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Abstract 1 

Background: The sample size required to power a study to a nominal level in a paired 2 

comparative diagnostic accuracy study, i.e. studies in which the diagnostic accuracy of two 3 

testing procedures is compared relative to a gold standard, depends on the conditional 4 

dependence between the two tests - the lower the dependence the greater the sample size 5 

required.  A priori, we usually do not know the dependence between the two tests and thus 6 

cannot determine the exact sample size required. One option is to use the implied sample size 7 

for the maximal negative dependence, giving the largest possible sample size.  However, this 8 

is potentially wasteful of resources and unnecessarily burdensome on study participants as 9 

the study is likely to be overpowered.  A more accurate estimate of the sample size can be 10 

determined at a planned interim analysis point where the sample size is re-estimated.   11 

Methods: This paper discusses a sample size estimation and re-estimation method based on 12 

the maximum likelihood estimates, under an implied multinomial model, of the observed 13 

values of conditional dependence between the two tests and, if required, prevalence, at a 14 

planned interim.  The method is illustrated by comparing the accuracy of two procedures for 15 

the detection of pancreatic cancer, one procedure using the standard battery of tests, and the 16 

other using the standard battery with the addition of a PET/CT scan all relative to the gold 17 

standard of a cell biopsy. Simulation of the proposed method illustrates its robustness under 18 

various conditions. 19 

Results: The results show that the type I error rate of the overall experiment is stable using 20 

our suggested method and that the type II error rate is close to or above nominal. 21 

Furthermore, the instances in which the type II error rate is above nominal are in the 22 

situations where the lowest sample size is required, meaning a lower impact on the actual 23 

number of participants recruited. 24 
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Conclusion: We recommend multinomial model maximum likelihood estimation of the 1 

conditional dependence between paired diagnostic accuracy tests at an interim to reduce the 2 

number of participants required to power the study to at least the nominal level. 3 

Trial registration: ISRCTN ISRCTN73852054. Registered 9th of January 2015. 4 

Retrospectively registered. 5 

 6 

Keywords: Interim analysis, sample-size re-estimation, study design, diagnostic accuracy, 7 

sensitivity, specificity. 8 
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Background 1 

An assessment of diagnostic accuracy is crucial in the development of medical testing 2 

procedures [1].  Comparing the accuracy of these procedures in terms of their sensitivities 3 

and specificities [2,3] relative to a gold standard, a type of ‘diagnostic accuracy’ study [4],  is 4 

essential to ensuring that the most appropriate tests are deployed in the clinical setting [5].  At 5 

the outset of a study, a sample size is calculated based on assumptions made about the 6 

expected changes in sensitivity and specificity and, in a prospective design, the likely 7 

prevalence of the condition to be tested for in the sample.  However, the initial assumptions 8 

about parameters in the study, especially the conditional dependence between the two tests, 9 

may be revealed to be inaccurate, resulting in a potentially over- or under-powered study.  A 10 

planned interim analysis can allow the study's sample size to be updated based on the data 11 

already collected.  This involves utilising the information observed at the interim stage to 12 

refine the sample size estimate.  A resulting increase in sample size allows the time, cost and 13 

patient discomfort already invested in the study to yield valid results while a decrease in 14 

sample size means that less time and cost will be expended overall and patients will not 15 

needlessly undergo unnecessary testing [6]. 16 

There are well-established methodologies for interim sample size re-estimation in treatment 17 

studies for continuous and normally distributed response variables [7–11], some of which 18 

provide mechanisms to maintain blinding in the study [8–10].  Methods also exist for the re-19 

estimation with binary response variables [12,13], and mechanisms to maintain blinding have 20 

been proposed in this more complex situation where the variance and mean parameters are 21 

not separable [14].  Proschan [15] gives an overview of sample size re-estimation procedures 22 

based on a nuisance parameter. Specifically, procedures for determining the difference of 23 

means between two samples with a common, unknown, variance and difference in 24 
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proportions between two groups, with an unknown overall proportion, are considered. In the 1 

case of normally distributed data, the independence of the sample variance and sample mean 2 

ensures that the validity of estimates is unaffected by the interim sample size re-estimation 3 

and this is shown to hold asymptotically in the binary case. However, Proschan does not 4 

consider the case of paired data which is the focus of the current paper.  Furthermore, the 5 

implications of sample size re-estimation in the context of comparative diagnostics studies, 6 

inherently different from those in treatment (randomised controlled) studies [16], have not 7 

been fully explored in the statistical literature. 8 

A number of salient differences in interim analysis between studies comparing diagnostic 9 

tests and those comparing treatments are highlighted in Gerke et al [5] and Gerke et al [16].  10 

Firstly, in paired diagnostics accuracy studies, full blinding is often not possible.  However, 11 

as long as the results of the two-tests which are being compared are temporarily blinded from 12 

each other, this is not a major threat to a study's validity.  In fact, it has the advantage that the 13 

patients can benefit from their clinicians knowing the results of both diagnostic tests after 14 

testing has taken place.  Secondly, in diagnostic accuracy studies, early cessation of the study 15 

due to futility is not as easy to establish as in treatment studies.  The reason for this is the fact 16 

that treatment studies often test a single outcome while diagnostic studies test two outcomes, 17 

sensitivity and specificity, and futility must be established for both simultaneously.  Thirdly, 18 

the sample size required for a hypothesis test in diagnostic studies, powered to a given level, 19 

is closely related to the conditional dependence between the two testing procedures which has 20 

been shown to present problems in a number of contexts [5,17–22].  More specifically, the 21 

lower the conditional dependence between the tests, the greater the sample size will be, with 22 

the largest sample size being implied by the maximum negative dependence, given the 23 

specified alternative hypotheses.  This level of conditional dependence between the tests is 24 

one of the primary factors driving the required sample size estimate and it is often difficult to 25 
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estimate a priori.  Gerke et al [5] assert that for comparative diagnostic studies, as long as an 1 

interim sample size re-estimation is planned it bears no threat to the validity of the study.  2 

However, Gerke et al [5] do not provide justification for this assertion and, furthermore, their 3 

assertion does not take the inherent uncertainty of the interim data into account.  This study 4 

aims to present a method and give practical guidelines for its application, for the initial 5 

estimation and interim re-estimation of sample size in a paired diagnostic study which will 6 

allow utilisation of information on the conditional dependence between tests at the interim to 7 

potentially reduce the required sample size while maintaining the approximate nominal 8 

statistical power of the experiment as a whole.  While we present a method of estimating the 9 

size of the conditional dependence to reduce sample size, it should also be noted that there is 10 

a body of literature dealing with the problems caused by conditional dependence in other 11 

areas [23–25].  12 

The remainder of the article is organised as follows. The methods section outlines sample 13 

size estimation methods for paired diagnostic test studies, introduces a motivating example 14 

application, and then goes on to propose a new method for re-estimation based on a 15 

multinomial likelihood. The results section first provides extensive simulations of the method 16 

under various real world conditions and then moves back to apply the sample size re-17 

estimation method proposed in this paper to the motivating example.  The article then 18 

continues with a brief discussion of the place of this study in the literature and the optimal 19 

interim sample size to choose.  Finally, the conclusion, summarises and restates the major 20 

outcomes of this study. 21 

Methods 22 

A representation of data from a paired comparative diagnostic accuracy study is given in 23 

