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Non-minimally coupled inflation models based on a non-minimal coupling ξφ2R and a φ4 potential are in
excellent agreement with the scalar spectral index observed by Planck. Here we consider the modification
of these models by a conformal factor with a zero. This enables a non-minimally coupled model to have a
Planck-scale potential energy density at large values of the inflaton field, which can account for the smooth,
potential-dominated volume that is necessary for inflation to start. We show that models with a conformal factor
zero generally predict a correlated increase of the spectral index ns and tensor-to-scalar ratio r. For values of ns
that are within the present 2-σ bounds from Planck, modification by ∆r as large as 0.0013 is possible, which is
large enough to be measured by next generation CMB polarization satellites.

I. INTRODUCTION

Non-minimally coupled scalar field inflation models of the
type first proposed by Salopek, Bardeen and Bond [1] have
the great advantage of being able to use φ4 scalar poten-
tials with a self-coupling λ of magnitude typical of particle
physics models. Examples include Higgs Inflation [2], infla-
tion models based on dark matter gauge singlet scalars [3–5],
and supersymmetric extensions of Higgs inflation [6, 7]. Non-
minimally coupled inflation predicts ns ≈ 1− 2/N− 3/N2 ≈
0.966 and r ≈ 12/N2 ≈ 3.3× 10−3 at N = 60 (where N is
the number of e-foldings in the Einstein frame), in very good
agreement with the observed spectral index, ns = 0.9688±
0.0061 (68% CL, Planck TT + lowP + lensing), and easily
consistent with the upper bound on the tensor-to-scalar ratio,
r0.002 < 0.114 (95% CL, Planck TT + lowP + lensing) [8].

Inflation requires a smooth potential-dominated initial state
over a horizon volume. Therefore, in order to be a com-
plete theory, inflation requires a physical mechanism that
can explain this initial state. A favored approach to creat-
ing the initial conditions for inflation is to assume that the
Universe started in a chaotic initial state with Planck-scale
energy density O(M4

P) [9, 10]. The initial classical state is
expected to be generated from a quantum fluctuation which
has Planck energy density and size around the scale of the
horizon H−1 ≈ M−1

P . The initial classical energy density
of the Planck scale fluctuation is assumed to be distributed
roughly equally between the kinetic, gradient and potential
energy densities of the scalar field. The potential energy
density can then quickly come to dominate as the Universe
subsequently expands, thereby creating the required smooth
potential-dominated initial state on the scale of the horizon.

For this mechanism to work, the potential energy density
must be able to reach the Planck energy density for some value
of the scalar field φ. Therefore plateau inflaton models with
V (φ)�M4

P cannot become potential-dominated during an ini-
tial Planck density era. There are a number of ways that the
smooth potential-dominated initial state on scale of the hori-
zon can be produced for a plateau potential. One way, which
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is the focus of our discussion here, is to modify the poten-
tial such that it increases as the inflaton field φ increases and
reaches the Planck energy density. Another proposal is for a
smooth patch to be produced during the chaotic era which has
the form of an open Universe, with a negative curvature term
which dominates the Friedmann equation [11]. In this case
the Hubble radius during the subsequent expansion satisfies
H−1 ∝ a, where a is the scale factor, and so a smooth horizon-
sized patch at the Planck density will expand to a smooth
horizon-sized patch at the onset of plateau inflation. A dif-
ferent approach, which does not rely on a chaotic initial state,
is to have a contracting era which precedes the expanding era.
This can be achieved by a generalization of the non-minimal
coupling and potential [12]1.

In this paper we will focus on the idea that the potential
will increase to the Planck energy at large φ. The usual way to
achieve this is to add non-renormalizable higher-order terms
to the potential. In the case of non-minimally coupled infla-
tion models, there is an alternative approach, which we will
explore here. This is to consider a conformal factor with a
zero. In this case, the Einstein-frame potential will have a pole
and so will rapidly increase to the Planck energy density as φ

approaches the pole. This class of models may be regarded
as a minimal modification of the standard non-minimally cou-
pled inflation model, in the sense that they modify only the
non-minimal coupling of the scalar particle to gravity and
leave the particle physics model unchanged.

