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Although neural interactions are usually characterized only by their coupling strength

and directionality, there is often a need to go beyond this by establishing the functional

mechanisms of the interaction. We introduce the use of dynamical Bayesian inference

for estimation of the coupling functions of neural oscillations in the presence of noise.

By grouping the partial functional contributions, the coupling is decomposed into its

functional components and its most important characteristics—strength and form—are

quantified. The method is applied to characterize the δ-to-α phase-to-phase neural

coupling functions from electroencephalographic (EEG) data of the human resting state,

and the differences that arise when the eyes are either open (EO) or closed (EC) are

evaluated. The δ-to-α phase-to-phase coupling functions were reconstructed, quantified,

compared, and followed as they evolved in time. Using phase-shuffled surrogates to

test for significance, we show how the strength of the direct coupling, and the similarity

and variability of the coupling functions, characterize the EO and EC states for different

regions of the brain. We confirm an earlier observation that the direct coupling is stronger

during EC, and we show for the first time that the coupling function is significantly less

variable. Given the current understanding of the effects of e.g., aging and dementia on

δ-waves, as well as the effect of cognitive and emotional tasks on α-waves, one may

expect that new insights into the neural mechanisms underlying certain diseases will be

obtained from studies of coupling functions. In principle, any pair of coupled oscillations

could be studied in the same way as those shown here.

Keywords: coupling function, cross-frequency coupling, dynamical Bayesian inference, effective connectivity,

EEG, neural oscillations, resting brain, eyes-open

1. INTRODUCTION

The complexity of the human brain makes its function exceptionally challenging to analyse
and understand. Its electrophysiological activity emanates from the dynamics of large-scale cell
ensembles (Traub et al., 1996; Klausberger et al., 2003; Breakspear et al., 2010) which oscillate
synchronously within characteristic frequency intervals. The ensembles communicate with each
other to integrate their local information flows into a common brain network. Arguably, one of
the most promising ways of describing communication of that kind is through cross-frequency
coupling, and there has been a large number of such studies in recent years to elucidate the
functional activity of the brain underlying e.g., cognition, attention, learning and working memory
(Jensen and Colgin, 2007; Musizza et al., 2007; Stam et al., 2009; Axmacher et al., 2010; Belluscio
et al., 2012; Jirsa and Müller, 2013; Purdon et al., 2013; van Wijk et al., 2013; Blain-Moraes et al.,
2015; Sotero, 2016).
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The different types of cross-frequency coupling (Jensen and
Colgin, 2007; Canolty and Knight, 2010; Voytek et al., 2010; Jirsa
and Müller, 2013) depend on the dynamical properties of the
oscillating systems that are coupled, e.g., phase, amplitude/power
and frequency. The most studied to date in brain dynamics
have been the phase-to-phase (Varela et al., 2001) and phase-
to-power (Canolty et al., 2006) cross-frequency couplings.
The θ-γ coupling has attracted considerable attention and its
neurophysiological correlates, especially those related to the
working memory (Axmacher et al., 2010; Belluscio et al., 2012),
have been largely understood; there are relatively fewer studies
of the coupling between δ and α waves (Jirsa and Müller, 2013).
These types of investigation are usually based on the statistics of
the cross-frequency relationship e.g., in terms of correlation or
phase-locking, or on a quantification of the coupling amplitude.
Not much has yet been done, however, to assess systematically,
in vivo, the coupling functions that describe the functional
forms of individual cross-frequency interactions between neural
oscillations.

Coupling functions describe in great detail the physical rule
specifying how the interactions occur and manifest themselves.
The coupling function as a whole can be described in terms
of its strength and form. It is the functional form that has
provided the new dimension and perspective on which we
focus below. It probes directly the functional mechanisms of the
interactions. In this way the coupling function can determine
the possibility of qualitative transitions between states of the
composite system e.g., routes into and out of synchronization,
thus playing an active role in the possible self-organization of the
systems. Decomposition of a coupling function can also facilitate
a description of the functional contributions from each separate
subsystem within the coupling relationship.

Recent progress directed toward the extraction and
reconstruction of the coupling functions between interacting
oscillatory processes has led to a diversity of applications.
These include chemical interactions (Kiss et al., 2005; Miyazaki
and Kinoshita, 2006; Tokuda et al., 2007), cardiorespiratory
interactions (Stankovski et al., 2012; Iatsenko et al., 2013;
Kralemann et al., 2013), mechanical interactions (Kralemann
et al., 2008), social sciences (Ranganathan et al., 2014) and
secure communications (Stankovski et al., 2014b). The study
of coupling functions is a very active and expanding field of
research (Stankovski et al., 2017). In this paper we evaluate
coupling functions between brain waves. We focus on δ-to-α
phase-to-phase interactions during eyes opened and closed and
illustrate the underlying methodology. Moreover, we clearly
show the difference in form of the coupling function between
these two states, thereby paving the way to further applications
and advancing the understanding of brain function.

