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Abstract 

 
A new generation of scintillating materials have been recently developed in the radiation-imaging 

field offering very promising dual particle detection abilities. Here, four different scintillating 

materials (Cs2LiYCl6:Ce (CLYC), 95%  6Li enriched Cs2LiYCl6:Ce (CLYC-6), natural Li-glass 

scintillator (GS10) and liquid scintillator EJ-309) have been characterized for their abilities to 

attenuate thermal neutrons, fast neutrons and gamma-rays. Recent studies regarding these 

materials overlook these fundamental characteristics, which can directly affect the design process 

of advanced imaging systems such as Compton cameras and dual particle imaging systems. The 

response of each featured material to these three types of radiation fields was simulated with two 

different Monte Carlo codes, MCNP6 and Geant4. The results indicated that among these four 

materials, natural Li-glass scintillator (GS10) has the highest thermal neutron detection efficiency 

and the highest elastic scattering efficiencies. However, the attenuation of fast neutrons was found 

to be the most severe in EJ-309 liquid scintillator. When gamma-rays are considered, it was found 

that the mass attenuation coefficient of CLYC and CLYC-6 is the highest of the four materials 

considered when energies lower than 1 MeV are incident. It is intended that this work will lead to 

the design and the build of an advanced prototype three stage Compton Camera which will be 

sensitive to both neutrons and Gamma rays. 

 

Key words: Neutron imaging; gamma-ray imaging; MCNP6; Geant4; Cs2LiYCl6:Ce (CLYC), 95%  
6Li enriched Cs2LiYCl6:Ce (CLYC-6), natural Li-glass (GS10 ) and EJ-309 liquid scintillator. 

 

Areas of Novelty: This work compares and contrasts how four different scintillators from four 

different families interact with thermal neutrons, fast neutrons and gamma-ray using two different 

simulations toolkits, MCNP6 and Geant4. The work characterizes the materials in terms of their 

ability to interact favorably with neutrons and gamma-rays. 

 

1. Introduction 

 

Accurate localization and characterization of radiation sources is essential in many fields including 

border security, nuclear security, counter-terrorism, medical imaging as well as within nuclear site 

decommissioning. There are a number of materials and detectors used in localizing and characterizing 

radiation sources that emit single mode radiation fields [1-3]. However, the real challenge in radiation 

detection research field is the development of an optimal detecting material that is capable of detecting 

both highly penetrating neutrons and gamma-rays. 

 

In the last two decades, the search for high performance scintillators has led to the discovery of new 

scintillating materials [3, 4], some of which are sensitive to both neutrons and gamma-rays. Examples 

are Elpasolite scintillators [5-10], lithium based glass scintillators [11-16], some classes of liquid 

scintillators [11, 17-19] and plastic scintillators [20, 21]. An interesting example from the Elpasolite 

family is the Cs2LiYCl6:Ce (CLYC) scintillator, considered to be one of the most promising inorganic 

scintillators with an excellent energy resolution of less than 5% at 662 keV [4, 22]. The light yield 

photons of CLYC (with a Ce dopant concentration of 0.1%) is estimated to be 20,000 photons/MeV for 

gamma-rays and 70,000 photons/n for thermal neutrons. In addition, the crystal is sensitive to both 

thermal and fast neutrons [4, 23, 24].  Enriching the crystal with the 6Li isotope can tone the sensitivity 

of the detector towards thermal neutrons. 95% 6Li enriched CLYC is commonly known as CLYC-6 [6, 

25]. Within CLYC, thermal neutron detection is mainly due to 6Li(n,t)interactions (thermal neutron 

σcapture~940barns, Q~4.8 MeV, negligible gamma emission). Fast neutrons mainly interact through elastic 

and inelastic scattering although capture reactions are possible as well via the 35Cl(n,p)35S and 
35Cl(n,)35P reactions. Interaction of gamma-rays in CLYC crystals results in a unique Core to Valence 



Luminescence (CVL) with a small decay time (~1 ns). This unique CVL is used to distinguish gamma-

rays from neutrons [4]. 

 

Lithium based glass (6Li-glass) scintillators are another interesting example of dual particle scintillators. 

