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Abstract

We study subexponential tail asymptotics for the distribution of the maxi-
mum Mt := supu∈[0,t]Xu of a process Xt with negative drift for the entire
range of t > 0. We consider compound renewal processes with linear drift
and Lévy processes. For both processes we also formulate and prove the
principle of a single big jump for their maxima. The class of compound
renewal processes with drift particularly includes the Cramér–Lundberg re-
newal risk process.
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1. Introduction

For a probability distribution F on the real line, let F (x) = F (−∞, x]
denote the distribution function and F (x) = F (x,∞) = 1−F (x) its tail. We
say that F is (right-) heavy-tailed distribution if all its positive exponential
moments are infinite,

∫
R e

sxF (dx) = ∞ for all s > 0. Otherwise we call F
(right-) light-tailed.

In the presence of heavy tails, the class S of subexponential distributions
is of basic importance. A distribution F on R+ with unbounded support is
called subexponential if F ∗ F (x) ∼ 2F (x) as x → ∞. Any subexponential
distribution is known (see, e.g., Foss et al. (2013, Lemma 3.2)) to be long-
tailed, i.e., for all fixed y, F (x+ y) ∼ F (x) as x→∞.

A distribution F of a random variable Y valued on the whole real line is
called subexponential if the distribution F+ of Y + is so.

The class of subexponential distributions plays an important role in
many applications, for instance, for waiting times in the GI/G/1 queue
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and for ruin probabilities—see, e.g., Asmussen (2003, Ch. X.9); Asmussen
and Albrecher (2010, Ch. X); Embrechts et al. (1997, Sec. 1.4); Rolski et
al. (1998).

A distribution F on R with right unbounded support and finite mean is
called strong subexponential (F ∈ S∗) if

x∫
0

F (x− y)F (y)dy ∼ 2F (x)

∞∫
0

F (y)dy as x→∞.

It is known—see, e.g., Foss et al. (2013, Theorem 3.27)—that F ∈ S∗ implies
both F ∈ S and FI ∈ S where FI is the integrated tail distribution defined
by its tail,

F I(x) := min
(

1,

∫ ∞
x

F (y)dy
)
, x > 0.

Let Y , Y1, Y2, . . . be i.i.d. random variables with a negative expectation
b = EY < 0. Consider a random walk S0 = 0, Sn = Y1 + . . . + Yn and its
maximum

MS
n := max

0≤k≤n

k∑
i=1

Yi,

hereinafter we follow the standard convention
∑0

i=1 f(i) = 0.
Since b < 0, the family MS

n , n ≥ 1, is stochastically bounded. Let B be
the distribution of Y +

1 and BI be the integrated tail distribution of Y +
1 . As

well known for the overall maximum of the random walk,

MS
∞ = max

n≥0

n∑
i=1

Yi,

the asymptotic relation

P{MS
∞ > x} ∼ BI(x)/|b| as x→∞ (1)

holds in the heavy-tailed case if and only if the integrated tail distribution
BI is subexponential—see e.g. Theorem 5.12 in Foss et al. (2013). Also, if
B is strong subexponential, B ∈ S∗, then the following tail result holds for
finite time horizon maxima

P
{

max
k≤n

k∑
i=1

Yi > x
}
∼ 1

|b|

∫ x+n|b|

x
B(v)dv (2)
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as x → ∞ uniformly for all n ≥ 1—see Korshunov (2002) or Foss et al.
(2013, Theorem 5.3); uniformity for all n ≥ 1 means that

sup
n≥1

∣∣∣∣∣P
{

maxk≤n
∑k

i=1 Yi > x
}

1
|b|
∫ x+n|b|
x B(v)dv

− 1

∣∣∣∣∣ → 0 as x→∞.

So the subexponential tail behaviour for the maxima of random walks is
well understood while surprisingly much less is known for Lévy processes.
In this contribution we particularly demonstrate in Section 2 how results
for random walks relate to those for the compound renewal process with
linear drift in the presence of heavy-tails—see Theorem 1; in particular, we
formulate and prove the principle of a single big jump in Theorem 4. Based
on that we give in Section 3 a very general treatment of subexponential
tail behaviour for Lévy processes with negative drift—see Theorem 5. In
Section 4 we derive tail asymptotics for a Lévy process stopped at random
time and for its maximum within this time interval. An application to the
Cramér–Lundberg renewal risk model is given in Section 5. A discussion of
results available in the literature may be found just after Theorems 1 and 5.

2. Asymptotics for compound renewal processes with linear drift

Consider a compound renewal process with linear drift Xt which is defined
as

Xt =

Nt∑
i=1

Yi + ct,

where c is some real constant, Nt is a renewal process generated by jump
epochs 0 = T0 < T1 < T2 < . . ., where τn := Tn−Tn−1 > 0 are i.i.d. random
variables with finite mean Eτ =: 1/λ, and Yn, n ≥ 1, are i.i.d. jumps with
finite mean b. The Yn’s are supposed to be independent of the process Nt.

We assume that the drift of the process is negative, that is, a := c+bλ <
0, hence the family of distributions of maxima

Mt := max
u∈[0,t]

Xu

is tight,
sup
t>0

P{Mt > x} ≤ P{M∞ > x} → 0 as x→∞.

