
ar
X

iv
:1

51
0.

06
59

3v
1 

 [h
ep

-p
h]

  2
2 

O
ct

 2
01

5
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A new family of inflation models is introduced and studied. The models are characterised by

a scalar potential which, far from the origin, approaches aninflationary plateau in a power-law

manner, while near the origin becomes monomial, as in chaotic inflation. The models are obtained

in the context of global supersymmetry starting with a superpotential, which interpolates from a

generalised monomial to an O’Raifearteagh form for small tolarge values of the inflaton field

respectively. It is demonstrated that the observables obtained, such as the scalar spectral index,

its running and the tensor to scalar ratio, are in excellent agreement with the latest observations,

without any fine-tuning. Moreover, by widening mildly the shaft in field space, it is shown that

sizable tensors can be generated, which may well be observable in the near future.
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1. Introduction

The latest observations from the Planck satellite [1, 2, 3] confirm the vanilla predictions of
cosmic inflation for the primordial curvature perturbationin that the latter is predominantly Gaus-
sian (non-Gaussianities have not been observed, with upperbound f local

NL = 0.9± 5.7), adiabatic
(no isocurvature contribution has been observed, with upper bound to less that 3%), statistically
isotropic (no statistical anisotropy has been observed, with upper bound to less than 2%) and al-
most scale-invariant, but with a significant red tilt (ns = 0.968± 0.006). Moreover, the Planck
data favour canonically normalised, single-field, slow-roll inflation [1]. In fact, in conjunction with
other data, Planck seems to favour an inflationary plateau [4].

There have been many examples of such inflationary modes, such as the originalR2-inflation
[5], Higgs inflation [6] or T-model inflation [7]. However, most of these attempts consider an
exponential approach to the inflationary plateau. Here we design a model, which approaches the
inflationary plateau in a power-law manner, offering distinct observational signatures.

2. Bottom-up versus top-down approach

In inflationary model-building one can identify two broad strategies. The top-down scenario
corresponds to designing models based on “realistic” constructions, for example inspired by string
theory, supergravity etc. Then, one looks for specific signatures in the data (e.g. non-Gaussianity).
Since the latest Planck data favour single-field, slow-rollinflation, they seem to support such rela-
tively straightforward constructions.

In contrast, the bottom-up scenario amounts to inflationarymodel constructions, which are
“suggested” by the data, i.e. they are data-inspire “guess-stimates”. As such, this approach uses
the Early Universe as laboratory to investigate fundamental physics, in the best tradition of particle
cosmology. We adopt this strategy (see also Ref. [8]). Our model proposes a power-law approach
to the inflationary plateau in the context of global supersymmetry.

3. The scalar potential for Shaft Inflation

Consider a toy-model superpotential of the form:W = M2Φnq+1/(Φn+mn)q, wheren,q are
real numbers andM,mare mass-scales. For|Φ| ≫ m, this superpotential approaches an O’ Raifeart-
eagh formW ≃ M2Φ leading to de Sitter inflation. For|Φ| ≪ m, the superpotential becomes
W ∝ Φnq+1 leading to chaotic inflation. To simplify it even further, wechoose to eliminate the
numerator, and takeq=−1/n. We end up with the superpotential for Shaft Inflation [8]:

W = M2(Φn+mn)1/n . (3.1)

To obtain the scalar potential, we considerΦ = φeiθ , whereφ ,θ are real scalar fields withφ > 0.1

Then the scalar potential is:

V = M4|Φ|2(n−1)|Φn+mn|2( 1
n−1) =

M4φ2(n−1)

[φ2n+m2n+2cos(nθ)mnφn]
n−1

n

. (3.2)

1A normalisation factor of 1/
√

2 has been absorbed in the mass scales.
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Figure 1: The scalar potential in shaft inflation forn= 2,4,8 and 16. The shaft becomes sharper asn grows.
Far from the origin the potential approximates the inflationary plateau withV ≈ M4. Near the origin the
potential becomes monomial, as in chaotic inflation.

The potential is minimised whennθ = 2ℓπ, with ℓ being an integer. Further, noting that−φ = φeiπ ,
we can make the potential symmetric over the origin [V(φ) =V(−φ)] if n= 2ℓ, i.e. even. In this
case,

V(φ) = M4φ2n−2(φn+mn)
2
n−2, (3.3)

for all real values ofφ . From the above we see that the scalar potential has the desired behaviour,
for n≥ 2, i.e. it approaches a constantV ≈ M4 for φ ≫ m, while for φ ≪ m the potential becomes
monomial, withV ∝ φ2(n−1), see Fig. 1.4. The spectral index and the tensor to scalar ratio

4.1 Slow-roll parameters,ns and r

From Eq. (3.3), we readily obtain the slow-roll parameters as

ε ≡ 1
2

m2
P

(

V ′

V

)2

= 2(n−1)2
(

mP

φ

)2( mn

φn+mn

)2

(4.1)

η ≡ m2
P
V ′′

V
= 2(n−1)

(

mP

φ

)2( mn

φn+mn

)

