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 67 

What’s known on this subject: 68 

Failure to identify serious infections in children results in adverse outcomes whilst a failure to 69 
rule-out serious infections results in unnecessary antibiotic use and hospital admission. 70 
Multivariable clinical risk prediction models appear to discriminate well between serious and 71 

self-limiting infections. 72 

What this study adds: 73 

In a study of 1101 children of all ages, risk prediction models discriminated well between 74 
pneumonia, other serious bacterial infections and none. A published model performed well on 75 

external validation and model extension with Procalcitonin and Resistin improved 76 
discrimination. 77 

 78 
 79 
 80 
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ABSTRACT 111 

Background 112 

Improving the diagnosis of serious bacterial infections (SBI) in the children’s Emergency 113 
Department (ED) is a clinical priority. Early recognition reduces morbidity and mortality, 114 
while supporting clinicians to rule out SBI may limit unnecessary admissions and antibiotic 115 
use. 116 

Methods 117 

A prospective diagnostic accuracy study of clinical and biomarker variables for the diagnosis 118 
of SBI (pneumonia or ‘other SBI’) in febrile children <16 years. A diagnostic model was 119 
derived using multinomial logistic regression, and internally validated. External validation of 120 
a published model was undertaken followed by model updating and extension by the 121 

inclusion of Procalcitonin and Resistin. 122 

Results 123 

1101 children were studied, of whom 264 had SBI. A diagnostic model discriminated well 124 

between pneumonia and no SBI (c statistic 0.84, 95%CI 0.78 to 0.90) and between other SBIs 125 
and no SBI (0.77, 95% CI 0.71 to 0.83) on internal validation. A published multivariable 126 

model discriminated well on external validation. Model updating yielded good calibration 127 
with good performance at both high risk (Positive Likelihood Ratios 6.46 and 5.13 for 128 
pneumonia and other SBI respectively) and low risk (Negative Likelihood Ratios 0.16 and 129 

0.13) thresholds. Extending the model with the addition of Procalcitonin and Resistin yielded 130 
improvements in discrimination. 131 

Conclusions 132 

Diagnostic models discriminated well between pneumonia, other SBIs and no SBI in febrile 133 

children in the ED. Improvements in classification of non-events have the potential to reduce 134 
unnecessary hospital admission, and improve antibiotic prescribing. The benefits of this 135 
improved risk prediction should be further evaluated in robust impact studies.  136 



5 
 

INTRODUCTION 137 

Acute febrile illness is among the most common of all presentations to the children’s 138 

Emergency Department (ED).1 In this context, the probability of serious bacterial infection 139 

(SBI) is estimated to be 7% - predominantly lower respiratory or urinary tract infection.2  140 

The prompt recognition of SBI is fundamental to effective management. Children with 141 

meningococcal disease are frequently missed at initial presentation,3 and delayed recognition 142 

increases mortality.4, 5 Though rates of invasive infection have declined with the introduction 143 

of conjugate vaccines,6-8 SBI remains an important contributor to childhood morbidity and 144 

mortality.9  145 

In the UK, as rates of invasive infections have declined, the number  of children admitted to 146 

hospital has increased.10 The greatest increase is in young children with uncomplicated 147 

admissions for acute infections.11 Supporting clinicians to rule out SBI may reduce 148 

unnecessary hospital admissions in children.12  149 

A number of studies have reported the diagnostic accuracy of clinical13 and laboratory14 150 

variables in febrile children. More recently, risk prediction models combining clinical 151 

variables have been evaluated,2, 15 and in one the addition of CRP improved diagnostic 152 

accuracy.16 We ourselves have previously reported the combined performance of 153 

Procalcitonin, Resistin and Neutrophil Gelatinase-associated Lipocalin (NGAL) in Malawian 154 

children.17  155 

Diagnostic accuracy studies in febrile children have so far failed to impact clinical practice. 156 

Restrictive inclusion criteria, such as age, temperature, or clinical syndrome18 have limited 157 

their external validity and few have progressed to validation in external populations. We 158 

therefore set out to derive and internally validate a multivariable risk prediction model, and to 159 
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externally validate a previously published model16 for the diagnosis of SBI in febrile children 160 

of all ages. 161 

 162 

METHODS 163 

A prospective diagnostic accuracy study of clinical and biomarker variables for the diagnosis 164 

of SBI in children presenting to the Alder Hey Children’s Hospital ED. This is the busiest 165 

children’s ED in the UK, managing 60000 attendances each year. Recruitment was 166 

undertaken between November 2010 and April 2012. The study is reported in line with the 167 

Standards for Reporting of Diagnostic Accuracy (STARD) and Transparent Reporting of a 168 

multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) 169 

guidelines.19, 20 170 

Participants 171 

Children less than 16 years of age with fever (>38°C) or history of fever were eligible if they 172 

required blood tests as part of clinical management. Children with primary immunodeficiency 173 

were excluded. Using prior estimates of sensitivity and specificity of 65% and 90% 174 

respectively, and a rate of SBI of 15%, a sample size of 2300 was proposed. For skin and soft 175 

tissue infections, the reference standard for SBI was that children were deemed by the clinical 176 

team to require intravenous antibiotics. As the outcome diagnosis was solely based upon a 177 

clinical decision, and as this was true of all such cases, these children (n=82) were excluded 178 

