One-particle-density-matrix occupation spectrum of many-body localized states after
a global quench
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The emergent integrability of the many-body localized phase is naturally understood in terms of
localized quasiparticles. As a result, the occupations of the one-particle density matrix in eigenstates
show a Fermi-liquid like discontinuity. Here we show that in the steady state reached at long times
after a global quench from a perfect density-wave state, this occupation discontinuity is absent,
which is reminiscent of a Fermi liquid at a finite temperature, while the full occupation function
remains strongly nonthermal. We discuss how one can understand this as a consequence of the local
structure of the density-wave state and the resulting partial occupation of quasiparticles.

Introduction.—One of the basic notions of condensed
matter physics is adiabatic continuity [I]. The Fermi lig-
uid, a major example, is adiabatically connected to the
Fermi gas by slowly turning on interactions: the ground
state of the Fermi gas evolves into that of the Fermi liquid
and low-energy excited states evolve into excited quasi-
particle states with identical quantum numbers [2 3].
The quasiparticle density operators commute with the
effective low-energy Fermi-liquid Hamiltonian and repre-
sent conserved quantities. The Fermi-liquid Hamiltonian
is diagonal in the quasiparticle basis but is not quadratic
as it contains quasiparticle density-density interaction
terms that represent the back action of all the other par-
ticles on excitations. The Fermi liquid fundamentally re-
lies on reduced scattering of quasiparticles due to limited
phase space, provided by the Fermi-sphere structure of
the ground state, and is therefore only a valid description
at low temperatures compared with the Fermi tempera-
ture [2, [3].

Closed interacting disordered quantum systems can ex-
hibit many-body localization (MBL) [4] [5], resulting in
an ideal insulator with vanishing charge and thermal con-
ductivities at finite, or even infinite [0l [7], temperatures.
This MBL insulator is adiabatically connected to the An-
derson insulator and therefore shares many features with
the Fermi liquid [8, ©]. In contrast to the Fermi liquid,
where only the ground state and the lowly excited states
are adiabatically connected, in an MBL insulator every
eigenstate is adiabatically connected to some eigenstate
of the Anderson insulator—for example in fully many-
body-localized systems [10] (with exceptions [I1]) where
the relation can be provided by a finite-depth quantum
circuit [I2]. The MBL phase is thus an emergent in-
tegrable phase [10, 13, [14] characterized by conserved
quasiparticle densities, which are the density operators of
Anderson orbitals locally dressed by particle-hole excita-
tions [IBHIS]. The eigenstates are product states of these
quasiparticles and therefore satisfy an area law of entan-
glement [12] [19] [20], necessarily violating the eigenstate

thermalization hypothesis [2IH23]. The construction of
the conserved quantities (which in spin systems are com-
monly referred to as I-bits) is extensively studied [15-
18, 24H3T]. As in the Fermi liquid, the MBL Hamilto-
nian is diagonal in the quasiparticle basis, but contains
quasiparticle density-density interaction terms, which are
absent in the Anderson insulator [10} 13]. These interac-
tion terms give rise to dephasing in dynamics that results
in a logarithmic growth of entanglement entropy [32H34]
(for examples of other quantum information measures,
see [35H42)), and a slow relaxation of observables towards
nonergodic stationary states at long times [43]. The adi-
abatic connectivity of the MBL phase to the Anderson
insulator relies on the stability of Anderson localization
against interactions and not directly on phase space ar-
guments [4], 5l [T5HI7].

This formal analogy between MBL and Fermi liquids
was further developed in Refs. [8 and 9, which evinced
a Fermi-liquid-like discontinuity in the occupations of
the one-particle density matrix (OPDM) in many-body
eigenstates, analogous to a finite quasiparticle weight (see
also Ref. 44). The discontinuity signals Fock-space lo-
calization and produces phase diagrams consistent with
those obtained from other observables [20, [45]. The
eigenvectors of the OPDM give localized orbitals, the nat-
ural orbitals, that can be used to construct an optimized
single-particle approximation to the quasiparticles [9].

