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1 Introduction

Statistical assessment of bioequivalence has many applications in pharmacological research and production e.g., when
the mode of administration is altered or when the production site is changed Patterson and Jones (2006). The most
prominent usage, however, is in the development of generic medicinal products. The formal approval of generics can
be substantially abbreviated if a sponsor is able to demonstrate that the me-too product is bioequivalent to its well-
investigated brand-name counterpart, in the sense that both are comparable in bioavailability. The standard framework
for such an investigation is the two-treatment, two-period, two-sequence (2×2×2) crossover design Jones and Kenward
(2015): study participants are randomly assigned to receive the test drug first and then the reference (sequence TR), or
vice versa (sequence RT), and blood samples are taken at a series of time points after administration of the compound.
The measured concentration values are conventionally summarised by pharmacokinetic (PK) parameters. Since there
is no single PK measure that is thought to capture all aspects of bioavailability, it is common practice to investigate
multiple proxy measures like the area under the concentration-time curve from zero to the last observed time point
(AUC0−t) or extrapolated to infinity (AUC0−∞), or the maximum observed concentration (Cmax) Cawello (1999).

All relevant guidelines from regulatory bodies in the US and Europe require multiple PK parameters to be analysed.
The FDA’s general guidance on bioequivalence U.S. Food & Drug (2003) recommends three PK parameters in single-
dose studies: AUC0−t, AUC0−∞ (both measuring total exposure), and Cmax (as a measure of peak exposure). This
statement was reiterated in two recent draft guidelines U.S. Food & Drug (2013, 2014). The FDA guidance on statistical
aspects of bioequivalence U.S. Food & Drug (2001) does not differentiate between AUC0−t and AUC0−∞ but rather
only requests AUC and Cmax. The EMA’s guideline on bioequivalence European Medicines (2010) demands two PK
parameters in single-dose studies, AUC0−t (or, on rare occasions, AUC0−72h truncated at 72h) and Cmax, and so do
the relevant guidelines for Canada Health (2012) and Japan Japan Generic Medicines (2012).

There is no doubt these quantities are correlated as we calculate them using the same data of the same samples from the
same individuals. None of the guidelines, however, mentions this fact, and neither do they make any recommendations
about multivariate analyses. As a consequence, most researchers analyse all PK measures individually. The generally
accepted statistical analysis for a single PK parameter is the two one-sided tests (TOST) procedure Schuirmann (1987)
with the type I error rate controlled at level α, usually chosen as 0.05. The same test decision can be attained with
an ordinary 100(1 − 2α)% confidence interval (CI): the inclusion approach i.e., checking whether the CI lies within
prespecified equivalence boundaries, is the most common way of showing bioequivalence to this day.

In this paper we go beyond such univariate considerations and discuss how bioequivalence can and should be demon-
strated for two or more PK parameters simultaneously. The TOST procedure itself is easy to extend by applying
the intersection-union principle Berger (1982), and other multivariate equivalence tests are available as well Hoffelder
et al. (2015); Hua et al. (2015), but there have been controversies about how to construct a simultaneous confidence
region around the vector of estimated PK measures. A number of ideas have been put forward in the past two decades:
various authors suggested methods tailored to (bio-)equivalence problems Brown et al. (1995); Wang et al. (1999);
Munk and Pflüger (1999); Quan et al. (2001); Tseng (2002), but also approaches that were not specifically designed
for application in pharmaceutical statistics Casella and Hwang (1983); Tseng and Brown (1997) may prove useful. For
three and more PK parameters, methods that involve shrinkage (see Casella and Hwang (2012) for an overview) seem
appealing due to Stein’s paradox Stein (1956).
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Despite this wealth of theoretical options, joint confidence sets for multiple PK measures have not gained wide ac-
ceptance to the present day, and we believe this is because of two major obstacles: the lack of decision guidance
for practical data problems, and the lack of accessible software. Moreover, several of the proposed methods rely on
conditions that are rarely met in the real world, like known variance or independence. Some have even more blatant
downsides such as non-existing or infinitely large confidence regions in some cases. Another practical issue is how to
translate a joint confidence region into marginal simultaneous CIs for the single PK measures, especially when the
region has some irregular shape. And seemingly favourable properties like a small volume do not necessarily entail
good (marginal) operating characteristics.

We are not aware of any comprehensive study that contrasts the available methods with regard to their usefulness under
realistic circumstances i.e., smallish sample sizes, unknown and possibly heterogeneous variances, and high correlation
between several PK measures. Many of the methods for multi-parameter confidence regions do not extend smoothly
to the unknown variance case Efron (2006), and approximations have to be put up with; hence the performance of
different methods will have to be compared by simulation rather than through analytical arguments. In this paper we
present and discuss simulation-based comparisons of methods for multiple PK parameters. The focus of our work lies
on frequentist ideas that yield simultaneous confidence sets for multivariate average bioequivalence, but we acknowledge
that there are sophisticated Bayesian approaches Ghosh and Gönen (2008); Molina de Souza et al. (2009) and methods
for individual and population bioequivalence Chinchilli and Elswick Jr. (1997); Chervoneva et al. (2007) as well.

The remainder of this article is organised as follows. We illustrate the multivariate bioequivalence problem using a data
example of ticlopidine hydrochloride in Section 2. Then we review various methods for confidence regions of normal
means and their application to bioequivalence in Section 3. Statistical properties of these methods are compared via
simulation in Section 4. We evaluate the ticlopidine hydrochloride data in Section 5. A discussion and some practical
recommendations in Section 6 conclude the paper.

2 Example: ticlopidine hydrochloride

Marzo et al. Marzo et al. (2002) investigated two formulations of ticlopidine hydrochloride, an agent known to inhibit
platelet aggregation and prevent thromboembolic disorders. They set up a single-dose study of 250 mg of active
ingredient administered as a tablet in a 2 × 2 × 2 crossover design. 24 healthy male volunteers were randomised to
either sequence AB or BA of the commercial reference product Tiklid (A) and a test formulation developed by the
study sponsor (B), with a washout period of three weeks in between.