We are interested in the tail behaviour of Mt.
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If c < 0 and Y1 ≥ 0—which corresponds to the Cramér–Lundberg re-
newal model—then the overall maximum M∞ is simply the maximum of the
associated random walk:

M∞ = max
n≥0

n∑
i=1

(Yi + cτi),

because the maximum of Xt can only occur at a jump epoch. Let B be the
distribution of Y +

1 and BI be the integrated tail distribution. Since

P{Y1 > x+ h}P{cτ1 > −h} ≤ P{Y1 + cτ1 > x} ≤ P{Y1 > x}

for c < 0 and all h > 0, the integrated tail distribution of Y1 + cτ1 is
asymptotically equivalent to BI(x) provided BI is a long-tailed distribution.
Then it follows from (1) that the equivalence

P{M∞ > x} ∼ BI(x)/|b+ c/λ| as x→∞ (3)

holds in the heavy-tailed case if and only if BI is subexponential.
The cases where c > 0 or Y1 takes values of both signs as well as the

finite time horizon tail asymptotics for Mt are more complicated—which is
caused by dependence between the random variables Yi+cτi and the process
Nt—and are described in the following theorem.

Theorem 1. Let Xt be a compound renewal process with linear drift such
that a := c+ bλ < 0. Let the distribution B of Y +

1 be strong subexponential
and one of the following conditions hold:

(i) c ≤ 0;
(ii) c > 0 and P{cτ > x} = o(B(x)) as x→∞.

Then

P{Mt > x} ∼ λ

|a|

∫ x+|a|ENt/λ

x
B(v)dv as x→∞ uniformly for all t > 0.

(4)

In particular,

P{Mt > x} ∼ λ

|a|

∫ x+|a|t

x
B(v)dv as x, t→∞.

For a compound Poisson process with linear drift Xt where Nt is a homo-
geneous Poisson process with intensity of jumps λ, we have ENt = tλ and
P{cτ > x} = e−λx/c = o(B(x)), so the following corollary.
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Corollary 2. Let Xt be a compound Poisson process with linear drift. If
a = c+ λb < 0 and the distribution B of Y +

1 is strong subexponential, then

P{Mt > x} ∼ λ

|a|

∫ x+|a|t

x
B(v)dv as x→∞ uniformly for all t > 0.

A special case of Corollary 2 of c < 0 and Y1 > 0 was proven in Foss
et al. (2013, Theorem 5.21) by alternative techniques in the context of the
Cramér–Lundberg collective risk model. In the book by A. Borovkov and K.
Borovkov (2008, Ch. 16) results for compound renewal processes with linear
drift are only obtained for regularly varying distribution of Y1; the corre-
sponding techniques seems to be not applicable to general subexponential
distributions.

If the linear drift coefficient c is positive and if the condition P{cτ > x} =
o(B(x)) of Theorem 1 fails, then the tail asymptotics of the distribution of
Mt may be more complicated. In particular, then P{Mt > x} ≥ P{τ1 >
x/c}, so the tail of Mt may be heavier than the integrated tail of B if the
tail of τ is so. We are not concerned with the tail asymptotics for Mt in the
general case when c > 0; we only present the following result on the overall
maximum M∞ which generalises (3) to an arbitrary value of c.

Theorem 3. Let Xt be a compound renewal process such that a := c+bλ < 0
and the integrated tail distribution FI of cτ1 + Y +

1 is subexponential. Then

P{M∞ > x} ∼ λ

|a|
F I(x) as x→∞.

Proof. We only need to consider the case c > 0. Then

M∞ = cτ1 + sup
k≥0

k∑
i=1

(Yi + cτi+1)

and the result follows from (1) and from the observation that

P{cτ1 > x} = O(F (x)) = o(F I(x)) as x→∞

which allows to apply [14, Corollary 3.18]. The proof is complete.

Proof of Theorem 1. First let us prove that, for any fixed t0, (4) holds uni-
formly for all t ≤ t0. Indeed, for all t ≤ t0,

P
{ Nt∑
n=1

Yn > x+ |c|t0
}
≤ P{Mt > x} ≤ P

{ Nt∑
n=1

Y +
n > x− |c|t0

}
. (5)
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Since the Yn’s are strong subexponential, they are subexponential. For the
renewal process Nt, there exists a δ > 0 such that E(1+δ)Nt0 <∞. Together
with independence of the Yn’s and Nt, it allows us to apply Kesten’s bound—
see e.g. Foss et al. (2013, Theorem 3.34)—and to conclude the following
uniform in t ≤ t0 analogue of the tail result for randomly stopped sums—see
Foss et al. (2013, Theorem 3.37):

P
{ Nt∑
n=1

Yn > x
}
∼ ENtP{Y1 > x} as x→∞ uniformly for all t ≤ t0.

The same arguments work for the Y +
n ’s. Then, taking into account that

subexponentiality of Yn’s implies B is long-tailed, we conclude from (5) that

P{Mt > x} ∼ ENtP{Y1 > x} as x→∞ uniformly for all t ≤ t0,

which is equivalent to the fact that (4) holds uniformly for all t ≤ t0 because

λ

|a|

∫ x+|a|ENt/λ

x
B(v)dv ∼ ENtB(x) as x→∞ uniformly for all t ≤ t0,

again by long-tailedness of B.
Therefore there exists an increasing function h(x) → ∞ such that (4)

holds uniformly for all t ≤ h(x). Then it remains to prove (4) for the
range t > h(x) where the above arguments clearly do not help. Instead, we
proceed with a natural technique of getting the lower and upper bounds for
the tail of Mt which are asymptotically equivalent. For the lower bound, fix
an ε > 0. By the strong law of large numbers, there exists an A such that

P{|Tn − nEτ | < nε+A for all n ≥ 1} ≥ 1− ε. (6)

Notice that

P{Mt > x} ≥ P
{ n∑
i=1

Yi + cTn > x for some n ≤ Nt

}
.

