. It is to note that during feature extraction and model
calibration, the application always executes a portion of the
unprocessed data, no computing cycles are wasted.

H B . S c a n
B D B . G r e p

H B . T e r a S o r t
H B . J o i n s

H B . A g g r e g a t i o n

B D B . W o r d c o u n t
H B . S o r t

H B . W o r d c o u n t
B D B . S o r t

H B . K m e a n s

H B . P a g e R a n k

B D B . C o n . C o m .
H B . B a y e s

B D B . N a i v e B a y e s

B D B . K m e a n s

B D B . P a g e R a n k
0

1 0
2 0
3 0
4 0
5 0

Ru
nti

me
 (M

in)

 M o d e l C a l i b r a t i o n
 F e a t u r e E x t r a c t i o n
 T o t a l E x e c u t i o n T i m e

Figure 12. Average profiling time to total runtime per
program for HiBench and BigDataBench.

6.5 Profiling Overhead

The stack chart in Figure 11 shows the average time spent
on feature extraction and model calibration with respect to
the total execution time per evaluation scenario. Figure 12
gives a breakdown on per benchmark basis using an input
size of around 280GB. As profiling is performed on a single
host (thus having little communication overhead) using small
inputs, the cost is moderate. Overall, the time spent on
feature extraction and model calibration accounts for 5% and
8% respectively to the total task execution time. It is worth
mentioning that profiling runs also contribute to the final
output of the task, so no computing cycles are wasted; and
profiling is performed while the application is waiting to be
scheduled.

Middleware’17, , Anon.

0 - 1 0 1 0 - 2 0 2 0 - 3 0 3 0 - 4 0 4 0 - 5 0 5 0 - 6 00
2
4
6
8

1 0
1 2
1 4

B
en

ch
ma

rks

C P U L o a d i n I s o l a t i o n M o d e (%)

Figure 13. CPU load distributions across benchmarks when
the application is executed in the isolation mode.

6.6 CPU Load in Isolation Mode

Figure 13 shows the average CPU load when a benchmark is
running in isolation using all the system’s memory exclusively.
The CPU load for most of the 44 benchmarks is under 40%. As
a result, the CPU is often not fully utilized when just running
on application. This is in line with the finding reported by
other researchers [2]. Our approach exploits this characteristic
to improve the system throughput through task co-location.

6.7 Co-location Interferences

Interferences among Spark Benchmarks. The violin plot
in Figure 14 shows the distribution of slowdown when running
each of the 16 benchmarks from HiBench and BigDataBench
along with each of the remaining 43 benchmarks using our
scheme. The shape of the violin corresponds to the slowdown
distribution. The thick black line shows where 50% of the
data lies. The white dot is the position of the median. In the
experiment, we first launch the target application and then
use the spare memory to co-locate another competing work-
load. The input size of the target program is ∼280GB. As
can be seen from the figure, the slowdown across applications
is less than 25% and is less than 10% on average. For ap-
plications with little computation demand, such as HB.Sort,
the slowdown is minor (less than 5%). For benchmarks with
higher computation demand, such as HB.Aggregation, we
observe greater slowdown due to competing of computing
resources among co-locating tasks. Overall, our co-location
scheme has little impact on the application’s performance.

Interferences to PARSEC Applications. We further ex-
tend our experiments to investigate the impact for co-locating
Spark tasks with other computation-intensive applications.
For this purpose, we run some computation-intensive C/C++
applications from the PARSEC benchmark suite (v3.0) [3]
using the large, native input provided by the suite. Figure 15
shows the slowdown distribution of each PARSEC bench-
mark when they run together with each of the 44 Spark
benchmarks under our scheme. As all PARSEC benchmarks
are share-memory programs, this experiment was conducted
on a single host. As expected, we observe some slowdown
to the computation-intensive PARSEC benchmark, but the
slowdown is modest – less than 30%. For most of cases, the
slowdown is less than 20%. Given the significant benefit on
system throughput and server utilization given by our ap-
proach, we argue that such a small slowdown is acceptable
when maximizing the server utilization is desired (which is
typical for many data center applications). There are other

HB.Sort

HB.W
ordCount

HB.TeraSort

HB.Scan

HB.Aggregation

HB.Join

HB.PageRank

HB.Kmeans

HB.Bayes

BDB.Sort

BDB.W
ordcount

BDB.Grep

BDB.PageRank

BDB.Kmeans

BDB.Con.Com

BDB.NaivesBayes
0

5

10

15

20

25

S
lo

w
do

w
n

ov
er

 is
ol

at
ed

 e
xe

c.
 (

%
)

Figure 14. Violin plot showing the distribution of slowdown
when using our scheme to co-locate the target benchmark
with another application on a single host. The baseline is
running the target application in isolation. Here we run each
of the 16 target benchmarks from HiBench and BigDataBench
along with each of the remaining 43 benchmarks.