The paper is organized as follows. In Section II we review
non-minimally coupled inflation models and the results for the
standard non-minimally coupled model. In Section III we in-
troduce a class of models which have a conformal factor with
a zero at large φ and which reduce to the standard non-minimal
model at small φ. In Section IV we discuss the evolution of
these models from chaotic initial conditions. In Section V we
discuss the possibility of detecting a deviation of ns and r from
their standard non-minimally coupled inflation model values.
In Section VI we present our conclusions.

1 For more a recent proposal to address the initial condition problem of
plateau inflation, see Ref. [13].
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II. NON-MINIMALLY COUPLED INFLATION MODELS

In general, a non-minimally coupled scalar model is de-
scribed by an action with non-minimal coupling F(φ), a
generic kinetic coupling Z(φ), and a generic potential VJ(φ),

SJ =
∫

d4x
√
−gJ

[
M2

P
2

Ω
2(φ)RJ−

1
2

gµν

J Z(φ)∂µφ∂νφ−VJ(φ)

]
,

(1)

where Ω2 = 1+F(φ) is the conformal factor. The subscript
J stands for the Jordan frame. The action in the Einstein
frame, denoted by the subscript E, can be obtained via the
Weyl rescaling,

gµν

J → gµν

E = Ω
−2gµν

J , (2)

which gives

SE =
∫

d4x
√
−gE

[
M2

P
2

RE−
1
2

gµν

E ∂µϕ∂νϕ−VE(ϕ)

]
, (3)

where ϕ is the canonically normalized field and VE is the
Einstein-frame potential, which are respectively related to the
field φ and the Jordan-frame potential VJ as follows:(

dϕ

dφ

)2

=
Z

Ω2 +
3M2

P
2Ω4

(
dΩ2

dφ

)2

, (4)

VE =
VJ

Ω4 =
VJ

(1+F)2 . (5)

In the following we will mostly state results in terms of the
Jordan-frame field φ, even though inflation is analyzed in the
Einstein frame in terms of the canonically normalized field ϕ.

In terms of the Einstein-frame potential VE and the canon-
ically normalized field ϕ, the cosmological observables are
expressed in terms of the potential slow-roll parameters ε and
η, defined by

ε =
M2

P
2

(
dVE/dϕ

VE

)2

, η = M2
P

(
d2VE/dϕ2

VE

)
. (6)

In the following we will evaluate the cosmological observ-
ables at N = 60, where N is the number of e-folds in the Ein-
stein frame,

N =
∫ te

ti
H dt ≈− 1

M2
P

∫
ϕe

ϕi

dϕ
VE

dVE/dϕ

=
1

MP

∫
φi

φe
dφ

1√
2ε

dϕ

dφ
, (7)

where H = ȧ/a is the expansion rate defined in the Einstein
frame, where a flat Friedmann-Robertson-Walker metric in
the Einstein frame is assumed with scale factor a and time
coordinate t.

We next review the relevant results of what has come to
be the standard non-minimally coupled scalar inflation model,
which we will refer to as the “standard non-minimal model”

for convenience. In these models the non-minimal coupling,
the kinetic coupling, and the potential in the Jordan frame are
specified by

Ω
2 = 1+ξ2

φ2

M2
P
, Z = 1 , VJ =

λ

4
φ

4 . (8)

The Einstein-frame potential VE and the relation between the
canonically normalized field ϕ and the original field φ are,
according to Eqs. (4) and (5), given by

VE =
λφ4

4(1+ξ2φ2/M2
P)

2
, (9)

dϕ

dφ
=

√
1+(1+6ξ2)ξ2φ2/M2

P

1+ξ2φ2/M2
P

. (10)

The slow-roll parameters (6) are

ε≈ 4
3ξ2

2

(
MP

φ

)4

, η≈− 4
3ξ2

(
MP

φ

)2

, (11)

where we have taken the large-field limit, φ�MP/
√

ξ2. The
end of inflation is then specified by the condition ε≈ 1, which
gives

φe ≈
(

4
3

)1/4 MP√
ξ2

. (12)