On the event (6), if t ≥ n(Eτ + ε) + A (equivalently, n ≤ n(t) :=
[
t−A
Eτ+ε

]
)

then Tn ≤ t and hence Nt ≥ n. Then independence of the jumps Yn’s and
the renewal process Ns yields the following lower bound

P{Mt > x} ≥ (1−ε)P
{ n∑
i=1

Yi + c(n(Eτ+ε) +A) > x for some n ≤ n(t)
}
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for c ≤ 0 and

P{Mt > x} ≥ (1−ε)P
{ n∑
i=1

Yi + c(n(Eτ−ε)−A) > x for some n ≤ n(t)
}

for c > 0. Thus, in both cases,

P{Mt > x} ≥ (1− ε)P
{

max
n≤n(t)

n∑
i=1

(Yi + cEτ − |c|ε) > x+ |c|A
}
.

Applying the equivalence (2) we obtain the following lower bound:

P{Mt > x} ≥ 1− ε+ o(1)

|b+ cEτ − |c|ε|

∫ x+|c|A+n(t)|b+cEτ−|c|ε|

x+|c|A
B(v)dv

∼ 1− ε
|a/λ− |c|ε|

∫ t
|a/λ−|c|ε|

Eτ+ε

0
B(x+ v)dv as x, t→∞,

because B is a long-tailed distribution. Taking into account that, for all
γ > 0, ∫ γt

0
B(x+ u)du ≥ min(1, γ)

∫ t

0
B(x+ u)du,

and letting ε ↓ 0 we conclude the lower bound

P{Mt > x} ≥ λ+ o(1)

|a|

∫ x+|a|t

x
B(v)dv as x, t→∞.

Now let us turn to the upper bound for P{Mt > x}. First consider the
case c ≤ 0 when the trajectory of Xt linearly drops down between jumps
and the maximum may be only attained at a jump epoch,

Mt = max
0≤n≤Nt

n∑
i=1

(Yi + cτi).

Therefore, for any ε > 0,

P{Mt > x} ≤ P
{

max
n≤(1+ε)ENt

n∑
i=1

(Yi + cτi) > x
}

+ P
{ Nt∑
i=1

Y +
i > x,Nt > (1 + ε)ENt

}
. (7)
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The distribution of Y is strong subexponential and c < 0, so Y +cτ is strong
subexponential too and P{Y + cτ > x} ∼ P{Y > x} = B(x) as x → ∞.
Thus, by (2),

P
{

max
n≤(1+ε)ENt

n∑
i=1

(Yi + cτi) > x
}
∼ λ

|a|

∫ x+|a|(1+ε)ENt/λ

x
B(y)dy

≤ λ(1 + ε)

|a|

∫ x+|a|ENt/λ

x
B(y)dy, (8)

because B(y) is decreasing. Further,

P
{ Nt∑
i=1

Y +
i > x, Nt > (1 + ε)ENt

}
=

∞∑
k=1

P
{ Nt∑
i=1

Y +
i > x, (1 + kε)ENt < Nt ≤ (1 + (k + 1)ε)ENt

}

≤
∞∑
k=1

P
{(1+(k+1)ε)ENt∑

i=1

Y +
i > x

}
P{Nt > (1 + kε)ENt}, (9)

owing to independence of Yn’s and Nt. Denote K := [(1 + kε)ENt]. Then,
for ε ∈ (0, 1),

P{Nt > (1 + kε)ENt} = P{TK ≤ t}
≤ P

{
KEτ(1− ε/2)− TK ≥ 0

}
for sufficiently large t because, as t→∞,

KEτ(1− ε/2)− t ∼ t((1 + kε)(1− ε/2)− 1) ≥ t(ε/2− ε2/2) > 0.

Since the random variable Eτ(1−ε/2)−τ has negative expectation −εEτ/2
and is bounded above by Eτ(1− ε/2), there exists a β = β(ε) > 0 such that

Eeβ(Eτ(1−ε/2)−τ) = 1− δ < 1.

Hence, by exponential Chebyshev’s inequality,

P
{
KEτ(1− ε/2)− TK ≥ 0

}
≤ (1− δ)K

for all k ≥ 1 and sufficiently large t, so

P{Nt > (1 + kε)ENt} ≤ (1− δ)[(1+kε)ENt]. (10)

8



By Kesten’s bound there is an A <∞ such that

P
{(1+(k+1)ε)ENt∑

i=1

Y +
i > x

}
≤ A(1 + δ/8)(1+(k+1)ε)ENtP{Y > x}

for all x > 0, k ≥ 1 and t > 0. For k ≥ 1 and sufficiently large t,

(1 + (k + 1)ε)ENt ≤ 2[(1 + kε)ENt],

thus

P
{(1+(k+1)ε)ENt∑

i=1

Y +
i > x

}
≤ A(1 + δ/8)2[(1+kε)ENt]P{Y > x}

≤ A(1 + δ/2)[(1+kε)ENt]P{Y > x}. (11)

Substituting (10) and (11) into (9) and taking into account that (1− δ)(1 +
δ/2) ≤ 1− δ/2, we obtain, for all sufficiently large t,

P
{ Nt∑
i=1

Y +
i > x, Nt > (1 + ε)ENt

}
≤ AP{Y > x}

∞∑
k=1

(1− δ/2)[(1+kε)ENt].

The sum on the right goes to zero as t→∞. Therefore, for any fixed ε > 0,

P
{ Nt∑
i=1

Y +
i > x, Nt > (1 + ε)ENt

}
= o(P{Y > x}) as t→∞

uniformly for all x > 0. Combining this bound with (8) we get

P{Mt > x} ≤ λ(1 + ε) + o(1)

|a|

∫ x+|a|ENt/λ

x
B(y)dy as x→∞

uniformly for all t ≥ h(x). Letting ε ↓ 0, we conclude the desired upper
bound which proves Theorem 1 in the case c ≤ 0.