Blackscholes

Bodytra
ck

Canneal

Facesim
Ferre

t

Fluidanimate

Freqmine

Raytra
ce

Stre
amcluster

Swaptions
Vips

X264
0

5

10

15

20

25

30
S

lo
w

do
w

n
ov

er
 is

ol
at

ed
 e

xe
c.

 (
%

)

Figure 15. The slowdown distribution of computation-
intensive PARSEC benchmarks when they run with a Spark
task under our scheme.

schemes such as Bubble-Flux [47] for reducing the interfer-
ence via dynamically pausing non-critical tasks, which are
orthogonal to our scheme.

6.8 Model Analysis

Program Distribution. Figure 16 visually depicts the dis-
tribution of benchmarks on the feature space. To aid clarity,
we use PCA to project the dimension of the original feature
space down to two. Each point in the figure is one of the 44
benchmarks. This diagram clearly shows that the 44 bench-
marks can be grouped into three clusters. After inspecting
each cluster, we found that we indeed use the same mem-
ory function (given on the figure) for all benchmarks in a
cluster. This diagram justifies the chosen number of memory
functions. It also confirms our assumption that programs
with similar features can be modeled using similar memory
functions. We want to highlight that one of the advantages
of our KNN classifier is that the distance used to choose the
nearest neighbor program gives a confidence estimation of

Improving Spark Application Throughput Via Memory Aware Task Co-location: A Mixture of Experts Approach Middleware’17, ,

- 0 . 5 0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0
1 . 2
1 . 4
1 . 6

N a p i e r i a n L o g a r i t h m i c R e g r e s s i o n

E x p o n e n t i a l R e g r e s s i o n

Pri
nc

ipa
l C

om
po

ne
nt

2

P r i n c i p a l C o m p o n e n t 1

L i n e a r R e g r e s s i o n

Figure 16. Program feature space. The original feature
space is projected into 2 dimensions using PCA. Programs
can be grouped into three clusters. For all benchmarks in a
cluster, their memory behaviors can be described using one
of the three modeling techniques in Table 1.

- 5 . 7 %
- 4 . 1 % - 2 . 7 %

- 0 . 8 % - 4 . 8 % - 3 . 3 % 3 . 6 %
- 2 . 6 % 1 . 4 %

1 2 % - 0 . 2 % 0 . 9 % 7 . 9 % - 0 . 1 %
- 1 . 6 % 1 1 . 5 %

H B . S c a n

H B . A g g r e g a t i o n

B D B . W o r d C o u n t
H B . S o r t

H B . J o i n s

H B . W o r d C o u n t

B D B . N a i v e s B a y e s
B D B . G r e p

H B . T e r a S o r t
B D B . S o r t

B D B . C o n . C o m .

B D B . K m e a n s

H B . P a g e R a n k
H B . B a y e s

H B . K m e a n s

B D B . P a g e R a n k
0

1 0
2 0
3 0
4 0

Me
mo

ry
Fo

otp
rin

t (G
B) P r e d i c t e d

 M e a s u r e d

Figure 17. Predicted memory footprints vs measured values
for HiBench (HB) and BigDataBench (BDB).

how good the predicted memory function will be. If the target
application is far from any of the clusters in the feature space,
it suggests that a new memory modeling technique will be
required (and our approach allows new memory functions
to be easily inserted), or a conservative co-location policy
should be used to avoid saturating the memory system.

Prediction Accuracy. Figure 17 compares the predicted
optimal memory allocation against the measured value, us-
ing an input size of around 280GB. The prediction error
of our approach is less than 5% in most cases except for
HB.PageRank, BDB.PageRank and BDB.Sort for which our ap-
proach over-provisions around 8% to 12% of the memory.
This translates to 1.5GB to 2GB of memory. Our approach
also slightly under-estimates the memory requirement for
some of the benchmarks, but the difference is small so it does
not significantly affect the performance. In general, the accu-
racy can be improved by using more training programs and
more sophisticated modeling techniques to better capture the
application memory requirement, which is our future work. In
practical terms, one can also slightly over-provision (e.g. 10%)
the memory allocation to applications with higher priorities
to tolerate potential prediction errors. Overall, our approach
can accurately predict the optimal memory allocation, with
an average prediction error of 5%.