2. MATERIALS AND METHODS

2.1. Wavelet Spectral Analysis
We computed the wavelet transform (WT) (Kaiser, 1994;
Bračič and Stefanovska, 1998; Stefanovska et al., 1999) in order
to evaluate the power content within the 0.8–40 Hz range,

converting the signals s(t) to the time-frequency domain:

WT(ω, t) =

∫ ∞

0
ψ(ω(u− t))s(u)ωdu, (1)

whereω denotes angular frequency, t is time, andψ(u) = 1/(2π)

(e(i2π f0u) − e(2π f0)
2/2)e−u2/2 (with

∫
ψ(t)dt = 0) with central

frequency f0 = 1. The power within each frequency interval
was assessed by averaging the spectra over the corresponding
frequency ranges.

2.2. Model of Phase Dynamics
Amplitude dynamics in living systems is often multidimensional,
which can create complications in analysis. In contrast, the
phase dynamics of a periodic process in such systems is
describable in terms of a single-dimensional observable, which
is usually much easier to detect and extract from data. It is
well known that brain activity carries the signatures of several
distinct neural oscillations that manifest themselves within
characteristic frequency intervals (Buzsáki and Draguhn, 2004).
The signals extracted from these intervals are periodic, enabling
the underlying oscillatory processes and their interactions to be
studied effectively through phase dynamics (Kuramoto, 1984),
and leading to extraction of phase-to-phase cross-frequency
couplings (Jensen and Colgin, 2007; Jirsa and Müller, 2013). The
cross-frequency phase couplings coexist in a multivariate and
multidimensional space, so we will consider a network model of
N coupled phase oscillators, each described by

φ̇i(t) = ωi(t)+ qi(φi,φj,φk, . . . ,φN , t)+ ξi(t)

= ωi(t)+
∑
n

q
(1)
i (φn, t)+

∑
nm

q
(2)
i (φn,φm, t)

+
∑
nml

q
(3)
i (φn,φm,φl, t)+ . . .+ ξi(t),

(2)

for all l,m, n, . . ., where φ̇i(t) is the time derivative of the phase
(i.e., the instantaneous frequency), ωi(t) is the natural frequency
and the external stochastic dynamics ξi(t) is treated as Gaussian
white noise 〈ξi(t)ξj(τ )ξk(τ )...〉 = δ(t − τ )Dijk..., where D is
the matrix of noise diffusion and Di,j,k.. gives the noise strength
for the particular i, j, k... element. Although we will discuss the
inference of neural coupling functions from phase dynamics, the
method that we will describe is in principle also applicable to their
inference from amplitude dynamics (Stankovski et al., 2014b).

The coupling functions q(κ)i describe the dynamics in terms
of the phases of κ interacting oscillators. As can be seen from
Equation (2), the coupling functions qi act in such a way as to
modify the natural frequency ωi(t): in physical terms, a positive
coupling coefficient will accelerate the oscillation in question (by
increasing its instantaneous frequency φ̇i(t)), whilst a negative
coupling coefficient will decelerate it (by decreasing φ̇i(t)). Thus
a coupling function is able to describe in detail, within a single
cycle, how one oscillator is accelerated or decelerated as a result
of the influence from the other oscillators. This carries important
implications for the interpretation of the mechanisms underlying
the coupling functions, as will be discussed below. Each function
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q
(κ)
i is periodic, for κ ≥ 2 on the κ-dimensional torus, and
can be decomposed into a sum of κ-dimensional Fourier series
of trigonometric functions. In practice it is assumed that the
dynamics can be well-described by a finite number K of Fourier
terms (Kralemann et al., 2011; Duggento et al., 2012): φ̇i =∑K

k=−K c
(i)
k
8i,k(φ1,φ2, . . . ,φN)+ ξ i =

∑K
k=−K c

(i)
k

exp[i(k1φ1+
k2φ2 + . . . + kNφN)] + ξi, where i = 1, . . . ,N, 8i,0 = 1

so that c
(l)
0 = ωl, and the rest of 8i,k, scaled by c

(i)
k
, are

the k most important Fourier components. Such Fourier series
8i,k(φ1,φ2, . . . ,φN) act as base functions for the dynamical
inference method.

2.3. Dynamical Inference
Our aim is to reconstruct a dynamical model describing the
interactions through the analysis of data, so that the model
can then be used for extraction of the coupling functions. Our
approach is based on the method of dynamical inference, often
referred to as dynamical modeling or dynamical filtering (Kalman,
1960; Sanjeev Arulampalam et al., 2002; Friston et al., 2003; Voss
et al., 2004; von Toussaint, 2011).

Note that inference of cross-frequency couplings from the
statistics of the coupled signals, e.g., through correlation,
(bi-)coherence and Granger causality measures (Geweke, 1982;
Baccala and Sameshima, 2001; Kamiński et al., 2001), yields
the functional connectivity but it provides no information about
the mechanisms of causality. These latter methods are designed
to infer statistical effects rather than dynamical mechanisms
(Barrett and Barnett, 2013). In what follows, however, with the
aid of dynamical inference we discuss how the mechanisms of
the associated causality can be inferred from data, thus yielding
an effective connectivity (Friston, 2011).