In a Fermi liquid the occupation spectrum is strictly
discontinuous only at zero temperature; any nonzero
temperature leads to a smooth and continuous occupa-
tion spectrum. With the MBL eigenstates providing an
analog to a zero-temperature Fermi liquid, it is natural
to ask if there is also a finite-temperature analog. We
limit our consideration to temperature effects on quasi-
particle occupations and assume that quasiparticle life-
times are not affected. In this phenomenological analogy,
in which each MBL eigenstate is a zero-temperature ref-
erence state, this requires partial occupations of quasi-
particles compared with the reference occupations in a



given eigenstate. A generic combination of eigenstates,
described by a mixed density matrix, does not work as
this corresponds to summing over different random oc-
cupations of quasiparticles, or to mixing reference states.
Instead, we propose that a global quench from a product
state of local densities provides the physics we are after.
Intuitively, a local density has a large overlap with some
quasiparticle density. An expansion of such a local den-
sity in the quasiparticles will therefore mainly contain the
quasiparticles localized close-by, as if they were excited
by a relatively small effective temperature. In the re-
mainder, we focus on a perfect density-wave state as the
initial state. Such a product state still has systematic
phase differences between different quasiparticles unlike
in thermal states. During time evolution, however, this
quasiparticle superposition dephases such that the initial
phase relationship is scrambled in the infinite-time steady
state. The main result of our work is a characterization
of this steady state with one-particle density matrix oc-
cupations that indeed mimic occupation effects of tem-
perature in a Fermi liquid. We further discuss the impor-
tant difference between instantaneous and time-averaged
density matrices in the many-body localized phase.

An initial density-wave state is also used in the ul-
tracold atoms experiments [46H48] that observed a finite
imbalance between the density on even and odd sites as a
signature of the absence of thermalization [46] (see [49-
52] for further experiments). As a corollary result we
therefore obtain a relation between the OPDM occupa-
tions and experiments. In particular, we introduce an
OPDM occupation imbalance, the difference in occupa-
tions between mainly occupied and mainly unoccupied
natural orbitals, which behaves similar to the density im-
balance, but with a slower relaxation towards the steady
state, thereby capturing dephasing.

Model and methods.—We use a standard model of
many-body localization, namely a system of spinless
fermions hopping and repulsively interacting with their
nearest neighbours in a disordered 1D lattice. Such a
system is described by the Hamiltonian

1 1
H = JZ [— §(CI+1C1‘ + CZT»Ci-H) + € (nz - 5)

V- Ya-dl 0

I creates a fermion on site i (among L sites) and

K3
n; = cjci is the number operator. Energies are expressed
in terms of the hopping constant J, whereas disorder and
interaction strengths are denoted by the dimensionless
quantities W and V', respectively. The disorder is diag-
onal and taken from a box distribution ¢; € [-W,W].
We set J = V' = 1 throughout this work, in which case
the localization-delocalization transition is found to be
at W, = 3.5 £ 1 for energies in the middle of the spec-
trum [7), 8, 20, [45] 53].

Using exact diagonalization, we study the system de-
scribed in for different system sizes L and average

where ¢

over 10* (L = 8,10,12), 5 x 10% (L = 14) and 4 x 10°
(L = 16,18) disorder realizations. We use periodic
boundary conditions and fix the number of particles to
half filling N = L/2. The symbol (-) denotes the disorder
average.

The initial state is a perfect density-wave state,

L2

@) = [ bil0), (2)
=1

which then evolves under the Hamiltonian according
to (we set h = 1) |U(t)) = exp(—iHt)|¥y). To charac-
terize the state |U(t)), we calculate the instantaneous
one-particle density matrix

pis(t) = (T (t)]cfe; W (t)) (3)
and diagonalize it. The eigenvalues {n,(t)}, with o =
1,2,..., L, are the occupations and the eigenfunctions

{|¢a)} are the natural orbitals. For each time, we or-
der the OPDM occupation spectrum in descending order
ny(t) > na(t) > -+ > nr(t), noting that the total parti-
cle number is conserved Zil:l ne(t) =trp(t) = N at all
times.

Evolution of occupations.—We first address the nature
of the temporal relaxation dynamics of the occupations
{na(t)}. In the initial state |¥y), half of the occupations
are equal to one and the other half equal to zero, i.e.,
ne(0) =1 for @ < N and n,(0) =0 for o > N 4+ 1. Tt is
worth noting that in the absence of interactions, for any
finite W, the system is an Anderson insulator and both
halves of the OPDM spectrum continue to be equal to
one and zero at all times.

The time evolution of the occupation spectrum in the
MBL phase is plotted in Fig. a). Initially, the spec-
trum captures a fast expansion up to the localization
length, followed by a slow relaxation in which the occu-
pations approach their saturation values as a power law
vt~7 + 8, starting at times of the order of t ~ 102 (see
the inset). The power-law parameters d§, v, and v de-
pend non-universally on o with the exponent v ranging
between 0.3 and 0.6. In Fig. [[{b), the time evolution of
the single occupation (ny(t)) is shown for both phases
and at the transition (W ~ W.). In the MBL phase
(W > W,.), it undergoes a slow relaxation towards a non-
thermal stationary state at long times (¢ ~ 10%). This
slow relaxation is due to dephasing and is characteris-
tic of the MBL phase [43]. The instantaneous natural
orbitals evolve from the initial onsite densities towards
localized orbitals at long times, and the instantaneous
occupations {n,(t)} can therefore be seen as expectation
values of local observables. In this sense, their approach
to their stationary values is consistent with general argu-
ments for power-law relaxation of local observables [43].
In the ergodic phase (W < W,), in contrast, we observe
a fast relaxation towards a thermal stationary state.