In the large-field limit, the number of e-folds is given by

N(φ)≈ 3ξ2

4

(
φ2

M2
P
− φ2

e

M2
P

)
. (13)

Therefore, at φ2 � φ2
e , we have φ ≈

√
4N/3ξ2MP. Thus

φ(N = 60)≈ 9MP/
√

ξ2.
The slow-roll parameters (11) at N = 60 take the values

η60 ≈ −0.0165 and ε60 ≈ 0.000203. The cosmological ob-
servables are then given by

Ps ≈
VE

24π2M4
Pε
≈ 5.19λ/ξ

2
2 . (14)

ns ≈ 1+2η−6ε≈ 0.9659 , r ≈ 16ε≈ 0.003 . (15)

Using the Planck result [8], Ps ≈ 2.2× 10−9, we then ob-
tain the relation between the non-minimal coupling ξ2 and the
quartic coupling λ, ξ2 = 4.88×104

√
λ.

III. NON-MINIMALLY COUPLED INFLATION WITH A
CONFORMAL FACTOR ZERO

In this section we introduce a class of models which have a
conformal factor with a zero. These models, to a good ap-
proximation, reduce to the standard non-minimal model at
φ(N = 60), so preserving the successful prediction for ns,
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while having a conformal factor with a zero at large φ. In
keeping with the absence of a linear term in the conformal
factor of the standard non-minimal model, we will assume
that there is a symmetry preventing terms which are odd in
the φ field.

We will therefore consider a general class of models where
the non-minimal coupling of the standard model has a correc-
tion factor which is a function of φ2/M2

P,

ξ2φ2

M2
P
→ ξ2φ2

M2
P
× f

(
φ2

M2
P

)
. (16)

The function f (φ2/M2
P) must tend to 1 at small φ and is as-

sumed to have a zero at large φ. Then f (φ2/M2
P) can be Taylor

expanded at small φ2/M2
P as

f
(

φ2

M2
P

)
= 1+a1

φ2

M2
P
+a2

φ4

M4
P
+ · · · , (17)

where ai are expected to be of order 1. Thus at φ2�M2
P we

have

Ω
2 = 1+

ξ2φ2

M2
P
× f

(
φ2

M2
P

)
= 1+

ξ2φ2

M2
P

+
a1ξ2φ4

M4
P

+ · · · .

(18)

In general a1 could be either positive or negative. However,
since this term will dominate the initial deviation from the
plateau potential as φ increases, a1 must be negative, in order
to prevent the potential in the Einstein frame from developing
a local minimum, where φ would become trapped as it rolls
in from the chaotic initial state. Therefore, at small φ/MP, the
leading order contributions to Ω2 will generally have the form

Ω
2 = 1+ξ2

φ2

M2
P
−ξ4

φ4

M4
P
+ ... . (19)

where we expect ξ4 = |a1|ξ2 = O(1)× ξ2. Thus ξ4 ∼ ξ2 is
natural in these models. This will be important later for ob-
servable deviations from the predictions of the standard non-
minimal inflation model. The observable predictions of this
class of model depend only on the φ4 term in the expansion
at small φ2/M2

P, therefore they are independent of the precise
form of f (φ2/M2

P).
As a specific example, we will consider a minimal model

with a conformal factor zero. This is defined by

Ω
2 = 1+ξ2

φ2

M2
P
−ξ4

φ4

M4
P
, Z = 1 , VJ =

λ

4
φ

4 . (20)

This model is characterized by a single additional parameter,
ξ4. The conformal factor has a zero at a critical field value,
φc, given by

φc =
MP√
2ξ4

(
ξ2 +

√
ξ2

2 +4ξ4

)1/2

. (21)

For this model, the Einstein-frame potential VE takes the form

VE =
λφ4

4(1+ξ2φ2/M2
P−ξ4φ4/M4

P)
2
. (22)

Thus the conformal factor results in a pole in the Einstein-
frame potential at φ = φc (21). Therefore the potential energy
density in the Einstein frame will approach the Planck energy
density as φ increases, which allows chaotic initial conditions
to be consistent with the model. (We expect the chaotic ini-
tial conditions to be determined in the Einstein frame, where
the model is minimally coupled to gravity and where quan-
tum fluctuations will become large when H ∼MP, where H is
the expansion rate in terms of the Einstein-frame scale factor.)
The initial value of the field, φIC, is defined by VE(φIC) = M4

P,
which implies that

φIC =
MP√
2ξ4

ξ2−
√

λ

2
+

√√√√(
ξ2−

√
λ

2

)2

+4ξ4


1/2

.