(2n−3)mn− (n+1)φn

φn+mm
, (4.2)

where the prime denotes derivative with respect to the inflaton field andmP = 2.4× 1018GeV is
the reduced Planck mass. Hence, the spectral index of the curvature perturbation is

ns = 1+2η −6ε = 1−4(n−1)

(

mP

φ

)2 mn[(n+1)φn+nmn]

(φn+mn)2 . (4.3)

To rewrite the above as functions of the remaining e-folds ofinflation N we have to investigate the
end of inflation. It is straightforward to see that inflation is terminated when|η | ≃ 1 so that, for the
end of inflation, we find

φend≃ mP
[

2(n2−1)αn]1/(n+2)
, (4.4)
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where we assumed thatφ > m (so that the potential deviates from a chaotic monomial) andwe
defined

α ≡ m
mP

. (4.5)

Using this, we obtainφ(N)

N =
1

m2
P

∫ φ

φend

V
V ′ dφ ≃ 1

2(n−1)(n+2)αn

[

(

φ
mP

)n+2

−
(

φend

mP

)n+2
]

(4.6)

⇒ φ(N)≃ mP

[

2(n−1)(n+2)αn
(

N+
n+1
n+2

)]1/(n+2)

. (4.7)

Inserting the above into Eqs. (4.1) and (4.3) respectively we obtain the tensor to scalar ratior and
the spectral indexns as functions ofN:

r = 16ε = 32(n−1)2α
2n

n+2

[

2(n−1)(n+2)

(

N+
n+1
n+2

)]−2( n+1
n+2)

(4.8)

ns = 1−2
n+1
n+2

(

N+
n+1
n+2

)−1

. (4.9)

Notice that onlyr is dependent onm (throughα), which means thatr can be affected by changing
m without disturbingns. We will return to this possibility later.

4.2 Examples

To investigate the performance of the model, we consider thetwo extreme cases for the values
of n, namelyn= 2 andn≫ 1. For illustrative purposes we takeα = 1, i.e.m= mP.

4.2.1 n= 2

In this case the scalar potential becomes

V(φ) = M4 φ2

φ2+m2 . (4.10)

We see that the above can be thought of as a modification of quadratic chaotic inflation, because
after the end of inflation, the inflaton field oscillates in a quadratic potential. However, for large
values of the inflaton the potential approaches a constant. This potential has been obtained also in
S-dual superstring inflation [9] withα = 1/4 and also in radion assisted gauge inflation [10] with
α ∼ 10−3/2. In this case, Eqs. (4.8) and (4.9) become

r =
32α

[

8
(

N+ 3
4

)]3/2
and ns = 1− 3

2

(

N+
3
4

)−1

. (4.11)

From the above, we find the values forns andr, as shown in Table 1.
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N ns r

50 0.970 0.0039
60 0.975 0.0030

Table 1: Values ofns(N) andr in the casen= 2.

××××

Figure 2: Shaft inflation forn= 2 is depicted with the large {small} red cross forN ≃ 60 {N ≃ 50}. Shaft
inflation forn≫ 1 is depicted with the large {small} black cross forN ≃ 60 {N ≃ 50}. Intermediate values
of n lie in-between the depicted points. As evident, there is excellent agreement with the Planck observations.

4.2.2 n≫ 1

In the opposite extremen≫ 1, Eqs. (4.8) and (4.9) become

r =
8α2

n2(N+1)2 → 0 and ns = 1− 2
N+1

. (4.12)

The spectral index is now the same as in the originalR2 inflation model [5] (also in Higgs inflation
[6]), which is not surprising since we expect power-law behaviour to approach the exponential
whenn→ ∞. The values ofns, in this case, are shown in Table 2.

From the above, we find that the values forns andr are very close to the best fit point for the
Planck data for all values ofn, as shown in Fig. 2.2

2The crosses are superimposed to the original Planck paper image, taken from Ref. [1], which includes also the
original caption.
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N ns

50 0.961
60 0.967

Table 2: Values ofns(N) in the casen≫ 1 (wherer ≈ 0).

n ns r (α = 1) r (α = 2
√

8π ≈ 10) r (α = 5
√

8π ≈ 25)

2 0.975 0.0030 0.0299 0.0747
4 0.973 0.0008 0.0168 0.0570
6 0.971 0.0003 0.0089 0.0352
8 0.970 0.0001 0.0052 0.0227

Table 3: Values ofns andr for N = 60 andn= 2,4,6,8. Three choices ofα = m/mP are depicted, which
correspond tom= mP, m= 2MP andm= 5MP, whereMP =

√
8π mP. It is shown that, withm mildly

super-Planckian,r can approach the observational boundr < 0.1 without affectingns.

5. Gravitational waves

Planck observations, in conjunction with BICEP2 and Keck Array data suggestr ≤ 0.1 [11].
As we have seen, in Shaft Inflation,r ∝ α2n/(n+2), while there is noα-dependence ofns. Thus, by
changingm, r can vary without affecting the spectral index (c.f. Eq. (4.5)). Therefore, sizeable
tensors can be attained by widening the shaft in field space. Indeed, renderingm mildly super-
Planckian can produce potentially observable values ofr as shown in Table 3, where Eq. (4.5)
suggests thatm= α mP = α√

8π MP, with MP = 1.2×1019GeV being the Planck mass. Thus, we see
that with m≃ 5MP we can haver ≃ 0.07, which is on the verge of observability. This is shown
clearly in Fig, 3.