The light yield is estimated to be ~6,000 photons/n for neutrons and ~4,000 photons/MeV for gamma-

rays [3], with a decay time estimated to be around 75 ns for a Ce doped glass scintillator. Enriching the 

scintillating material with Li-6 can tune up the sensitivity towards thermal neutrons. Examples of Li-

glass scintillators are Saint-Gobain developed Li-glass scintillators with 6.6% total lithium content. In 

this work, natural Li-glass scintillator, known as GS10, will be used in the simulations. This glass 

scintillator also contains varying amounts of Ce2O3, SiO2, MgO, Al2O3, and Li2O [26]. As in CLYC, 

thermal neutrons are mainly detected through 6Li(n,t)interactions. However, in lithium glass, fast 

neutrons are mainly detected through scattering interactions. Pulse Shape Discrimination (PSD) is 

frequently used with these materials to differentiate between neutrons and gamma-rays [27-29]. 

 

Some classes of liquid and plastic scintillators can also be utilized as multi-modal gamma/neutron 

detectors. The mixture of scintillator and solvent in any detector mainly depends on the application of 

the imaging system. This family of scintillators is usually found in applications where fast neutrons 

spectroscopy is required. In general, liquid scintillators have higher tendency to resist radiation and 

mechanical damages in comparison with plastic scintillators [17, 18]. An example of such a liquid 

scintillator might be EJ-309 (Eljen Technologies) which offers superior pulse shape discrimination 

(PSD) compared to some other liquid and plastic scintillators [30] . It also overcomes many drawbacks 

in other existing liquid scintillators, such as high toxicity [30]. EJ-309 is characterized by a scintillation 

efficiency of ~12,300 photons/MeV and decay time of ~ 3.5 ns [31]. In general, the light yield of EJ-309 

depends on the size of the detector [32, 33]. The detection of fast neutrons in EJ-309 is mainly due to 

elastic scattering events with hydrogen and carbon nuclei. In general, liquid scintillators, including EJ-

309, can efficiently detect neutrons and gamma-ray. However, at low (< 0.1 MeV) energies, the abilities 

of this class of scintillators to discriminate neutrons and gamma-ray fall dramatically [11]. 

 

The ultimate aim of this research is the design of a dual particle imaging system where the characterising 

and quantifying detection abilities of some selected scintillation materials function of energy and distance 

are essential. Most of the current studies on dual particle imaging discuss properties closely related to 

the application of interest [2-4, 23, 34, 35]. A. Giaz, et. al. [4] compares the performance of CLYC-6 

and CLYC-7 (99% 7Li enriched CLYC) using the Time of Flight (TOF) and energy spectrum of fast 

neutrons. Similarly, C. W. E. van Eijk [34] compares the light yield, density and Ce concentration in 

different inorganic scintillators. In addition, he compares the scintillation properties of some neutron 

sensitive scintillators. Other studies discuss the detection properties of the integrated imaging system as 

one unit. For example, Alexis Poitrasson-Rivière et. al. [35]  find the angular resolution experimentally 

and using MCNP of liquid scintillators based dual particle imaging system. Ayaz-Maierhafer et. al  [36] 

study the angular resolution of a combined neutron gamma imaging system. To this end, this work 

presents a detailed study on the detection efficiency and interaction probabilities of thermal neutrons, 

fast neutrons and gamma-ray in four different scintillators: CLYC, CLYC-6, natural Li-glass (GS10) and 

EJ-309 liquid scintillator. This is undertaken using two Monte Carlo codes, MCNP6.1.0 and Geant4.10.2. 

These four scintillators where selected because they inherit the best scintillating characteristics of their 

class of materials while acquiring the most efficient detection abilities. In addition, the study aims to aid 

the design process of advanced neutron and gamma imaging systems, such as Compton cameras and 

elastic scattering cameras, using any one of these four scintillators. In section 4, a brief description of the 

detectors arrangement in the design is provided using the design parameters determined within this work.   