(23)

Note that φIC ≈MP when ξ2 ∼ ξ4 and ξ2�
√

λ.
The canonically-normalized field in the Einstein frame ϕ is

related to the field φ in this model via Eq. (4):

dϕ

dφ
=

1

1+ξ2
φ2

M2
P
−ξ4

φ4

M4
P

×

[
1+(1+6ξ2)ξ2

φ2

M2
P
− (1+24ξ2)ξ4

φ4

M4
P
+24ξ

2
4

φ6

M6
P

]1/2

.

(24)

IV. INITIAL CONDITIONS IN THE MINIMAL
CONFORMAL FACTOR ZERO MODEL

The expected chaotic initial condition for the subse-
quent classical evolution is ϕ ∼ ϕIC, with the canonically-
normalized field in the Einstein frame satisfying (ϕ̇IC)

2 ∼
(∇ϕIC)

2 ∼VE(ϕIC)∼M4
P.

The potential energy density approaches the Planck energy
density when ϕ≈ ϕIC (23), at which point the potential in the
Einstein frame is steep. It is therefore important to check that
when the potential subsequently satisfies the slow-roll condi-
tions, the kinetic and gradient energy densities from the initial
evolution from the Planck density are not strongly dominant at
this time. If the kinetic energy were strongly dominant at this
time, then the field would enter into oscillations, with the pos-
sibility that perturbations could grow and come to dominate
the potential, losing the smooth potential-dominated horizon
volume which is necessary for plateau inflation to begin. Sim-
ilarly, if the gradient energy were dominant at this time, then
we would not have the smooth potential-dominated state on
the scale of the horizon which is necessary for inflation to be-
gin.

We first check that the kinetic energy of the rolling field
does not strongly dominate the potential energy when the
slow-roll conditions are satisfied by the potential. Denoting
the kinetic energy density of the field ϕ by ρkin ≡ ϕ̇2/2, where
for now we neglect any inhomogeneities, the time derivative
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of the total energy density ρ = ρkin +VE is given by

dρ

dt
=

[
ϕ̈+

dVE

dϕ

]
ϕ̇ . (25)

Using the inflaton field equation

ϕ̈+3Hϕ̇ =−dVE

dϕ
, (26)

one can easily show that

MP
dρkin

dϕ
=
√

3ρ|ϕ̇|−
√

2εVE . (27)

In this we have used ϕ̇ = −|ϕ̇|, as ϕ is rolling in towards
the origin. Let us now assume that the kinetic energy den-
sity comes to dominate, so that ρ≈ ρkin. The largest possible
value of ρkin at any ϕ will be obtained when the right-hand
side of the equation equals zero. Therefore the maximum ki-
netic energy is

ρkin max =

√
ε

3
VE . (28)

The potential satisfies the slow-roll condition once ε ≈ 1,
therefore at this time ρkin max ≈ VE/

√
3. This contradicts the

assumption that the energy is dominated by the kinetic en-
ergy. Thus when the slow-roll conditions are satisfied we must
have ρkin .VE. The field will therefore rapidly enter potential-
dominated slow-roll inflation once the slow-roll conditions on
the scalar potential are satisfied.

We have also checked this conclusion numerically. Fig-
ure 1 shows the Hubble slow-roll parameter, εH = −Ḣ/H2,
in terms of the number of e-folds2 N. After a short period of
fast rolling, the Hubble slow-roll parameter becomes smaller
than unity at N ≈ 8, resulting in slow-roll inflation, and finally
increases to unity at the end of inflation. The sharp increase
in εH around N ≈ 7.5 is due to the relation between ϕ and φ

(24).
We next consider the spatial fluctuations and gradient en-

ergy during the initial fast-roll period following the chaotic
initial state. To model these fluctuations, we will consider the
following field

