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Abstract

The properties of high-dimensional Bingham distributions have been studied by Kume and Walker (2014). Fallaize

and Kypraios (2016) propose Bayesian inference for the Bingham distribution and they use developments in Bayesian

computation for distributions with doubly intractable normalising constants (Møller et al. 2006; Murray et al. 2006).

However, they rely heavily on two Metropolis updates that they need to tune. In this paper we propose instead model

selection with the marginal likelihood.
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1 Introduction

The properties of high-dimensional Bingham distributions have been studied by Kume and Walker (2014). Bee, Benedetti

and Espa (2017) have considered approximate maximum likelihood estimation of the Bingham distribution. Fallaize and

Kypraios (2016) propose Bayesian inference for the Bingham distribution and they use developments in Bayesian computation

for distributions with doubly intractable normalising constants (Møller et al. 2006; Murray et al. 2006). However, they

rely heavily on two Metropolis updates that they need to tune. In this paper we rely on Walker (2014) but we avoid his

reversible-jump MCMC via model selection with the marginal likelihood.

2 Methods

2.1 Fixed A

The Bingham distribution is

p(x;A) =
1

c(A)
exp(−x′Ax), x ∈ <q, x′x = 1, (1)

where c(A) is an intractable integration constant and A is a q× q symmetric matrix. The standard form of the distribution is:

p(x; Λ) =
1

c(Λ)
exp

{
−

q−1∑
i=1

λix
2
i

}
, (2)

with respect to a uniform measure on the sphere and

c(Λ) =

ˆ
Sq−1

exp

{
−

q−1∑
i=1

λix
2
i

}
dSq−1(x), (3)

where Sq−1 is the unit sphere in <q, andΛ = diag(λ1, ..., λq) under the identifiability constraint

λ1 ≥ ... ≥ λq−1 ≥ λq = 0. (4)

We need these constraints as the density does not change if we add a positive constant to the λis, see Bingham (1974).

If A = V ΛV ′ where V is orthonormal, if X follows a Bingham distribution with density p(x;A) then Y = V X follows

a Bingham distribution with density p(x; Λ), see Kume and Walker (2006). The maximum likelihood estimator of V is the

matrix of eigenvectors of
∑T

t=1 xtx
′
t.

The joint density from a random sample X = {xt; t = 1, ..., T} gives rise to the likelihood:

L(Λ;X) = c(Λ)−T exp

{
−

q−1∑
i=1

λiQi

}
, (5)

where Qi =
∑T

t=1 x
2
ti. Given a prior, say p(Λ) we have the posterior:

p(Λ|X) ∝ c(Λ)−T exp

{
−

q−1∑
i=1

λiQi

}
p(Λ). (6)

It is possible to introduce an auxiliary variable v so that

p(Λ, v|X) ∝ vT−1 exp {−c(Λ)v} exp

{
−

q−1∑
i=1

λiQi

}
p(Λ). (7)
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However, since c(Λ) is intractable this is not much help. Following Walker (2011) we can introduce variables (k, s1, ..., sk)

to have:

p(Λ, v, k, s(k)|X) ∝ vT+k−1 exp(−v)

k!
exp

{
−

q−1∑
i=1

λiQi

}
k∏

j=1

[1− p̃(sj ; Λ)] p(Λ), (8)

where p̃(s; Λ) = exp
{
−
∑q−1

j=1 s
2
jλj

}
, s(k) ≡ (s1, ..., sk) ∈ (0, 1), for all k. Further latent variables u1, ..., uk can be introduced

and they contribute a term:
k∏

j=1

1 (uj < 1− p̃(sj ; Λ)) .

The conditional posterior of v is gamma(T +k, 1). The conditional posterior for uj is uniform in (0, 1− p̃(sj ; Λ)). The

conditional posterior for sj is uniform in {s ∈ (0, 1) : p̃(s; Λ) < 1− uj}. If we integrate out v we get:

p(Λ, k, s(k)|X) ∝

(
T + k − 1

k

)
k∏

j=1

[1− p̃(sj ; Λ)] exp

{
−

q−1∑
i=1

λiQi

}
p(Λ). (9)