 

2. Materials and methods 

 

2.1 MCNP6.1.0 simulations 

 

MCNP6.1.0 is a general purpose Monte Carlo radiation-transport code used to track radiation particles 

over a wide range of energies. The code finds applications in radiation shielding, radiation protection, 

medical physics, nuclear criticality safety and many others related fields. The code was created by 

merging two already established codes, MCNP5 and MCNPX, adding new features and capabilities. The 

models used in MCNP6.1.0 apply all possible nuclear interaction process in simulating real life 

experiments. In general, the MCNP code uses continuous-energy nuclear and atomic data libraries. For 

neutrons, the Evaluated Nuclear Data Files (ENDF) system is primarily used along with some other 

nuclear data libraries. In this work, the most updated version of ENDF (ENDF/B-VII.0) was primarily 



used. The neutrons data table energy range in MCNP6.1.0 starts from 10-11 MeV to 20 MeV for all 

isotopes and up to 150 MeV for some of them [37]. The Evaluated Photon Data Library (EPDL) and the 

Activation Library (ACTL) compilations from Livermore data libraries are mainly used in the simulation 

of gamma photon transport. In this work, EPDL is the primary source of data and interaction cross 

section. Data tables energy range for gamma-ray starts from 1eV to a few GeV [37]. 

 

2.2 Geant4 simulations 

 

Geant4.10.2 is a CERN created Monte Carlo based toolkit used to simulate the transition of particles 

through matter [38], and finds applications wherever particle interaction in matter is considered 

important. It covers a wide range of parameters including physics models, geometry and particle tracking. 

Its comprehensive physics models allow it to be used in complex applications in the fields of nuclear 

physics, particle physics, medical physics and radiation shielding design. This C++ based open-source 

software undergoes continuous development by its international developer team [39, 40]. The most 

recent development in 2016 added a wide range of comprehensive improvements to Geant4 toolkit. The 

main features of this new version of Geant4 is the improved particles tracking and scoring capabilities 

along with some improvements in geometry models which allow more powerful simulations of real 

experimental setups. Neutron modeling in the Geant4 toolkit is done through the hadronic model. The 

main neutrons process listed in the hadronic model are high precision elastic, high precision inelastic, 

high precision capture and high precision fission. The original model is based on nine data libraries 

including ENDF/B-VI, JENDL-3 and JEF2.2 [40].  New versions of Geant4 have been utilizing more 

recent data libraries such as ENDF/B-VII.0 and JENDL-4.0 [40].The energy range for neutron simulation 

is limited to the available data on these libraries (up to 20 MeV for all isotopes and up to 150 MeV for 

some isotopes). Gamma modeling in Geant4 is done through Electromagnetic (EM) physics modeling 

which includes HEP (High Energy Physics) models. The model is based on the Livermore evaluated 

library [40]. The Geant4 toolkit covers a wide range of gamma energy from 250 eV up to the TeV range. 

The last update on the Geant4 toolkit added new physics and processes to the existing gamma models. 

Major parts of these modifications add specialized models to two major gamma photon interactions, Pair 

production and Compton scattering. The modifications were intended improve models accuracy. The 

results of the new models are compared to NIST values and are reported to be within a tolerance of 10% 

[40]. 

 

2.3 Means of comparison and calculations of interest 

 

Thermal neutron detection is mainly facilitated through capture reactions. Here, the capture efficiency 

of thermal neutrons in the four scintillators is studied via simulating the passage of thermal neutrons 

through the scintillating materials as a function of thickness. The definition of absolute efficiency for a 

particular interaction is the ratio of the number of counts to the number of particles which originated 

from the source. A sphere of each of the four scintillators with a point source at the center was simulated 

using both the MCNP6 and GEANT4 codes. In MCNP6.1.0, the F8 tally with special treatment card was 

used to find the capture efficiency in each component in the four scintillators. The F8 tally provides the 

user with energy distribution of pulses in the detector region. In Geant4 the simulation was undertaken 

by counting the number of capture reactions relative to the total number of events.  

 

The study of the response of the materials to fast neutrons was mainly done through investigating elastic 

scattering interaction probabilities and escaping event probabilities. This was done at four different 

neutron energies, 1 keV, 10 keV, 0.1 MeV and 1 MeV. The reaction rate for a flux of neutrons,  
incident through a thin layer of matter per unit volume can be described with the following relation [41] 

 

                                                                     
 𝑅𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒

𝑣𝑜𝑙𝑢𝑚𝑒
= Σ . 𝜑                                          [1] 


Where Σ is the macroscopic cross section (m-1). Table 2.1 shows the total cross section and the elastic 

scattering cross section of CLYC, CLYC-6, natural Li-glass scintillator (GS10) and EJ-309 liquid 

scintillator based on ENDF/B-VII.0 data library [42]. 