6. More on Shaft Inflation

The running of the spectral index is easily obtained as

dns

dlnk
=−

2
(

n+1
n+2

)

(

N+ n+1
n+2

)2 . (6.1)

In the two extreme cases, this gives

n= 2 :
dns

dlnk
=− 3

2
(

N+ 3
4

)2 =−4.064×10−4 (6.2)

n≫ 1 :
dns

dlnk
=− 2

(N+1)2 =−5.375×10−4 (6.3)

where the numerical values correspond toN = 60. Thus, for all values ofn, we the above suggests:
dns

dlnk ≈−(4−5)×10−4, which is in agreement with the Planck findings:dns
dlnk =−0.003±0.007.
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Figure 3: Shaft inflation predictions forN = 60. The crosses in the image correspond ton= 2,4,6,8
as depicted from right to left. Black crosses correspond toα = 1 (m= mP), red crosses correspond to
α = 2

√
8π ≈ 10 (m= 2MP) and yellow crosses correspond toα = 5

√
8π ≈ 25 (m= 5MP). It is evident

that, for mildly super-Planckian values ofm the model predictions lie at the verge of observability.

Finally, the inflationary scale is determined by the COBE constraint

√

Pζ =
1

2
√

3π
V3/2

m3
P|V ′| , (6.4)

wherePζ = (2.208±0.075)×10−9 is the spectrum of the curvature perturbation [2]. This pro-
vides an estimate for the required value ofM

(

M
mP

)2

= 4
√

3(n−1)α− n
n+2 π

√

Pζ

[

2(n−1)(n+2)

(

N+
n+1
n+2

)]− n+1
n+2

. (6.5)

For illustrative purposes, using
√

Pζ ≃ 4.7×10−5, n= 2, α = 1 (i.e. m= mP) andN = 60 we
find M = 7.7×1015GeV, which is very near the scale of grand unification, as expected.

7. Conclusions

Planck data favour single-field, slow-roll inflation, characterised by a scalar potential which
approaches an inflationary plateau. In contrast to many other successful models, Shaft Inflation
approaches this plateau in a power-law manner. Shaft Inflation is based on a simple superpotential:
W = M2(Φn+mn)1/n. Without any fine tuning (m∼ mP andM ∼ 1016GeV, i.e. the scale of grand
unification) Shaft Inflation produces a scalar spectral index very close to the Planck sweet spot with
very small (negative) running, in agreement with Planck. Renderingmmildly super-Planckian one
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can easily obtain potentially observable tensors without affecting the spectral index. The chal-
lenge in now to obtain realistic setups which can realise the(deceptively) simple Shaft Inflation
superpotential.

Acknowledgements

KD is supported (in part) by the Lancaster-Manchester-Sheffield Consortium for Fundamental
Physics under STFC grant ST/L000520/1.

References

[1] P. A. R. Adeet al. [Planck Collaboration], arXiv:1502.02114 [astro-ph.CO].

[2] P. A. R. Adeet al. [Planck Collaboration],Planck 2015 results. XIII. Cosmological parameters,
arXiv:1502.01589 [astro-ph.CO];

[3] P. A. R. Adeet al. [Planck Collaboration],Planck 2015 results. XVII. Constraints on primordial
non-Gaussianity, arXiv:1502.01592 [astro-ph.CO].

[4] J. Martin, C. Ringeval, R. Trotta and V. Vennin,The Best Inflationary Models After Planck, JCAP
1403(2014) 039 [arXiv:1312.3529 [astro-ph.CO]].

[5] A. A. Starobinsky,A New Type of Isotropic Cosmological Models Without Singularity, Phys. Lett. B
91 (1980) 99; Sov. Astron. Lett.9 (1983) 302.

[6] F. L. Bezrukov and M. Shaposhnikov,The Standard Model Higgs boson as the inflaton, Phys. Lett. B
659(2008) 703 [arXiv:0710.3755 [hep-th]].

[7] A. Linde, Inflationary Cosmology after Planck 2013, arXiv:1402.0526 [hep-th].

[8] K. Dimopoulos, Phys. Lett. B735(2014) 75 [arXiv:1403.4071 [hep-ph]].

[9] A. de la Macorra and S. Lola,Inflation in S dual superstring models, Phys. Lett. B373(1996) 299
[hep-ph/9511470].

[10] M. Fairbairn, L. Lopez Honorez and M. H. G. Tytgat,Radion assisted gauge inflation, Phys. Rev. D
67 (2003) 101302 [hep-ph/0302160].

[11] P. A. R. Adeet al. [BICEP2 and Planck Collaborations],Joint Analysis of BICEP2/KeckArray and
Planck Data, Phys. Rev. Lett.114(2015) 101301 [arXiv:1502.00612 [astro-ph.CO]].

8