ϕ(x, t) = ϕ(t)+δϕ(x, t) = ϕ(t)+δϕk(t)eik.x . (29)

The initial value of the homogeneous field ϕ(0) is assumed
to be equal to ϕIC, defined by VE(ϕ) = M4

P. (We set t = 0
and a = 1 initially.) We have also assumed that there is a
spatial fluctuation δϕ of comoving wavelength λ = 2H(0)−1,
corresponding to k = πH(0), and gradient energy density

2 In the limit where the energy density is dominated by the potential, the
potential slow-roll parameters η and ε are related to the Hubble slow-roll
parameters by η= 2εH−ηH/2 and ε= εH , where ηH = ε̇H/(HεH). There-
fore both εH and |η|H must be less than 1 in order to satisfy the potential
slow-roll condition {ε, |η|} . 1. We find that εH is somewhat larger than
|η|H , therefore εH . 1 defines the onset of slow-roll inflation in this model.

M4
P, which models the initial horizon-sized chaotic fluctua-

tions. The initial values are then ϕ(0) ≈ 23MP (correspond-
ing to φIC ≈ MP (23)) and δϕk(0) ≈ 0.55MP (corresponding
to ρgrad ≈ M4

P). We subsequently evolve this as a classical
mode, with H determined by the total energy density inside
the classical volume (which is assumed to be spherical), in or-
der to model the expected inhomogeneity from the chaotic ini-
tial conditions. We also treat δϕ as a perturbation of ϕ, which
we find is consistent throughout, and therefore consider the
background metric to be homogeneous.

The kinetic energy density ρkin, gradient energy density
ρgrad and the potential energy density are shown in Figure 2.
One can see that the potential energy density starts to domi-
nate after N ≈ 8, at which point εH becomes less than unity
when the field value ϕ ≈ 9.76MP. In general, the kinetic en-
ergy density is only slightly larger than the potential energy
density during the fast roll phase. The gradient energy den-
sity, on the other hand, rapidly becomes small relative to the
potential energy density3.

During the initial non-inflationary fast-rolling phase, the
horizon may grow more rapidly than the diameter dc of the
classically evolving volume. Therefore we need to check that
the horizon can become smaller that dc after the onset of po-
tential domination at N ≈ 8. In Figure 3, we show three dif-
ferent scales: dc ≡ aM−1

P , with M−1
P being the natural horizon

scale at the Planck initial state; the Hubble radius H−1
V calcu-

lated from the potential energy density (HV ≡
√

VE/(3M2
P));

and the Hubble radius H−1
in calculated using the energy den-

sity inside the classically evolving volume. As expected,
H−1

V ≈ H−1
in once the potential slow-roll is established after

N ≈ 8. At N ≈ 12, the classical volume becomes larger than
the horizon scale, providing the smooth potential-dominated
initial state required for inflation.

Thus we can conclude that when the scalar potential satis-
fies the slow-roll conditions, the potential energy will dom-
inate the gradient energy density and kinetic energy den-
sity. Therefore there will be a smooth transition to potential-
dominated slow-roll inflation. This will provide the initial
conditions for the subsequent era of plateau inflation.

V. COSMOLOGICAL OBSERVABLES IN MODELS WITH
A CONFORMAL FACTOR ZERO

The class of models described by Eq. (18) all reduce to the
same conformal factor 4 at small φ,

Ω
2 ≈ 1+ξ2

φ2

M2
P
−ξ4

φ4

M4
P
, (30)

3 The oscillations of the gradient energy density in Figure 2 are due to the
transfer of the energy of the oscillating mode δϕ(x, t) between gradient and
kinetic energy.

