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Abstract

Cross-training has emerged as an effective method for increasing workforce flexibility

in the face of uncertain demand. Despite recently receiving substantial attention in

workforce planning literature, a number of challenges towards making the best use of

cross-training remain. Most notably, approaches to automating the allocation of workers

to their skills are typically not scalable to industrial sized problems. Secondly, insights

into the nature of valuable cross-training actions are restricted to a small set of pre-

defined structures.

This thesis develops a multi-period cross-trained workforce planning model with

temporal demand flexibility. Temporal demand flexibility enables the flow of incomplete

work (or carryover) across the planning horizon to be modelled, as well as an the option

to utilise spare capacity by completing some work early. Set in a proposed Aggregate

Planning stage, the model permits the planning of large and complex workforces over

a horizon of many months and provides a bridge between the traditional Tactical and

Operational stages of workforce planning. The performance of the different levels of

planning flexibility the model offers is evaluated in an industry motivated case study.

An extensive numerical study, under various supply and demand characteristics, leads

to an evaluation of the value of cross-training as a supply strategy in this domain.

The problem of effectively staffing a pre-fixed training structure (such as the modified

chain or block) is an aspect of cross-training which has been extensively studied in the

literature. In this thesis, we attempt to address the more frequently faced problem
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of ‘how should we train our existing workforce to improve demand coverage?’. We

propose a two-stage stochastic programming model which extends existing literature

by allowing the structure of cross-training to vary freely. The benefit of the resulting

targeted training solutions are shown in application using a case study provided by BT.

A wider numerical study highlights ‘rules-of-thumb’ for effective training solutions under

a variety of characteristics for uncertain demand.
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support, supplied in few words but many actions.
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Chapter 1

Introduction to Workforce Planning

1.1 Workforce Planning

The effective planning and deployment of an organisation’s workforce plays a vital role

within service industries. Delivery of services relies primarily on an expensive human

workforce which often accounts for a large proportion of overall running costs. Success-

ful organisations can establish a competitive edge by carefully planning human resources

so that delivery is timely to demand (Owusu and O’Brien, 2013). This planning must

also account for the need to preserve the existing workforce by providing fair working

conditions and ensuring breaks and personal preferences for work are factored into de-

cisions. Pokutta and Stauffer (2009) argue that in increasingly competitive markets,

this challenge has become paramount for the maximisation of profit and, increasingly,

to ensure the survival of organisations.

Human resource planning problems are often misconceived to concern only short-

term scheduling decisions such as ‘what is the optimal tour of a particular engineer

given a set of tasks for the day?’. To provide a quality service at low operational cost, a

workforce schedule with this degree of detail is sought as an end product to the planning

process. The final scheduling solution is only as effective as the planning decision which

1
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Strategic
Planning

Tactical
Planning

Aggregate
Planning

Operational
Planning

What: Location and number of service cen-
tres; staff ratios
When: 1-2 years in advance

What: Hiring; training; volume of demand to
be met
When: 12-18 months in advance

What: Aggregate allocation of workers’ skills
to demand for those skills
When: 1 to 90 days in advance

What: Scheduling and assignment of individ-
ual workers to tasks
When: Beginning of week or shift

Figure 1.1.1: Four-stage workforce planning hierarchy for large scale service industries

came before it, however. If the supply-demand inputs to scheduling (a fixed quantity

of workers and jobs for a given day) are imbalanced, there is little that any scheduling

decision can do to rectify it.

Indeed, coordinating workforces encompassing more than a few tens of workers

quickly becomes a daunting task. A typical approach to simplifying resource plan-

ning problems is to break the problem down into a sequence of interconnected stages of

decision making. Figure 1.1.1 presents a planning hierarchy containing three common

planning stages: Strategic; Tactical and Operational Planning.

Strategic Planning involves the highest level decisions about the scope of the activ-

ities of the organisation, typically made years ahead of operations. Tactical Planning

describes the actions required to achieve the plans set out in Strategic Planning, in

this case, the annual or bi-annual setting of required staffing levels and training. The

Operational Planning stage is then concerned with the day-to-day scheduling of the

resulting workforce and takes as input the configuration of supply resulting from the

previous Tactical Planning stage. An important consideration when planning using such

a hierarchy is the effective transition between decisions made at each level.
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In the following section we provide background on the industry problem which mo-

tives the thesis. The above planning hierarchy proves useful in framing the challenges

faced by the associated organisation. This motivates the identification of an additional

aggregate planning level, the definition and reasoning for which is provided later in the

chapter.

1.1.1 Industry Motivation

Large service organisations, such as utility and telecommunications companies, typically

rely on large workforces. They are responsible for the maintenance and repair of their

existing infrastructure as well as for the role-out of new developments. For example, BT,

a world leading telecommunications service company and one of the leading telecom-

munications providers in the UK, have an engineering workforce of around 22,000. To

maintain network reliability and customer satisfaction, the workforce must be planned

carefully so that sufficient worker numbers are available to meet uncertain demand at

any time. Establishing the quantity of resources needed for each planning period is

an every-day task but one which is extremely complex with great cost implications to

the company if poorly resolved. In particular, over-supply leads to unnecessary human

resource expense while service level agreements can be breached and fines incurred with

under-supply.

Ensuring efficiency in this area is clearly well motivated but the task itself involves

numerous challenges, the most significant of which we now describe.