Table 1.  The subjects are initially divided according to whether they are discovered, via the 24 
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gold standard test, to be diseased or non-diseased.  They are then further subdivided as to 1 

whether they test positive or negative on tests A and B.  For example, the cell 𝑛𝐴 represents 2 

subjects that were found to have the disease via the gold standard test and also tested positive 3 

on both test A and B, while cell 𝑛𝐹 denotes subjects who tested negative on the gold standard 4 

and test B but positive on test A. 5 

Table 1- Paired study design 6 

Diseased 
  

  

  

  

Non-diseased 

 Test B  Test B 

+ive -ive +ive -ive 

Test A 
+ive 𝑛𝐴 𝑛𝐵 

Test A 
+ive 𝑛𝐸  𝑛𝐹 

-ive 𝑛𝐶  𝑛𝐷 -ive 𝑛𝐺  𝑛𝐻 

 7 

A possible initial sample size calculation, using a normal approximation of the logarithm of 8 

the ratio of sensitivities and specificities, and assuming a comparison between a new test, test 9 

A, and an existing test, test B, follows from Alonzo et al [19] and a full derivation can be 10 

found therein.  The experiment, as a whole tests jointly both sensitivity and specificity 11 

improvement to pre-specified levels, the sample size is calculated for each and the largest 12 

sample size is chosen to power the study.  Note that this paper concentrates on the situation in 13 

which superiority is tested in for both sensitivity and specificiry.  However, the method 14 

elaborated below should be extendable to situations where we are interested in testing non-15 

inferiority in either or both of sensitivity and specificity.  For details on the construction of 16 

the confidence intervals and hypothesis tests in these situations see Alonzo et al [19]. In the 17 

case of the estimation of a sample size for superiotity, the initial sample size calculation for 18 

sensitivity is given by: 19 

 
𝑛𝑝1 = (

𝑍(1−𝛽) + 𝑍(1−𝛼/2)

log 𝛾1
)

2

(
(𝛾1 + 1)𝑇𝑃𝑅𝐵 − 2𝑇𝑃𝑃𝑅

𝛾1𝑇𝑃𝑅𝐵
2 ) /𝜋 

(1) 
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where, 𝛼 is the type I error rate of the study and 𝛽 is the power of the study.  The main 1 

quantity of interest, 𝛾1, is the ratio of true positive rates= 𝑇𝑃𝑅𝐴/𝑇𝑃𝑅𝐵, 𝑇𝑃𝑅𝐵 is the true 2 

positive rate (sensitivity) on test B, i.e.  𝑇𝑃𝑅𝐵 = (𝑛𝐴 +  𝑛𝐶) / ( 𝑛𝐴 + 𝑛𝐵 +  𝑛𝐶 +   𝑛𝐷),  𝑇𝑃𝑅𝐴 3 

is the true positive rate (sensitivity) on test A, i.e. 𝑇𝑃𝑅𝐴 =  (𝑛𝐴 + 𝑛𝐵) / ( 𝑛𝐴 + 𝑛𝐵 +  𝑛𝐶 +4 

  𝑛𝐷), 𝑇𝑃𝑃𝑅 is the proportion of diseased patients who test positive on both tests, i.e.  5 

𝑇𝑃𝑃𝑅 = 𝑛𝐴/( 𝑛𝐴 + 𝑛𝐵 +  𝑛𝐶 +   𝑛𝐷) and 𝜋 is the prevalence of disease.  The null hypothesis 6 

is that 𝛾1 = 1, the alternative hypothesis is that 𝛾1 ≠ 1. 7 

For testing superiority of specificity we are interested in the true negative rates so the formula 8 

is instead: 9 

 10 

 
𝑛𝑛1 = (

𝑍(1−𝛽) +  𝑍(1−𝛼/2)

log 𝛾2
)

2

(
(𝛾2 + 1)𝑇𝑁𝑅𝐵 − 2𝑇𝑁𝑁𝑅

𝛾2𝑇𝑁𝑅𝐵
2 ) /(1 − 𝜋) 

 

(2) 

where, 𝛾2, the main quantity of interest is the ratio of true negative rates  = 𝑇𝑁𝑅𝐴/𝑇𝑁𝑅𝐵,  11 

𝑇𝑁𝑅𝐴 is the true negative rate (specificity) on test A = (𝑛𝐺 +  𝑛𝐻) / ( 𝑛𝐸 + 𝑛𝐹 +  𝑛𝐺 +   𝑛𝐻), 12 

𝑇𝑁𝑅𝐵 is the true negative rate (specificity) on test B = (𝑛𝐹 +  𝑛𝐻) / ( 𝑛𝐸 + 𝑛𝐹 +  𝑛𝐺 +   𝑛𝐻), 13 

and 𝑇𝑁𝑁𝑅 is the proportion of non-diseased patients who test negative on both tests = 14 

𝑛𝐻/( 𝑛𝐸 + 𝑛𝐹 +  𝑛𝐺 +   𝑛𝐻).  15 

It is interesting to note that, following the notation of Vacek [23] and considering the 16 

population 2x2 table (in Table 1), the conditional dependence of the two tests can be denoted 17 

by eb and ea, the conditional covariance when the gold standard disease status is positive or 18 

negative, respectively [23]. Therefore, the probability of both tests being positive can be 19 
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expressed as 𝑇𝑃𝑃𝑅 = 𝑇𝑃𝑅𝐴 ∙  𝑇𝑃𝑅𝐵 + 𝑒𝑏 and the probability of both tests being negative 1 

 𝑇𝑁𝑁𝑅 =  (1 − 𝑇𝑁𝑅𝐴) ∙ (1 − 𝑇𝑁𝑅𝐵) +  𝑒𝑎. When 𝑒𝑎 and 𝑒𝑏 = 0 the tests are conditionally 2 

independent, when 𝑒𝑎 and/or 𝑒𝑏 ≠ 0 the response on one test changes the probability of that 3 

response on the other test.  For example, when 𝑒𝑏 > 0 an individual who responds positively 4 

on test A is more likely to respond positively on test B. 5 

 6 

For initial estimates of 𝑇𝑃𝑃𝑅 and 𝑇𝑁𝑁𝑅, from Alonzo et al [19]  we can use the fact that 7 