In particular, coupling functions represent one type of
dynamical mechanism and their inference yields the effective
connectivity. More specifically, the form of the coupling function
defines the functional law under which some input of the
interactions (i.e., the mutual influence between the oscillations) is
translated into an appropriate output. This is related, not only to
the quantitative parameters of the net coupling strength i.e., net
information flow, but also to how this information is functionally
structured to give an effective mechanism. For example, as we
will see below, the interactions can be such that the form of
the coupling function varies in time (see e.g., Section 3.3.2 and
Stankovski et al., 2012). This dynamical change can cause a
qualitative transition (like synchronization), irrespectively of the
value and the variations of the net coupling strength. This is an
example of a case where functional connectivity methods (e.g.,
Granger causality) will detect only the net coupling strength
and not the possible reason for a qualitative transition, unlike
coupling functions analysis which can do so (see below).

A number of different techniques are available for estimating a
model from data, based on different procedures and theories, and
resulting in slightly different properties and characteristics. They
include e.g., least-squares and kernel smoothing fits (Rosenblum
and Pikovsky, 2001; Kralemann et al., 2013), dynamical Bayesian
inference (Smelyanskiy et al., 2005; Stankovski et al., 2012),
maximum likelihood (multiple-shooting) methods (Voss et al.,

2004; Tokuda et al., 2007), and dynamic causal modeling (Friston
et al., 2003).

In what follows we use the dynamical Bayesian inference
technique (Smelyanskiy et al., 2005; Stankovski et al., 2012).
Briefly, the method applies Bayesian probability theory to the
multidimensional time-series to infer the dynamical model in
terms of stochastic differential equations. Assuming a normal
multivariate distribution for the prior of the scale parameters,
by the use of the model base functions,the method constructs
a log-likelihood function which also ensures that the posterior
probability is normally distributed. Evaluation of the current
distribution relies on the evaluation of the previous block of
data in the sequence, i.e., informative priors are used and
the current prior depends on the previous posterior. For
the first time window, in the absence of an earlier block,
we set the initial prior to a flat (zero) distribution; which
might effect the precision with which the initial coupling
function is inferred for that window. To account for the
time-variability of the interacting dynamics, the covariance
matrix of the next prior is the convolution of the current
posterior with the current diffusion matrix which describes
how much the parameters can change. Further details of
the method can be found in the Supplementary Material, in
Smelyanskiy et al. (2005), Stankovski et al. (2012), Duggento
et al. (2012), and Stankovski et al. (2014a) and in the references
therein.

2.4. Coupling Quantifications and
Decomposition
Using the inferred parameters we can calculate the coupling
quantities and characteristics. The coupling functions
qi(φi,φj,φk, . . . ,φN) acting on the oscillator from each of the i
phases are evaluated on a 2π × 2π × . . . × 2π grid by selecting
the relevant base functions, i.e., Fourier components scaled by
the corresponding inferred coupling parameters. The coupling
strength is calculated as the Euclidean norm ‖qi‖ = 〈qiqi〉

1/2 of
the inferred parameters for a particular coupling, and therefore
carries the same unit of measure as the natural frequency
(Hz). The correlation ρi(qi, qj) = 〈q̃iq̃j〉/(‖q̃i‖ ‖q̃j‖), of two
coupling functions where q̃i are the deviations from the mean,
q̃i = qi − 〈qi〉, gives the similarity of their forms, irrespectively
of their amplitudes (Kralemann et al., 2013). Here, we propose a
further extension of this index. By calculating the correlation of
a coupling function q with a sequence of numerically-generated
forms Q having specific shape features, taken from a bank, one
can determine which of those features is dominant in q. The
numerical set simulates the shape of a direct coupling from
the slower oscillation to the faster, phase-shifted by an angle ϑ
along the 2π axes. Thus, the numerical form Qϑ generating the
highest ρ carries dual information: the extent of the similarity
(described by ρ itself) and the corresponding phase, given by ϑ .
See Figure 1 and the animation video 1 in the Supplementary
Material. A natural way of presenting this information is by
plotting it on the complex plane to provide a polar representation
of the similarity index Pq = ρqe

iϑ .
In neuroscience, the cross-frequency analyses reported to date

have mostly focused on the net coupling. In contrast, coupling
functions enable one to study the functional dependences of
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FIGURE 1 | The meaning of the polar similarity index. Two examples of coupling functions, plotted in blue, are compared with numerically-generated sinusoidal

functions, plotted in red. The latter have been selected for being as similar as possible to the coupling functions: the only degree of freedom in the selection was the

shift in phase (marked by the red dashed lines). The arrows in the polar planes in the top right corners have moduli equal to the similarity indices, and point to the

corresponding phase values for: (A) a coupling function with high similarity (ρ = 0.82) and (B) one with a low value (ρ = 0.23). A complementary 2D color-contour plot

of the coupling function is given in the bottom right-hand corner of each panel.