Table 4. Prediction accuracy for different classifiers

Classifier Accuracy (%) Classifier Accuracy (%)

Naive Bayes 92.5 SVM 95.4
MLP 94.1 Rand. Decision Forests 95.5
Decision Tree 96.8 ANN 96.9
KNN 97.4

Compare to Alternative Classifiers. Table 4 gives the
memory function prediction accuracy (averaged across bench-
marks and inputs) of various alternative classification tech-
niques and our KNN model. The alternative models were built
using the same features and training data. Thanks to the
high-quality features, all classifiers are highly accurate in pre-
dicting the memory function. We choose KNN simply because
it gives a similar prediction accuracy to alternative techniques
but does not require re-training when a new memory function
is added.

Memory Functions. Figure 18 compares the memory foot-
print given by our approach to the measured values for Hi-
Bench and BigDataBench, showing that our memory function
can precisely capture the application’s memory footprint.
This figure also shows that a single model is unlikely to
capture diverse application behaviors. We address this by
developing an extensible framework into which we can eas-
ily plug-in multiple models to capture diverse application
behaviors.

7 Related Work

Our work lies at the intersection between big data workload
tuning and machine learning based system optimization.

7.1 Optimizing Big Data Workloads

Domain-specific Optimization. There exists a large body
of work focusing on optimizing a single application using
domain-specific knowledge. Prior work in domain-specific
optimizations for single big data applications includes query
optimization [4, 8, 45], graph or data flow optimization [5, 15,
26, 38], task tuning [7] and personal assistant and deep learn-
ing services [20]. By contrast, we target resource modeling
of Spark applications and demonstrate that this technique is
useful for scheduling multiple application tasks.

Memory Management. Numerous techniques have been
proposed to manage memory resources of big data applica-
tions [40]. Many of the prior works require using dedicated
APIs to rewrite the application [14, 34]. Fang et al. intro-
duce Interruptible Tasks, a parallel data task that can be
interrupted upon memory pressure. Their work aims to solve
the out-of-memory problem when processing large amounts
of data on a single host [14]. This work is thus orthogonal
to our work and can be used to address the problem of occa-
sional over-subscription of memory resources. MemTune is a
recent work on heap management for Spark applications [46].
It detects memory contention and dynamically adjusts the
memory partitions between Spark processes, but it does not
address the problem of how much memory is needed for a
given input.

Middleware’17, , Anon.

Input Size (GB) - log scale

 M
em

or
y

(G
B

)

3E-05 0.3 3 30 280

0
2

4
6

TeraSort.Predicted
HB.TeraSort
Wordcount.Predicted
HB.Wordcount

(a) HB.TeraSort, HB.Wordcount

3E-05 0.3 3 30 280

0
2

4
6

Sort.Predicted
HB.Sort
Grep.Predicted
BDB.Grep

(b) HB.Sort, BDB.Grep

3E-05 0.3 3 30 280

0
2

4
6

Scan.Predicted
HB.Scan

Aggregation.Predicted
HB.Aggregation

(c) HB.Aggre, HB.Scan

3E-05 0.3 3 30 280

0
2

4
6

Wordcount.Predicted
BDB.Wordcount

Joins.Predicted
HB.Joins

(d) HB.Joins, BDB.Wordcount

0.003 3 30 280

0
10

20
30

Connect.Predicted
BDB.Connect
Kmeans.Predicted
BDB.Kmeans

(e) BDB.Con.Comp, BDB.Kmeans

0.003 3 30 280

0
10

20
30

PageRank.Predicted
BDB.PageRank

Sort.Predicted
BDB.Sort

(f) BDB.Sort, BDB.PageRank

0.003 3 30 280

0
10

20
30

Bayes.Predicted
HB.Bayes

Kmeans.Predicted
HB.Kmeans

(g) HB.Bayes, HB.Kmeans

0.003 3 30 280

0
10

20
30

Bayes.Predicted
BDB.Bayes

PageRank.Predicted
HB.PageRank

(h) BDB.N.Bayes, HB.PageRank

Figure 18. Comparisons of the predicted memory footprint to the measured value.