 

 

 

 

 



Table 2.1 Total and elastic scattering macroscopic cross sections of CLYC, CLYC-6, natural Li-glass 

scintillator (GS10) and EJ-309 liquid scintillator. 

 

 CLYC CLYC-6 Li-glass (GS10) 
EJ-309 liquid 

scintillator 

Energy 

(MeV) 

Total 

(cm-1) 

Elastic 

scattering 

(cm-1) 

Total 

(cm-1) 

Elastic 

scattering 

(cm-1) 

Total 

(cm-1) 

Elastic 

scattering 

(cm-1) 

Total (cm-1) 

Elastic 

scattering 

(cm-1) 

0.001 10.20 9.94 12.60 11.27 23.14 22.13 131.74 111.04 

0.01 8.81 8.08 10.20 9.85 17.22 7.11 104.91 104.91 

0.1 7.50 7.22 8.83 8.69 15.94 8.87 69.68 69.68 

1 13.95 12.84 15.01 14.92 27.98 6.74 23.22 23.22 

 

In the work presented here, the response of the material to incident neutrons was studied as a function of 

thickness. The geometry used in this set of simulations was a cylinder with an infinite radius compared 

to its length (thickness here) with a point source placed on the face of the cylinder to maximize the 

entrance dose of fast neutrons into the cylinder. This geometry was chosen to minimize the effect of 

multiple scattering events. In the MCNP6.1.0 simulations, the PTRAC file option was used in the 

analysis as in the case of neutrons, the type of interaction taking place in the material needs to be 

identified; a process which cannot be done using typical tallies. The PTRAC file option allows the user 

to track the particle of interest through the material. A number of keywords can be added to the PTRAC 

card that can help identifying the types of interaction along the particles trajectory.  

 

The response of each material to incident gamma-ray was mainly studied through the mass attenuation 

coefficient. Gamma interaction in matter mainly depends on the energy of the incident photon, the 

density of the material and the effective atomic number. Therefore, in gamma photon analysis CLYC 

and CLYC-6 were treated as one material. The effective atomic number according to the power law 

method is [43, 44]: 

                                                                 Zeff = √∑ 𝑓𝑖𝑍𝑖
2.942.94

                                [2] 

 

Where fi and Zi are the relative electron fraction and the atomic number of the ith element respectively. 

The mass attenuation coefficient, m (cm2/g ) measures the probability of interaction in a given material. 

The analysis of the mass attenuation coefficient is based on attenuation law of gamma-ray [45]: 

 

mln (I/Io) / x                               [3] 

 

Whereis the linear attenuation coefficient andis the density of the material. I is the attenuated 

gamma-ray at x and Io  is the incident gamma-ray. The mass attenuation coefficient for each material as 

a function of energy can easily be found within the Geant4 simulation package. 

 

The probability of Compton scattering in each material is calculated as a function of energy as well. For 

most target materials, the relative probability of Compton scattering occurrence is more dominant in the 

energy region between 0.1 MeV and 10 MeV. The photoelectric effect is more likely to occur at energies 

lower than 0.1 MeV, whereas, Pair Production dominates at energies higher than 10 MeV [45]. 

Comparing the probability of Compton scattering occurrence in these scintillators is vital in choosing 

which material is best utilized in Compton scattering based imaging systems. 

 

3. Results and discussion 

 

3.1 Thermal neutrons 

 

Thermal neutron interaction in the four organic scintillators was modeled using MCNP6.1.0 and 

Geant4.10.2. In the design process of scintillation based neutron detectors, thermal neutron absorption is 

the interaction process of major interest, and it is this factor that is compared here over the four organic 

scintillators. Figure 3.1 shows the thermal neutron intrinsic capture efficiency of as a function of 

thickness for CLYC, CLYC6, natural Li-glass and an EJ-309 liquid scintillator. The results indicate that 

intrinsic thermal neutron capturing efficiency increases steadily as a function of thickness before 



saturating for all four materials. Lithium-based scintillators, CLYC, CLYC-6 and Li-glass, require less 

than 5cm of transport through the material in question to reach their maximum intrinsic efficiency.  
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Figure 3.1. Thermal neutron capturing efficiency as function of thickness of (a) CLYC, (b) CLYC-6, 

(c) natural Li-glass (GS10) (d) EJ-309 liquid scintillator. 