𝑇𝑃𝑃𝑅 ≥ (1 + 𝛾1)𝑇𝑃𝑅𝐵 − 1 and 𝑇𝑁𝑁𝑅 ≥ (1 + 𝛾2)𝑇𝑁𝑅𝐵 − 1 to estimate the lower bounds 8 

of the possible values of 𝑇𝑃𝑃𝑅 and 𝑇𝑁𝑁𝑅, under the specified hypotheses. The required 9 

sample size is largest when 𝑇𝑃𝑃𝑅 = (1 + 𝛾1)𝑇𝑃𝑅𝐵 − 1 and 𝑇𝑁𝑁𝑅 = (1 + 𝛾2)𝑇𝑁𝑅𝐵 − 1, 10 

thus, these estimates represent the "worst case scenarios" of maximal negative conditional 11 

dependence between the tests, conditional on the fixed values of 𝑇𝑃𝑅𝐴 and 𝑇𝑃𝑅𝐵.  The 12 

sample size implied by using these levels of 𝑇𝑃𝑃𝑅 and 𝑇𝑁𝑁𝑅  would very likely overpower 13 

the study, i.e. more participants will be recruited than is strictly necessary to achieve the 14 

power specified by 𝛽. The required sample size is smallest when the conditional dependence 15 

between tests A and B are maximal, conditional on the fixed values of 𝑇𝑃𝑅𝐴 and 𝑇𝑃𝑅𝐵, i.e. 16 

when 𝑇𝑃𝑃𝑅 = 𝑇𝑃𝑅𝐵 and 𝑇𝑁𝑁𝑅 = 𝑇𝑁𝑅𝐵.  The implied sample size in this case would likely 17 

underpower the study, i.e. too few participants recruited to reach the power specified by 𝛽.  18 

The sample size in this “best case scenario” can be substantially lower than that in the worst 19 

case scenario.  Conservatively, it might be thought a good idea to always use the “worst case 20 

scenario” implied sample size estimate which will always power the study sufficiently.  21 

However, in cases where the recruitment and testing of participants comes at a premium, both 22 

financially and in terms of discomfort to the patients, it might be preferable to apply a more 23 

nuanced strategy.  Furthermore, the sample size implied by the “worst case scenario” implies 24 
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the highly unlikely condition of a maximal negative conditional dependence between two 1 

tests, which are performed on the same patients to detect the same disease.  The implied 2 

sample size based on this condition is not recommended [26].  One possibility, to enable a 3 

more accurate evaluation of the conditional dependence between the two tests, and thus the 4 

required sample size, is to perform a planned interim sample size re-estimation using this 5 

information to refine the sample size estimate. 6 

 7 

At a planned interim, where a proportion of the overall sample size has been collected, we 8 

would have some information about the true values of 𝑇𝑃𝑃𝑅, 𝑇𝑁𝑁𝑅, 𝜋, 𝑇𝑃𝑅𝐵 and 𝑇𝑁𝑅𝐵, 9 

however, these values would only come from a limited sample size.  The crucial parameters 10 

to use in re-estimation are those related to the conditional dependence between the tests, i.e., 11 

𝑇𝑃𝑃𝑅 and 𝑇𝑁𝑁𝑅, as these values are difficult to estimate and, for these parameters, it is 12 

unlikely that research exists which can provide an approximate value.  Conversely, the values 13 

of, 𝑇𝑃𝑅𝐵 and 𝑇𝑁𝑅𝐵, the sensitivities and specificities of an established test, may have known 14 

values in the literature and these should preferably be used over those from the relatively 15 

small interim sample.  For the value of 𝜋, the prevalence, a judgement must be made as to 16 

whether the researcher feels that any pre-existing estimate of prevalence would be a more 17 

accurate reflection of the true prevalence in the specific study population than any interim 18 

estimate.  In the example given below, we use values for 𝑇𝑃𝑃𝑅, 𝑇𝑁𝑁𝑅 and 𝜋 at the interim 19 

in the sample size calculation. 20 

Naively, it might appear that interim sample size re-estimation would entail a straightforward 21 

replication of equations (1) and (2) with 𝜋, and in the case of (1), 𝑇𝑃𝑃𝑅  or in the case of (2), 22 

𝑇𝑁𝑁𝑅, replaced with the estimates at the interim point.  However, this approach does not 23 

effectively take into account the inherent uncertainty in the interim parameter estimates of 24 
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𝑇𝑃𝑃𝑅, 𝑇𝑁𝑁𝑅 and 𝜋, nor the fact that only a specific range of values for 𝑇𝑃𝑃𝑅 and 𝑇𝑁𝑁𝑅 1 

are actually possible under the alternative hypothesis.  An approach which does take these 2 

factors into account is re-estimation of the sample size based on maximum likelihood 3 

estimation, at the interim, of the parameters in question under a multinomial model. This 4 

model is constrained by the hypothesised values of 𝑇𝑃𝑅𝐴, 𝑇𝑃𝑅𝐵,  𝑇𝑁𝑅𝐴, and 𝑇𝑁𝑅𝐵, i.e. the 5 

marginals in Table 1. 6 

 7 

Application 8 

The numerical example we use involves an interim sample size recalculation of a study 9 

comparing the incremental benefits to sensitivity and specificity of augmenting current 10 

methods for diagnosing pancreatic cancer with Positron Emission Tomography (PET) and 11 

computed tomography (CT) technologies.  The alternative hypotheses were that sensitivity 12 

would rise from 81% to 90%, and specificity would rise from 66% to 80%, additionally, the 13 

expected prevalence of pancreatic cancer from the literature was 47%. 14 

 15 

To calculate the sample size for sensitivity equation 1 was used, taking 𝛼 = 0.05, 𝛽 = 0.2,16 

𝛾1 =
0.9

0.81
, 𝑇𝑃𝑅𝐵̂ = 0.81, 𝑇𝑃𝑃𝑅̂ = 0.71, and 𝜋̂ = 0.47 gives a sample size of 598.  To 17 

calculate the sample size for specificity equation 2 was used taking 𝛼 = 0.05, 𝛽 = 0.2,  𝛾2 =18 

0.8

0.66
,  𝑇𝑁𝑅𝐵̂ = 0.66,  𝑇𝑁𝑁𝑅̂ = 0.46 , and 𝜋̂ = 0.47 gives a sample size of 409. The minimum 19 

sample sizes for sensitivity and specificity, given  𝑇𝑃𝑃𝑅̂ = 0.81 and 𝑇𝑁𝑁𝑅̂ = 0.66, are 186 20 

and 106, respectively.  Given the disparity between the minimum and maximum sample size 21 

estimates it was decided to re-assess the sample size at a planned interim. 22 

Table 6 - Interim PET diagnostic study results 23 
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Diseased patients 
  

  

  

  