Steady-state properties.—On the basis of the above,
it is natural to ask about the behavior of the occupa-
tion spectrum in the steady-state limit. To this end, we
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FIG. 1. (a) Evolution of the disorder-averaged occupation

spectrum (nq(t)) deep in the MBL phase (W = 8). In the
inset, the power-law relaxation (dashed lines, fits to the data)
for the upper half of the spectrum is shown. (b) Evolution of
a single occupation number, namely (nx(t)), for both phases
(W = 1,8) and at the transition (W=3.5). L = 14 in both
panels.

explore the asymptotic behavior (¢ — o0) of the time-
averaged density matrix, which we can compare to den-
sity matrices that capture the separate effects of dephas-
ing and thermalization. As we will see, the steady-state
density matrix at long times is described by the diagonal
ensemble in both the MBL and the ergodic phase; only
the latter is additionally reproduced by a thermal ensem-
ble. Specifically, expanding |Wo) = ), an|n) in terms
of the many-body eigenstates H|n) = E,|n), the time-
evolved state takes the form |U(t)) = Y e *Enlq,|n),
and the density matrix is

pij(t) = e i EamEnltar a (mlcleln).  (4)

n,m

Taking the time average (denoted by ~) yields

T
o= li t)dt 5
p Tl_rgoT_to/top() ; (5)
pij = e B Bias ay(mlcle;ln).  (6)
n,m

We take tg = 10° at which point the time evolution has
reached a steady state. For a nondegenerate system, the
phases in @ are random and sum to zero if n # m;
therefore

_ g
Pij = Z |an|2<’n|C;er|n> = pi;ag_ (7)
n

It is important to contrast the time-averaged density
matrix with the instantaneous occupations in Fig.[I] The
ordering of eigenvalues does not generally commute with
time averaging, in particular if there is an interchange of
occupations in the time evolution. This can be expected
to occur in the MBL phase, where the eigenvalues corre-
spond to local quantities separated in space and conse-
quently do not couple. From now on, we therefore first
time average the density matrix as in and only then
determine and order its eigenvalues, denoted by 7, in
descending order. This is also the experimentally rele-
vant procedure in many experiments. The occupations
(Ng) are plotted in Fig. [2]as a function of L and for three
different values of W. In particular, we compare (i)
with the ordered eigenvalues obtained directly from the
diagonal ensemble (7), denoted with (nd?8); both are
plotted in Fig. [2[a) as a function of L for W = 8, with
excellent agreement. In the ergodic phase, we further
find good agreement with the eigenvalues of the thermal
OPDM, see Fig. [2(c), obtained from

pTH = tr (PCCICJ') ; (8)

where we use the density matrix of the canonical ensem-
ble p. = e PH /tr (e #H) with inverse temperature 3 set
by the requirement that the energy of the state be

E = (Vo|H|Vo) = tr (p.H) . (9)

The occupations obtained in the MBL phase are, in con-
trast, highly nonthermal as revealed by the comparison
with the thermal occupation spectrum, plotted as stars
in Fig.2(a). The OPDM occupations tend to exhaust the
full range of values between 0 and 1, similar to the occu-
pations in eigenstates [8,[9], but with a discontinuity that
goes exponentially to zero in the thermodynamic limit,
see the inset in Fig. a). This main result of our work
suggests that a global quantum quench from a product
state of local densities results in partial quasiparticle oc-
cupations and thus a continuous occupation spectrum.
This behavior is similar to the effect of a finite tempera-
ture in a Fermi liquid.

The absence of the discontinuity is best understood
in the diagonal ensemble. With the initial state being
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FIG. 2. Infinite-time and disorder-averaged distribution of occupations (m) as a function of system size L, for disorder

strengths: (a) W =8, (b) W = 3.5 and (¢) W = 1. The horizontal axis is scaled to (& + 0.5)/L such that it runs from 0 to 1
in the thermodynamic limit. Additionally, (a) shows the diagonal-ensemble distribution (n&®8) for all L (open symbols), the
thermal ensemble (ntu) for L = 14 (stars) and the inset contains the discontinuity (A7) as a function of L and a fit to an
exponential ~ e~%°L. Figure (c) also contains the thermal distribution (nru) for all L (open symbols).
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FIG. 3. Disorder-averaged overlap between the initial state
|Wo) and the many-body eigenstates |n), (Ja.|*), plotted in
decreasing order |ag| > |a1]| > ... as a function of n for W = 8
and different system sizes L. Inset: disorder-averaged largest
weight (Jao|?) (see Eq. (7)) as a function of L as well as an
exponential fit to exp(—bL), with b = 0.06.