 

The maximum difference between MCNP6.1.0 and Geant4.10.2 simulations for the four scintillators is 

less than 5%. These differences are mainly due to differences in cross sections libraries used by 

MCNP6.1.0 and Geant4.10.2 [46-50]. Table 3.1 compares thermal neutron capture efficiency of the four 

scintillators at a thickness of 2 cm, 5cm and 10 cm respectively. 

 

Table 3.1 MCNP6.1.0 simulations of thermal neutron capture efficiency in CLYC, CLYC-6, natural Li-

glass and EJ-309 liquid scintillator. 

 

Thickness 

(cm) 

CLYC 

Efficiency 

(%) (capture 

in 6Li)  

CLYC-6 

Efficiency (%) 

(capture in 
6Li) 

Natural  

Li-glass efficiency 

(%) (capture in 
6Li) 

Liquid 

scintillator 

efficiency 

(EJ-309) 

(%) 

2 
92.86 ± 0.03 

(19.89 ± 0.04) 

99.98±0.01 

(77.67 ± 0.04) 

96.33 ± 0.01 

(96.10± 0.05) 
5.95 ± 0.08 

5 
99.90 ± 0.02 

(21.40 ± 0.04) 

100.01±0.01 

(77.68 ± 0.04) 

99.92±0.01 

(96.69± 0.01) 
21.7± 0.5 

10 
100.00 ± 0.01 

(21.42 ± 0.04) 

100.00±0.01 

77.68 ± 0.04) 

99.95 ± 0.01 

(99.71± 0.01) 
52.8 ± 0.2 



Table 3.2 Geant4.10.2 simulations of thermal neutron capture efficiency in CLYC, CLYC-6, natural Li-

glass and EJ-309 liquid scintillator. 

 

Thickness 

(cm) 

CLYC 

Efficiency 

(%) (capture 

in 6Li)  

CLYC-6 

Efficiency 

(%) (capture 

in 6Li) 

Natural  

Li-glass 

efficiency 

(%) (capture 

in 6Li) 

Liquid 

scintillator 

efficiency 

(EJ-309) 

(%) 

2 92.1±0.3 

(23.2 ± 0.5) 

99.9±0.3  

(79.7 ±0.3) 

94±1 

(93.9 ±0.3) 

6.0 ± 0.3 

5 99.8±0.3 

(25.5 ± 0.5) 

100.0±0.3 

(79.8 ±0.3) 

100 ± 1 

(99.7 ±0.3) 

21.6 ± 0.5 

10 100.0±0.3 

(25.5 ±0.5) 

100.0±0.3 

(79.8 ±0.3) 

100 ± 1 

(99.7±0.3) 

52.8 ± 0.7 

 

Tables 3.1 and 3.2 illustrate that natural CLYC-6 has higher intrinsic capture efficiency of thermal 

neutrons compared to the other three scintillators followed by CLYC. However, for detection purposes, 

Li-glass showed higher capture efficiency in 6Li. Compared to CLYC and CLYC-6, Li-glass has higher 

atomic density of 6Li atoms, 1.81x1022 atoms/cm3 compared to 1.58x1020 atoms/cm3 in CLYC and 

1.97x1021 atoms/cm3 in CLYC-6. 

 

3.2 Fast neutrons 

 

Fast neutron interaction in the four scintillators was simulated at four different energies (1 keV, 10 keV, 

0.1 MeV and 1 MeV). The results of elastic scattering efficiency, from single interaction events, as well 

as the escaping percentages as function of thickness are shown from figure 3.2 to figure 3.5. As above, 

MCNP6.1.0 simulations agree with Geant4.10.2 simulations with discrepancies of less than 5%. A 

common trend in all graphs is the exponential decrease of the escaping probability as a function of 

thickness in all four materials. As energy increases, the probability of escape and elastic scattering 

slightly vary with thickness. That is mainly because the macroscopic cross section slightly varies over 

these energies. In general, in CLYC and CLYC-6 the elastic scattering cross section slightly decreases 

as function of energy. However, at each energy the probability of single elastic scattering slowly 

increases as function of thickness before starting to decrease again as other types of interaction occur. 