(Figure 1). 179 

Patient involvement 180 

The GenerationR Young Person’s Advisory Group (www.generationr.org.uk), initiated by the 181 

National Institute for Health Research (NIHR) helped design patient information leaflets for 182 

file:///F:/www.generationr.org.uk
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young people and families. In the course of the study  the group explored improvements in 183 

the recognition of serious infection, and the  discussed diagnostic tests using  various samples 184 

(such as saliva or blood). This involvement has informed the design of subsequent studies.  185 

Data 186 

Relevant clinical and biomarker variables were identified from the literature, including two 187 

large systematic reviews.13, 14 Clinical data were entered onto a proforma at  the time of the 188 

clinical assessment. Where possible, this was done by the attending clinician. When the 189 

proforma was incomplete, missing clinical information was retrieved from the clinical notes, 190 

where explicitly referenced. Paper proformas were collected by the study team daily. All 191 

proformas were cross checked against the clinical notes which were electronically scanned 192 

and stored. Missing or ambiguous data were recorded as missing. Data collection and entry 193 

into the database was blinded to final outcomes.  194 

Samples 195 

Tests performed in study subjects are recorded in supplementary Table 1. All samples were 196 

processed in Clinical Pathology Accredited laboratories. Blood (0.5 to 1ml) inoculated into 197 

culture bottles was monitored using the BacT/ALERT 3D system. Positive cultures were 198 

processed in line with UK standards for Microbiology investigations developed by Public 199 

Health England.21 Specific Streptococcus pneumoniae and Neisseria meningitidis PCR assays 200 

were performed at the Meningococcal Reference Unit in Manchester.22, 23 Urine and CSF 201 

underwent microscopy and culture on agar gel plates, and were processed in line with UK 202 

standards. Multiplex PCR was performed on respiratory (RSV, Influenza A and B, 203 

Parainfluenza 1-3, Adenovirus, Rhinovirus and Human Metapneumovirus) and CSF (HSV 1 204 

and 2, Varicella Zoster and Enterovirus) samples at the regional laboratory in Manchester. 205 

From April 2011, respiratory PCRs were performed using the FilmArray respiratory viral 206 
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panel (Biomerieux) and additionally identified Parainfluenza 4, Rhino/Enterovirus and 207 

Coronavirus 1-4. 208 

Blood (0.5-1ml) was collected into Lithium Heparin and plasma stored in Sarstedt microtubes 209 

at -80°C within 1 hour. Prior to analysis samples were thawed, vortex mixed and centrifuged 210 

to remove bubbles and particulate matter. Procalcitonin analysis was undertaken on the 211 

B.R.A.H.M.S. Kryptor according to manufacturer’s instructions. Quality control samples 212 

were analysed with each run. NGAL and Resistin were analysed using validated commercial 213 

ELISA.  214 

Reference tests 215 

In common with other published studies, outcome diagnoses were determined by a composite 216 

reference standard incorporating clinical, microbiological and radiological features 217 

(supplementary Table 2).14, 15, 24, 25 Using these pre-defined criteria, a paediatric research 218 

fellow and a paediatric infectious disease consultant independently attributed outcome 219 

diagnosis. In the case of disagreement, a second paediatric infectious disease consultant 220 

determined final outcome. Children who failed to meet the pre-defined criteria for SBI were 221 

considered to have ‘No SBI’. Subjects were followed up to 28 days to reduce 222 

misclassification.  223 

Statistical methods 224 

Analysis was undertaken in R, version 3.0.1.26 Missing data were handled by ten-fold 225 

multiple imputation using fully conditional specification implemented by the MICE 226 

package.27 In this method, missing values are replaced by values drawn from a conditional 227 

distribution specific to each individual predictor variable and defined by its own imputation 228 
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model. Data were assumed to be ‘missing at random’. The proportion of missing data relating 229 

to each clinical variable is recorded in supplementary table 3. 230 

Model derivation, validation and updating 231 

The dataset was randomised into a split sample “derivation”, and “validation” set. Univariate 232 

analysis of clinical and biomarker variables was undertaken using logistic regression, for the 233 

outcome of SBI. Explanatory variables were examined for evidence of collinearity. Scatter 234 

plots and generalised additive model (GAM) plots,28 fitted using the gam() function in the 235 

mgcv package, were examined for evidence of non-linearity on the log-odds scale. Piecewise 236 

and polynomial transformations were undertaken where appropriate. Plausible interaction 237 

terms were explored, including interactions between age,  heart rate and respiratory rate. A 238 

multivariable model was derived using a forwards stepwise method. Improvements in model 239 

fit were tested by means of a likelihood ratio test (α=0.05) and variables associated with a 240 

significant improvement were retained. Having identified a parsimonious model for SBI, 241 

these variables were then included in a multinomial regression model for the categorical 242 

outcomes “pneumonia”, “other SBI”, and “no SBI”.  243 

External validation of the model published by Nijman et al16 was undertaken using the 244 

published coefficients. A comparison of study participants is given in supplementary table 4. 245 