the distinct contributions from the individual oscillations. This
procedure, referred to as coupling decomposition, separates a
net pairwise coupling qi(φi,φj) into its partial self-coupling
q̄i(φi), direct-coupling q̄i(φj), and common (or indirect) q̄i(φi,φj)
coupling components (Iatsenko et al., 2013; Stankovski et al.,
2016). The inference of both net and partial coupling has
been validated numerically (Stankovski et al., 2015). The direct-
coupling q̄i(φj) describes the influence of the direct unidirectional
driving exerted by one oscillator on the other. Arguably, this
is the most observed interaction in physiology, often linked
to modulation mechanisms; it dominates in a number of the
coupling functions discussed below. Similarly, for a triplet
coupling function qi(φi,φj,φk) one can decompose the self,
direct, and common components depending on either one or two
phase variables. Additionally, one can have the direct component
q̄i(φj,φk) from two phase variables exerting a joint influence, and
the common component between all three phases q̄i(φi,φj,φk).
Generalization to higher κ-dimensional couplings is implicit.
These couplings in a κ-dimensional network could reflect a joint
functional influence from a cluster subnetwork.

2.5. EEG Recordings and Signal Processing
The multichannel EEG recordings analyzed in this work were
downloaded from the Neurophysiological Biomarker Toolbox
(NBT) dataset (O’Gorman et al., 2013; Poil et al., 2013). The
signals were recorded for a group of 16 subjects (of which 10
were female, median age 27 years, range 21–48) in the resting
state for 8min, with a sampling frequency of 200Hz. During the
first 4min, subjects were asked to keep their eyes open, and in
the following 4min to keep them closed. Signals from 19 EEG
electrodes corresponding to the international 10–20 system were
selected from the dataset for the analysis.

The cross-frequency intervals were extracted by a standard
(FIR and no-phase-shift) filtering procedure. The boundaries for
the conventional frequency intervals were: delta δ = 0.8–4Hz,
theta θ = 4–7.5Hz, alpha α = 7.5–14Hz, beta β = 14–22Hz,
and gamma γ = 22–40Hz. Special care was taken tominimize

cardiac components and powerline interference (Lehnertz et al.,
2014; Iatsenko et al., 2015). The phases of the filtered δ and α
were estimated by use of the Hilbert transform, followed by the
protophase-phase transformation (Kralemann et al., 2008).

2.6. Eyes-Open and Eyes-Closed States
The extensive changes that the simple closing of the eyes
triggers in the brain caught the attention of the very first
electroencephalographers (Berger, 1933). It is now known that
exclusion of visual input from the central system causes the
power of brain activity to increase instantaneously across all
the conventional frequency ranges (Barry et al., 2007). The
most striking change occurs within the α rhythm, and it has
its strongest effect on the occipital part of the scalp, over the
visual cortex area. It has been argued that, with eyes open,
the desynchronization of α, resulting in a lower power, might
occur in order to give way to a more sophisticated pattern of
information processing (Klimesch, 1999).

2.7. The δ-to-α Coupling Functions
The δ-to-α interaction reflects how δ activity, associated with
deep dreamless sleep (Feinberg et al., 1987), influences the α
oscillations related to information processing (Pfurtscheller and
Lopes da Silva, 1999). Other findings have also suggested that
the δ-to-α coupling is mostly located within the frontal regions,
that it is stronger during the eyes-closed resting state (Deco et al.,
2010; Jirsa and Müller, 2013), and that a strong δ-to-α link exists
during non-REM sleep (Bashan et al., 2012).

Cross-frequency interactions are usually mediated by the
slower oscillations modulating the faster ones (Brunel andWang,
2003; Lakatos et al., 2005; Händel and Haarmeier, 2009). In
particular, task-based studies suggest that slow oscillations, which
are extended across the scalp, modulate the spatial extent of the
faster oscillations, which are more localized (Palva et al., 2005;
Isler et al., 2008; Canolty and Knight, 2010).

In the light of this, and because of the crucial role that the
α oscillation (Klimesch et al., 2007; Eidelman-Rothman et al.,
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2016) plays in the eyes open (EO) and eyes closed (EC) states,
we focused on the analysis of δ-to-α coupling functions. In doing
so, we are able to assess, quantify, and describe in detail the
functional mechanisms that define the interaction in question.

Moreover, the multichannel recordings allowed us to
investigate couplings between δ and α oscillations extracted
from different probes, and hence to create connectivity maps
illustrating how the δ-to-α modulation differs in the EO and
EC states. The coupling strength was first quantified. Note that,
in earlier work (Musizza et al., 2007; Jirsa and Müller, 2013;
Lehnertz et al., 2014) the use of the terms “coupling causality”
and “directionality” refers to the net coupling strength.

2.8. Surrogate Testing
When applying non-linear analysis techniques, one should
bear in mind that the linear properties of the signals, like
autocorrelation or spectral features, are likely to affect the
measure. To discriminate the genuine results from the ones
happened by chance, one can apply surrogate testing (Theiler
et al., 1992; Schreiber and Schmitz, 1996, 2000; Paluš and Hoyer,
1998; Kreuz et al., 2004). The idea behind this technique is to
apply the non-linear method in question to independent time
series that have the same, or as close as possible, statistical
properties as the original time signals, while randomizing the
expressions of the non-linear property being measured. This
procedure allows one to define a threshold beneath which any
result is considered spurious.