 

Natural Li-glass scintillator exhibits higher attenuation for fast neutrons as compared to CLYC and 

CLYC-6. This is mainly due to the higher total cross section of Li-glass. The single scattering abilities 

of fast neutrons is the highest in Li-glass compared to the other three materials for similar reasons. The 

EJ-309 liquid scintillator exhibits the highest attenuating ability in fast neutrons as a function of thickness 

across the four specified energies. This is mainly due to the high scattering cross section of the hydrogen 

atom which causes multiple scattering events which has the effect of slowing down neutrons while they 

travel through the scintillator. Single scattering probability and escaping probability slightly varies across 

the four energies. Unlike the CLYC, CLYC-6 and Li-glass based scintillators, the abilities of EJ-309 to 

cause single elastic scattering decreases exponentially with increasing thickness. This is because other 

attenuation mechanisms, such as multiple scattering, increase as the thickness of as thickness of the 

material increases.  
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 Figure 3.2. Elastic scattering probability and escaping probability in CLYC at (a) 1 MeV, (b) 

0.1 MeV, (c) 10 keV and (d) 1 keV. 
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Figure 3.3. Elastic scattering probability and escaping probability in CLYC-6 at (a) 1 MeV, (b) 0.1 MeV, 

(c) 10 keV and (d) 1 keV. 
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                    (c)                                                                                                   (d) 

Figure 3.4. Elastic scattering probability and escaping probability in GS10 natural Li-glass (GS10) at (a) 1 

MeV, (b) 0.1 MeV, (c) 10 keV and (d) 1 keV. 
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                                        (c)                                                                                                 (d) 

Figure 3.5. Elastic scattering probability and escaping probability in EJ-309 liquid scintillator at (a) 1 MeV, (b) 

0.1 MeV, (c) 10 keV and (d) 1 keV. 

 

 

Figure 3.6 compares single elastic scattering abilities over 2 cm considering four different neutron energies; 1 

MeV, 0.1MeV, 10 keV and 1 keV. The figure splits elastic scattering events into backscattering efficiency and 

forward scattering efficiency. The natural Li-glass shows higher elastic scattering abilities in general, with higher 

backscattering efficiency compared to forward scattering across all four listed energies. CLYC and CLYC-6 show 

similar elastic scattering abilities with slightly higher forward scattering efficiency compared to backscattering 

efficiency. Finally, the EJ-309 liquid scintillator exhibits higher backscattering efficiency compared to forward 

scattering efficiency except at 1 MeV. In general, the results of MCNP6.1.0 and Geant4.10.2 simulations agree 

with attenuation cross sections as reported in table 1.1. 
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                                         (c)                                                                                         (d) 

Figure 3.6. Comparison between backscattering efficiency and forward scattering efficiency of MCNP6.1.0 

simulations at (a) 1 MeV, (b) 0.1 MeV, (C) 10 keV (d) 1 keV. 

 

 

3.3 Gamma-ray 

 

Using equation 3, the mass attenuation coefficient was calculated for each of the four materials. The total mass 

attenuation coefficients determined by the Geant4 simulations are shown in figure 3.7. NIST values were extracted 

using XCOM version 3.1 [51]. Geant4 simulation results are in good agreement with the NIST values. A common 

feature in all three graphs is the decreasing total mass attenuation coefficient with increasing incident photon 

energy, which clearly indicated the dependency of the mass attenuation coefficient on energy. This is mainly due 

to the decrease in the interaction probability between the incident photon and the target material. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 Mass attenuation coefficient as function of energy CLYC, natural Li-glass (GS10) and EJ-309 liquid 

scintillator from Geant4 simulations and NIST values. 

 

The attenuation abilities of the four listed materials are compared in table 3.3. At energies lower than 0.1 MeV 

the total mass attenuation coefficient of CLYC and CLYC-6 crystals is higher compared to GS10 and EJ-309. At 

this energy range, photoelectric absorption is the most common interaction mechanism between gamma-ray and 

matter. The higher density and the higher effective atomic number of CLYC/CLYC-6 causes a noticeable effect 

on its attenuation ability compared to the other materials.  At higher energies, the total mass attenuation 

coefficients of the three scintillators decreases as the probability of interaction decreases. 

 

Table 3.3 Comparison of the total mass attenuation coefficient of CLYC/CLYC-6, natural Li-glass (GS10) and 

liquid scintillator estimated using Geant4. 