The model was updated by re-fitting variables and estimating the individual co-efficients, 246 

then extended by the inclusion of Procalcitonin and Resistin. This strategy preserved the 247 

original model structure and avoided deriving an entirely new model. The biomarkers were 248 

chosen having observed their value in our earlier model derivation. Additional clinical 249 

variables were not investigated as they appeared less predictive in our model derivation, and 250 

plausible clinical variables were adequately represented by the published model. 251 

Model evaluation 252 
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Performance characteristics of the fitted models at various risk thresholds were estimated 253 

using the epiR package.29 Discrimination was measured using the concordance (c) statistic, 254 

and illustrated by Receiver Operating Characteristic (ROC) curves using the pROC 255 

package.30 The c statistic estimates the probability that a randomly selected subject with the 256 

outcome of interest has a higher predicted probability than a randomly selected subject 257 

without. Comparison of the c statistic was undertaken using the DeLong method.31 For the 258 

multinomial regression model, the c statistic estimated discrimination between pairs of 259 

patients –a patient with pneumonia and a patient with no SBI, or patient with “other SBI” and 260 

a patient with no SBI. Confidence intervals (95%) were estimated by a bootstrapping process 261 

using 2000 bootstrap replicates. Calibration of the models (how closely risk predictions fit 262 

observed cases) was illustrated using multinomial calibration plots.32  263 

In the absence of established methods to report classification in multinomial risk prediction 264 

models, we compared crude classification (that is, the most likely diagnosis predicted by the 265 

multinomial models) in the updated and extended models. To investigate potential clinical 266 

utility, we estimated the ability of the models to ‘rule-out’ SBI (predictions for both 267 

categories of SBI <5%), or to ‘rule-in’ SBI (prediction of either category >20%). These 268 

thresholds represent approximately half and double the observed event rate in the study 269 

population. 270 

 271 

Ethics 272 

Approval for the study was granted by the Greater Manchester West Research Ethics 273 

Committee (10/H1014/53), and by the Alder Hey Children’s Hospital R&D department. 274 

 275 
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RESULTS 276 

Between 1st November 2010 and 3rd April 2012, 7949 children presented to the Alder Hey 277 

Children’s ED with fever. Of these, 1872 were eligible for inclusion, and 1101 recruited to 278 

the study (Figure 1). Median age was 2.4 years (IQR 0.9-5.7 years), and 55% were boys. 279 

Approximately one third of children had significant comorbidities (Table 1). 264 children 280 

(24.0%) were diagnosed with SBI (supplementary figure 1). 281 

The probability of pneumonia and other SBIs increased linearly with heart rate, respiratory 282 

rate and temperature. Consistent with other studies, increased work of breathing (odds ratio  283 

10.4, 95% confidence interval 6.69 to 16.2), hypoxia (9.29, 95%CI 5.35 to 16.1), and other 284 

respiratory variables were significantly associated with pneumonia. These features reduced 285 

the probability of other SBIs. Neck stiffness , a bulging fontanelle, irritability and dysuria 286 

were associated with other SBIs. Prolonged capillary refill time was associated with other 287 

SBIs (1.43, 95%CI 1.05 to 1.97) but not pneumoniawhile the presence of a rash reduced the 288 

probability of both pneumonia and other SBIs. Univariate odds ratios are presented in 289 

supplementary figure 2. CRP, Procalcitonin, NGAL and Resistin were all associated with SBI 290 

(supplementary table 5). 291 

Model derivation and internal validation  292 

The derived model included the variables “Respiratory rate”, and “Normal Air Entry” 293 

alongside CRP, PCT, and Resistin (supplementary table 6). Fitting CRP as a piecewise term 294 

improved the model fit. The model discriminated well on internal validation (c statistic 0.84, 295 

95%CI 0.78 to 0.90 for pneumonia, and 0.77, 95%CI 0.71 to 0.83 for other SBIs). Calibration 296 

plots suggested that the model overestimated the risk of pneumonia (Figure 2). 297 

 298 
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External validation and updating of Nijman model 299 

The published model of Nijman et al was validated in the complete dataset (n=1101). Using 300 

the published coefficients, the model discriminated well between pneumonia and no SBI, 301 

though less well between other SBIs and no SBI (c statistic 0.85 and 0.76 respectively, 302 

supplementary figure 3). Model calibration was poor though calibration plots indicated that 303 

predicted risks and observed outcomes were highly correlated (Figure 3). 304 

Observing the correlation between predicted probabilities and observed outcomes in the 305 

poorly calibrated model, we updated the model by re-estimating the individual co-efficients. 306 

No attempt was made to adjust the functional form of predictor variables. The re-fitted model 307 

discriminated well (c statistic 0.88 and 0.82 for pneumonia and other SBIs respectively), and 308 

was well calibrated (Figure 4).The model was then extended by the inclusion of PCT and 309 