Application Scheduling. Verma et al. use profiling infor-
mation to schedule jobs within a MapReduce application [43].
Mashayekhy et al. develop energy-aware heuristics to map
tasks of a big data application to servers to minimize energy
usage [33]. Unlike our work, all these works target scheduling
jobs within a single application, and allocate all physical
memory of a machine to one single application. Other work
looks at mapping parallelism by determining the number of
cores and process time to be allocated to an application [19].
Our method promotes memory utilization on a local host,
allowing the system to perform more tasks than previously
allowed with current methods. Consequently, higher multi-
tasking levels may lead to an increase in non-local data
accesses within each task; the scheduling framework in [19]
is therefore complementary to our work.

Task Co-location. Prior studies in task co-location include
Bubble-Flux [47], Quasar [10], Tetris [17] and Cooper [29],
which co-locate tasks across machines. Other studies sched-
ule workloads on multi-core processors [28, 50]. All the ap-
proaches mentioned above employ a single monolithic func-
tion to model the resource requirement of application tasks.
There is little ability to examine whether the function fits
the application under the current runtime scenario. Other
fine-grained scheduling frameworks, like Mesos [21], rely on
the user to provide the resource requirement of the applica-
tion [21]. By contrast, we develop an extensive framework
that uses multiple modeling techniques to automatically es-
timate the resource requirement. Our approach allows new
models to be added over time to target a wider range of appli-
cations. Experimental results show that our approach yields
better performance than a single model based approach. On
the other hand, the co-location policies developed in these
prior works for determining which two applications should
co-locate are complementary to our work.

7.2 Predictive Modeling

Recent studies have shown that machine learning based pre-
dictive modeling is effective in code optimization [39] and pro-
cessor resource scheduling [44]. In [12], a mixture-of-experts
approach is proposed to schedule OpenMP programs on
multi-cores. Their approach uses multiple linear regression
models to predict the optimal number of threads to use for
a given program on a single machine. Our approach differs
from [12] in two aspects. First, we target a different prob-
lem (determining the memory footprint vs the number of
threads) and a different scale (multiple vs a single node).
Secondly, we use different modeling techniques, both linear
and non-linear, to capture the memory behaviors of different
applications. No work so far has used predictive modeling to
model an application’s memory requirement to co-locate big
data application tasks. This work is the first to do so.

8 Conclusions

This paper has presented a novel scheme based on a mixture-
of-experts approach to estimate the memory footprint of a
Spark applications for a given dataset. Our approach de-
termines at runtime, which of the off-line learned functions
should be used to model the application’s memory resource
demand. One of the advantages of our approach is that it
provides a mechanism to gracefully add additional expertise
knowledge to target a wider range of applications.

We combine our resource prediction framework with a
runtime task scheduler to co-locate latency-insensitive Spark
applications. Using the accurate prediction given by our
framework, a runtime task scheduler can efficiently dispatch
multiple applications to run concurrently on a single host
to improve the system’s throughput and at the same time
to ensure the total memory consumption does not exceed
the physical memory of the host. Our approach is applied to
44 representative big data applications built upon Apache
Spark. On a 40-node cluster, our approach achieves, on aver-
age, 86% and 94.6% of the Oracle performance on system
throughput and turnaround time, respectively.

Improving Spark Application Throughput Via Memory Aware Task Co-location: A Mixture of Experts Approach Middleware’17, ,

References
[1] Ethem Alpaydin. 2010. Introduction to Machine Learning (2nd

ed.). The MIT Press.
[2] Ahsan Javed Awan, Mats Brorsson, Vladimir Vlassov, and Eduard

Ayguade. 2015. Performance characterization of in-memory data
analytics on a modern cloud server. In Big Data and Cloud Com-
puting (BDCloud), 2015 IEEE Fifth International Conference
on. IEEE, 1–8.

[3] Christian Bienia. 2011. Benchmarking Modern Multiprocessors.
Ph.D. Dissertation. Princeton University.

[4] Carsten Binnig, Norman May, and Tobias Mindnich. 2013.
SQLScript: Efficiently analyzing big enterprise data in SAP
HANA. In Lecture Notes in Informatics (LNI), Proceedings
- Series of the Gesellschaft fur Informatik (GI), Vol. P-214.
363–382.