In practice, when inferring couplings even from very weakly-
coupled (or completely uncoupled) systems, the methods always
detect some non-zero values of apparent coupling strength.
Surrogate testing can then be used to establish the “zero-level” of
apparent coupling corresponding to uncoupled signals. In order
not to bias the threshold with effects due to inter-subject or
inter-probe variability, we applied the surrogate techniques to the
same signals for which the coupling was to be measured, and we
therefore define different thresholds for different subjects, pairs
of probes and states.

We generated the necessary surrogates by use of the phase-
shuffling (PS) method (Schreiber and Schmitz, 2000; Jirsa and
Müller, 2013). This acts on the time evolution of the phase
of an oscillation, wrapped between 0 and 2π , by randomizing
the sequence of full phase-periods that it contains. With this
technique, the linear structures of the signals are preserved
but the nonlinear properties are changed. Non-stationarities
appearing within each period of the oscillations are preserved.
The method was applied for each subject, state, and pair of
probes, thereby providing pairs of surrogate phases (δ and α).
These pairs were used as input for the Bayesian inference to
compute the surrogate coupling. The significance thresholds,
calculated independently for each subject and combination of
probes, were then set as the mean+2 standard deviations of the
resultant distributions.

2.9. Statistical Analysis
The surrogate populations were tested for normality with the
Shapiro-Wilk test, with the null hypothesis that the data come
from a normal distribution of unknown mean and variance.

The test rejected the null hypothesis at the 5% significance
level in only 3% of the surrogates, and we therefore accepted
the assumption of a normal distribution. Hence, we could test
the coupling from the original signal by comparison with the
significance threshold.

The non-parametric Wilcoxon paired test was used to
determine the significance of differences between the EO and EC
distributions for each frequency within the power spectra, for the
averaged power within each frequency interval, for the coupling
strength and for the similarity of coupling functions.

3. RESULTS

3.1. Spectral Analysis
Figure 2A shows the difference in spectral power between the
EO (blue) and EC (red) states, for spectra averaged across all the
probes. The shaded significance area coincides closely with the
α band, indicating an increase of power in that interval for EC
compared to EO. This increase was independent of scalp location.
Figure 2B shows the statistical distributions of the averaged
power within each frequency band, with a pairwise probe-by-
probe statistical approach. The statistical analysis confirmed the
increase of amplitude across all the frequency intervals when
comparing EC with EO.

3.2. Coupling Analysis
3.2.1. Significance against Surrogate Data
Figure 3 shows the results of applying PS surrogate technique for
the states of EO (in blue, Figure 3A) and EC (in red, Figure 3B).
Only couplings whose δ-to-α direct-coupling strength was higher
than the mean+2STD surrogate thresholds (gray shades) are
indicated by dots. The average values of the surrogates and of the
validated couplings (horizontal lines) are inversely proportional
to the power trend, with both values for the EC being below the
EO average surrogate level. For EO, however, a smaller number of
probe pairs generated a coupling strength which was significant
against surrogates (767 over 5,776 possible connections for EO
against 1,323 over 5,776 for EC). The inter-subject variability
is evident in Figure 3, where the different width of the x-axes
portion for each subject corresponds to different number of
significant connections detected.

3.2.2. Inter-Subject Variability
In order to evaluate the spatial patterns of significant coupling,
the dots shown in Figure 3 have been converted into the
corresponding connections over a head-shaped map (Figure 4).
The directionality of each connection is shown with an arrow
starting from the probe where the δ oscillation was extracted,
and ending on the corresponding location of the probe for the
α oscillation.

The color-scale in Figure 4 represents the number of
recurrences of significant direct coupling strength among the
subjects for EO (in blue, Figure 4A) and for EC (in red,
Figure 4B). For clarity of visualization, arrows corresponding
to less than 4 subjects for EO (for which 767 couplings were
detected as non-surrogates) and 6 for EC (for which 1,323
couplings were detected as non-surrogates) are not shown. The
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FIGURE 2 | Spectral comparison between signals recorded during the eyes open (EO, red) and eyes closed (EC, blue) conditions, for all the probes from all the

subjects. (A) Paired statistical comparison between the inter-probe average power spectra from each subject in EO and EC, respectively. The lines show inter-subject

medians, and the ranges of significance are shaded pink for p<0.05, orange for p <0.01 and yellow for p<0.001. (B) Boxplots for the average power within the five

frequency intervals. Diagonal lines symbolize statistical analyses pairing corresponding values for every probe and subject, and follow the changes in the medians. The

p-value is indicated in each case. Note that the significance of the power in (A) corresponds closely to the boundaries of the α interval, and that the power in (B)

increases significantly between EO and EC for every frequency band.