Resistin. This improved discrimination of the pneumonia (c statistic increased from 0.88 to 310 

0.90, p=0.03), and other SBI models (from 0.82 to 0.84, p=0.03) and calibration remained 311 

good (supplementary figure 4). 312 

The performance characteristics of the updated and extended models are summarised in Table 313 

2. At a low-risk threshold of 5%, the extended pneumonia model had a sensitivity of 92% 314 

(95%CI 85 to 96%) and negative likelihood ratio (NLR) of 0.12 (0.06 to 0.23). For other 315 

SBIs, model sensitivity was 92% (86 to 95%), and NLR 0.21 (0.12 to 0.35). At a high-risk 316 

threshold (>20%), specificity was 89% (95%CI 87 to 91%) for pneumonia, with a positive 317 

likelihood ratio (PLR) of 6.69 (5.30 to 8.44), and 86% (83 to 88%), PLR of 4.96 (4.07 to 318 

6.03) for other SBIs.  319 

 320 
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Classification (determined by likeliest outcome category) was similar between the updated 321 

and extended models (893/1101 v 917/1101, 2.2% improvement, 95%CI -1.1 to 5.4%, 322 

supplementary Table 7). Using the extended model, SBI was correctly ‘ruled out’ in 31 323 

additional children (3.7%, 95%CI -1.0 to 8.4%) and there were five fewer potentially missed 324 

SBI diagnoses (14/264 v 19/264, 1.8% reduction, 95%CI -2.6 to 6.4%, Table 3). 325 

 326 

DISCUSSION 327 

Main findings 328 

In this large, prospective study of febrile children of all ages presenting to the ED, 329 

multinomial risk prediction models discriminated well between pneumonia, other SBIs and 330 

none. A newly derived model performed well on internal validation, and identified 331 

Procalcitonin and Resistin along with CRP as biomarkers of potential value. A published 332 

model performed well on external validation and the addition of PCT and Resistin improved 333 

discrimination. At a low-risk threshold (<5%), a NLR of 0.12 (pneumonia) or 0.21 (other 334 

SBIs) may help to rule out SBI, whilst at a high-risk threshold (>20%) PLRs of 6.69 and 4.96 335 

may expedite treatment. 336 

 337 

Strengths: 338 

We present data on multiple biomarkers of SBI in more than 1000 children. We have 339 

evaluated children irrespective of age, past medical history or clinical syndrome, and 340 

obtained comparable discrimination to other studies with more restrictive inclusion criteria. 341 

In common with other recent data,2, 16 we have demonstrated the value of combining clinical 342 

and biomarker variables.  343 
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This is the first broad external validation of the published multivariable model by Nijman et 344 

al. The model discriminated well, but was poorly calibrated. Specifically, there was a 345 

problem of calibration in the large – the model predicted too few cases in our population. 346 

Correlation between model predictions and observed cases suggested the overall structure of 347 

the model was appropriate to our dataset however and our approach of re-estimating the 348 

model coefficients resulted in a well-calibrated model. 349 

 350 

Limitations: 351 

This is a single centre study, and whilst we have performed internal validation of our derived 352 

model, external validity would require demonstration in an alternative setting. We have 353 

grouped ‘other SBI’ into a single outcome category. It would be preferable to model 354 

outcomes such as septicaemia and meningitis separately, but the infrequency of these 355 

outcomes makes this challenging. A pragmatic response is to advocate further diagnostic 356 

testing (including urgent urine or CSF microscopy) in children considered at high risk of 357 

‘other SBIs’. 358 

Diagnostic studies with imperfect reference standards require a pragmatic approach to 359 

determine outcomes. An established approach to this is to use pre-defined composite 360 

reference standards as we have done. The universal application of respiratory viral assays 361 

may have yielded additional evidence upon which to base classification but such testing was 362 

undertaken at the discretion of the clinical team, and not applied systematically. Our use of a 363 

radiological diagnosis of ‘pneumonia’, despite its limitations, is common in this setting.15, 33 364 

We included a category of ‘probable SBI’ to account for the lack of sensitivity of 365 

conventional diagnostic testing in children. This category accounted for only a small number 366 
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of cases (8), and was defined in advance. By establishing clear criteria for each outcome 367 

diagnosis, we have sought to minimise verification bias.  368 

We studied children already considered at risk of SBI, in whom the clinical team had initiated 369 

further investigation. This unmeasured risk evaluation limits the external validity of our 370 

findings. The proportion of SBI (24%) is significantly higher than that observed in all febrile 371 

children in the ED and we agree with previous authors who have stressed the importance of  372 

diagnostics research in low-risk populations (such as all children attending the ED, or 373 

primary care).18 Almost 80% of our sample were admitted to hospital and received 374 

antibiotics, including 60% of those who did not have SBI. Decision-making based on a low-375 

risk threshold of 5% may reduce admissions and antibiotic use but does not (by definition) 376 

eliminate risk. Clinicians would need to  combine risk evaluation with appropriate safety-377 

netting.  378 

Comparison with published studies 379 

Our finding that clinical variables such as hypoxia, abnormal respiratory findings, irritability 380 

and dehydration increase the probability of SBI is consistent with similar studies.2, 13, 16  We 381 

failed to demonstrate the value of more subjective assessments, such as ‘ill appearance’, and 382 