Several standard PK parameters were calculated for each of the 24 individuals using a non-compartmental approach
Cawello (1999); these data are presented in Table II of Marzo et al. (2002). We focus our attention on Cmax, AUC0−t
and AUC0−∞, the three measures required to be shown bioequivalent according to the FDA’s guidance. The graphical
display in Figure 1 reveals that the three of them are highly correlated. The correlation of AUC0−t and AUC0−∞ is
close to unity (ρ = 0.973), but also their respective correlations with Cmax are high (ρ = 0.698 and ρ = 0.808).
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Figure 1: Ticlopidine hydrochloride data: scatterplots and marginal boxplots for the differences (test minus reference)
of the logarithms of individual pharmacokinetic measurements (n = 24). Left: Cmax vs. AUC0−t; middle: Cmax vs.
AUC0−∞; right: AUC0−∞ vs. AUC0−t; ρ: Pearson correlation coefficient.
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Table 1 summarises results of the univariate analyses carried out separately for each of the three PK parameters. We
see that average AUC0−t, AUC0−∞, and Cmax are estimated to be 7.7%, 6.6%, and 9.0% lower, respectively, for T in
comparison to R. The standard errors are fairly similar for all three parameters. The TOST p-values of 0.012 for both
AUC measures and 0.031 for Cmax indicate significance at the 5% level, and the univariate 90% CIs are well within
the conventional [80%, 125%] margins. All 90% ordinary CIs contain the point of exact equivalence, therefore they
are identical to the 95% “expanded” CIs Berger and Hsu (1996).

We will revisit this data example in Section 5 to demonstrate the application of simultaneous confidence regions for
two or three PK parameters.

Table 1: Ticlopidine hydrochloride data: results of univariate analyses separately for AUC0−t, AUC0−∞, and Cmax:
point estimates, standard errors, TOST p-values, lower and upper bounds of 90% confidence intervals. Estimates and
interval bounds are given on the logarithmic scale (in round brackets on the original scale).

θ̂ SE(θ̂) p lower upper
AUC0−t –0.080 (0.923) 0.059 0.012 –0.181 (0.834) 0.020 (1.021)
AUC0−∞ –0.068 (0.934) 0.064 0.012 –0.178 (0.837) 0.042 (1.042)
Cmax –0.094 (0.910) 0.066 0.031 –0.207 (0.813) 0.018 (1.019)

3 Methods

3.1 Assessing bioequivalence in crossover designs

Suppose that a bioequivalence trial of a test (T) and a reference (R) compound has been conducted with n individuals
in a 2×2×2 crossover design. The goal is to establish the equivalence of T and R simultaneously with regard to p ≥ 1
pharmacokinetic parameters (such as AUC0−t, AUC0−∞, Cmax, . . . ) whose values have been estimated from a set of
concentration measurements separately for each individual, using either compartmental or non-compartmental tech-
niques. Compartmental modelling Källén (2008) can be intricate because it involves choosing and fitting a nonlinear
mixed-effects model Davidian and Giltinan (1995). On the other hand, non-compartmental estimation is straightfor-
ward with minimal assumptions Cawello (1999) and has recently also been extended to sparse and incomplete sampling
schemes Wolfsegger and Jaki (2009); Jaki and Wolfsegger (2012); Jaki et al. (2013). We will not dwell on estimation
techniques here but simply work with the resulting estimates.

We denote the ith PK parameter for the test and reference group by µTi and µRi , with i = 1, . . . , p. The pharmacological
question, “can T safely be considered equivalent to R?”, translates into the statistical question whether the ratio µTi /µ

R
i

is within a pre-defined acceptable range, typically chosen as [0.80, 1.25], simultaneously for all p PK parameters.

Quantities like AUC and Cmax are typically assumed to be log-normal, and therefore logarithmised before further
processing them with statistical methods that demand normality. So the quantity to be analysed is

θi = log

(
µTi
µRi

)
= log(µTi )− log(µRi )

and is assumed to be normal with variance σ2
i . The conventional choice for the equivalence range [−∆,∆] on the log

scale then uses ∆ = log(1.25) so that the resulting interval [−0.223, 0.223] is symmetric around zero.

3.2 Single parameter analysis

For the simplest case where just one PK parameter θ is to be shown bioequivalent, the generally accepted procedure is
the two one-sided tests (TOST) suggested by Schuirmann Schuirmann (1987). The null hypothesis space is partitioned
into two disjoint sub-spaces, and each of these partial null hypotheses is tested separately at level α. In practice one
computes a one-sample t-test for

H01: θ ≤ −∆ vs. HA1: θ > −∆

at level α, and another one for
H02: θ ≥ ∆ vs. HA2: θ < ∆
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also at level α. If both tests reject their respective nulls, we can reject the joint null

H0 ≡ H01 ∪H02

in favour of the alternative
HA ≡ HA1 ∩HA2 : −∆ < θ < ∆

with the type I error rate controlled at level α, due to the intersection-union principle Berger (1982).

An operationally equivalent approach is to construct a two-sided 100(1− 2α)% CI[
θ̂ − SE(θ̂)t1−α,ν , θ̂ + SE(θ̂)t1−α,ν

]
where SE(θ̂) is the standard error of θ̂, and t1−α,ν the 100(1−α)% quantile of Student’s t-distribution with ν degrees
of freedom. One may reject H0 and claim bioequivalence whenever the CI is wholly contained in [−∆,∆]. This
procedure yields equivalent decisions to the TOST; however, the peculiar fact that a 100(1− 2α)% CI matches with a
level-α test procedure has been noted by several statisticians. Berger and Hsu Berger and Hsu (1996), among others,
pointed out that this relationship holds only because the ordinary CI is equi-tailed. They also clarified that there
exists a 100(1− α)% CI that is compatible with the TOST’s decision:[

min
(

0, θ̂ − SE(θ̂)t1−α,ν

)
,max

(
0, θ̂ + SE(θ̂)t1−α,ν

)]
.