[5] Vinayak Borkar, Michael Carey, Raman Grover, Nicola Onose,
and Rares Vernica. 2011. Hyracks: A flexible and extensible
foundation for data-intensive computing. In Data Engineering
(ICDE), 2011 IEEE 27th International Conference on. IEEE,
1151–1162.

[6] John Cavazos, Grigori Fursin, Felix Agakov, Edwin Bonilla,
Michael FP O’Boyle, and Olivier Temam. 2007. Rapidly selecting
good compiler optimizations using performance counters. In Pro-
ceedings of the International Symposium on Code Generation
and Optimization. IEEE Computer Society, 185–197.

[7] Dazhao Cheng, Jia Rao, Yanfei Guo, and Xiaobo Zhou. 2014.
Improving MapReduce Performance in Heterogeneous Environ-
ments with Adaptive Task Tuning. In Proceedings of the 15th
International Middleware Conference (Middleware ’14). ACM,
New York, NY, USA, 97–108.

[8] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein,
Khaled Elmeleegy, and Russell Sears. 2010. MapReduce Online.
In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation (NSDI’10). USENIX Asso-
ciation, Berkeley, CA, USA, 21–21.

[9] Databricks. 2016. Spark-Perf. (2016). https://github.com/
databricks/spark-perf

[10] Christina Delimitrou and Christos Kozyrakis. 2014. Quasar:
Resource-efficient and QoS-aware Cluster Management. In Pro-
ceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’14). ACM, New York, NY, USA, 127–144.

[11] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla, Grig-
ori Fursin, and Michael F. P. O’Boyle. 2009. Portable Com-
piler Optimisation Across Embedded Programs and Microarchi-
tectures Using Machine Learning. In Proceedings of the 42Nd
Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO 42). ACM, New York, NY, USA, 78–88.

[12] Murali Krishna Emani and Michael Boyle. 2015. Celebrating
Diversity: A Mixture of Experts Approach for Runtime Mapping
in Dynamic Environments. SIGPLAN Not. 50, 6 (jun 2015),
499–508.

[13] Stijn Eyerman and Lieven Eeckhout. 2010. Probabilistic Job
Symbiosis Modeling for SMT Processor Scheduling. SIGPLAN
Not. 45, 3 (March 2010), 91–102.

[14] Lu Fang, Khanh Nguyen, Guoqing Xu, Brian Demsky, and Shan
Lu. 2015. Interruptible Tasks: Treating Memory Pressure As Inter-
rupts for Highly Scalable Data-parallel Programs. In Proceedings
of the 25th Symposium on Operating Systems Principles (SOSP
’15). ACM, New York, NY, USA, 394–409.

[15] Achille Fokoue, Oktie Hassanzadeh, Mohammad Sadoghi, and
Ping Zhang. 2016. Predicting Drug-Drug Interactions Through
Similarity-Based Link Prediction Over Web Data. In Proceedings
of the 25th International Conference Companion on World
Wide Web (WWW ’16 Companion). International World Wide
Web Conferences Steering Committee, Republic and Canton of
Geneva, Switzerland, 175–178.

[16] Wanling Gao, Yuqing Zhu, Zhen Jia, Chunjie Luo, and Lei Wang.
2013. Bigdatabench: a big data benchmark suite from web search
engines. 1–7.

[17] Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula,
Sriram Rao, and Aditya Akella. 2014. Multi-resource Packing for
Cluster Schedulers, In Proceedings of the 2014 ACM Conference
on SIGCOMM. SIGCOMM Comput. Commun. Rev. 44, 4 (Aug.
2014), 455–466.

[18] Dominik Grewe, Zheng Wang, and Michael FP OBoyle. 2013.
OpenCL task partitioning in the presence of GPU contention.
In International Workshop on Languages and Compilers for
Parallel Computing. Springer, 87–101.

[19] Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan
Chen, Cheng Li, Trevor Mudge, Ronald G. Dreslinski, Jason Mars,
and Lingjia Tang. 2015. DjiNN and Tonic: DNN As a Service
and Its Implications for Future Warehouse Scale Computers, In
ISCA ’15. SIGARCH Comput. Archit. News 43, 3 (June 2015),
27–40.

[20] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng
Li, Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor
Mudge, Vinicius Petrucci, Lingjia Tang, and Jason Mars. 2015.
Sirius: An Open End-to-End Voice and Vision Personal Assistant
and Its Implications for Future Warehouse Scale Computers, In
ASPLOS ’15. SIGPLAN Not. 50, 4 (March 2015), 223–238.