‘parental concern’, though for each there was a significant problem of missing data.  383 

Next steps: 384 

Our results support a growing body of research to suggest that risk prediction models 385 

improve the identification of SBI in the children’s ED. Such models have yet to translate into 386 

improved clinical decision-making. Two recent impact studies challenge the assumption that 387 

accurate risk prediction will necessarily improve decision-making. In the first, the use of the 388 

‘Lab Score’ - a decision rule combining CRP, PCT and urinalysis - failed to reduce antibiotic 389 
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prescriptions in children in the ED.34 A second evaluated the use of the Nijman risk 390 

prediction model to guide decisions, and no impact on antibiotic prescribing, or hospital 391 

admission was observed35. 392 

Future impact studies need to evaluate the behaviours associated with decision-making. This 393 

has been of considerable importance in evaluating interventions to rationalise antibiotic 394 

prescribing36. In order to translate estimates of risk into safe clinical decisions and improve 395 

the management of children in the ED, it will be necessary to involve clinicians and families . 396 

The risk thresholds we have proposed are not yet established in the context of SBI in the 397 

children’s ED, and more work is necessary to determine whether they, and the clinical 398 

decisions they guide, are appropriate. 399 

 400 

CONCLUSION 401 

A diagnostic model combining clinical and biomarker variables discriminated well between 402 

pneumonia, other SBIs and no SBI in febrile children of all ages in the ED. External 403 

validation of a previously derived risk model yielded encouraging diagnostic accuracy and 404 

was improved by the addition of PCT and Resistin. Future work should establish the value of 405 

decision rules based upon risk prediction models in robust impact studies. Such studies must 406 

address the complex behaviours associated with clinical decisions in order to yield clinical 407 

benefit.  408 
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 Overall 

n=1101 

Pneumonia 

n=108 

Other SBI 

n=156 

No SBI 

n=837 

Demographics Median IQR Median IQR Median IQR Median IQR 

Age 2.39 0.88-5.73 3.51† 1.60-6.29 2.28 0.43-7.54 2.21 0.92-5.35 
 Proportion 95%CI Proportion 95%CI Median IQR Proportion 95%CI 

Male sex 0.55 0.52-0.58 0.48 0.39-0.57 0.59 0.51-0.66 0.56 0.52-0.59 

PMH 0.31 0.28-0.34 0.47† 0.38-0.57 0.26 0.19-0.33 0.30 0.27-0.33 

Clinical variables Median IQR Median IQR Median IQR Median IQR 

Temperature 37.8 37.0-38.6 37.9* 37.1-38.9 38.0* 37.2-38.8 37.7 36.9-38.6 

Heart Rate 140 121-166 147* 132-170 148* 122-175 139 120-163 

Respiratory Rate 30 24-38 38† 28-48 30 24-38 28 24-36 

Biomarkers Median IQR Median IQR Median IQR Median IQR 

CRP / mg/l 19.6 5.8-54.0 49.0† 21.1-119 68.3† 28.9-137 14.3 4.0-36.5 

WCC / x109/l 11.5 7.9-15.8 11.8* 8.4-18.5 15.0† 10.9-20.5 10.8 7.7-14.7 

Neutrophils / x109/l 6.9 3.8-10.8 8.0† 4.8-13.4 10.0† 5.9-14.8 6.2 3.4-9.7 

NGAL / ng/l 77.1 52.5-121 92.1† 65.9-162 120† 74.4-170 69.7 49.5-103 

PCT / µg/l 0.23 0.10-0.83 0.49† 0.12-2.85 1.10† 0.15-5.85 0.18 0.09-0.53 

Resistin / ng/l 40.3 21.1-73.4 67.3† 31.4-107 60.6† 29.7-113 35.7 19.8-64.3 

Outcomes Median IQR Median IQR Median IQR Median IQR 

Length of stay/ days 2 0-3 3† 2-6 4.5† 2-7 1 0-2 
 n (%) 95%CI n (%) 95%CI n (%) 95%CI n (%) 95%CI 

Antibiotic use 

Hospital admission 

PICU 

855 (78) 

844 (77) 

19 (1.73) 

75-80 

74-79 

1.11-2.68 

108† (100) 

102† (94) 

5* (4.63) 

96-100 

88-98 

2.00-10.4 

156† (100) 

148† (95) 

10*(6.41) 

97-100 

90-98 

3.52-11.4 

509 (61) 

516 (62) 

4 (0.48) 

57-64 

58-65 

0.19-1.22 

Mortality 1 (0.09) 0.01-0.51 0 0-3.40 1 (0.65) 0.12-3.55 0 0-0.46 

Table 1: Characteristics of study subjects. IQR – interquartile range. Statistical comparisons between Pneumonia, or Other SBI and No SBI. 