FIGURE 3 | Strengths of the couplings for (A) EO (blue) and (B) EC (red) for all the subjects, shown as consecutive intervals on the x-axes. Only values higher than the

corresponding PS surrogate threshold are shown. Couplings are selected when their strengths are higher than the mean+2STD of the corresponding surrogate

distribution (gray shading). Horizontal lines indicate the average values of the surrogates and of the validated couplings (color-scheme as explained above).
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FIGURE 4 | Spatial distribution of the validated coupling strengths. The color codes indicates the number of subjects with a higher direct-coupling strength than the

corresponding surrogate threshold for (A) EO and (B) EC. Note the different scalings of the two color-bars, used for clarity.

more intense colors correspond to larger numbers of subjects
exhibiting significant coupling strength for a specific arrow for
each state, e.g., 7 for EO and 12 for EC.

The figure shows how, for EO, two inter-hemispheric
occipital-to-frontal δ-to-α couplings were exhibited by 5 subjects
and one inter-hemispheric temporal long range connection,
plus two intra-hemispheric, were detected in groups of 6
or 7 subjects. For EC, besides being in higher number, the
significant connections were detected especially from temporal
to occipital locations, and from temporal to the parietal Pz
(for groups of 10–12 subjects). A clear pattern of temporal-
to-frontal coupling was also detected, for smaller groups (8–9
subjects).

3.3. Coupling Functions Analysis
3.3.1. Form of the Coupling Function
To complement the coupling strength analysis, we now focus
on the coupling functions themselves and discuss their unique
properties. The results are summarized in Figure 5. The panels
show the coupling functions corresponding to the links having
the highest and lowest similarity indices for the intersubject
average, for EO and EC. First, we describe in detail the δ-to-α
coupling function as a 3D surface characterizing the EO state,
as shown in Figure 5A. The form of this function indicates
that much of the δ-to-α coupling is attributable to the direct
contribution of the δ oscillation. It has a sine-like waveform
along the φδ-axis, but is mostly constant along the φα-axis.
This reveals the underlying functional mechanism i.e., shows
that, when δ oscillations are between π and 2π , the sine-wave
coupling function is higher and the δ activity accelerates the α
oscillations; similarly, when the δ oscillations are between 0 and
π , the coupling function is decreased and δ decelerates the α
oscillations. The highest acceleration i.e., the ridge of the 3D
function plot is around 3π/2. The form of the coupling function
of Figure 5C for the EC state is similar to the one for EO, but
it is shifted with the highest acceleration being between 0 and
π . In contrast to these two, the coupling functions shown in

Figure 5B for EO and Figure 5D for EC, have uncharacteristic
and undefined rippled form of lower amplitude.

These qualitative observations can be quantified and
presented in terms of the polar similarity index. In Figure 5

these are shown as a circle-map in the top-right corner of each
plot. For the polar similarity index of EO (Figure 5A) one can
note that the values for individual subjects (the dots in the
circle-map), are distributed around a certain direction, and that
the arrow for the average similarity index has the quite high
value of 0.93. Also, the direction of the average arrow has an
angle of about 3π/2, which is the ridge of the average coupling
function for the highest acceleration of α oscillations (compare
the 3D plot in Figure 5A). The polar similarity index for the EC
state (Figure 5C) shows a similar trend, with a high index of
0.91, but a different arrow direction. For the least-similar forms
(Figures 5B,D) the similarity indices are very low with moduli
close to zero (the dots are distributed sparsely), leading to almost
unnoticeably small arrows at the center of the circle. Because
these coupling functions come from inter-subject averages, it
can be seen how the plot of polar similarity indices explains not
only their morphology, but also their origin and the inter-subject
variability.

3.3.2. Time-Variability of Neural Coupling Functions
Physiological systems and processes, including neural
oscillations, do not exist in isolation. They can be affected
by a variety of external influences making their dynamics,
to a greater or lesser extent, time-varying. In such cases, one
can use the dynamical Bayesian method to infer time-varying
neural dynamics, as demonstrated in Figure 6. The coupling
functions for the EC state in Figure 6 (top), inferred at four
different times, show that not only the strength but also
the form of the coupling functions can vary in time. This
time-variability is a representative example and it was not
correlated with the coupling function time-variability of other
subjects’ EEG signals. It is more pronounced for the four EO
coupling functions in Figure 6 (bottom), which vary even
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FIGURE 5 | Examples of inter-subject averages of coupling functions between particular pairs of probes. They have been selected for generating (A,C) the highest

and (B,D) the lowest similarity indices, as shown. The arrows in the polar plots in the top right corners of each panel indicate the similarity indices for the averaged

coupling functions, while the dots indicate the similarity indices for individuals. Note that in B and D the arrows are of negligible dimension. A complementary 2D

color-contour plot of the coupling function is given in the bottom right-hand corner of each panel.