The conditional posterior for Λ is:

p(Λ|k, s(k), X) ∝ exp

{
−

q−1∑
i=1

λiQi

}
p(Λ)1(θ ∈ A), (10)

where A = {θ : p(sj ; Λ) < 1− uj , ∀j = 1, ..., k}.
Walker (2011) proposed an infinite mixture for

(
k, s(k), u

)
along the lines of Godsill (2001). Here, we propose to consider

values of k = 1, ..., k and choose the one that maximizes the marginal likelihood which, for fixed k, can be obtained from (9)

using the method of Perrakis, Ntzoufras and Tsionas (2014). Walker (2014) used the ideas above but resorted to reversible

jump MCMC (Green, 1995), a fact that was shown that can be bypassed in Fallaize and Kypraios (2016). The method we

propose here, avoids both the use of reversible jump MCMC as in Walker (2013) and also the Metropolis updates in Fallaize

and Kypraios (2016).

2.2 Posterior inference for A

The conditional posterior of A, if we assign normal priors N(0, h2) to its elements is given by:

p(A|.) ∝
exp

{
−
∑T

t=1 y
′
tAyt − 1

2h2 a′a
}

c(A)n
=

exp
{
−detAQ− 1

2h2 a′a
}

c(A)n
, (11)

where a is the vector of distinct elements of A and Q =
∑T

t=1 yty
′
t. We can use the same “trick” as in (7) and introduce an

auxiliary variable v so that:

p(A|·) ∝ vT−1 exp

{
−AQ− 1

2h2 a
′a− c(A)v

}
, (12)

but since c(A) is unknown this is not very helpful. However, we can proceed by introducing additional latent variables K

and S(k), as we did in (8). We avoid, again, the infinite mixture construction and reversible-jump MCMC by using model

selection for K via the marginal likelihood. It can be shown that each different element of A in the final conditional posterior

distribution follows a normal distribution subject to constraints similar to those that we provided previously for Λ.
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3 Applications

We apply our techniques to two artificial data sets as described in Fallaize and Kypraios (2016). For both sets we use 15,000

iterations the first 5,000 of which are discarded to mitigate start up effects.

DATA SET 1. We consider a sample of n = 100 unit vectors which result approximately in the pair of sufficient

statistics (τ1, τ2) = (0.30, 0.32) where τi =
∑n

t=1 y
2
ti. We assign independent exponential prior distributions with mean 100

to the parameters λ1 and λ2. Mardia and Zemroch (1977) report maximum likelihood estimates of 0.588 and 0.421.

DATA SET 2. We consider an artificial dataset of 100 vectors which result approximately in the pair of sufficient

statistics (τ1, τ2) = (0.02, 0.40)for which the maximum likelihood estimates are 25.31 and 0.762 as reported in Mardia and

Zemroch (1977). We use the same priors as in data set 1.

Marginal posterior densities of λ1and λ2 and their autocorrelation functions from MCMC are reported in Figure 1 for

data set 1 and in Figure 2 for data set 2. The marginal posteriors are visually very close to the ones reported in Fallaize and

Kypraios (2016) but MCMC autocorrelations are substantially smaller.

In Figure 3 we present normalized marginal likelihoods for selection of k in the two data sets (we normalize the marginal

likelijhood to 1 when k = 1). In both cases the marginal likelihood favours k=20.

DATA SET 3. To illustrate inference for a general matrix A we use the data of Bingham (1974) as in Fallaize and

Kypraios (2016). The data consist of n= 150 measurements on the c-axis of calcite grains from theTaconic Mountains of New

York state. We use h=10. For the diagonal components of Λ, Fallaize and Kypraios (2016) obtain posterior median values

λ1 = 3.631 and λ2 = 1.963. We obtain 3.60 and 1.942 respectively. For V , the orthonormal component matrix of A, our

posterior means are:

V =

 0.1751 −0.4423 0.8812

0.1375 0.8932 0.4251

−0.9681 0.0463 0.2195

 ,

which in in broad agreement with the results in Fallaize and Kypraios (2016).
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Figure 1: Data Set 1
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Figure 2: Data Set 2

15 20 25 30 35
0

0.05

0.1

← MLE

λ
1

de
ns

ity

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

λ
2

de
ns

ity

← MLE

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lag

ac
f l

am
bd

a 1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

lag

ac
f l

am
bd

a 2

6



Figure 3: Normalized marginal likelihood to select k
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