4 An analysis of ns and r for a general conformal factor expansion is pre-
sented in Ref. [14].
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FIG. 1. The Hubble slow-roll parameter εH =−Ḣ/H2 as a function
of the number of e-folds N. After a short period of fast roll, the
Hubble slow-roll parameter becomes smaller than unity at N ≈ 8,
resulting in slow-roll inflation. It later starts to increase near the end
of inflation. A sudden increase around N ≈ 7.5 is due to the relation
between ϕ and φ; see Eq. (24). In the analysis, we take ξ4 ≈ ξ2 ≈
3×104 and λ = 0.5. The generic behavior, however, is unaltered by
different choices of parameters.
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FIG. 2. Evolution of the gradient energy density ρgrad ≡ (∇ϕ)2/2
(solid green), kinetic energy density ρkin ≡ ϕ̇2/2 (dashed red) and
potential energy density VE (dotted blue). After a short period of fast
roll, which corresponds to εH & 1 (see Figure 1), the potential energy
density dominates, allowing slow-roll inflation. The same parameter
values are chosen as in Figure 1.

where we expect ξ2 ∼ ξ4. Since the small φ limit of these
models introduces only a single parameter ξ4 (which must be
greater than zero), this class of model predicts a specific cor-
relation between the modification of ns and r. The first pre-
diction is that both ns and r strictly increase relative to the
predictions of the standard model, due to the ξ4 term being
strictly positive. In Figure 4 we show ns versus r and ∆ns ver-
sus ∆r, where ∆ns ≡ ns−nST

s and ∆r ≡ r− rST, with nST
s and

rST being respectively the spectral index and tensor-to-scalar
ratio of the standard non-minimal model (15) (see also the
Appendix). For values of ns at the Planck 1-σ (2-σ) bound,
the shift of r from the standard non-minimal model value (15)
is by ∆r = 0.0006 (0.0013). These shifts are larger than the
projected accuracy of the next generation CMB polarization

1/Hin

1/HV

dC

0 2 4 6 8 10 12

0

50000

100000

150000

200000

250000

N

FIG. 3. Three different horizon scales: the diameter of the classically
evolving volume dc ≡ a/MP (solid blue), the Hubble radius calcu-
lated using the potential energy H−1

V (dashed red), and the Hubble
radius of the classical volume H−1

in (dotted green). When N ≈ 12, the
classical volume becomes larger than the horizon scale, thus provid-
ing the smooth potential-dominated initial conditions for inflation.
The same parameter values are chosen as in Figure 1.

experiments [15–17], which are expected to ideally achieve
an error δr ≈ 0.0002 at 1-σ. Therefore the observation of
a small increase of r above its standard non-minimal model
value would be consistent with models with a conformal fac-
tor zero. Moreover, if the spectral index can be determined
with increased precision then it may be possible to test the
specific correlation between the shifts of ns and r predicted by
this class of models.

In order to have an observable shift of r, ξ4 must be within
a particular range of values. For λ = 1, this corresponds to
0.6 . ξ2/ξ4 . 3, as seen in Figure 5. Lower values of ξ2/ξ4
would produce an excessive increase in ns beyond the present
Planck 2-σ upper bound, while larger values would produce
unobservably small shifts of r.

The dependence of ∆ns and ∆r on λ are illustrated in Figure
6 for the case ξ4 = ξ2. λ & 0.43 is necessary in order that ∆ns
is within the present Planck 2-σ bound; smaller values of λ

produce larger shifts of ns and r.

VI. CONCLUSIONS

Non-minimally coupled scalar inflation is in excellent
agreement with observation, but it requires an explanation of
how inflation got started in the first place. This is most easily
understood if the Universe emerges from a chaotic initial state
with Planck-scale energy density. However, this is not possi-
ble for the standard non-minimally coupled inflation model, as
it is a plateau inflation model with VE�M4

P when expressed
in the Einstein frame.

By modifying the conformal factor of the standard model
to a conformal factor with a zero, it is possible to achieve a
Planck potential energy density. We have proposed a class
of models which does this by multiplying the non-minimal
coupling term ξ2φ2/M2