This CI was derived in various contexts Hsu (1984); Stefansson et al. (1988); Müller-Cohrs (1991); Hsu et al. (1994)
and is a special case of the “expanded” CIs discussed by Bofinger Bofinger (1985, 1992). It always contains zero, and
in consequence it has coverage probability 1 at θ = 0 and (1− α) elsewhere.

Brown et al. Brown et al. (1997) suggested a sharper test whose critical region, however, has a very irregular shape.
Simplified versions of this test with smoother boundaries of the critical region were developed as well Berger and Hsu
(1996); Munk et al. (2000).

3.3 Multiple PK parameters

Extending the assessment of bioequivalence to the multi-parameter case (p ≥ 2) corresponds to testing the pair of
hypotheses

H0: |θ(i)| ≥ ∆i for at least one i

HA: |θ(i)| < ∆i for all i

where ∆i is in the simplest case the same for all PK parameters i = 1, . . . , p. Finding a suitable test procedure appears
trivial at first sight: since the goal is to demonstrate equivalence for all PK measures simultaneously, an extension of
the level-α TOST using the intersection-union principle will control the overall type I error rate at α, and no correction
for multiplicity is required. In practice, p separate TOSTs will be carried out for the p parameters, each at level α.
For the CI inclusion approach both the ordinary 100(1−2α)% and the “expanded” 100(1−α)% intervals can be used.

Unfortunately, this procedure will be conservative and have poor coverage probability (CP) unless the p parameters are
perfectly correlated Phillips (2009); Tsai et al. (2014). When they are independent, the test size will be 0.052 = 0.0025
(left-hand side of Figure 2). Even with typical values for the correlation between AUC and Cmax, such as 0.7 < ρ < 0.9,
the test will have a size of only 2–3% rather than the intended 5%. Likewise, nominal coverage will only be achieved
under perfect correlation of the parameters (right-hand side of Figure 2). When both PK parameters are uncorrelated,
the joint CP of the ordinary 100(1− 2α)% CIs is 100(1− 2α)2%, and the joint CP of the “expanded” 100(1−α)% CIs
is 100(1− α)2%.

Multiple alternatives to the simultaneous TOSTs have been published, but it is far from obvious what the “best”
solution is. In this paper we focus on methods that provide confidence regions for the interesting PK parameters
rather than (only) p-values and perhaps CIs. The basic idea is to construct a p-dimensional simultaneous confidence

region around a p-variate normal mean θ = (θ1, . . . , θp)
′ that is estimated as θ̂ and has covariance matrix Σ, and then

possibly derive the marginal simultaneous CIs for the p parameters, or alternatively to construct the simultaneous CIs
directly. Joint confidence regions allow for a much more insightful interpretation than marginal CIs, let alone p-values,
when the task is to estimate the likely location and variability of the parameter vector θ Douglas (1993).

In the following we review several methods for joint confidence regions in the context of multi-parameter bioequivalence.
While some of them were developed for this very purpose, others originated from the more general problem of building
confidence regions around a multivariate normal mean.
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Figure 2: Test size (left) and coverage probability (right) of simultaneous TOST procedures for p = 2 parameters with
θ1 = θ2 = log(1.25), σ2

1 = σ2
2 = 0.1, and total sample size n = 20 depending on the correlation ρ. Black: ordinary 90%

confidence intervals; grey: “expanded” 95% confidence intervals (10,000 simulations).

3.3.1 The standard confidence region:

The standard 100(1− α)% simultaneous confidence region Chew (1966) for θ is the ellipse

C0(X) =
{
θ: (X − θ)′Λ−1(X − θ) ≤ σ2χ2

1−α,p
}

where X is a random variable following a p-variate normal distribution Np(θ,Σ), χ2
1−α,p is the 100(1− α)% quantile

of the χ2 distribution with p degrees of freedom, and covariance Σ = σ2Λ with arbitrary (positive-definite and known)
Λ and known σ2.

When σ2 is unknown and estimated by s2 where νs2

σ2 ∼ χ2
ν is independent of θ, the standard region becomes

C0(X, s) =

{
θ: (X − θ)′Λ−1(X − θ) ≤ s2p

ν
F1−α,p,ν

}
where F1−α,p,ν is the 100(1 − α)% quantile of the F distribution with p and ν degrees of freedom. Neither of these
two regions is sufficiently general to incorporate unknown Λ, which is the standard case in practice. If we ignore the
correlation among the θi, the left-hand side reduces to ||X − θ||2 where || · || denotes the Euclidian norm.

Wang et al. Wang et al. (1999) put forward a 100(1− α)% simultaneous confidence region that is given by

C0(X, Σ̂) =

{
θ: n(X − θ)′Σ̂−1(X − θ) ≤ νp

ν − p+ 1
F1−α,p,ν−p+1

}
.

The left-hand part of the inequality is Hotelling’s T 2 statistic Hotelling (1931). In comparison to the ellipses C0(X)

and C0(X, s), it allows to include an estimate Σ̂ of the unknown covariance matrix.

Using this confidence set to assess bioequivalence with an inclusion approach as described in 3.2 has been shown to be
conservative Wang et al. (1999); Munk and Pflüger (1999). Figure 3 displays the actual sizes α∗ of a simultaneous test
procedure induced by the p-dimensional 90% confidence set. For a single PK parameter (p = 1), we get the well-known
result that the ordinary 90% CI corresponds to a test size of 5%. Already in the bivariate case (p = 2), the size is well
below 0.02, even for very large n.

3.3.2 The limaçon of Pascal:

Brown et al. Brown et al. (1995) derived a confidence region for θ whose expected volume is minimised at a prespecified
point θ0. The natural choice for θ0 in a bioequivalence setting is 0, the point of exact equivalence.