Now consider the case c > 0 when the trajectory of Xt linearly grows
between jump epochs Tn and the maximum may be only attained just prior
to a jump epoch or at time t, hence

Mt ≤ cτ1 + max
0≤n≤Nt

n∑
i=1

(Yi + cτi+1) =: cτ1 + M̂t, (12)
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where τ1 and M̂t are independent. The distribution of Y is strong subex-
ponential and the tail of cτ is of order o(B(x)), so Y + cτ is strong subex-
ponential too and P{Y + cτ > x} ∼ P{Y > x} = B(x) as x → ∞. Thus,
similar to the case c ≤ 0, we get that

P{M̂t > x} ≤ λ+ o(1)

|a|

∫ x+|a|ENt/λ

x
B(y)dy as x→∞

uniformly for all t ≥ h(x). Since cτ1 and M̂t in (12) are independent,

P{Mt > x} ≤ P{cτ1 > x}+

∫ x

0
P{cτ1 ∈ du}P{M̂t > x− u}

which allows to carry out standard calculations for subexponential distribu-
tions based on the condition P{cτ1 > x} = o(B(x)) and the upper bound

for M̂t and to conclude the upper bound

P{Mt > x} ≤ λ+ o(1)

|a|

∫ x+|a|ENt/λ

x
B(y)dy as x→∞,

which completes the proof in the case c > 0. The proof of Theorem 1 is
complete.

We conclude this section with the following theorem which is nothing
other than the principle of a single big jump for the maximum Mt. For
A > 0 and ε > 0 consider events

Dk :=
{
|Xs − as| ≤ εs+A for all s < Tk, Yk > x+ |a|Tk

}
(13)

which, for large x, roughly speaking means that up to time Tk the process
Xs drifts down with rate a according to the strong law of large numbers and
then makes a big jump up at time Tk of size x plus value that compensates
the negative drift up to this time. As stated in the next theorem, the union
of these events describes the most probable way by which large deviations
of Mt can occur—it is very different from what would be observed if the
distribution of Yn was light-tailed. It is an analogue for discrete time process
of the principle of a single big jump for the maximum of a random walk with
negative drift, see Theorem 5.4 in Foss et al. (2013).

Theorem 4. Under the conditions of Theorem 1, for any fixed ε > 0,

lim
A→∞

lim
t,x→∞

P{∪Ntk=1Dk |Mt > x} ≥ |a|
|a|+ 2ε

.
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Proof. Take γ = 1/λ(1 + |a|). For k satisfying k(Eτ + γε) + A ≤ t, each of
the events

D̃k :=
{
|Xs−as| ≤ εs+A for all s < Tk, Tj ≤ j(Eτ+εγ)+A for all j≥1,

MTk−0 ≤ x, Yk > x+A+ Tk(|a|+ ε)
}

is contained in {Tk ≤ t} and in Dk and implies that MTk > x because on

the event D̃k we have

XTk = XTk−0 + Yk > (a− ε)Tk −A+ x+A+ Tk(|a|+ ε) = x,

so that Mt > x. Then, for N = N(t) := [ t−A
Eτ+γε ], we have that Nt ≥ N on

all D̃k, hence

P{∪Ntk=1Dk |Mt > x} ≥ P{∪Nk=1D̃k, Nt ≥ N |Mt > x}

=
P{∪Nk=1D̃k}
P{Mt > x}

. (14)

The events D̃k are disjoint, hence

P{∪Nk=1D̃k} =

N∑
k=1

P{D̃k}.

It follows from the strong law of large numbers applied to both Xs and Ns

that, for any fixed δ > 0, there exists an A such that, for all x > A,

P{∪Nk=1D̃k}

≥ (1−δ/4)

N∑
k=1

P{Yk > x+A+Tk(|a|+ε) | Tj ≤ j(Eτ+εγ)+A for all j≥1}

≥ (1− δ/4)

N∑
k=1

P{Yk > x+ (1 + |a|+ ε)A+ k(|a|+ ε)(Eτ + εγ)}

≥ (1− δ/4)

N∑
k=1

P{Yk > x+ (1 + |a|+ ε)A+ k(|a|+ 2ε)/λ},

by the choice of the γ > 0. Since the distribution B is long-tailed,

P{∪Nk=1D̃k} ≥ (1− δ/2)
N−1∑
k=0

P{Yk > x+ k(|a|+ 2ε)/λ}
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for all sufficiently large x. Hence

P{∪N−1
k=0 D̃k} ≥

1− δ/2
(|a|+ 2ε)/λ

∫ x+N(|a|+2ε)/λ

x
B(y)dy,

because B(y) decreases. Take also into account that, as t→∞,

N(|a|+ 2ε)

λ
=

N(t)(|a|+ 2ε)

λ
∼ t

|a|+ 2ε

1 + λγε
≥ t(|a|+ ε),

owing the choice of the γ > 0, so we deduce

P{∪Nk=1D̃k} ≥
1− δ/2

(|a|+ 2ε)/λ

∫ x+t|a|

x
B(y)dy.

Substituting this estimate and the asymptotics for Mt into (14) we conclude

lim
t,x→∞

P{∪Ntk=1Dk|Mt > x} ≥ (1− δ)|a|
|a|+ 2ε

.

Now we can make δ > 0 as small as we please by choosing a sufficiently large
A. This completes the proof.