Continuous data were compared by means of the Kruskal Wallis test, proportions were compared by means of the Pearson’s Chi squared 

statistic. Rare events such as admission to PICU or death were compared by means of a Monte Carlo simulation. †p<0.001 *p<0.05
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Updated Nijman model: Pneumonia 

 Sensitivity 95% CI Specificity 95% CI PPV 95% CI NPV 95% CI PLR 95% CI NLR 95% CI 

2.5% 0.93 (0.86 - 0.97) 0.51 (0.47 - 0.55) 0.20 (0.16 - 0.24) 0.98 (0.96 - 0.99) 1.91 (1.75 - 2.08) 0.14 (0.07 - 0.28) 

5% 0.89 (0.81 - 0.94) 0.70 (0.67 - 0.73) 0.28 (0.23 - 0.33) 0.98 (0.97 - 0.99) 2.98 (2.63 - 3.37) 0.16 (0.09 - 0.27) 

10% 0.81 (0.79 - 0.88) 0.82 (0.79 - 0.84) 0.36 (0.30 - 0.43) 0.97 (0.95 - 0.98) 4.41 (3.72 - 5.23) 0.24 (0.16 - 0.35) 

20% 0.69 (0.60 - 0.78) 0.89 (0.87 - 0.91) 0.45 (0.38 - 0.53) 0.96 (0.94 - 0.97) 6.46 (5.12 - 8.14) 0.34 (0.26 - 0.46) 

30% 0.60 (0.92 - 0.96) 0.94 (0.92 - 0.96) 0.58 (0.48 - 0.67) 0.95 (0.93 - 0.96) 10.5 (7.66 -14.4) 0.42 (0.33 - 0.53) 

Other SBI 

2.5% 0.99 (0.96 - 1.0) 0.09 (0.07 - 0.11) 0.17 (0.15 - 0.19) 0.99 (0.93 - 1.00) 1.09 (1.06 - 1.12) 0.07 (0.01 - 0.50) 

5% 0.97 (0.93 - 0.99) 0.24 (0.21 - 0.27) 0.19 (0.17 - 0.22) 0.98 (0.95 - 0.99) 1.28 (1.22 - 1.34) 0.13 (0.06 - 0.31) 

10% 0.83 (0.77 - 0.89) 0.58 (0.55 - 0.62) 0.27 (0.23 - 0.31) 0.95 (0.93 - 0.97) 1.99 (1.79 - 2.21) 0.29 (0.20 - 0.41) 

20% 0.56 (0.48 - 0.64) 0.89 (0.87 - 0.91) 0.49 (0.41 - 0.56) 0.92 (0.90 - 0.93) 5.13 (4.04 - 6.50) 0.49 (0.41 - 0.59) 

30% 0.40 (0.32 - 0.48) 0.95 (0.94 - 0.97) 0.61 (0.51 - 0.70) 0.89 (0.87 - 0.91) 8.31 (5.80 - 11.9) 0.63 (0.56 - 0.72) 

Extended Nijman model (including PCT and Resistin): Pneumonia 

2.5% 0.94 (0.87 - 0.97) 0.52 (0.49 - 0.56) 0.20 (0.17 - 0.24) 0.98 (0.97 - 0.99) 1.96 (1.79 - 2.13) 0.12 (0.06 - 0.25) 

5% 0.92 (0.85 - 0.96) 0.69 (0.66 - 0.72) 0.28 (0.23 - 0.33) 0.98 (0.97 - 0.99) 2.96 (2.64 - 3.33) 0.12 (0.06 - 0.23) 

10% 0.85 (0.77 - 0.91) 0.82 (0.79 - 0.84) 0.38 (0.31 - 0.44) 0.98 (0.96 - 0.99) 4.66 (3.96 - 5.49) 0.18 (0.12 - 0.29) 

20% 0.70 (0.61 - 0.79) 0.89 (0.87 - 0.91) 0.46 (0.39 - 0.54) 0.96 (0.94 - 0.97) 6.69 (5.30 - 8.44) 0.33 (0.25 - 0.44) 

30% 0.62 (0.52 - 0.71) 0.94 (0.92 - 0.95) 0.56 (0.47 - 0.65) 0.95 (0.93 - 0.96) 9.99 (7.38 - 13.5) 0.4 (0.32 - 0.52) 

Other SBI 

2.5% 0.97 (0.94 - 0.99) 0.18 (0.15 - 0.20) 0.18 (0.16 - 0.21) 0.97 (0.93 - 0.99) 1.18 (1.14 - 1.23) 0.15 (0.05 - 0.39) 

5% 0.92 (0.86 - 0.95) 0.40 (0.37 - 0.44) 0.22 (0.19 - 0.26) 0.96 (0.94 - 0.98) 1.54 (1.43 - 1.65) 0.21 (0.12 - 0.35) 