P by a factor f (φ2/M2
P) which tends to
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FIG. 4. ns versus r (left) and ∆ns versus ∆r (right). The vertical dashed (dotted) lines corresponds to 1-σ (2-σ) Planck bound on the spectral
index ns. The correlation between ns and r is purely determined by the single free parameter, ξ4, of the conformal zero models at small φ. In
our analysis, the additional parameter ξ4 is treated as a free parameter while ξ2 becomes as function of ξ4, being chosen in such a way that the
Planck normalization on Ps is satisfied at N = 60. The correlation is independent of λ.
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FIG. 5. ∆ns (left) and ∆r (right) in terms of ξ2/ξ4. The horizontal dashed (dotted) line corresponds to 1-σ (2-σ) Planck bound on the spectral
index ns. The ξ4 = 0 limit corresponds to the standard non-minimal model (15). An observable shift of r in next generation CMB polarization
experiments [15–17], ∆r & 0.0002, is possible when ξ2/ξ4 . 3. As in Figure 4, the additional parameter ξ4 is treated as a free parameter and
ξ2 is adjusted so that the Planck normalization of Ps is satisfied at N = 60, in which case ξ2/ξ4 becomes a function of ξ4. λ = 1 is assumed in
our analysis.

1 at small φ, so preserving the successful predictions of the
standard model, while having a zero at large φ. The use of a
conformal factor with a zero may be considered to be a min-
imal modification of the original model, in the sense that it
modifies only its coupling to gravity and does not modify the
particle physics model itself.

In the case of the simplest example of a model with a con-
formal factor with a zero and chaotic initial conditions, we
showed that the model can smoothly evolve into slow-roll in-
flation, which later evolves into plateau inflation. There is a
brief period, ∆N ≈ 8, of fast-roll non-inflationary expansion
following the initial chaotic era. However, the gradient and
kinetic energy densities never strongly dominate the potential
energy density, and the potential energy comes to dominate by
the time the scalar potential satisfies the slow-roll conditions.

In general, the class of models we are considering predicts
a correlation between the deviation of ns and r from their stan-
dard non-minimal model values which is independent of the
specific form of f (φ2/M2

P). In particular, the model predicts

that ns and r can only increase relative to their standard val-
ues. If the single relevant additional parameter of the models
at small φ, ξ4, is of the right magnitude, then an increase of
r by as much as 0.0013 is possible when ns is within the 2-σ
upper bound observed by Planck. It turns out that ξ4 can pro-
duce shifts of r which are large enough to be observed by fu-
ture CMB satellites if ξ4∼ ξ2 and λ∼ 1, where ξ2∼ 104 is the
non-minimal coupling of the standard non-minimally coupled
inflation model and λ is the φ4 coupling constant. Remark-
ably, ξ4 ∼ ξ2 is the natural expectation in the class of models
we have proposed. Therefore an observable increase in r, cor-
related with an increase in ns, is a natural possibility in these
models.
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FIG. 6. ∆ns and ∆r as a function of λ in the case of ξ2 = ξ4. The horizontal dashed (dotted) line corresponds to 1-σ (2-σ) Planck bound on the
spectral index ns. Smaller values of λ produce larger shifts of ns and r, and λ & 0.43 is necessary in order that ns is within the present Planck
2-σ bound. We treat λ as a free parameter while ξ2 is chosen in such a way that the Planck normalization of Ps is satisfied at N = 60.

APPENDIX: ANALYTIC EXPRESSIONS FOR THE
COSMOLOGICAL OBSERVABLES

In this appendix we obtain approximate analytic expres-
sions for the cosmological observables in our model. Let us
first write the conformal factor as follows:

Ω
2 = ξ2

φ2

M2
p
(1+δ) , δ =

M2
P

ξ2φ2 −
ξ4φ2

ξ2M2
P
, (A-1)

where δ shall be treated as a small perturbation during infla-
tion, i.e., |δ| � 1. Note that

O(δ)∼ O(φδφ)∼ O(φ2
δφφ) , (A-2)

where δφ ≡ dδ/dφ and so on. In terms of δ, the Einstein-
frame potential VE and the relation between the canonically
normalized field ϕ and the original field φ are given by

VE ≈
λM4

P

4ξ2
2

[
1−2δ+3δ

2] , (A-3)(
dϕ

dφ

)2

≈ 6M2
P

φ2

[
1+φδφ +

1
4
(φδφ)

2−δφδφ

]
, (A-4)

where we have used ξ2� 1.
The slow-roll parameters are given by

ε≈ 1
3
(φδφ)

2 (1−2δ−φδφ

)
=

4
3ξ2

2

(
MP

φ

)4(
1+ξ4

φ4

M4
P

)2(
1+

4ξ4

ξ2

φ2

M2
P

)
, (A-5)