FIGURE 6 | Time-evolution of the δ-to-α coupling functions in the resting state. Middle panel: Time-evolution of the similarity index ρα (δ,α) for the EO and EC states of

a single representative subject. Top panel: The δ-to-α coupling functions for EC inferred at four particular moments in time, as indicated by the arrows. Bottom panel:

The δ-to-α coupling functions for EO inferred at four particular moments in time. Complementary 2D color-contour plots of the coupling functions are given in the top

right-hand corner of their respective panels.

more. Consequently, the similarity index Figure 6 (middle)
which quantifies the effect is also time-varying, with higher
values for the EC state resulting in more-similar forms of
coupling function—compare for example the last two coupling
functions in Figure 6 (top). This time-variability and the
evolution of the resting state δ-to-α coupling functions can
be appreciated even better through the animation video 2 in

the Supplementary Material, generated for each of the times in
Figure 6.

3.4. Quantitative Group Analysis
To investigate the quantitative statistics of each group of subjects
we calculated the average values of the significant coupling
strengths, with the corresponding surrogates’ value subtracted,

Frontiers in Systems Neuroscience | www.frontiersin.org 8 June 2017 | Volume 11 | Article 33

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Systems_Neuroscience/archive


Stankovski et al. Neural Coupling Functions

and the moduli of the polar similarity indices for the coupling
functions of all the links for each subject. Then we compared
statistically the distributions of these values for the two groups
of subjects. To present the differences between the distributions
visually, we use standard boxplots which refer to the descriptive
statistics (median, quartiles, maximum and minimum).

The results in Figure 7 show that there were statistically
significant differences for both the coupling strengths and the
similarity of coupling functions between the EO and EC states.
Figure 7A shows that the coupling strengths detected for the EC
is significantly higher than the EO. Similarly, Figure 7B shows
that the similarity index for δ-to-α coupling functions for the EC
were significantly higher than for the EO. The latter also means
that there was larger variability of the coupling functions for the
EO state, compared to the EC state. Overall, the similarity of
coupling functions for the EO and EC states was not very high
(in the interval of [0,1]), indicating that there is relatively high
variability of coupling functions for both of the resting states.

4. DISCUSSION

4.1. The EO and EC Resting States
Much has already been done, mostly through fMRI and
EEG analysis, to demonstrate the existence of resting state
interactions, including the formation and dissolution of
resting state functional network configurations around a stable
anatomical connectivity (Berger, 1933; Barry et al., 2007; Deco
et al., 2010; Jirsa and Müller, 2013; O’Gorman et al., 2013). Our
application of coupling functions to the resting state revealed
the underlying mechanisms of interaction and has identified a
number of differences between the EO and the EC states.

As there were more significant couplings in the EC than in
the EO state (Figure 3), it is obvious that there will be more
coupling links for the EC than for the EO state when presented
spatially (Figure 4). What is interesting is that, for EC, different
subjects seem to have a preferential pattern of directions, with
the δ oscillation from the anterior temporal lobes (probes T3
and T4) acting as “hubs,” influencing the phase of α in both the
frontal and occipital directions. The occipital probes O1 and O2
are the most susceptible to the difference in α power (Figure 2)
as they are placed over the visual area of the cortex. In EO, they
act as a starting point for δ modulating long range connections
toward the frontal cortex, which existed in five subjects, and then
disappeared in EC. In contrast, for EC these probes receive the
influence in their α rhythm from temporal and central probes.

The δ-to-α coupling functions had a specific shape, showing
that the coupling is predominantly like a direct sine wave due
to the δ influence, which accelerates and decelerates the α
oscillations. Importantly, the form was similar for the EO and
EC states (Figure 5), with distinctive variations and shifts along
the δ oscillation. This similarity implies that the same underlying
interaction mechanism exists in the EO and EC states, and that
the difference between these two resting states corresponds to
increasing and decreasing some of the connection strengths (or
to switching them on-off).

Because we reconstructed the form of the coupling functions,
we were able to observe what they look like for both individual

FIGURE 7 | Differences in the δ-to-α coupling strength above surrogates (A)

and in the similarity of form of the δ-to-α coupling functions (B) for the two

groups of subjects with EO and EC. The p-values indicated within each panel

represent the statistical differences between the EO and EC states. Whiskers

indicate ±2.7 standard deviations of the distribution.

and averaged connections and subjects. Even though we found
relatively similar forms of function, we also observed a certain
degree of variability, both inter-subject variability (Figure 5) and
time variability (Figure 6) of the form. These should be taken into
account when average values are used, for example in making
multi-subject statistics.

Finally, for the comparison of the EO and EC states (Barry
et al., 2007) our analysis confirmed that the spectral power of
the α oscillations in EC is significantly larger than that of EO
(Klimesch, 1999). It also showed that there are a larger number of
real (i.e., validated by surrogate testing) δ-to-α couplings for the
EC state (Jirsa and Müller, 2013), that the form of the coupling
functions was similar for EO and EC, that the coupling functions
were somewhat less variable for EC than for EO, and that this
dominance of the EC state in the interactions was confirmed
also by the quantitative boxplot statistics for the whole groups
of subjects.