3. Asymptotics for Lévy processes

Let Xt be a càdlàg stochastic process in R which means that its paths
are right continuous with left limits everywhere, with probability 1. Then
the supremum

Mt := sup
u∈[0,t]

Xu

is finite a.s. for all t. In this section we study tail behaviour of the distri-
bution of Mt for a Lévy process Xt starting at the origin. Our main result
here is the following theorem.

Theorem 5. Assume the finite mean and negative drift, a := EX1 < 0. If
the integrated tail distribution FI of X1 is subexponential, then

P
{

max
u>0

Xu > x
}
∼ 1

|a|

∫ ∞
x

F (v)dv as x→∞.

If the distribution F of X1 is strong subexponential, then, uniformly for all
t > 0,

P
{

max
u∈[0,t]

Xu > x
}
∼ 1

|a|

∫ x+t|a|

x
F (v)dv as x→∞.
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It has been suggested by Asmussen and Klüppelberg (1996, Sect. 1.1)
and by Asmussen (1998, Sect. 2.4) to follow a discrete skeleton argument
in order to prove this asymptotics for t =∞ when the integrated tail of the
Lévy measure is subexponential; notice that this approach requires addi-
tional considerations which take into account fluctuations of Lévy processes
within time slots; see the remark after Theorem 6.

In Braverman et al. (2002) tail asymptotics are presented for some sub-
class of subadditive functionals of Lévy process with regularly varying at
infinity Lévy measure. The overall supremum is a particular example con-
sidered in that article. Clearly the problem for (sub)additive functionals
becomes much more difficult beyond the case of regularly varying distribu-
tions. Neither technique developed for regularly varying case nor in this
paper is then applicable. There is no a suitable technique even for addi-
tive functionals of random walks. For instance, the tail asymptotics for the
maximum of the area under the graph of a random walk (a Lévy process)
is quite different to that for regularly varying distributions if the jump tail
distribution is of Weibullian type with a shape parameter greater than 1/2.

In Klüppelberg et al. (2004, Theorem 6.2), tail asymptotics for the
overall supremum of negatively driven Lévy process are derived via direct
approach based on ladder properties of the Lévy process.

In Doney et al. (2016) the passage time problem is considered for Lévy
processes, emphasising heavy tailed cases; local and functional versions of
limit distributions are derived for the passage time itself, as well as for the
position of the process just prior to passage, and the overshoot of a high
level which is an extension for Lévy processes of corresponding results for
random walks, see e.g. Foss et al. (2013, Theorem 5.24).

In Foss et al. (2007, Theorem 3.1), a Markov modulated Lévy process
is studied and again the tail asymptotics for the overall supremum were
proven, via reduction to a Markov modulated random walk.

In the book by A. Borovkov and K. Borovkov (2008, Ch. 15) some
partial results on maxu∈[0,t]Xu are formulated (see, for example, Theorems
15.2.2(vi) and 15.3.12 there) under some specific conditions on the distribu-
tion of X1; the supporting arguments provided may be hardly considered as
clear and comprehensive. For example, on page 525 the authors justify tran-
sition from integer t to non-integer t by convergence in probability Xu → 0
as u → ∞ which is clearly insufficient. Also notice that it was not proven
there that the corresponding asymptotics hold uniformly for all t > 0.

Related results on sample-path large deviations of scaled Lévy processes
X(nt)/n with regularly varying Lévy measure are proven by Rhee et al.
(2016).
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The following result is due to Willekens [24]; it was proven via natural
elementary rather short arguments.

Theorem 6. Let Xt be a Lévy process. For any fixed t > 0, the following
assertions are equivalent:

(i) the distribution of Xt is long-tailed;
(ii) the distribution of Mt is long-tailed.
Each of (i) and (ii) implies

P{Mt > x} ∼ P{Xt > x} as x→∞. (15)

Notice that Theorem 6 together with Theorem 1 for regenerative pro-
cesses from Palmowski and Zwart (2007)—or with Theorem 3.3 from As-
mussen et al. (1999)—provides a correct version of skeleton approach for
proving subexponential asymptotics for the overall supremum M∞ under
negative drift assumption.

To prove Theorem 5 we need the following lemma which may be of
independent interest. A similar proposition was proven for subexponential
distributions in Embrechts et al. (1979, Proposition 1); the proof provided
there does not work for long-tailed distributions.

Lemma 7. Let G and B be two distributions on R and let G be light-tailed,
that is, there exist λ > 0 and c < ∞ such that G(x) ≤ ce−λx for all x.
Denote F := G ∗B.

(i) If B is long-tailed then F (x) ∼ B(x) as x → ∞; in particular, F is
long-tailed too.

(ii) If F is long-tailed then B is long-tailed too.

Proof. (i) Assume that B is long-tailed. Then there exists an x0 such that
B(x − 1) ≤ B(x)eλ/2 for all x ≥ x0. Therefore, there exists a c < ∞ such
that

B(x− y) ≤ B(x) max{1, ceλy/2} for all x, y ∈ R,

hence

F (x)

B(x)
=

∫ ∞
−∞

B(x− y)

B(x)
G(dy) → 1 as x→∞,

by the dominated convergence theorem because, for all y, B(x−y)/B(x)→
1 as x → ∞ and the function max{1, ceλy/2} is G-integrable due to the
condition G(x) = O(e−λx).
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(ii) Assume that F is long-tailed. Let us then prove that B(x) ∼ F (x)
which implies long-tailedness of B. For all x and h ∈ R, the following
inequality holds:

F (x− h) = G ∗B(x− h) ≥ G(−h)B(x). (16)