a product state of single-site occupations, it has a large
overlap with the eigenstates that have a large weight on
these sites. The quenched state will, to first order in
perturbation theory, inherit the step function from this
eigenstate, while all the other states provide smearing of
the step. To support this argument, we order the many-
body eigenstates |n) according to their overlap with the
initial state such that |ag| > |a1| > -+ > |an|, and
in Fig. 3| we plot the disorder-averaged overlap (|a,|?) as
a function of n. This function decays quickly with n and
the largest overlap also decays exponentially with L, con-
sistent with eigenstates built from N quasiparticles each
with an overlap with absolute value ¢ < 1 with a given
site density, and therefore, a total overlap that scales
like |ag| o< ¢V. The maximum-overlap eigenstate |0) has
an OPDM p(® with a zero-temperature Fermi-liquid-like
step function. The unitary transformation that diago-

nalizes p(®) approximately diagonalizes the OPDM p(™)
of the higher eigenstates |n), but with random ordering
such that the disorder average (n,(ln)> becomes a smooth
function without any discontinuity (see [54] for detailed
calculations supporting this picture). The resulting pre-
diction of the diagonal ensemble for the discontinuity is
then

(Andias) = (n%ag> - <n(]i\;ig1> ~ (Jao?An'V).  (10)

This indeed goes to zero expomnentially with L since
(laol?) ~ e~V

Imbalance and connection to experiments.—The den-
sity imbalance Z = (N, — N,)/N between the number of
physical particles N, on even sites and N, on odd sites
is experimentally shown to relax to zero in the ergodic
phase whereas in the localized phase it exhibits a fast re-
laxation towards a nonzero value, reflecting the absence
of thermalization [46]; similar conclusions were obtained
numerically in Ref. |55l From the occupation spectrum,
we define a related imbalance between the occupied and
unoccupied halves of the spectrum as

(V1 (8) = (N- (1))
N )

where N (t) = SN n(t) and N_(t) = S5 na(t).
This imbalance Zoppy = 1 for any product state, thus
also for our initial density-wave state. We can view
Toppm as a measure of how close a state is to a step-
function occupation spectrum with imbalance one, or to
a completely flat occupation spectrum where its value
is zero. The quantities Z(¢) (unfilled symbols) and
Zoppum(t) (filled symbols) are plotted in Fig. 4] Both sat-
urate at large times at nonzero values but the relaxation
for the density imbalance is much faster. The reason for
this is that Z only captures the ballistic expansion part of
the relaxation, while Zoppym also captures the dephasing
mechanism coming from interactions between quasipar-
ticles. As a second main result of our work, we have thus
demonstrated that the OPDM occupation spectrum can

Zorpm(t) =

(11)
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FIG. 4. Time evolution of the disorder-averaged density im-
balance (Z(t)) and its analog in the OPDM basis, (Zoppm(t)),
as a function of system size L for W = 8.

be directly connected to lack of ergodicity and experi-
mentally accessible quantities.

Conclusions.—In this work we demonstrated that in
the many-body localized phase, the steady state reached
after long times after a quench from a perfect density-
wave state has one-particle density matrix occupations
with a reduced discontinuity that goes exponentially to
zero with system size. The shape of the occupation spec-
trum remains highly nonthermal, in contrast to the er-
godic phase. This is consistent with the picture of local
conserved quantities which have a significant overlap with

the initial state. The approach towards the steady state
is consequently a power law, reflecting dephasing via in-
teractions between quasiparticles. We have also defined
an occupation imbalance, similar to the density imbal-
ance used in experiments, that captures the main effect
of dephasing and absence of thermalization.

Our discussion suggests that the continuous occupa-
tion spectrum is phenomenologically similar to that of
a finite-temperature Fermi liquid. The finite tempera-
ture is provided by the energy difference between the
initial state and the closest eigenstates, which serve as
reference states with a (zero-temperature) Fermi-liquid
like occupation spectrum. This is not thermalization in
the conventional sense since the many-body localized
phase is manifestly nonergodic and there is no eigenstate
thermalization. Nevertheless, the observation that the
steady state OPDM spectrum is continuous may hint
at the possibility of describing it with an emergent
temperature, to be defined in a suitable way. It thus
remains an interesting future research direction to estab-
lish whether such an emergent temperature corresponds
to some thermal-like ensemble, necessarily different
from eigenstate thermalization, and then how one can
characterize it.
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