[21] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica.
2011. Mesos: A Platform for Fine-grained Resource Sharing in
the Data Center. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation (NSDI’11).
295–308.

[22] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo
Huang. 2011. The HiBench Benchmark Suite: Characterization
of the MapReduce-Based Data Analysis. In New Frontiers in
Information and Software as Services: Service and Application
Design Challenges in the Cloud, Divyakant Agrawal, K. Selçuk
Candan, and Wen-Syan Li (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 209–228.

[23] Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and
Geoffrey E. Hinton. 1991. Adaptive Mixtures of Local Experts.
Neural Comput. 3, 1 (March 1991), 79–87.

[24] Tao Jiang, Qianlong Zhang, Rui Hou, Lin Chai, Sally A Mckee,
Zhen Jia, and Ninghui Sun. 2014. Understanding the behavior of
in-memory computing workloads. In Workload Characterization
(IISWC), 2014 IEEE International Symposium on Workload
Characterization. IEEE, 22–30.

[25] James M. Keller and Michael R. Gray. 1985. A Fuzzy K-Nearest
Neighbor Algorithm. IEEE Transactions on Systems, Man and
Cybernetics (1985).

[26] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:
Large-scale Graph Computation on Just a PC. In Proceedings
of the 10th USENIX Conference on Operating Systems Design
and Implementation (OSDI’12). USENIX Association, Berkeley,
CA, USA, 31–46.

[27] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Sala-
pura. 2015. SparkBench: A Comprehensive Benchmarking Suite
for in Memory Data Analytic Platform Spark. In Proceedings of
the 12th ACM International Conference on Computing Fron-
tiers (CF ’15). ACM, New York, NY, USA, Article 53, 8 pages.

[28] Ming Liu and Tao Li. 2014. Optimizing Virtual Machine Con-
solidation Performance on NUMA Server Architecture for Cloud
Workloads. SIGARCH Comput. Archit. News 42, 3 (jun 2014),
325–336.

[29] Qiuyun Llull, Songchun Fan, Seyed Majid Zahedi, and Benjamin C
Lee. 2017. Cooper: Task Colocation with Cooperative Games. In
High Performance Computer Architecture (HPCA), 2017 IEEE
International Symposium on. IEEE, 421–432.

[30] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving
Resource Efficiency at Scale. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture (ISCA ’15).
ACM, New York, NY, USA, 450–462.

[31] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Ex-
ploiting Parallelism on Heterogeneous Multiprocessors with Adap-
tive Mapping. In Proceedings of the 42Nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 42).
ACM, New York, NY, USA, 45–55.

[32] Bryan FJ Manly. 2004. Multivariate statistical methods: a
primer. CRC Press.

[33] Lena et al. Mashayekhy. 2015. Energy-Aware Scheduling of
MapReduce Jobs for Big Data Applications. IEEE TPDS (2015).

[34] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and
Guoqing Xu. 2015. FACADE: A Compiler and Runtime for
(Almost) Object-Bounded Big Data Applications. In Proceedings
of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS ’15). ACM, New York, NY, USA, 675–690.

[35] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker,
and Byung-Gon Chun. 2015. Making Sense of Performance in
Data Analytics Frameworks. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation
(NSDI’15). USENIX Association, Berkeley, CA, USA, 293–307.

https://github.com/databricks/spark-perf
https://github.com/databricks/spark-perf

Middleware’17, , Anon.

[36] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. 2010. The Hadoop Distributed File System. In Pro-
ceedings of the 2010 IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST) (MSST ’10). IEEE Computer
Society, Washington, DC, USA, 1–10.

[37] Karan Singh, Major Bhadauria, and Sally A. McKee. 2009. Real
Time Power Estimation and Thread Scheduling via Performance
Counters. SIGARCH Comput. Archit. News 37, 2 (jul 2009),
46–55.

[38] Evan R Sparks, Ameet Talwalkar, Virginia Smith, Jey Kottalam,
Xinghao Pan, Joseph Gonzalez, Michael J Franklin, Michael I
Jordan, and Tim Kraska. 2013. MLI: An API for distributed
machine learning. In Data Mining (ICDM), 2013 IEEE 13th
International Conference on. IEEE, 1187–1192.