Non-diseased patients 

 
Pre-PET 

 
Pre-PET 

+ive -ive +ive -ive 

Post-PET 
+ive 66 3 

Post-PET 
+ive 21 4 

-ive 3 10 -ive 11 69 

 1 
Table 6 gives the results after data from 187 participants had been collected.  The observed 2 

values at the interim are: 𝑇𝑃𝑃𝑅̂ = 0.80, 𝑇𝑁𝑁𝑅̂ = 0.66 and 𝜋̂ = 0.44.  Taking a naive 3 

approach and plugging these values directly into equations 1 and 2 the implied sample sizes 4 

for sensitivity become 242 and for specificity 100, giving a total sample size for the study of 5 

242 (or 342 and 145, respectively, had we also used the interim values of 𝑇𝑃𝑅𝐵 and 𝑇𝑁𝑅𝐵). 6 

However, this method does not take into account the fact that 𝑇𝑃𝑃𝑅̂ and 𝑇𝑁𝑁𝑅̂  are random 7 

variables and we are actually interested in the true value of the probability of 𝑇𝑃𝑃𝑅 and 8 

𝑇𝑁𝑁𝑅 under the specified alternative hypothesis.  In fact, had the observed value for 𝑇𝑃𝑃𝑅 9 

been equal to 0.86, the sample size given via the naive method would have been -22, given 10 

the fact that 𝑇𝑃𝑃𝑅̂ would have been larger than both 𝑇𝑃𝑅𝐴 and 𝑇𝑃𝑅𝐵.  Clearly, the naive 11 

method, which uses the random value of a single cell, is inappropriate and a method that uses 12 

information about the value of 𝑇𝑃𝑃𝑅 from all of the observed cells and the specified 13 

marginals is required. 14 

 15 

Sample size re-estimation via maximum likelihood estimation of 𝑻𝑷𝑷𝑹 16 

For illustration purposes, we will discuss the re-estimation of the sample size for sensitivity, 17 

the estimation procedure for specificity is analogous.  Taking  𝑇𝑃𝑅𝐴 as the test with the 18 

highest expected diagnostic utility, i.e. the “new” test whose performance we are comparing 19 

to the “standard”, the probabilities corresponding to the cells in Table 1, given the situation of 20 

the maximally negative conditional dependence between the tests are: 𝑝1 =   𝑇𝑃𝑅𝐵 −  (1 −21 
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  𝑇𝑃𝑅𝐴), 𝑝2 =  1 −  𝑇𝑃𝑅𝐵, 𝑝3 = 1 −   𝑇𝑃𝑅𝐴, 𝑝4 = 0.  The probabilities of the cells when the 1 

conditional dependence between  𝑇𝑃𝑅𝐴 and  𝑇𝑃𝑅𝐵  is at its maximally positive are given 2 

by: 𝑝1 =  𝑇𝑃𝑅𝐵, 𝑝2 =  𝑇𝑃𝑅𝐴 −   𝑇𝑃𝑅𝐵, 𝑝3 = 0, 𝑝4 = 1 −  𝑇𝑃𝑅𝐴.  We could alternatively 3 

specify these cell probabilities according to the covariance between the two tests.  4 

Specifically, Vacek [23] gives the maximum value of the covariance as  𝑇𝑃𝑅𝐵 (1 −5 

 𝑇𝑃𝑅𝐴) and the minimum value as −(1 − 𝑇𝑃𝑅𝐴)(1 −  𝑇𝑃𝑅𝐵).  Thus, the maximum and 6 

minimum values for the cells can be ascertained by finding the product of the marginal 7 

probabilities associated with a cell and adding the minimum or maximum value of 8 

covariance, for cells  𝑝1 and  𝑝4, or subtracting the values of covariance for cells  𝑝2 and  𝑝3.  9 

For example, the minimum value for  𝑝1 =   𝑇𝑃𝑅𝐴 ∙  𝑇𝑃𝑅𝐵 − (1 −  𝑇𝑃𝑅𝐴)(1 −  𝑇𝑃𝑅𝐵).  10 

Between the minimum and maximum values lies every permissible joint configuration. Let 11 

these possible joint configurations be expressed as vector, 𝐩, with 𝑝1 = 𝑇𝑃𝑃𝑅, where  12 

∑ 𝐩𝑖
4
𝑖=1 = 1,  𝑝1 +  𝑝2 =  𝑇𝑃𝑅𝐴 and 𝑝1 +  𝑝3 =  𝑇𝑃𝑅𝐵.   13 

 14 

When the conditional dependence is maximally positive the sample size required is the 15 

smallest, when it is maximally negative the sample size required is at its largest.  At the 16 

beginning of the experiment we do not know which of these possible levels of conditional 17 

dependence our data were generated under and thus we use the, usually overly conservative, 18 

largest possible sample size estimate. 19 

 20 

However, at the interim we can use our observed data to infer a likelihood of that data having 21 

been generated under each of the permissible joint configurations of cell probabilities given 22 

the implied range of probabilities under a multinomial model.   A simple method of 23 
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extracting an estimate of TPPR is to maximise the likelihood function of the interim data 1 

given the values of 𝐩 implied by the marginal probabilities: 2 

ℒ(𝐩|𝑥) =   ∏ 𝐩𝑖
𝑥𝑖

4

𝑖=1

 

(3) 

where 𝐩 is the vector of joint probabilities defined above and 𝑥 are the observed cell 3 

frequencies.  The constraints imposed on the above multinomial likelihood make the 4 

parameter space one dimensional, thus, substituting the constraints in order to express the 5 

likelihood in terms of 𝑝1, gives: 6 

ℒ(𝑝1|𝑥) =  𝑝1
𝑥1( 𝑇𝑃𝑅𝐴 −  𝑝1)𝑥2( 𝑇𝑃𝑅𝐵 −  𝑝1)𝑥3(1 −  𝑇𝑃𝑅𝐴 −  𝑇𝑃𝑅𝐵 +  𝑝1)𝑥4 

 𝑝1 ∈ [ 𝑇𝑃𝑅𝐵 − (1 −   𝑇𝑃𝑅𝐴) ,  𝑇𝑃𝑅𝐵] 

(4) 

Code to estimate this in R, via optimisation of the negative log-likelihood, is in the Appendix.  7 

In effect, this method bounds the value for the conditional dependence between the minimum 8 

and maximum values under the specified marginals and then uses information from the 9 

frequency values of the four cells of the table to infer the most probable value of  𝑝1.  We can 10 

use this estimate of 𝑝̂1 as our value of  𝑇𝑃𝑃𝑅̂ and use the observed value of the prevalence (if 11 

required) as our measure of 𝜋̂ in equation 1 to re-estimate the sample size at the interim. 12 