If the covariance matrix Σ is assumed to be known, the 100(1− α)% simultaneous confidence region is

CLim(X) =

{
θ:

θ′Σ−1X√
θ′Σ−1θ

+ z1−α >
√
θ′Σ−1θ

}
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Figure 3: Actual size α∗ of the simultaneous test procedure induced by the standard 90% confidence set, given the
number of PK measures p and total sample size n.

where z1−α is the 100(1 − α)% standard normal quantile. This region always contains θ0 = 0, and its boundary has
the shape of the main lobe of the limaçon of Pascal; see the examples in the top rows of Figures 4–7.

Berger and Hsu Berger and Hsu (1996) outlined how to transfer this result to the case of unknown covariance, estimated

as Σ̂. Now the 100(1− α)% simultaneous confidence region is

CLim(X, Σ̂) =

θ:
θ′X√
θ′Σ̂θ/n

+ t1−α,ν >
θ′θ√
θ′Σ̂θ/n

 .

It seems this confidence region for unknown Σ has never been investigated in detail; instead for instance Munk and
Pflüger (1999) plugged in Σ̂ for Σ in the formula for CLim(X), falsely assuming known covariance, but this will achieve
nominal coverage probability only for large sample sizes, as we show in Section 4. Brown et al. themselves Brown
et al. (1995) only described the univariate case where the confidence set reduces to the “expanded” CI of 3.2. They
further wrote: “Generalizations to higher dimensions should also be of interest. Presumably, the limaçon will not
appear here.” We can confirm this is true, but the result is another peculiar shape where the inner lobe of the limaçon
appears to be everted, like yeast cells budding; see the examples in the bottom rows of Figures 4–7.

We illustrate the basic properties of the limaçon confidence regions with a few graphics. Figure 4 visualises one obvious
problem: the volume of the confidence region depends on the choice of θ0. Setting θ0 = 0 is the natural choice in a
bioequivalence context and yields minimal volume at the origin; however, small regions would be particularly desirable
when the θi are near the equivalence boundaries. With the estimated value θ̂ moving away from θ0, the volume of the
region blows up like a balloon.

If prior information about θ is available (e.g., from a pilot study), one might think about using it for θ0. Assume a

pilot study yielded θ̂1 = θ̂2 = 0.1, then it could be wise to set θ0 = (0.1, 0.1) to achieve minimum volume around the
probable value of the mean rather than around 0. Whatever the choice of θ0, it has to be made before seeing the data.

Increasing the total sample size n will reduce the volume of the confidence regions (Figure 5); however, since the region

must always contain both θ̂ and θ0, its diameter can never be smaller than the Euclidian distance between the two of
them. Changes in θ̂ and n do not only have an impact on the volume of the limaçon confidence regions but also on
their shape. The same is true when changing the variances σ2

1 and σ2
2 and the correlation ρ (Figures 6 and 7).

3.3.3 Tseng’s method:

Tseng Tseng (2002) considered a confidence region that is centered about the origin θ = 0 and minimises the expected
effective length

`eff (C(X)) ≡ 2 sup
y∈C(X)

||y||,
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Figure 4: Limaçon-type simultaneous 90% confidence regions for bivariate normal data with varying means θ1 and θ2,
variances σ2

1 = σ2
2 = 0.1, correlation ρ = 0.8, and total sample size n = 10. The area of bioequivalence (80–125% for

each PK parameter) is shaded grey. The dot indicates the estimate θ̂, the cross is at θ0 = 0. Top row: asymptotic

regions assuming Σ is known (with Σ̂ plugged in for Σ); bottom row: finite-sample regions allowing for unknown Σ.
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Figure 5: Limaçon-type simultaneous 90% confidence regions for bivariate normal data with means θ1 = θ2 = 0.1,
variances σ2

1 = σ2
2 = 0.1, correlation ρ = 0.8, and varying total sample sizes n. The area of bioequivalence (80–125%

bioequivalence for each PK parameter) is shaded grey. The dot indicates the estimate θ̂, the cross is at θ0 = 0. Top

row: asymptotic regions assuming Σ is known (with Σ̂ plugged in for Σ); bottom row: finite-sample regions allowing
for unknown Σ.

rather than the expected volume, at the origin. Tseng’s confidence set is ill-conditioned in that it can be empty;
however, this does not impair the validity of the associated test.

Assuming that Σ is known to be the identity matrix I, the 100(1− α)% confidence region for θ is

CTse(X) =
{
θ: ||X||2 ≥ χ2

1−α,p(||θ||2)
}

7



−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

σ1
2 = σ2

2 = 0.05

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

σ1
2 = σ2

2 = 0.10

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

σ1
2 = σ2

2 = 0.15

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

σ1
2 = 0.05 , σ2

2 = 0.15

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

θ1

θ 2 +

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

θ1

θ 2 +

Figure 6: Limaçon-type simultaneous 90% confidence regions for bivariate normal data with means θ1 = θ2 = 0.1,
varying variances σ2

1 and σ2
2 , correlation ρ = 0.8, and total sample size n = 10. The area of bioequivalence (80–125%

bioequivalence for each PK parameter) is shaded grey. The dot indicates the estimate θ̂, the cross is at θ0 = 0. Top

row: asymptotic regions assuming Σ is known (with Σ̂ plugged in for Σ); bottom row: finite-sample regions allowing
for unknown Σ.
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Figure 7: Limaçon-type simultaneous 90% confidence regions for bivariate normal data with means θ1 = θ2 = 0.1,
variances σ2

1 = σ2
2 = 0.1, varying correlation ρ, and total sample size n = 10. The area of bioequivalence (80–125%

bioequivalence for each PK parameter) is shaded grey. The dot indicates the estimate θ̂, the cross is at θ0 = 0. Top

row: asymptotic regions assuming Σ is known (with Σ̂ plugged in for Σ); bottom row: finite-sample regions allowing
for unknown Σ.

where χ2
1−α,p(λ) is the 100(1 − α)% quantile of the χ2-distribution with p degrees of freedom and noncentrality

parameter λ.
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An approximate confidence set for the case of unknown variance i.e., Σ = σ2I with I known is given by

CTse(X, s) =

{
θ:
||X||2

ps2
≥ F1−α,p,ν

(
||θ||2

s2

)}
where F1−α,p,ν(λ) is the 100(1−α)% quantile of the F -distribution with p and ν degrees of freedom and noncentrality
parameter λ.