[39] Kevin Stock, Louis-Noël Pouchet, and P. Sadayappan. 2012. Using
Machine Learning to Improve Automatic Vectorization. ACM
Trans. Archit. Code Optim. 8, 4, Article 50 (jan 2012), 23 pages.

[40] Lingjia Tang, Jason Mars, Neil Vachharajani, Robert Hundt, and
Mary Lou Soffa. 2011. The Impact of Memory Subsystem Re-
source Sharing on Datacenter Applications. SIGARCH Comput.
Archit. News 39, 3 (jun 2011), 283–294.

[41] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. 2009. Hive: A Warehousing Solution over a
Map-reduce Framework. Proc. VLDB Endow. 2, 2 (aug 2009),
1626–1629.

[42] Vinod Kumar Vavilapalli, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason
Lowe, Hitesh Shah, Siddharth Seth, Bikas Saha, Carlo Curino,
Owen O’Malley, Sanjay Radia, Benjamin Reed, and Eric Balde-
schwieler. 2013. Apache Hadoop YARN: Yet Another Resource
Negotiator. In Proceedings of the 4th Annual Symposium on
Cloud Computing (SOCC ’13). ACM, New York, NY, USA,
Article 5, 16 pages.

[43] A. Verma, L. Cherkasova, and R. H. Campbell. 2012. Two Sides
of a Coin: Optimizing the Schedule of MapReduce Jobs to Mini-
mize Their Makespan and Improve Cluster Performance. In 2012
IEEE 20th International Symposium on Modeling, Analysis
and Simulation of Computer and Telecommunication Systems.
11–18.

[44] Yuan Wen, Zheng Wang, and Michael FP O’Boyle. 2014. Smart
multi-task scheduling for OpenCL programs on CPU/GPU het-
erogeneous platforms. In High Performance Computing (HiPC),
2014 21st International Conference on. IEEE, 1–10.

[45] Cong Xu, Brendan Saltaformaggio, Sahan Gamage, Ramana Rao
Kompella, and Dongyan Xu. 2015. vRead: Efficient Data Access
for Hadoop in Virtualized Clouds. In Proceedings of the 16th
Annual Middleware Conference (Middleware ’15). ACM, New
York, NY, USA, 125–136.

[46] L. Xu, M. Li, L. Zhang, A. R. Butt, Y. Wang, and Z. Z. Hu. 2016.
MEMTUNE: Dynamic Memory Management for In-Memory Data
Analytic Platforms. In 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 383–392.

[47] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. 2013.
Bubble-flux: Precise Online QoS Management for Increased Uti-
lization in Warehouse Scale Computers. In Proceedings of the
40th Annual International Symposium on Computer Architec-
ture (ISCA ’13). ACM, New York, NY, USA, 607–618.

[48] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. 2015.
Computer Performance Microscopy with Shim. SIGARCH Com-
put. Archit. News 43, 3 (jun 2015), 170–184.

[49] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. 2010. Spark: Cluster Computing with
Working Sets. In Proceedings of the 2Nd USENIX Conference
on Hot Topics in Cloud Computing (HotCloud’10). USENIX
Association, Berkeley, CA, USA, 10–10.

[50] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova.
2010. Addressing Shared Resource Contention in Multicore Proces-
sors via Scheduling. SIGPLAN Not. 45, 3 (mar 2010), 129–142.

	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Apache Spark
	2.2 Problem Scope
	2.3 Overview of Our Approach

	3 Predictive Modeling
	3.1 Learning Memory Functions
	3.2 Runtime Features
	3.3 Collect Training Data

	4 Runtime Deployment
	4.1 Memory Requirement Prediction
	4.2 Resource Monitor
	4.3 Job Dispatcher

	5 Experimental Setup
	5.1 Platform and Benchmarks
	5.2 Evaluation Methodology
	5.3 Evaluation Metrics
	5.4 Comparative Approaches
	5.5 Highlights

	6 Experimental Results
	6.1 Overall Performance
	6.2 Server Utilization
	6.3 Compare to Unified Models
	6.4 Compare to Online Search
	6.5 Profiling Overhead
	6.6 CPU Load in Isolation Mode
	6.7 Co-location Interferences
	6.8 Model Analysis

	7 Related Work
	7.1 Optimizing Big Data Workloads
	7.2 Predictive Modeling

	8 Conclusions
	References