Therefore, long-tailedness on F implies

lim
x→∞

B(x)/F (x) = lim
x→∞

B(x)/F (x− h) ≤ 1/G(−h),

so B(x) ≤ (1 + o(1))F (x) as x→∞. Then it remains to prove that

lim inf
x→∞

B(x)/F (x) ≥ 1. (17)

Suppose it does not hold. Then there exist an ε > 0 and a sequence xn →∞
such that

B(xn) ≤ (1− ε)F (xn) for all n ≥ 1. (18)

We have

F (xn + h) =

∫ h

−∞
B(xn + h− y)G(dy) +

∫ ∞
h

B(xn + h− y)G(dy)

≤ B(xn) +

∫ ∞
h

B(xn + h− y)G(dy)

≤ (1− ε)F (xn) +
1

G(−h)

∫ ∞
h

F (xn − y)G(dy),

by (18) and (16). Since F is long-tailed, by part (i), the integral on the right
hand side is asymptotically equivalent to F (xn)G(h) as n→∞, hence

1 = lim
n→∞

F (xn + h)/F (xn) ≤ 1− ε+G(h)/G(−h).

Letting h→∞ leads to the contradiction 1 ≤ 1− ε and (17) is proven.

Given the distribution of X1 is infinitely divisible, recall the Lévy–
Khintchine formula for its characteristic exponent Ψ(θ) := logEeiθX1 , for
all θ ∈ R,

Ψ(θ)

=
(
iαθ − 1

2
σ2θ2

)
+

∫
0<|x|<1

(eiθx−1−iθx)Π(dx) +

∫
|x|≥1

(eiθx−1)Π(dx)

=: Ψ1(θ) + Ψ2(θ) + Ψ3(θ);
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see, e.g. Kyprianou (2006, Sect. 2.1). Here Π is the Lévy measure con-

centrated on R \ {0} and satisfying
∫
R(1 ∧ x2)Π(dx) < ∞. Let X

(1)
t , X

(2)
t

and X
(3)
t be independent processes given in the Lévy–Itô decomposition

Xt
d
= X

(1)
t + X

(2)
t + X

(3)
t , where X

(1)
t is a linear Brownian motion with

characteristic exponent given by Ψ(1), X
(2)
t is a square integrable martin-

gale with an almost surely countable number of jumps on each finite time
interval which are of magnitude less than unity and with characteristic ex-

ponent given by Ψ(2) and X
(3)
t is a compound Poisson process with intensity

Π(R\ (−1, 1)) and jump distribution Π(dx)
Π(R\(−1,1)) concentrated on R\ (−1, 1).

It is known—see, e.g. Kyprianou (2006, Theorem 3.6) or Sato (1999, Theo-

rem 25.17)—that Zt := X
(1)
t +X

(2)
t possesses all exponential moments finite

which allows to prove the following corollary from Lemma 7.

Corollary 8. (i) The distribution of X1 is long-tailed if and only if the

distribution of X
(3)
1 is so. In both cases, P{X1 > x} ∼ P{X(3)

1 > x} as
x→∞.

(ii) The distribution of X+
1 is strong subexponential if and only if the

distribution Π(dx)/Π(1,∞) concentrated on (1,∞) is so. In both cases,
P{X1 > x} ∼ Π(x,∞) as x→∞.

Proof. The assertion (i) is immediate from Lemma 7.
(ii) If the distribution of X+

1 is strong subexponential, then it is long-

tailed, so that P{X1 > x} ∼ P{X(3)
1 > x} as x → ∞. Hence, the dis-

tribution of X
(3)+
1 is strong subexponential too. Since the distribution

of X
(3)+
1 is compound Poisson with parameter Π(1,∞) and jump distri-

bution Π(dx)/Π(1,∞) concentrated on (1,∞), Theorem 3 of Foss et al.
(2013) yields that P{X1 > x} ∼ Π(x,∞). Therefore, the distribution
Π(dx)/Π(1,∞) is strong subexponential—see, e.g. Foss et al. (2013, Corol-
lary 3.26).

If the distribution Π(dx)/Π(1,∞) concentrated on (1,∞) is strong subex-

ponential, then P{X1 > x} ∼ P{X(3)+
1 > x} ∼ Π(x,∞) by the theorem

on tail behavior for random sums—see e.g. Foss et al. (2013, Theorem
3.37).

In the sequel we need an accurate upper bound for EesX
(2)
t . By the

condition c :=
∫

(−1,1) x
2Π(dx) < ∞ we may produce the following upper
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bound:∫
(−1,1)

(esx − 1− sx)Π(dx) =

∫
(−1,1)

∞∑
k=2

(sx)k

k!
Π(dx)

≤
∞∑
k=2

sk

k!

∫
(−1,1)

x2Π(dx) = c(es − 1− s).

Therefore,

EesX
(2)
t = e

t
∫
(−1,1)(e

sx−1−sx)Π(dx) ≤ ectes . (19)

Proof of Theorem 5. We start with a lower bound. We have a = EX(3)
1 +

EZ1. Fix ε > 0 and consider two independent processes

Xε
t := X

(3)
t + tEZ1 − tε and Zεt := Zt − tEZ1 + tε,

so that Xt = Xε
t + Zεt . Then, for all x and y > 0,

P
{

max
u∈[0,t]

Xu > x
}
≥ P

{
max
u∈[0,t]

Xε
u > x+ y

}
P
{

inf
u≥0

Zεu > −y
}
.