3.3.4 Tseng & Brown’s method:

For dimensions p > 2 Tseng and Brown Tseng and Brown (1997) proposed the pseudo-empirical Bayes 100(1 − α)%
confidence region

CTB(X) =
{
θ: ||X − θ

(
1 + γ(||θ||2)

)
||2 ≤ χ2

1−α,p
(
||θ||2γ2(||θ||2)

)}
where γ(||θ||2) = 1

A+B||θ||2 , and χ2
1−α,p(λ) is the (1−α) quantile of the χ2 distribution with p degrees of freedom and

noncentrality parameter λ.

One practical hurdle for using this method, besides the assumption of known Σ = I, is that it is somewhat unclear how
to choose values for A and B. Tseng and Brown derived necessary and sufficient conditions under which the confidence
region is connected and dominates the standard region asymptotically. They used A = 1 together with B = 1

p−2 or

B = 1
2(p−2) in their numerical illustrations and also provided a table with values for A that ensure connectedness and

depend on α, p, and B. We will not consider this method in our simulation study in Section 4.

3.3.5 Casella & Hwang’s method:

Casella and Hwang Casella and Hwang (1983) developed an empirical Bayes approach that leads to a confidence region
centred at the positive-part James-Stein estimator James and Stein (1961)

δ+(θ̂, s) =

(
1− ν(p− 2)s2

(ν + 2)n||θ̂||2

)+

θ̂

where (x)+ indicates max(0, x). This estimator entails shrinkage towards 0 whenever p ≥ 3; for p = 2 it equals the

maximum likelihood (ML) estimator θ̂.

The 100(1− α)% simultaneous confidence region recentred at δ+(θ̂, s) is

CCH(X, s) =

{
θ: ||θ − δ+(θ̂, s)|| ≤ s√

n
vE

(
n||X||
s

)}
with

v2E

(
n||X||
s

)
=


(

1− a
pF1−α,p,ν

) [
pF1−α,p,ν − p log

(
1− a

pF1−α,p,ν

)]
if n||X||2

s2 ≤ pF1−α,p,ν(
1− as2

n||X||2

) [
pF1−α,p,ν − p log

(
1− as2

n||θ̂||2

)]
if n||X||2

s2 > pF1−α,p,ν

and a = ν(p−2)
ν+2 .

In the bivariate case when a = 0 and v2E = pFα,p,ν , the confidence region CCH(X, s) reduces to the standard region and

is centred at the ML estimator θ̂. Related approaches have been proposed that do not use empirical Bayes arguments
to obtain the radius function v2E but Taylor series or parametric bootstrapping Samworth (2005) or a piecewise cubic
Hermite interpolating polynomial function Abeysekera and Kabaila (2017).

3.3.6 Nonparametric bootstrap and kernel density estimation:

We propose an approach that employs nonparametric bootstrapping Efron and Tibshirani (1993); Davison and Hinkley
(1997) and hence does not rely on any parametric assumption such as (multivariate) normality of the θ. Starting from
the n × p matrix Y whose jth row contains the p PK measures of the jth individual (j = 1, . . . , n), we perform
bootstrapping separately for each column vector yi = (yi1, . . . , yin)′ and generate B bootstrap samples y∗i by drawing
randomly with replacement. B is a large integer, typically 1000 or 10,000. We calculate the bootstrap mean of the

9



ith PK parameter and bth bootstrap replication as ȳ∗ib =
∑n
j=1 y

∗
jib/n, and these ȳ∗ib can be assembled in B bootstrap

mean vectors ȳ∗b = (ȳ∗1b, . . . , ȳ
∗
pb)
′. We compute a p-dimensional binned kernel density estimate Wand and Jones (1995)

of the ȳ∗b with a bivariate Gaussian kernel and select a bandwidth using a direct plug-in approach Sheather and Jones
(1991). A 100(1−α)% confidence region is given by the area that covers 100(1−α)% of the estimated kernel density.
For p = 2 dimensions this procedure is implemented in the R package KernSmooth Wand (2015).

3.4 Marginal (simultaneous) confidence intervals

So far we have only considered simultaneous confidence regions where combinations of values for the single parameters
θ1, . . . , θp are assessed jointly. For practical interpretation, however, it can be desirable to marginalise the p-dimensional
joint region and obtain (simultaneous) CIs for the single PK measures. This can be done in different ways. Projecting
a 100(1− α)% region’s boundary onto the axes is simple but leads to a set of CIs whose joint coverage probability is
greater than (1− α).

If the confidence region is symmetric in shape (like an ellipse in 2D, an ellipsoid in 3D, etc.), a (hyper-)rectangle can
be constructed whose edges represent the marginalised CIs. With oddly-shaped regions like the limaçon, however, it
is unclear how to derive marginal simultaneous CIs that are an improvement over the boundary’s projection onto the
axes.

In some cases it is possible to derive CIs without taking a detour via projections of the confidence region: for the
empirical Bayes region of 3.3.5, He He (1992) showed how to construct corresponding simultaneous CIs for the p
parameters directly. This method has recently attracted some attention in the context of selected parameters Qiu and
Hwang (2007); Hwang and Zhao (2013), and was extended to the unknown variance case Hwang et al. (2009).

4 Simulation study

To characterise the different methods presented in 3.3 and appraise their usefulness in practical situations, we simulated
a variety of scenarios that are relevant for real bioequivalence trials and looked into basic statistical properties like
test size, power, joint coverage probability, and average width. Such numerical investigations are necessary as there
are few theoretical results for the interesting case of unknown σ2 Casella and Hwang (2012). All simulations were run
in R version 3.1.3 R Core (2015) and with 1000 replications.