10% 0.85 (0.79 - 0.90) 0.61 (0.58 - 0.65) 0.29 (0.25 -0.34) 0.96 (0.94 - 0.97) 2.21 (1.98 - 2.46) 0.24 (0.16 - 0.35) 

20% 0.70 (0.62 - 0.77) 0.86 (0.83 - 0.88) 0.48 (0.41 - 0.55) 0.94 (0.92 - 0.95) 4.96 (4.07 - 6.03) 0.35 (0.28 - 0.45) 

30% 0.53 (0.45 - 0.61) 0.94 (0.92 - 0.95) 0.61 (0.52 - 0.69) 0.91 (0.89 - 0.93) 8.40 (6.23 - 11.3) 0.50 (0.42 - 0.59) 

Table 2: Performance characteristics of the updated (top) and the extended Nijman models (bottom) including the biomarkers Procalcitonin and 

Resistin (bottom) PPV: positive predictive value, NPV: negative predictive value, PLR: positive likelihood ratio, NLR: negative likelihood ratio. 
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Outcome 

category 

Updated Extended 

n Rule-

out 

Inter-

mediate 

Rule-in Rule-

out 

Inter- 

mediate 

Rule-in 

Pneu Other Pneu Other 

No SBI 269 355 76 137 300 352 74 111 837 

Pneumonia 6 19 70 13 5 16 71 16 108 

Other SBI 13 29 7 107 9 33 7 107 156 

Total 288 403 153 257 314 401 152 234 1101 

Table 3: Outcomes according to risk classification for the updated and extended models. SBI 

was considered ‘ruled-out’ if the predicted probabilities of both pneumonia (“Pneu”) and 

other SBI (“Other”) were <5%, while SBI was considered ‘ruled-in’ if the probability of 

either outcome was >20%. All other subjects were considered to be at intermediate risk. 
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Figure legends: 

Figure 1: Flow diagram of the study. PID: Primary immunodeficiency. ED: Emergency 

Department. SBI: Serious Bacterial Infection. Excluded children with a ‘clinical reference 

standard’ are explained in the text. 

Figure 2: Parametric nominal calibration plot of predicted risks and observed outcomes in the 

validation set. 

Figure 3: Parametric nominal calibration plot of the original Nijman model on external 

validation. 

Figure 4: Parametric nominal calibration plot of the Nijman model with co-efficients re-fitted 

to the validation dataset. 
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 Derivation group (n=532) Validation group (n=569) 

No SBI 

(401) 
Pneu (63) 

Other SBI 

(68) 

No SBI 

(436) 
Pneu (45) 

Other SBI 

(88) 

FBC 391 (98) 62 (98) 68 (100) 427 (98) 45 (100) 87 (99) 

Urinalysis 99 (25) 10 (16) 17 (25) 97 (22) 7 (16) 25 (28) 

Blood 

culture 
257 (64) 54 (86) 56 (82) 280 (64) 42 (93) 77 (88) 

CXR 168 (42) 61 (97) 24 (35) 195 (45) 44 (98) 38 (43) 

Supplementary Table 1: Number (%) of diagnostic tests performed in each group. FBC: Full 

blood count, CXR: Chest X-ray 
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Diagnosis Criteria 

Pneumonia Respiratory symptoms and signs and focal consolidation on X-ray 

reported by a paediatric radiologist. 

Other SBI  

 Bacteraemia Identification of a significant bacterial pathogen in blood using culture 

or molecular methods. 

 Urinary tract 

 infection 

Growth of a single bacterial urinary tract pathogen at ≥105 colony-

forming units/ml in a normally sterile urine sample in the context of 

clinical signs of systemic involvement. 

 Meningitis Identification of a bacterial pathogen in CSF using culture or molecular 

methods, or clinical meningitis plus a cerebrospinal fluid 

polymorphonuclear leucocytosis in the absence of an alternative 

aetiological diagnosis. 

 Osteomyelitis Clinical signs, and radiological confirmation or identification of a 

pathogen in the bloodstream. 

 Septic 

 arthritis 

Isolation of a bacterial pathogen from a joint. 

 Probable SBI Prolonged admission, and administration of intravenous antibiotics 

beyond 72h despite negative culture results. 

Supplementary Table 2: Pre-defined criteria for the diagnosis of SBI14, 15, 25 

  



27 
 

Variable Observations 
Missing 

n % 

Neck stiffness 652 449 40.8 

Normal air entry 1069 32 2.9 

Chest clear 1069 32 2.9 

Bulging fontanelle 246 855 77.7 

Rash 1009 92 8.4 

Abdominal pain 306 795 72.2 

Parental concern 159 942 85.6 

History of myalgia 151 950 86.3 

Irritability 256 845 76.7 

Abnormal ENT signs 921 180 16.3 

Heart rate 1058 43 3.9 

History of diarrhoea 899 202 18.3 

Respiratory rate 907 194 17.6 

Duration of fever (day) 1101 0 0.0 

Temperature 1092 9 0.8 

Prolonged Capillary Refill (>2s) 909 192 17.4 

History of dysuria 270 831 75.5 

Dehydration 480 621 56.4 

Pallor 469 632 57.4 

Comorbidity 1101 0 0.0 

History of drowsiness 295 806 73.2 

Prior antibiotics 1097 4 0.4 

Wheeze 1074 27 2.5 

Ill appearance 108 993 90.2 

History of chest pain 118 983 89.3 

Chest crackles 1071 30 2.7 

History of cough 847 254 23.1 

Hypoxia (Sats <92%) 963 138 12.5 

Decreased Breath Sounds 1068 33 3.0 

Increased Work of Breathing 1071 30 2.7 

Supplementary Table 3: Proportion of missing data for each observed clinical variable.  
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Characteristics 
Derivation Validation 