Results 13 

Simulation Studies 14 

In order to verify the integrity of the method for sample size re-estimation described and 15 

applied above a series of simulation studies were carried out.  The objectives of these studies 16 

were to assess the implications of re-estimating a sample size based on data already collected 17 

on the type I and II error rates under various permutations of parameters. The type II error 18 



15 

 

rate should be as close to nominal as possible (i.e. 0.8 in the example above), and the type I 1 

error rate should be minimally affected by the re-estimation. 2 

It should be noted that the statistical power provided by the sample size implied by the 3 

Alonzo et al [19] method (when no re-estimation is undertaken) is related to the level of 4 

conditional dependence between the tests, Figure 1 illustrates this relationship. In total 5 

100,000 replications were generated under the specified true alternative hypothesis (i.e. 𝛾1 = 6 

0.9/0.81 = 1.11), for the example situation above, at various levels of conditional dependence 7 

between the two tests.  The number of replications 100,000, is more than required, however 8 

as the computing time to calculate these was trivial, there was little cost in simulating to this 9 

level of accuracy.  This number of simulations was used throughout this paper.  In all cases in 10 

Figure 1 the simulated power was higher than nominal but where the conditional dependence 11 

was highest the power was greatly over specified.  As the conditional dependence tends 12 

towards becoming maximally positive, i.e. as TPPR tends towards its maximal value, the cell 13 

𝑛𝐶  tends towards 0.  This means that the asymptotic assumptions underlying formulae 1 and 14 

2 and those underlying the significance test no longer hold.  However, this should not be of 15 

too great a concern, with regards to balancing the minimisation of the required sample size 16 

estimate with the statistical power of the experiment, as the instances where the power is over 17 

specified are when the sample size is lowest. Additional conservatism at positive levels of 18 

conditional dependence has a significantly lesser impact on the overall sample size than it 19 

would have at the end of the continuum where the conditional dependence is negative.  20 

Whatever the case may be, it should be noted that the results of re-estimation will follow a 21 

similar pattern. 22 

Figure 1 – Simulated power of sample size specified by the true TPPR in equation 1 when 23 

 𝑇𝑃𝑅𝐴=0.9,  𝑇𝑃𝑅𝐵=0.81 and 𝜋=0.45. 24 
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 1 

Figure 1 here 2 

In the first set of simulations, which aim to assess the stability of the type II error rate, data 3 

are generated under the conditions  𝑇𝑃𝑅𝐴 = 0.9,  𝑇𝑃𝑅𝐵 = 0.81, 𝜋 = 0.45, while the sample 4 

sizes at the interim are varied between 50 and 200 and the values for 𝑇𝑃𝑃𝑅 are varied 5 

between 0.71 and 0.81.  The null hypothesis is: 𝑇𝑃𝑅𝐴/𝑇𝑃𝑅𝐵 = 1, and our data were simulated 6 

under the alternative hypothesis 𝑇𝑃𝑅𝐴 = 0.9 and 𝑇𝑃𝑅𝐴 = 0.81, with varying levels of 7 

conditional dependence within the implied limits.  Figure 2 shows how the power of the 8 

experiment overall (i.e. using the data from both before and after sample size re-estimation) 9 

varies as a function of the interim sample size and the true value of TPPR.  As expected the 10 

values follow the same pattern as that in Figure 1.  The minimum of the nominal power, or 11 

very close to it, was achieved at all levels of conditional dependence and at all interim sample 12 

sizes. 13 

Figure 2 – Simulated power of re-estimation method across various interim sample sizes and 14 

levels of true TPPR when  𝑇𝑃𝑅𝐴  = 0.9,  𝑇𝑃𝑅𝐵  = 0.81 and 𝜋 = 0.45. 15 

 16 

Figure 2 here 17 

Table 2 provides information about the mean sample size, bias, coverage and Root Mean 18 

Squared Error (RMSE) (from the value specified by equation 1 using the true value of 𝑇𝑃𝑃𝑅 19 

for the simulated data) under the combinations of conditional dependences and interim 20 

sample size.  The sample sizes implied by Equation 1 for maximal and minimal levels of 21 

conditional dependence are 194 and 625, respectively.  The interim sample sizes of 50, 100, 22 

150 and 200 were chosen to illustrate the effects of choosing various interim sample sizes 23 
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that were smaller than the total sample size of 242 calculated by the Alonzo method 1 

described above for our application. 2 

An increasing interim sample size does not have that great an impact on the average 3 

estimated sample size.  However, it does have a large impact on the RMSE.  Thus, choosing a 4 

larger interim sample size at which to re-estimate will ensure a more accurate sample size re-5 

estimate in individual cases, meaning that the experiment will be more likely to be powered 6 

to the appropriate level while recruiting as few participants as possible.   Of course, if the 7 

interim sample size is chosen to be too large then there is a risk of having already recruited 8 

too many participants at the interim. Therefore, some sensible trade-off is required. The bias 9 

and coverage seem to be at acceptable levels although the coverage does dip when the 10 

conditional dependence between the tests is high. 11 

Table 2 – Mean sample size (S.D.), bias, coverage and RMSE of simulated sample sizes with 12 

varying interim sample size estimates and true levels of 𝑇𝑃𝑃𝑅 when  𝑇𝑃𝑅𝐴= 0.9,  𝑇𝑃𝑅𝐵 = 13 

0.81 and Prevalence = 0.45. (N=interim sample size.) 14 

 

Mean sample size 

 

 Bias 

 

 N=50 N=100 N=150 N=200  N=50 N=100 N=150 N=200 

TPPR 

0.81 217(77) 202(35) 198(23) 205(17)  -0.00091 -0.00027 0.00018 0.00048 

0.80 256(114) 241(71) 238(56) 241(48)  -0.00031 0.00035 0.00062 0.00064 

0.79 297(139) 283(92) 281(72) 282(62)  -0.00007 0.00069 0.00072 0.00068 

0.78 338(155) 326(105) 325(83) 325(70)  0.00045 0.00056 0.00082 0.00062 

0.77 381(166) 371(114) 369(89) 369(75)  0.00043 0.00054 0.00058 0.00050 

0.76 423(170) 415(118) 413(92) 413(78)  0.00054 0.00035 0.00054 0.00041 

0.75 465(171) 460(118) 457(93) 456(79)  0.00069 0.00056 0.00029 0.00033 

0.74 506(166) 503(115) 501(91) 500(78)  0.00029 0.00028 0.00031 0.00031 

0.73 546(156) 546(107) 545(86) 543(73)  0.00047 0.00045 0.00022 0.00022 

0.72 585(143) 588(95) 88(76) 586(65)  0.00043 0.00027 0.00017 0.00022 

0.71 621(124) 629(75) 630(59) 629(50)  0.00024 0.00037 0.00033 0.00019 

 15 

 

Coverage 

 

 RMSE 

 