η≈ 1
3

[
−φδφ−φ

2
δφφ

+
9
2
(φδφ)

2 +δφ
2
δφφ +δφδφ +

3
2

φδφφ
2
δφφ

]
=− 4

3ξ2

(
MP

φ

)2 [
1−ξ4

φ4

M4
P

− 1
ξ2

(
M2

P
φ2 +4ξ4

φ2

M2
P
+7ξ

2
4

φ6

M6
P

)]
. (A-6)

Assuming the natural value for ξ4, ξ4 ∼ ξ2, the number of
e-folds N is given by

N ≈ 3ξ2

4
√

ξ4

[
arctan

(√
ξ4

φ2
N

M2
P

)
− arctan

(√
ξ4

φ2
e

M2
P

)]
,

(A-7)

where φe is the field value at the end of inflation set by ε ' 1
which is given by

φe ≈
MP

21/4
√

ξ4

3ξ2
2

4
−2ξ4−

√
3ξ2

2
4

(
3ξ2

2
4
−4ξ4

)1/4

≈
(

4
3

)1/4 MP√
ξ2

. (A-8)

It is then easy to show that

φN ≈
MP

ξ
1/4
4

(
tan

[
4
√

ξ4

3ξ2
N + arctan

(√
ξ4φ

2
e/M2

P

)])1/2

≈
(

4N
3

)1/2 MP√
ξ2

. (A-9)

Note that the approximated expressions for φe and φN are the
same as those in the standard non-minimal inflation model.

The cosmological observables are then given by

Ps ≈
λ

128π2ξ2

(
φ

MP

)2 [−2+ξ2φ2/M2
P−2ξ4φ4/M4

P

(1+ξ4φ4/M4
P)

2

]
,

(A-10)

ns ≈
1

3ξ2
2

(
MP

φ

)4 [
−16−8ξ2

φ2

M2
P

+(3ξ
2
2−16ξ4)

φ4

M4
P
+8ξ2ξ4

φ6

M6
P
+32ξ

2
4

φ8

M8
P

]
,

(A-11)

r ≈ 64
3ξ2

2

(
MP

φ

)4(
1+ξ4

φ4

M4
P

)2(
1+

4ξ4

ξ2

φ2

M2
P

)
, (A-12)
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where the above expressions are evaluated at φ = φN . Substi-
tuting φN (A-9) into the above expressions for the cosmologi-
cal observables gives

Ps ≈ 0.0014N2× λ

ξ2
2

1−2.667Nξ4/ξ2
2(

1+1.778N2ξ4/ξ2
2

)2

≈ P ST
s ×

1−2.667Nξ4/ξ2
2(

1+1.778N2ξ4/ξ2
2

)2 , (A-13)

ns ≈ 1− 2
N
− 3

N2 +
3.556Nξ4

ξ2
2

(
1+5.33N

ξ4

ξ2
2

)
≈ nST

s +
3.556Nξ4

ξ2
2

(
1+5.33N

ξ4

ξ2
2

)
, (A-14)

r ≈ 12
N2 +×42.67ξ4

ξ2
2

(
1+0.889N2 ξ4

ξ2
2
+4.74N3 ξ2

4

ξ4
2

)
≈ rST +

42.67ξ4

ξ2
2

(
1+0.889N2 ξ4

ξ2
2
+4.74N3 ξ2

4

ξ4
2

)
,

(A-15)

where quantities with the superscript ST are those of the stan-
dard non-minimal model. Therefore the deviations from the
standard non-minimal case are given by

∆ns ≈
3.556Nξ4

ξ2
2

(
1+5.33N

ξ4

ξ2
2

)
, (A-16)

∆r ≈ 42.67ξ4

ξ2
2

(
1+0.889N2 ξ4

ξ2
2
+4.74N3 ξ2

4

ξ4
2

)
. (A-17)

We find that these expressions are in good agreement with
the exact numerical values. It is then easy to see why ξ4 ≈
ξ2 ≈ 5×104

√
λ produces a shift ∆r ∼ 0.001 when λ∼ 1 and

N = 60.
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