We consider the case of p = 2 PK parameters (e.g., log(AUC) and log(Cmax)) that are jointly distributed as multivariate
normal

N
((

θ1
θ2

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))
with mean parameters θ1 = θ2 ∈ {log(1.00), log(1.01), . . . , log(1.30)}, variances (σ2

1 , σ
2
2) ∈ {(0.20, 0.20), (0.05, 0.05),

(0.20, 0.05)}, correlations ρ ∈ {0, 0.5, 0.9}, and total sample sizes n ∈ {20, 50, 1000}. In this section we present only
simulation results for σ2 = (0.05, 0.05) with ρ = 0.9 for brevity (and some additional scenarios for power); results for
the other parameter settings are available as supplementary material.
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Figure 8: Simulated joint coverage probabilities of various 90% joint confidence regions for variances σ2 = (0.05, 0.05),
correlation ρ = 0.9, and total sample size n (1000 runs).

10



Simulated joint coverage probabilities (CPs) are displayed in Figure 8. The asymptotic limaçon region assuming
known covariance is slightly liberal (87–89% CP) for samples of n = 20 and 50 but achieves the desired CP of 90%
with n = 1000, whereas the finite-sample variant has CP very close to the nominal 90% for all choices of n. This
also holds true for ρ = 0 as well as for larger and unequal variances, as can be seen in supplemental Figures S1–S3.
Both limaçon-type regions have 100% CP at θ0 = 0 by definition. The Tseng region is liberal for values of θ1 and
θ2 that are close to θ0 and conservative otherwise. The liberalism may be due to the method not incorporating the
correlation properly. When the PK parameters are uncorrelated, Tseng’s region maintains 90% CP for values of θ
close to θ0 = 0, as can be seen in supplemental Figures S1 and S2. The conservatism can be explained with the fact
that the confidence region is grossly inflated as θ moves away from θ0. And under some circumstances Tseng’s region
can be an empty set Tseng (2002), which adds to the oddity of its behaviour. The bootstrap approach appears to be
liberal for small and a bit conservative for large sample sizes. The standard elliptical region has exact CP under our
multivariate normal model, given that the correlation is incorporated; this need not be shown by simulation. Failing
to account for the correlation, however, can lead to deviations from the nominal CP in either direction, depending on
the true value of ρ (Figure 9).
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Figure 9: Simulated joint coverage probabilities of the standard 90% joint confidence region ignoring correlation for
variances σ2 = (0.05, 0.05), correlation ρ, and total sample size n (1000 runs).

The power simulations are summarised in Figure 10, where power is defined as the probability of declaring bioequiva-
lence for both PK parameters. We used the TOST procedure as a benchmark to compare the powers of the different
confidence regions against. It is evident from the curves in Figure 10 that confidence regions entail a power loss in
comparison to the TOST at level α = 0.1. In some situations (e.g., equal variances and high correlation), the power
loss is marginal, especially for the limaçon region assuming known variance. Unfortunately, its power breaks down
when the variances are unequal, which is common in reality (e.g., Cmax tends to be more variable than AUC). There
is no confidence region that has consistently good power across all simulated scenarios; see also supplemental Figures
S4–S6. With n = 1000 the limaçon-type and Tseng regions perform very poorly, as by definition they must contain
both θ̂ and θ0 and hence cannot be shrunken indefinitely. The power of all methods is reduced when ρ = 0, which is
in line with the effect illustrated in Figure 2.

The average widths of the regions in θ1 and θ2 direction are presented in Figure 11. The standard and bootstrap
methods yield regions with constant width for all choices of θ1 and θ2. On the other hand, the Tseng and limaçon-type
regions’ average widths go up as θ1 and θ2 move away from θ0 = 0. The rise is steeper for the finite-sample version of the
limaçon than for its asymptotic counterpart, and even much steeper for Tseng’s method; see also supplemental Figures
S7–S9. With unequal variances, the widths of some of the regions are different in θ1 and θ2 direction (supplemental
Figure S9; cf. also the rightmost panes of Figure 6).

Average widths for θ = 0 are listed in Table 2. We see the limaçon regions are substantially narrower at θ0 = 0 than
those of all other methods. Unsurprisingly, the average width decreases with increasing n for all methods.

Table 2: Simulated average widths of the 90% joint confidence regions at θ = 0 for variances σ2 = (0.05, 0.05) and
correlation ρ = 0.9 (1000 runs).

n Standard/Tseng Limaçon (asy.) Limaçon (fin.) Bootstrap
20 0.050 0.037 0.038 0.045
50 0.031 0.023 0.024 0.029

1000 0.007 0.005 0.005 0.007
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Figure 10: Simulated probabilities of declaring both PK measures bioequivalent using various 90% joint confidence
regions and the TOST for variances σ2, correlation ρ = 0.9, and total sample size n (1000 runs).
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Figure 11: Simulated average widths of various 90% joint confidence regions for variances σ2 = (0.05, 0.05), correlation
ρ = 0.9, and total sample size n (1000 runs).
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5 Example: ticlopidine hydrochloride (continued)

We introduced an example dataset from a bioequivalence study of ticlopidine hydrochloride in Section 2 and summarised
the results of the univariate TOSTs for AUC0−t, AUC0−∞, and Cmax in Table 1. Now we reanalyse these data using
the simultaneous confidence regions we reviewed in Section 3.

5.1 Two PK parameters: AUC0−t and Cmax

In our first multivariate analysis we focus on AUC0−t and Cmax, the two PK parameters that must be shown bioe-
quivalent according to the EMA’s, Health Canada’s, and the Japanese guidelines European Medicines (2010); Health
(2012); Japan Generic Medicines (2012). Rather than evaluating each of them individually (as done in Section 2), we
propose a truly bivariate analysis of both parameters simultaneously.