Erasmus (n=1750) Haga-Juliana (n=967) Liverpool (n=1101) 

Median age/years (IQR) 1.8 (0.9-3.7) 1.5 (0.7-3.2) 2.4 (0.9-5.7) 

Male sex 0.57 0.55 0.55 

Median (IQR) duration of 

fever (days) 

n=1185 n=807 n=1052 

2 (1-3) 2 (1-3) 2 (0-3) 

Median temperature/°C 

(IQR) 

n=1699 n=967 n=1092 

39.0 (38.3-39.7) 38.8 (38.3-39.4) 37.8 (37.0-38.6) 

Median heart rate (IQR) 
n=914 n=473 n=1058 

140 (120-160) 156 (140-172) 140 (121-166) 

Median respiratory rate 

(IQR) 

n=819 n=183 n=907 

36 (28-48) 48 (40-60) 30 (24-38) 

Oxygen saturations <94% 
n=914 n=473 n=963 

41 43 82 

Cap refill time >3s 
n=914 n=473 n=909 

96 9 40 

Increased work of 

breathing 

n=914 n=473 n=1071 

97 108 218 

Ill appearance 
n=914 n=473 n=108 

520 317 64 

Median CRP (IQR) 
n=780 n=317 n=1072 

21 (7-54) 22 (7-56) 20 (6-54) 

Outcomes    

SBI/ n (%) 

Pneumonia 

UTI 

Septicaemia/meningitis 

Other 

222 (13) 

105 (6) 

50 (3) 

21 (1) 

46 (3) 

119 (12) 

66 (7) 

38 (4) 

1 (0) 

14 (1) 

264 (24) 

108 (10) 

58 (5) 

49 (4) 

49 (4)  

Supplementary table 4: Comparison of characteristics of study participants used in the derivation of 

the Nijman risk prediction model, and the Liverpool validation group 
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Biomarkers n 
Pneumonia Other SBI 

OR LCI UCI OR LCI UCI 

Procalcitonin 1034 1.22 1.15 1.29 1.23 1.16 1.30 

Neutrophils 1059 1.09 1.06 1.13 1.12 1.09 1.15 

WCC 1059 1.05 1.02 1.08 1.08 1.06 1.11 

CRP 1072 1.02 1.01 1.02 1.02 1.02 1.02 

Resistin 1045 1.01 1.00 1.01 1.01 1.01 1.01 

NGAL 1046 1.00 1.00 1.01 1.01 1.00 1.01 

Blood glucose 123 0.78 0.54 1.12 1.03 0.89 1.20 

Lactate 167 0.67 0.42 1.09 1.12 0.84 1.50 

Supplementary Table 5: Odds ratios of biomarker variables significantly associated with 

pneumonia and other SBI in univariate multinomial regression analysis. OR: Odds ratio. LCI: 

Lower (95%) confidence interval. UCI: Upper (95%) confidence interval. 
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Supplementary table 6: Summary output of the derived polynomial models for the diagnosis 

of pneumonia and other SBIs. Est: Estimate of the regression co-efficient. 

  

 

Pneumonia Other SBI 

Est OR LCI UCI Est OR LCI UCI 

(Intercept) -2.516 0.081 0.025 0.260 -2.779 0.062 0.016 0.239 

CRP / mg/l (<30) 0.025 1.025 0.990 1.060 0.045 1.046 1.011 1.081 

CRP / mg/l (>30) 0.010 1.010 1.003 1.018 0.012 1.012 1.005 1.019 

Respiratory rate 0.047 1.048 1.021 1.076 0.009 1.009 0.980 1.039 

PCT / µg/l 0.173 1.189 1.079 1.310 0.168 1.183 1.074 1.303 

Normal air entry -2.387 0.092 0.046 0.182 0.240 1.271 0.514 3.142 

Resistin / ng/ml 0.003 1.003 0.999 1.008 0.004 1.004 1.000 1.007 
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Outcome 

diagnosis 
n 

Updated model Extended model 

No SBI Pneumonia Other SBI No SBI Pneumonia Other SBI 

No SBI 837 801 18 18 807 17 13 

Pneumonia 108 61 44 3 58 45 5 

Other SBI 156 106 2 48 89 2 65 

Supplementary table 7: Observed and predicted outcomes as determined by the highest risk 

category predicted by the updated and extended multinomial models. 