4.2. Methodological Aspects and
Generalizations
The assessment of neural coupling functions through the phase
dynamics of interacting neural oscillations enables us to study
their acceleration/deceleration, i.e., timing and coordination. The
generalization to amplitude coupling functions is implicit. In
such cases, one should be able to determine a plausible state
model in relation to the dimensionality of the signals. Amplitude
neural coupling functions can reveal the mechanism through
which the strength and power of one neural oscillation are
affected by the influence of the other oscillations.

Earlier effective connectivity methods for the inference
of neural interactions have in principle contained coupling
functions within their models of the interacting dynamical
systems. The question we address here, in addition to presenting
an efficient Bayesian method for determination of coupling
functions, is that of how to assess the neural coupling functions.
We have shown how to unify a functional unit which can be
quantified and compared with other such units, and whose
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evolution can be followed in time. The key characteristic that
distinguishes this assessment is the form of the neural coupling
functions. A unified and effective coupling function analysis can
provide insights that go far beyond just knowing that neural
interactions exist.

The pairwise investigation can further be generalized to
higher degrees of network complexity (Kralemann et al., 2014;
Stankovski et al., 2015). One might, for example, study the
coupling functions between the brain and other physiological
oscillations, forming a physiological network (Musizza et al.,
2007; Stefanovska, 2007; Bashan et al., 2012; Stankovski et al.,
2016). The brain is a heavily connected network (Park and
Friston, 2013) and coupling functions could be applied to reveal
the functional mechanisms operative at different levels and
sublevels of the interactions. In network topology with nodes
and edges (Albert and Barabási, 2002) this would mean that, not
only could the existence, strength and direction of the edge be
studied, but also the underlying functional mechanism giving rise
to the edge. The multivariate coupling function assessment can
then be linked to hypergraphs (Karypis and Kumar, 2000; Zass
and Shashua, 2008), though it was argued recently that, for larger
networks (N > 10), there is no significant benefit from using
multivariate inference of coupling (functions) and partialization
(Rings and Lehnertz, 2016).

The time-varying form of the coupling functions (Figure 6)
can be a cause of self-organization transitions, like the emergence
of network clustering, or of the systems going into-and-out-of
synchronization (Stefanovska et al., 2000; Varela et al., 2001),
even for an invariant net coupling strength (Stankovski, 2017).
More importantly, having detected and characterized a neural
coupling function, one can then use this knowledge to detect,
or even to predict, the onset of phase synchronization (Kiss
et al., 2005). In such cases, the key feature is the known
form of the coupling function which, depending on parameters
like frequency, coupling strength, or polar similarity index,
can predict the synchronization transition. This could have
important implications for the prediction of epileptic seizures
(Lehnertz and Elger, 1998; Fell et al., 2001) which occur or
disappear as synchronous activity in the brain.

4.2.1. Limitations
The limitations of themethod should also be borne inmind. First,
the whole analysis starts with the extraction of one-dimensional
vectors of phases from data which probably have a non-trivial
distribution of spectral content. Especially when the coupling
mode is extracted from a single signal, the filtering must be done
with extreme care: spillage between different frequency intervals,
as well as splitting of one mode into two intervals, will result in
an artificial “common” coupling. Whenever bandpass-filtering is
involved, one should exclude the possibility of investigating high-
to-low frequency coupling, because any modulation of the lower
frequency due to the phase of the higher one will probably be
erased from the filtered mode. In any case, these couplings will
usually turn out to be insignificant compared to surrogates later
in the analysis.

The windowed nature of dynamical Bayesian inference carries
its own limitations, too, as the length of the window is fixed for

every computation. This parameter must be chosen with care,
and should be adjusted so as to include a sufficient number of
periods of the lower frequency involved. We found that 6–10
periods is a reasonable lower limit for this number. Due to the
uninformative flat prior used for the initial window, the resultant
inference of the first window should be interpreted with care.
Moreover, the signals’ own particular features must also be taken
into account: a high degree of time-variability would need a
correspondingly shorter window for the dynamical inference to
follow the evolution correctly. If the method is to be generalized
for use other than with a phase dynamics model, one should be
careful not to infer dynamics due to non-specific, non-stationary,
processes instead of genuine coupling.

4.3. Conclusion
In conclusion, coupling functions bring a novel perspective
to neuroscience that is unique in that it provides access to
the functional form of a coupling. The polar similarity index
that we have introduced allows one to describe the form in
quantitative detail. The comparisons of δ-to-α phase-to-phase
coupling functions in the EO and EC resting states demonstrate
how neural coupling functions can be reconstructed from
spatially distributed sources, and what benefits and possibilities
are introduced by their assessment. We have confirmed the
previous result that the direct coupling is stronger during EC,
and we have shown for the first time that the coupling function
is significantly less variable in that state. The EO/EC states
were taken as an example on which to base a discussion of
methodological issues and, in so doing, to point to the wider
implications and possibilities of the method itself. One may hope
to gain new insights into the neuronal mechanisms underlying
certain diseases from studies of coupling functions. In principle,
the method can equally be applied to the time series created by
any pair of coupled oscillatory processes.
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