Figure 12 shows simultaneous 90% confidence regions for AUC0−t and Cmax using different methods presented in Sec-
tion 3; the corresponding marginal(ised) simultaneous CIs obtained by projecting the simultaneous regions’ boundaries
onto the axes are listed in Table 3. The standard regions do not allow to conclude bioequivalence, and neither do the
Casella & Hwang region (because it simply reduces to the standard region ignoring correlation in the bivariate case)
and the bootstrap region. On the other hand, both limaçon-type regions and the Tseng region are clearly within [–
0.223, 0.223] for both AUC0−t and Cmax, although the Tseng region is substantially bigger because it is designed to be
symmetric around 0. The limaçon region with unknown Σ looks almost circular, but we have seen in the illustrations
that this can happen under various circumstances (cf. Figures 4–7); in fact, it has a little dent and is not symmetric

around θ̂. The angularity of the bootstrap region is due to the low number of samples that are being bootstrapped,
hence it cannot be “smoothed out” by increasing B, the number of bootstrap replications.

It should be noted that the three 90% regions that lie within the [80%, 125%] margins (limaçon and Tseng) are those

that are asymmetric about θ̂ i.e., those for which a 90% confidence set does not necessarily correspond to a test level
of 5% Berger and Hsu (1996). The latter can only be ensured with 95% regions (Figure 13): the asymptotic limaçon
and the Tseng region still allow us to conclude bioequivalence whereas the limaçon-type region assuming unknown
covariance now protrudes beyong the lower equivalence threshold for Cmax.

Table 3: Ticlopidine hydrochloride data: boundaries of various simultaneous 90% confidence regions projected onto
the axes (and 90% TOST confidence intervals for comparison) for AUC0−t and Cmax.

AUC0−t Cmax Bioequivalent?
TOST [0.834, 1.021] [0.813, 1.019] X
Standard (uncorrelated) [0.803, 1.061] [0.792, 1.046] -
Standard (known covariance) [0.806, 1.057] [0.782, 1.059] -
Standard (unknown covariance) [0.806, 1.057] [0.782, 1.059] -
Limaçon (known covariance) [0.854, 1.033] [0.836, 1.029] X
Limaçon (unknown covariance) [0.823, 1.047] [0.813, 1.034] X
Tseng [0.825, 1.212] [0.825, 1.212] X
Casella & Hwang [0.803, 1.061] [0.792, 1.046] -
Bootstrap [0.820, 1.045] [0.791, 1.045] -

5.2 Three PK parameters: AUC0−t, AUC0−∞, and Cmax

We extend our analysis and consider AUC0−∞ in addition to AUC0−t and Cmax, as required by the FDA U.S. Food
& Drug (2003), and perform a genuinely trivariate analysis. Table 4 lists the marginal(ised) 90% simultaneous CIs
obtained from using the methods described in Section 3 by projecting the boundaries onto the axes. The intervals for
AUC0−t and Cmax are slightly wider than in the bivariate analysis (Table 3), and the interval bounds of AUC0−∞ are
very similar to those of AUC0−t, which is not much of a surprise given their correlation of ρ = 0.973. The conclusions
regarding bioequivalence are the same as with the bivariate analysis.

The Casella-Hwang region now differs from the standard one in that it is shifted: the maximum likelihood estimate is
θ̂ = (0.923, 0.934, 0.910)′ whereas the James-Stein-type estimate δ+(θ̂, s) = (0.936, 0.946, 0.925)′ is “shrunken” towards
1 (in fact it is shrunken towards 0 on the log scale).
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Figure 12: Ticlopidine hydrochloride data: Simultaneous 90% confidence intervals and regions for the differences (test
minus reference) of the logarithms of AUC0−t and Cmax. The area of bioequivalence (80–125% for each PK parameter)

is shaded grey. The dot indicates the estimate θ̂, the cross is at θ0 = 0.

6 Discussion

In this paper we have reviewed a variety of simultaneous confidence regions for application in multi-parameter bioe-
quivalence studies. Statistical methods for confidence sets around normal mean vectors have been published on several
occasions during the past three decades, with different optimality criteria such as minimum expected volume Brown
et al. (1995) or minimum expected effective length Tseng (2002) being proposed, but most of these papers focused on
mathematical theory and disregarded practical issues. As a consequence, there are a number of methods that work
well in academic scenarios e.g., asymptotically, or with known variance, or when the PK parameters are uncorrelated,
but whose performance in more realistic settings has been largely unclear, and hence these developments have not
made any impact on the way PK data are evaluated in practice.
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Figure 13: Ticlopidine hydrochloride data: Simultaneous 95% confidence intervals and regions for the differences (test
minus reference) of the logarithms of AUC0−t and Cmax. The area of bioequivalence (80–125% for each PK parameter)

is shaded grey. The dot indicates the estimate θ̂, the cross is at θ0 = 0.

Table 4: Ticlopidine hydrochloride data: boundaries of various simultaneous 90% confidence regions projected onto
the axes (and 90% TOST confidence intervals for comparison) for AUC0−t, AUC0−∞, and Cmax.

AUC0−t AUC0−∞ Cmax Bioequivalent?
TOST [0.834, 1.021] [0.837, 1.042] [0.813, 1.019] X
Standard (uncorrelated) [0.783, 1.088] [0.793, 1.101] [0.772, 1.073] -
Standard (known covariance) [0.787, 1.082] [0.786, 1.111] [0.762, 1.087] -
Standard (unknown covariance) [0.784, 1.086] [0.782, 1.116] [0.758, 1.093] -
Limaçon (known covariance) [0.848, 1.049] [0.847, 1.072] [0.830, 1.052] X
Limaçon (unknown covariance) [0.806, 1.062] [0.809, 1.071] [0.798, 1.059] X
Tseng [0.818, 1.222] [0.818, 1.222] [0.818, 1.222] X
Casella & Hwang [0.800, 1.096] [0.808, 1.107] [0.791, 1.083] -

We have characterised properties of simultaneous confidence sets in situations that we consider relevant for real-world
bioequivalence analyses: smallish sample sizes, unknown and potentially heterogeneous variances, and highly correlated
PK measures. We have investigated the limaçon-type region with unknown covariance matrix for the first time; it
turns out to have a non-convex boundary shape that resembles budding yeast cells, and it can have considerably
larger volume than the limaçon with known covariance, as illustrated in Figures 4–7. The latter, however, achieves
its nominal CP only for very large sample sizes when the covariance is unknown, although the deviations from the
nominal CP are usually small. The Tseng region, unable to account for unknown variance and correlation, almost
never maintains its nominal CP.