 N=50 N=100 N=150 N=200  N=50 N=100 N=150 N=200 

TPPR 

0.81 0.923 0.925 0.924 0.923  80 36 23 18 

0.8 0.936 0.937 0.936 0.936  115 71 62 48 

0.79 0.942 0.943 0.944 0.943  140 92 72 62 

0.78 0.947 0.947 0.947 0.946  156 105 80 70 

0.77 0.948 0.948 0.949 0.947  166 114 89 75 

0.76 0.949 0.950 0.950 0.949  171 118 92 78 

0.75 0.950 0.950 0.949 0.950  171 119 93 79 
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0.74 0.950 0.950 0.950 0.950  166 115 91 78 

0.73 0.950 0.951 0.951 0.951  156 107 86 73 

0.72 0.951 0.949 0.950 0.951  143 95 76 65 

0.71 0.949 0.949 0.950 0.950  124 75 59 50 

 1 
A second set of simulations was run to assess the performance of the method under the null 2 

hypothesis where 𝛾1 =  
 𝑇𝑃𝑅𝐴

 𝑇𝑃𝑅𝐵
= 1.  Table 3 shows the cell probabilities for these simulations.  3 

Rather than report across the entire range only the minimum, 50% and maximum levels of  4 

𝑇𝑃𝑃𝑅 are reported. 5 

Table 3 – Simulation settings to estimate Type I error 6 

𝒑𝑨 𝒑𝑩 𝒑𝑪 𝒑𝑫  𝑻𝑷𝑹𝑨  𝑻𝑷𝑹𝑩 𝜸 

0.81 0.045 0.045 0.10 0.855 0.855 1 

0.76 0.095 0.095 0.05 0.855 0.855 1 

0.71 0.145 0.145 0.00 0.855 0.855 1 

 7 
Table 4 shows the type I error rate, mean sample size, bias, coverage and RMSE of simulated 8 

sample sizes under various simulation settings.  At all levels of conditional dependence and at 9 

all interim sample sizes the type I error rate is close to the specified levels.  Again, the 10 

inference to be made from the RMSE value is that a larger sample size provides a more 11 

accurate estimate of the full sample size required, reducing the extent to which an experiment 12 

will be over or underpowered in individual cases.  The bias and coverage also appear to be at 13 

acceptable levels. 14 

Table 4 – Type I error rate, Mean sample size (S.D.), bias, coverage and RMSE of simulated 15 

sample sizes under various simulation settings. 16 

 

Type I error rate 

 

 N=50 N=100 N=150 N=200 

TPPR 

0.81 0.050 0.050 0.050 0.050 

0.76 0.050 0.050 0.050 0.050 

0.71 0.050 0.050 0.050 0.050 

 17 

 

Mean sample size 

 

 Bias 

 

 N=50 N=100 N=150 N=200  N=50 N=100 N=150 N=200 
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TPPR 

0.81 304(121) 298(78) 297(61) 296(52)  0.00207 0.00224 0.00198 0.00186 

0.76 463(159) 457(107) 454(84) 453(71)  0.00147 0.00110 0.00100 0.00087 

0.71 627(118) 631(74) 630(58) 629(50)  0.00021 0.00023 0.00005 -0.00019 

 1 

 

Coverage 

 

 RMSE 

 

 N=50 N=100 N=150 N=200  N=50 N=100 N=150 N=200 

TPPR 

0.81 0.952 0.951 0.950 0.951  164 130 119 115 

0.76 0.950 0.949 0.949 0.949  168 117 95 83 

0.71 0.948 0.949 0.950 0.949  118 74 59 50 

 2 

Table 5 gives the results of a range of simulations undertaken at various values of  𝑇𝑃𝑅𝐴, 3 

 𝑇𝑃𝑅𝐵 and 𝜋 in both true alternative and null cases. Regarding the best sample size to specify 4 

at the interim, a possible balance to be struck between a suitably large interim sample, which 5 

would increase the precision of the measure of conditional dependence, and minimising the 6 

overall experimental sample size would be to take the minimal possible sample size for the 7 

experiment as a whole at the interim.  In this way, the interim sample could never be larger 8 

than the overall required sample size, which means that it is impossible to collect more data 9 

than actually needed.  Yet, the minimum possible overall sample size represents a significant 10 

proportion of the total experimental sample size.  Thus, for the values in Table 5, the sample 11 

size re-estimate was conducted at the number implied by equation 2, when 𝑇𝑃𝑃𝑅 is at 12 

maximal value given the marginals.  The maximum positive, mid-range and maximum 13 

negative levels of 𝑇𝑃𝑃𝑅 were reported to show a range of values across different levels of 14 

𝑇𝑃𝑃𝑅.  The mean sample size is provided in parentheses in order to allow intuition about the 15 

reduction in the sample size this method brings. In all cases, where data were generated under 16 

the true alternative hypothesis, the simulated power is above or very close to the nominal 17 

value.  Furthermore, in all cases where data were generated under the true null hypothesis the 18 

size is close to the nominal value.  Comparing the mean sample sizes given for the maximal 19 

and mid-point 𝑇𝑃𝑃𝑅s against the fixed values that would be used if Alonzo et al [19] had 20 
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been followed we can see that the sample size re-estimation method outlined above can 1 

dramatically reduce the required sample size to power an experiment to the minimum of a 2 

nominal level. 3 

 4 

 5 

 6 

 7 

 8 

Table 5 – Simulated type I and II error rates and fixed maximal sample size values under 9 

various true values of  𝑇𝑃𝑅𝐴,  𝑇𝑃𝑅𝐵 and prevalence across various levels of conditional 10 
dependence (average sample size given in brackets) 11 

 TPRb TPRa prev = 0.1 prev=0.3 prev=0.5 

M
a

x
im

u
m

 p
o

si
ti

v
e 

T
P

P
R

 

  Alternative Null Fixed Alternative Null Fixed Alternative Null Fixed 

0.5 0.6 0.979(871) 0.049(1255) 7084 0.977(289) 0.05(417) 2361 0.977(172) 0.048(249) 1417 

0.5 0.7 0.98(434) 0.047(616) 1585 0.98(143) 0.047(204) 528 0.978(85) 0.049(122) 317 

0.5 0.8 0.986(297) 0.048(401) 622 0.985(98) 0.047(133) 207 0.985(58) 0.048(79) 124 

0.5 0.9 0.991(232) 0.048(279) 303 0.99(76) 0.046(92) 101 0.989(45) 0.046(54) 61 

           

0.6 0.7 0.976(858) 0.047(1244) 5505 0.975(284) 0.05(414) 1835 0.975(170) 0.047(248) 1101 

0.6 0.8 0.978(431) 0.048(605) 1185 0.979(142) 0.049(200) 395 0.976(84) 0.048(119) 237 

0.6 0.9 0.984(297) 0.045(375) 442 0.984(98) 0.047(124) 147 0.985(58) 0.046(74) 88 