 

Energy 

(MeV) 

CLYC/CLYC-6 

 (zeff  = 42.50) 

(g/cm3) 

Natural Li-glass  

  (zeff  =11.81)  

(g/cm3) 

Liquid scintillator  

(EJ-309) 

  (zeff  = 7.62) 

(g/cm3) 

0.01 117.6 ± 0.8 21.04 ± 0.03 2.00 ± 0.01 

0.1 1.179 ± 0.003 0.227 ± 0.0003 0.162 ± 0.001 

1 0.0592 ± 0.0004 0.06240 ± 0.00005 0.06950 ± 0.00009 

10 0.03414 ± 0.0004 0.02240 ± 0.00005 0.0207 ± 0.0001  

 

 

The abilities of the scintillators to cause Compton scattering on gamma-ray as a function of incident photon energy 

is shown in figure 3.8. The thickness of the scintillators used in this set of simulations was fixed at 2.0 cm. 

Compton scattering probability rises dramatically in the energy region 0.1 MeV – 1 MeV, before starting to fall 

again. The decrease in Compton scattering probability with increasing incident gamma-ray (> 1 MeV) is likely 

due to the decrease in the overall interaction probability. 



 
 

Figure 3.8 Comparison of Compton scattering probability as function of energy between CLYC, GS10 Natural 

Li-glass (GS10) and EJ-309 liquid scintillator. 

 

4. Designing a dual particle imaging system 

 

The results of the simulations in this work have been utilised in the designing process of a multilayered 

neutron/gamma imaging system. The simulations were used to find the scintillator material which exhibited 

optimum detection and attenuation capabilities for thermal neutrons, fast neutrons and gamma-rays. Moreover, 

the results were used to determine the optimum thickness of each layer in the design. Natural Li-glass (GS10) was 

found to be the optimum detector material for the design. The dimensions of the Li-glass (GS10) are the optimal 

design parameters derived from the data presented in figures 3.1 and 3.4. From the results, 10 mm thickness of 

Li-glass can capture up to 80% thermal neutrons while transmitting 92% of high energy gamma-rays. The 

thickness of the second layer was selected to be 15 mm. This layer will serve as a second interaction plane of fast 

neutrons and a scattering plane of transmitted gamma-rays. A monolithic layer of a scintillator material, such as 

caesium iodide is added to the system to detect scattered gamma-rays. SiPM arrays will be used to detect resultant 

photons. The arrangement of the detectors and an early estimated configuration of the system is shown in figure 

4.1.  

 

 
 

Figure 4.1 Configuration and dimensions of detectors in the novel design of a neutron/gamma imaging system. 

MCNP6.1.0 and Geant4 simulations showed that for this particular configuration, the system can detect up to 80% 

of thermal neutrons and up to 50% of gamma photons. Further investigations and experimental work are in 

progress. 



5. Conclusion 

 

In this work CLYC, CLYC-6, natural Li-glass and EJ-309 scintillators were characterized by studying thermal 

neutron capture efficiency, fast neutron single elastic scattering abilities and gamma-ray attenuating abilities using 

two simulation toolkits, MCNP6.1.0 and Geant4.10.2. CLYC-6, and to a slightly lesser extent CLYC, showed 

impressive capturing efficiency of thermal neutrons with a maximum of 100%. For thermal neutron detection 

efficiency, however, Li-glass scintillator exhibited the highest efficiency compared to the other three scintillators 

due to its higher atomic density of 6Li. The maximum capture efficiency of natural Li-glass was found to be around 

99.95%. EJ-309 liquid scintillator showed the lowest attenuation abilities at thicknesses lower than 5 cm with 

around 21.6%. The Li-glass scintillator had the highest attenuation abilities of neutrons at 1 keV although EJ-309 

showed higher attenuation abilities at higher energies (>10 keV). The probability of single scattering events for 

natural Li-glass is the highest of the three scintillators. CLYC and CLYC-6 showed the highest attenuation 

abilities of gamma-ray at energies lower than 1 MeV mainly due to its high effective atomic number. At higher 

energies, the attenuation abilities of the four materials slightly varies when compared to one another. Natural Li-

glass scintillators and both elpasolite scintillators demonstrate good Compton scattering efficiency of gamma-rays 

with natural Li-glass acquiring slightly higher scattering efficiencies at energies lower than 1 MeV. The results 

achieved were used in designing a basic neutron/gamma imaging system which will be built and tested in work 

to follow on. 
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