The drift of the process Zεt is tε > 0. Thus the overall minimum of the
process Zεt is finite with probability 1, so there exists an y0 > 0 such that

P
{

inf
u≥0

Zεu > −y0

}
≥ 1− ε,

which implies, for all t > 0,

P
{

max
u∈[0,t]

Xu > x
}
≥ (1− ε)P

{
max
u∈[0,t]

Xε
u > x+ y0

}
. (20)

Since X+
1 is assumed to be strong subexponential, by Corollary 8 the distri-

bution Π(dx)/Π(1,∞) on (1,∞) is strong subexponential too and Π(x) ∼
P{X1 > x} = F (x) as x → ∞. Then the compound Poisson process Xε

t

with intensity Π(R \ (−1, 1)) and drift (a− ε)t satisfies all the conditions of
Corollary 2 which implies, as x→∞ uniformly for all t > 0,

P
{

max
u∈[0,t]

Xε
u > x

}
∼ 1

|a− ε|

∫ x+t|a−ε|

x
F (v)dv ≥ 1

|a− ε|

∫ x+t|a|

x
F (v)dv

Letting ε ↓ 0, we conclude from (20) the lower bound

P
{

max
u∈[0,t]

Xu > x
}
≥ 1 + o(1)

|a|

∫ x+t|a|

x
F (v)dv as x→∞. (21)
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Now let us prove an upper bound. Consider two independent processes

Xε
t := X

(3)
t + tEZ1 + tε and Zεt := Zt − tEZ1 − tε,

so that Xt = Xε
t + Zεt . Then

max
u∈[0,t]

Xu ≤ max
u∈[0,t]

Xε
u + max

u∈[0,t]
Zεu. (22)

The drift of Zεt is negative, EZεt = −tε, so the overall supremum of Zεt is
finite a.s. Since all positive exponential moments of Zε1 are finite, EeβZε1 = 1
for some β = β(ε) > 0 and the Cramér estimate says that (see also Bertoin
and Doney (1994))

P{Zεu > x for some u ≥ 0} ≤ e−βx. (23)

We also need a more accurate upper bound for P{Zεu > x for some u ≤ t}
for small values of t. Notice that, for all s > 0, the process es(Zt−EZt) is a
positive submartingale, so Doob’s inequality is applicable

P{Zεu > x for some u ≤ t} ≤ P{Zu − EZu > x for some u ≤ t}
≤ e−sxEes(Zt−EZt)

= e−sxes
2tσ2/2EesX

(2)
t .

Recalling the upper bound (19) for EesX
(2)
t , we get

P{Zεu > x for some u ≤ t} ≤ e−sxe(s2σ2/2+ces)t.

For t ≤ e−1, taking s := log 1
t we finally get

P{Zεu > x for some u ≤ t} ≤ c1e
−sx = c1tt

x−1 ≤ c1te
1−x = c2te

−x.(24)

Since X1 is assumed to be strong subexponential, by Corollary 8 the
distribution Π(dx)/Π(1,∞) concentrated on (1,∞) is strong subexponential
too. Then the compound Poisson process Xε

t with intensity Π(R \ (−1, 1))
and drift (a+ ε)t satisfies all the conditions of Corollary 2 which implies, as
x→∞ uniformly for all t > 0,

P{Xε
u > x for some u ≤ t} ∼ 1

|a+ ε|

∫ x+t|a+ε|

x
F (v)dv

≤ 1

|a+ ε|

∫ x+t|a|

x
F (v)dv.
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As follows from (23) and (24), uniformly for all t > 0,

P{Zεu > x for some u ≤ t} = o
(
P{Xε

u > x for some u ≤ t}
)

as x→∞.

Since Xε
u and Zεu are independent, the last two relations allow us—following

standard arguments for subexponential distributions—to conclude the fol-
lowing upper bound, uniformly for all t > 0,

P{Xu > x for some u ≤ t} ≤ 1 + o(1)

|a+ ε|

∫ x+t|a|

x
F (v)dv as x→∞.

Letting ε ↓ 0, we conclude the desired upper bound which together with the
lower bound (21) implies the required asymptotics.

Similar to Theorem 4 we conclude with the following principle of a single
big jump for the maximum Mt of the Lévy process Xt. Let Tk be the time

epoch of the kth jump of the compound Poisson process X
(3)
t with jump

absolute values greater than 1 arising in the decomposition of Xt into three
independent processes. Let the events Dk be defined literally in the same
way as in Theorem 4, see (13).

Theorem 9. In conditions of Theorem 5, for any fixed ε > 0,

lim
A→∞

lim
t, x→∞

P{∪Ntk=1Dk|Mt > x} ≥ |a|
|a|+ 2ε

.

4. Sampling of Lévy process

The results presented in the last section allow us to derive useful in
applications tail asymptotics for a Lévy process Xt stopped at random time
τ and for its maxima Mτ within this time interval.

Theorem 10. Assume that a positive random variable τ is independent of
the Lévy process Xt. Let the distribution F of X1 be strong subexponential.
If a := EX1 < 0 then

P{Mτ > x} ∼ 1

|a|
E
∫ x+τ |a|

x
F (y)dy as x→∞. (25)

Assume in addition that Eτ <∞. Then
(i) If EX1 < 0 then

P{Xτ > x} ∼ P{Mτ > x} ∼ EτF (x) as x→∞. (26)
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(ii) If EX1 ≥ 0 and if there exists c > EX1 such that

P{cτ > x} = o(F (x)) as x→∞, (27)

then asymptotics (26) again hold.

A similar problem for Lévy processes with mixed-exponential jumps and
for exponential τ was studied, e.g., by Mordecki [19], see also the references
therein. Analogue results for random walks with subexponential jumps were
proven in Denisov et al. (2010).

Proof. Conditioning on τ which is independent of Xt, we deduce that

P{Mτ > x} =

∫ ∞
0

P{Mt > x}P{τ ∈ dt}.