When it comes to assessing (bio-)equivalence, the use of multi-dimensional regions will hardly ever bring about a
power gain as compared to the conventional TOST procedure. In our simulations we found not a single instance where
two-dimensional confidence regions outperformed the TOST in terms of power. They are more informative than TOST
CIs Douglas (1993), however, and may be worthwhile considering, perhaps as an additional tool, to study the probable

location and variability of the estimate θ̂.

The joint alternative space defined by [−∆,∆] for each PK parameter is (hyper-)rectangular, which is suboptimal
from a power perspective for joint confidence regions. If the study target were to show overall equivalence, rather than
equivalence at all PK parameters, a more powerful ellipsoidal alternative could be motivated as well Munk and Pflüger
(1999); Hoffelder et al. (2015).

The limaçon-type regions may seem unsuitable for real-world applications due to their curious shapes. As a quick-and-
dirty remedy, we suppose the convex hulls around these regions could be used as a (conservative) confidence regions
that are often still smaller than the classical ellipse but perhaps easier to appreciate than the non-convex boundaries.

We have focused on the simultaneous assessment of p = 2 PK parameters because this is the most common case in
practice. For p ≥ 3 shrinkage estimation comes into play: then recentring the confidence set at a James-Stein-type
estimate may have a greater impact on the inferential properties than a reduction in volume Casella and Hwang
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(2012), not least because, as Efron Efron (2006) pointed out, “reduced volume by itself offers no guarantee of superior
performance.”

By the same token, a large volume does not necessarily entail a low probability of rejecting H0, as we could see in
our analysis of the ticlopidine hydrochloride data: the Tseng region has a much larger volume than its competitors
but still leads to the conclusion of equivalence whereas much smaller regions do not (Figure 12). This example data
analysis also illustrated the potential advantage of the limaçon-type confidence regions: they are entirely within the
bioequivalence region and therefore allow to claim bioequivalence whereas the standard regions do not—even though
the estimated mean θ̂ = (−0.080,−0.094) is not particularly close to θ0 = 0. We are not sure, however, whether
90% regions are appropriate for the asymmetric limaçon and Tseng methods when the goal is to limit α at 5%. The
FDA’s and EMA’s principal guidelines on bioequivalence U.S. Food & Drug (2001); European Medicines (2010) are
not particularly helpful here either: they demand that 90% CIs be constructed, but they also state explicitly that these
CIs correspond to hypothesis tests of size 0.05. Berger and Hsu Berger and Hsu (1996) have clarified that this slightly
peculiar relationship holds for equi-tailed CIs like those from the TOST, but not in general. So if we employ methods
that produce non-equi-tailed CIs (by projection onto the axes) or otherwise asymmetric regions, or use “expanded”
100(1−α)% rather than 100(1− 2α)% CIs for the TOST, and want to control the type I error rate at level 0.05, then
the joint CP to be aimed at should probably be 95% rather than 90%.

The limaçon-type regions yield substantially smaller confidence sets near θ0 than the other methods. On the other
hand, the limaçon and Tseng regions can become ginormous if θ is far away from θ0 but this is not too critical in
practice because in that case (bio-)equivalence is unlikely anyway. The performance of the limaçon-type regions and
also the Tseng region critically depends on the choice of θ0. Setting θ0 = 0 is the obvious thing to do in the absence
of any further prior knowledge. If however there is information available e.g., from a previous or pilot study, one can
hope to reduce the regions’ volume by choosing θ0 according to this prior information.

A limitation of several methods is that they involve unrealistic assumptions about Σ, which will hardly ever have the
form σ2I and be known for real-world PK data. Our simulation study showed that incorporating the correlation is
vital, and failing to do so may result in either a conservative or liberal procedure (Figures 8 and 9). To overcome this
problem, Casella and Hwang Casella and Hwang (1983) suggested to transform the data x into

x∗ = Λ−
1
2 x

where Σ = σ2Λ and σ2 may be unknown. The new x∗ is uncorrelated and has unit variance. This idea seems
appealing at first sight, but the crux is that we must still assume Λ to be known. In practice, we wish to retransform
the obtained CI boundaries l∗ and u∗ to get interpretable confidence limits

l = l∗Λ
1
2 and u = u∗Λ

1
2 .

This works out in theory and asymptotically but the performance with realistically small sample sizes can be poor.

As the assessment of multi-parameter bioequivalence is a multivariate problem, we recommend treating it as such
by studying joint confidence regions for the joint parameter vector θ rather than marginal (simultaneous) CIs for
individual θi’s, at least as an (additional) exploratory tool. In principle, the boundary of a joint region can be used
directly for inference with respect to pre-defined margins [−∆,∆], and there is no inherent need to derive univariate
intervals. When CIs for the single PK parameters are nonetheless desired, the easiest way of translating a simultaneous
confidence region into marginal parameter-specific confidence limits is by projecting the region’s boundary onto the
axes, but this makes the marginalised simultaneous CIs conservative Nickerson (1994). Superior solutions (such as
direct interval construction) are available for spheres and ellipsoids, but rather hard to imagine for the limaçon-type
regions as they are both non-convex and asymmetric.

To facilitate the multivariate analysis of bioequivalence data, we provide an R package jocre Pallmann (2017) with
functions to draw simultaneous confidence regions and calculate marginal (simultaneous) CIs.

Due to our focus on bioequivalence in this paper, we only covered methods that comply with the all-or-nothing criterion
where success is defined by all PK parameters being equivalent, as required by the major regulatory agencies. Outside
the framework of PK analysis, however, there are also applications where equivalence of some but not all endpoints
is interesting. The step-up procedure of Quan et al. Quan et al. (2001) yields simultaneous CIs for this case, and for
one-sided problems of non-inferiority we refer to Hasler and Hothorn Hasler and Hothorn (2013).
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