           

0.7 0.8 0.974(846) 0.048(1222) 3930 0.973(281) 0.05(410) 1310 0.971(167) 0.049(245) 786 

0.7 0.9 0.979(431) 0.049(575) 789 0.978(142) 0.046(190) 263 0.976(84) 0.049(114) 158 

           

0.8 0.9 0.971(837) 0.048(1195) 2357 0.971(277) 0.051(398) 786 0.97(165) 0.049(238) 471 

5
0
%

T
P

P
R

 

           

0.5 0.6 0.802(3974) 0.05(4050) 7084 0.806(1321) 0.049(1347) 2361 0.8(792) 0.049(807) 1417 

0.5 0.7 0.82(1013) 0.048(1082) 1585 0.822(336) 0.52(358) 528 0.818(200) 0.05(214) 317 

0.5 0.8 0.856(462) 0.049(517) 622 0.854(153) 0.046(171) 207 0.854(91) 0.048(102) 124 

0.5 0.9 0.911(270) 0.043(298) 303 0.908(89) 0.046(98) 101 0.905(52) 0.047(58) 61 

           

0.6 0.7 0.809(3175) 0.049(3277) 5505 0.805(1056) 0.05(1090 1835 0.804(633) 0.049(653) 1101 

0.6 0.8 0.839(809) 0.051(891) 1185 0.838(268) 0.052(295) 395 0.835(160) 0.052(176) 237 

0.6 0.9 0.885(371) 0.046(416) 442 0.888(122) 0.047(137) 147 0.881(72) 0.047(82) 88 

           

0.7 0.8 0.809(2379) 0.053(2513) 3930 0.813(792) 0.052(836) 1310 0.812(474) 0.053(500) 786 
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0.7 0.9 0.863(607) 0.05(687) 789 0.868(201) 0.052(228) 263 0.864(120) 0.051(136) 158 

           

0.8 0.9 0.832(1585) 0.05(1753) 2357 0.836(528) 0.051(583) 786 0.832(316) 0.051(349) 471 

M
a
x
im

a
l 

n
e
g
a
ti

v
e
 T

P
P

R
 

           

0.5 0.6 0.796(7105) 0.05(7109) 7084 0.797(2360) 0.49(2361) 2361 0.797(1413) 0.05(1414) 1417 

0.5 0.7 0.812(1608) 0.047(1609) 1585 0.804(533) 0.051(534) 528 0.81(318) 0.05(318) 317 

0.5 0.8 0.827(639) 0.05(641) 622 0.829(211) 0.049(212) 207 0.832(126) 0.049(126) 124 

0.5 0.9 0.87(312) 0.05(317) 303 0.867(103) 0.048(104) 101 0.868(61) 0.048(62) 61 

           

0.6 0.7 0.798(5522) 0.05(5519) 5505 0.796(1836) 0.049(1836) 1835 0.798(1099) 0.05(1099) 1101 

0.6 0.8 0.812(1204) 0.051(1205) 1185 0.0818(399) 0.051(400) 395 0.812(238) 0.051(238) 237 

0.6 0.9 0.844(451) 0.048(456) 442 0.842(149) 0.047(151) 147 0.839(89) 0.047(90) 88 

           

0.7 0.8 0.799(3944) 0.049(3943) 3930 0.806(1311) 0.049(1311) 1310 0.803(785) 0.048(785) 786 

0.7 0.9 0.824(799) 0.052(803) 789 0.826(265) 0.05(266) 263 0.824(158) 0.05(159) 158 

           

0.8 0.9 0.806(2366) 0.052(2368) 2357 0.808(787) 0.05(788) 786 0.808(471) 0.051(471) 471 

 1 
 2 

Application Revisited 3 

Given the robustness of the proposed method of sample size recalculation described and 4 

validated in simulation above, we return to apply it to the application presented earlier in this 5 

paper.  The cell probability values at maximum positive conditional dependence for diseased 6 

patients under the specified values of  𝑇𝑃𝑅𝐴 and  𝑇𝑃𝑅𝐵 are 𝑝̂1 =  0.81, 𝑝̂2 =  0.09, 𝑝̂3 = 0, 7 

𝑝̂4 = 0.1.  The cell probability values at maximum negative conditional dependence for 8 

diseased patients under the specified values of  𝑇𝑃𝑅𝐴 and  𝑇𝑃𝑅𝐵 are  𝑝̂1 =  0.71, 𝑝̂2 =  0.19, 9 

𝑝̂3 = 0.10, 𝑝̂4 = 0.  Table 7 shows an example range of the permissible values under the 10 

specified values of  𝑇𝑃𝑅𝐴 and  𝑇𝑃𝑅𝐵.  Given this, we can create a likelihood of our observed 11 

interim data having come from each possible configuration of the alternative hypothesis using 12 

equation 3. 13 

Table 7 – Example range of cell probabilities based on:  𝑇𝑃𝑅𝐴= 0.9 and  𝑇𝑃𝑅𝐵 = 0.81 14 
𝒑𝟏 𝒑𝟐 𝒑𝟑 𝒑𝟒  𝑻𝑷𝑹𝑨  𝑻𝑷𝑹𝑩 

0.81 0.09 0.00 0.10 0.9 0.81 

0.80 0.10 0.01 0.09 0.9 0.81 

... ... ... ... ... ... 

0.72 0.18 0.09 0.01 0.9 0.81 

0.71 0.19 0.10 0.00 0.9 0.81 
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 1 

Applying the method outlined in section 3, we take;  𝑇𝑃𝑅𝐴̂ = 0.9,  𝑇𝑃𝑅𝐵̂ = 0.81, observed 2 

𝑛̂𝐴 = 66, 𝑛̂𝐵 = 3, 𝑛̂𝐶 = 3, 𝑛̂𝐷 = 10 and  𝑛̂𝐸 + 𝑛̂𝐹 +  𝑛̂𝐺 +   𝑛̂𝐻 = 105, implying  𝜋 ̂ =3 

0.439.  Using equation 4 the maximum likelihood value of 𝑇𝑃𝑃𝑅̂ is 0.793.  Given the fact 4 

that 𝜋 is binomially distributed, the maximum likelihood estimate for the prevalence is equal 5 

to the observed prevalence, 𝜋 ̂.  Taking these values and inserting them into equation 1 we get 6 

the value for the sample size required for sensitivity as 275.  Taking  𝑇𝑁𝑅𝐴̂ = 0.8 and 7 

𝑇𝑁𝑅𝐵̂ = 0.66, with the observed values 𝑛̂𝐸 = 21, 𝑛̂𝐹 = 4, 𝑛̂𝐺 = 11, 𝑛̂𝐺 = 69 and  𝑛̂𝐴 +8 