Then by the uniform asymptotics for Mt of Theorem 5,

P{Mτ > x} ∼ 1

|a|

∫ ∞
0

∫ x+t|a|

x
F (v)dvP{τ ∈ dt} as x→∞,

and the first assertion (25) follows.
(i), (ii). Since Xτ ≤Mτ , it is sufficient to prove that

lim inf
x→∞

P{Xτ > x}
F (x)

≥
∫ ∞

0
tP{τ ∈ dt} = Eτ (28)

and

lim sup
x→∞

P{Mτ > x}
F (x)

≤ Eτ. (29)

By subexponentiality of X1, for all t > 0, P{Xt > x} ∼ tF (x) as x→∞,
regardless of the sign of EX1. Then conditioning on τ for P{Xτ > x} implies
(28) due to Fatou’s lemma.

Let us now prove (29). If EX1 < 0 then (29) follows from (25) by the
dominated convergence because∫ x+|a|τ

x
F (v)dv ≤ |a|τF (x).

In the case EX1≥0, we start with the following upper bound: for all N ,

P{Mτ > x}
≤ P{Mτ > x, τ ≤ N}+ P{Mτ > x, τ ∈ (N, x/c]}+ P{cτ > x}
=: P1 + P2 + P3. (30)
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By Theorem 5, for all t, P{Mt > x} ∼ tF (x) as x → ∞. In addition,
Mt ≤MN for t ≤ N . Thus, the dominated convergence yields that, for any
fixed N ,

P{Mτ > x, τ ≤ N}

=

∫ N

0
P{Mt > x}P{τ ∈ dt} ∼ E{τ ; τ ≤ N}F (x) as x→∞. (31)

In order to estimate P2 we take ε = (c−EX1)/2 > 0 and b = (EX1+c)/2.

Consider X̃t := Xt − bt and M̃t = supu≤t X̃u. Then EX̃1 = −ε < 0 and

Theorem 5 is applicable. Taking into account that Mt ≤ M̃t + bt, we obtain
that there exists K such that, for all x and t,

P{Mt > x} ≤ P{M̃t > x− bt}

≤ K

∫ εt

0
F̃ (x− bt+ y)dy ≤ K

∫ εt

0
F (x− bt+ y)dy.

Hence,

P2 = P{Mτ > x, τ ∈ (N, x/c]} ≤ K

∫ x/c

N
P{τ ∈ dt}

∫ εt

0
F (x− bt+ y)dy

= K

∫ x/c

N
P{τ ∈ dt}

∫ bt

EX1t
F (x− y)dy,

because b− ε = EX1. Then

P2 ≤ K

∫ bx/c

NEX1

F (x− y)dy

∫ x/c

max(N,y/b)
P{τ ∈ dt}

≤ K

∫ bx/c

NEX1

F (x− y)P{τ > y/b}dy.

Owing b < c and the condition (27), the inequality P{τ > y/b} ≤ K1F (y)
holds for some K1 and all y. Therefore,

P2 ≤ KK1

∫ bx/c

NEξ
F (x− y)F (y)dy = o(F (x)) as x, N →∞ (32)

follows from b/c < 1 and from F ∈ S∗, see, e.g. Foss et al. (2013, Theorem
3.24).

Finally, by the condition (27), P3 = o(F (x)) as x → ∞. Substituting
now (31) and (32) into (30) we conclude (29) and the proof is complete.
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5. Application to ruin probabilities

The results obtained above are directly applicable to the Cramér–Lundberg
renewal model in the collective theory of risk defined as follows, see e.g. As-
mussen and Albrecher (2010, Sec. X.3). We consider an insurance company
and assume the constant inflow of premium occurs at rate c, that is, the
premium income is assumed to be linear in time with rate c. Also assume
that the claims incurred by the insurance company arrive according to a
renewal process Nt with intensity λ and the sizes (amounts) Yn ≥ 0 of the
claims are i.i.d. random variables with common distribution B and mean b.
The Yn’s are assumed to be independent of the process Nt. The company
has an initial risk reserve u = R0 ≥ 0. Then the risk reserve Rt at time t is
equal to

Rt = u+ ct−
Nt∑
i=1

Yi.

Then the probability

ψ(u, t) := P{Rs < 0 for some s ∈ [0, t]}

is the finite time horizon probability of ruin. The techniques developed for
compound renewal process with drift provide a method for estimating the
probability of ruin in the presence of heavy-tailed distribution for claim sizes.
Since c > 0, the ruin can only occur at a claim epoch. Therefore,

ψ(u, t) = P
{ n∑
i=1

Yi − cTn > u for some n ≤ Nt

}
,

where Tn is the nth claim epoch. The last relation represents the ruin
probability problem as the tail probability problem for the maximum of a
compound renewal process with linear drift.

Let the net-profit condition c > bλ hold, thus the process has a negative
drift and ψ(u, t) → 0 as u → ∞ uniformly for all t ≥ 0. Applying Theo-
rem 1(i), we deduce the following result on the decreasing rate of the ruin
probability to zero as the initial risk reserve becomes large in the case of
heavy-tailed claim size distribution, compare with special cases of fixed t in
Asmussen and Albrecher (2010, Section X.4) and of the compound Poisson
model in Foss et al. (2013, Theorem 5.21).
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Theorem 11. If the claim size distribution B is strong subexponential, then

ψ(u, t) ∼ λ

c− bλ

∫ u+t(c/λ−b)ENt

u
B(v)dv

as u→∞ uniformly for all t ≥ 0. In particular,

ψ(u, t) ∼ λ

c− bλ

∫ u+t(c−bλ)

u
B(v)dv as u, t→∞.
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