𝑛̂𝐵 +  𝑛̂𝐶 +   𝑛̂𝐷 = 82, implying  1 − 𝜋 ̂ = 0.561.  Using equation 3 to derive the maximum 9 

likelihood of the cell probabilities for specificity we estimate that 𝑇𝑁𝑁𝑅̂ = 0.635. Inserting 10 

these values into equation 2 gives us a sample size estimate of 136.  Thus, the updated sample 11 

size, in order to use the interim information about the conditional dependence between the 12 

tests and to preserve a minimal nominal power of 0.8 should be 275. 13 

Discussion 14 

This paper has presented a robust method of sample size re-estimation for use in paired 15 

diagnostic accuracy studies where the conditional independence between the two tests may be 16 

unknown or inaccurately estimated at the start of the study. In terms of the recommendation 17 

of sample size estimation for the experiment as a whole a specific protocol is suggested given 18 

the results.  Rather than basing the estimate for the experiment as a whole on the case where 19 

there is the maximal negative conditional dependence between tests – thus the largest 20 

possible sample size - as suggested in Alonzo et al [19], we would suggest an alternative 21 

strategy, the robustness of which is highlighted in Table 5. Specifically, initially estimating 22 

the sample size at the maximal positive conditional dependence between tests, i.e. using 23 

𝑇𝑃𝑃𝑅 =  𝑇𝑃𝑅𝐵  - giving the smallest possible sample size - then, re-estimating the final 24 

sample size using the method simulated in Table 5.  As long as the initial estimate for 25 
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prevalence is close to accurate, this protocol is deemed appropriate as it balances the risk of 1 

collecting more participants than might actually be needed with collecting the most 2 

information about the true conditional dependence at the interim. Table 5 provides strong 3 

evidence for the integrity of this method in providing at minimum the nominal power while 4 

reducing the sample size when we have a higher than maximally negative true conditional 5 

dependence.  Should the interim sample size be some other value, the maximum likelihood 6 

method will still be appropriate, although it should be kept in mind that the larger the interim 7 

sample size, as a proportion of the total possible sample size, the more accurate the interim 8 

sample size estimates will be, for individual cases.  9 

Interestingly, the sample size values in the table seem to be somewhat greater, even when 10 

using our method than those typically seen in the literature in diagnostic test accuracy studies, 11 

see for example van Enst et al. [27]  Although it is difficult to know the specifics of the 859 12 

studies mentioned in the van Enst collection of meta-analyses, e.g. clinically significant 13 

differences, sample size estimation and hypothesis testing procedures, it is striking that the 14 

50% covariance sample size is only 87 (IQR 45-185) participants.  Very few of our sample 15 

sizes in Table 5 are this low for the size of effect (ratios) we are considering, even using our 16 

method of sample size reduction.  It may be that many diagnostic accuracy studies 17 

commissioned do not carefully consider their sample sizes. 18 

While the method discussed here of estimating the conditional dependence between the tests 19 

via maximum likelihood, given constraints imposed by the specified marginals and under a 20 

multinomial model, is pertinent to paired diagnostic accuracy tests, there is little reason why 21 

similar processes could not be extended to similar problems.  The kernel of the method, 22 

maximum likelihood estimation of the parameter related to the conditional dependence using 23 
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a constrained multinomial model, is equally valid in other applications involving sample size 1 

re-estimation for paired binary 2x2 tables. 2 

Conclusions 3 

In this paper we have described a sample size re-estimation procedure that can be applied in 4 

an interim analysis for a diagnostic test study that is comparing two methods of testing on 5 

patients that are being followed up over a period of time. The procedure uses information on 6 

the levels of conditional dependence between the two tests at the interim in order to refine the 7 

required sample size for a paired diagnostic accuracy study with a binary response.  Evidence 8 

from simulations has been provided to demonstrate its functionality under various parameter 9 

values thought to reflect a range of commonly occurring situations.  The procedure can be 10 

applied in the case of paired comparative diagnostic accuracy studies in order to more 11 

accurately gauge the sample size required for a given power thereby reducing both the costs 12 

associated with this kind of study and also the burden on patients. 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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List of abbreviations 8 

CT: computed tomography 9 

PET: Positron Emission Tomography 10 

RMSE: Root Mean Squared Error 11 

𝑇𝑃𝑅𝐴: True positive rate for test A 12 

𝑇𝑃𝑅𝐵: True positive rate for test B 13 

𝑇𝑃𝑃𝑅: True positive positive rate 14 

𝑇𝑁𝑅𝐴: True negative rate for test A 15 

𝑇𝑁𝑅𝐵: True negative rate for test B 16 

𝑇𝑁𝑁𝑅: True negative negative rate 17 

 18 
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 9 

Appendix – R code for maximum likelihood sample size re-estimation. 10 

ss.est.mle <- function(obs.a, obs.b, obs.c, obs.d, obs.x, 11 
tpra, tprb, alpha, beta){ 12 
 13 
mle.tppr <- function(theta.1, obs.a, obs.b, obs.c, obs.d, 14 
tpra, tprb) 15 
{-((obs.a*log(theta.1)) + obs.b*log(tpra-theta.1) + 16 
obs.c*log(tprb-theta.1) + obs.d*log(-tpra-tprb+theta.1+1))} 17 
 18 
tppr <- optim(par=(tpra+(tprb-(1-tpra)))/2 ,fn=mle.tppr, 19 
obs.a=obs.a, obs.b=obs.b, obs.c=obs.c, obs.d=obs.d, tpra=tpra, 20 
tprb=tprb, method = "Brent", lower=(tprb-(1-tpra)), 21 
upper=tprb)$par 22 
  23 
obs.prev <- 24 
(obs.a+obs.b+obs.c+obs.d)/(obs.a+obs.b+obs.c+obs.d+obs.x) 25 
 26 
alonzo <- function(lambda, prev ,beta, alpha, tprb, 27 
gam1){(((qnorm(1-beta) + qnorm(1-alpha))/log(gam1))^2 * 28 
(((gam1+1) * tprb)-(2 * lambda))/(gam1*tprb^2))/prev} 29 
 30 
gam1 <- tpra/tprb 31 
 32 
ss.est <- alonzo(tppr, obs.prev, beta = beta, alpha = alpha, 33 
tprb = tprb, gam1 = gam1 ) 34 
 35 
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return(ss.est)} 1 
 2 
 3 
### Example sensitivity 4 
 5 
ss.est.mle(obs.a=66, obs.b=3, obs.c=3, obs.d=10, obs.x=105, 6 
tpra=0.9, tprb=0.81, alpha=0.025, beta=0.2) 7 
 8 
### Example specificity 9 
 10 
ss.est.mle(obs.a=69, obs.b=11, obs.c=4, obs.d=21, obs.x=82, 11 
tpra=0.8, tprb=0.66, alpha=0.025, beta=0.2) 12 
 13 