Demand Uncertainty

Typically, the process of assigning supply to demand can begin up to 3 months ahead of

operations, when knowledge of demand and hence the ability to make effective workforce

allocations is extremely limited. Demand for services is constantly subject to change
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with last minute requests, cancellations and amendments to jobs with potentially very

little notice. Keeping up with ever-evolving demand is a challenge for every sector but

is one perhaps most prominent in the service industry. Production companies trading in

goods can buffer against demand uncertainty using inventories - keeping spare stock of

products in case of a peak in demand. For human resource intensive service industries

however, inventories are not an option and so the delivery of resources must be timely.

Early planning efforts, however approximate, allow imbalance between supply and

demand to be spotted and rectified in the run-up to operations when there is less

flexibility to make changes.

A common consequence of uncertain demand and limited resources is incomplete

work remaining at the end of a day. This demand does not go away, rather it contin-

ually gets added to demand on the following day until it can be completed. Workforce

planning models commonly disregard the propagation of incomplete work through time

in favour of assuming there are the resources to clear all work at the end of each working

day, e.g. via outsourcing or overtime. This luxury is rarely a reality, with late-running

work an unavoidable characteristic of demand in many service industries, including BT.

According to Owusu et al. (2006), effective resource planning under uncertainty is

critical to optimal service delivery in service organisations such as BT. It is of interest to

such companies to bring about robust resource capacity decisions which balance against

the risk of costs incurred from under- and over-supply. A key step towards ensuring

robustness of solutions is understanding how automated planning models perform under

a range of outcomes for demand. It is therefore vital that a mechanism exists for

simulating demand outcomes reflective of, but not identical to, historic demand.

Multi-skilled workforces

The challenges introduced by uncertainty in demand highlight the need for workforce

flexibility wherever possible. Of increasing popularity with companies seeking workforce
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flexibility is cross-training so that some proportion of workers are able to work on two or

more types of task. Much research has gone into the benefits of multi-skilled workforces,

leading to recommendations for optimal training configurations in terms of breadth

(number of skills per employee) and depth (level of expertise in each skill) of training

within a fixed pattern. Though many companies have acted on these recommendations

by setting about building a multi-skilled workforce, they have not necessarily been able

to reap the benefits. The effective utilisation of this new-found flexibility relies upon

proactively allocating workers to their different skills.

Comparatively little work has been carried out on this multi-skilled workforce allo-

cation aspect of planning. Indeed, a common approach is to consider workers secondary

skills only once the scheduling stage has been reached, in an ad hoc manual adjustment

of individuals’ schedules to suit demand. Part of the contribution of this thesis is to

provide a method which automates the allocation of workers to their range of skills.

Problem Scale

Aligning a large workforce with demand for a wide range of skills leads to an extremely

large scale decision problem. Cross-training policies heighten the complexity of the

planning task, bringing about the combinatorial challenge of distributing a workforce

over a complex network of skills and varying ability levels.

Typically, consideration of how a cross-trained workforce’s flexibility can be exploited

is left until the final stages of assigning individuals to specific tasks within their skill-set.

The resulting assignment problem, as an extension of the NP-hard Generalised Assign-

ment Problem (Öncan, 2007; Heimerl and Kolisch, 2010), becomes computationally

intensive for large workforces however.
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1.1.2 Aggregate Planning

To improve and automate planning practices related to cross-trained workforces, we

propose that the allocation of workers to different skills is considered much earlier in

the planning horizon than scheduling in the Operational Planning level.

This motivates consideration of an Aggregate Planning stage, positioned at the in-

terface between Tactical and Operational Planning of Figure 1.1.1, which contributes

to the effective deployment of large workforces with complex cross-training structures.

Taking as input the staffing and training decisions made in Tactical Planning, this

stage establishes an effective utilisation of groups of workers’ skills on an aggregate

level and quantifies the resulting accumulation of unmet demand (or carryover) across

a planning horizon of a number of weeks. The result is a richer view of supply-demand

balance over the horizon and targets for the time workers spend on each skill. Schedules

can be then be built in the Operational Planning stage based on the output of Aggregate

Planning, resulting in a proactive, not reactive, exploitation of workers’ flexibility.

Though aggregate allocation models will lack detail on the level of the individual,

they have the benefit of being scalable to large and complex workforces and have more

scope to influence decision making and understanding in higher levels of the planning

hierarchy.

1.2 Thesis Outline

With the above motivation and problem background in mind, this thesis develops a

scalable approach to automating the allocation of cross-trained workers to demand for

their skills. This allocation model is then used to explore the impact of training actions

applied to an existing workforce - extending insights into the value of cross-training

beyond the pre-fixed structures featured in current literature.
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These two key contributions are being prepared for publication and, as such, appear

as self-contained reports in Chapters 4 and 5. The reader should therefore expect some

repetition of introductory material. Details of the contents of each chapter are now

given.

A multi-period cross-trained workforce planning model is proposed for the Aggregate

Planning stage in Chapter 4. This model incorporates the flow of incomplete work across

the planning horizon and facilities measurement of the value of cross-training in this

carryover inclusive setting. The contents of this chapter have been submitted to the

Journal of the Operational Research Society under title Ross, E., Kirkbride, C., Shakya,

S., Owusu, G. Cross-trained workforce planning for service industries: The effects of

temporal demand flexibility.

The allocation model is extended to the Tactical Planning level in the training model

proposed in Chapter 5. The two-stage stochastic programming model is used to explore

the interaction between the characteristics of uncertain demand and the nature of an

effective cross-training structure. The content of this chapter is presently being prepared

for submission to Flexible Services and Manufacturing under the title Ross, E., Wallace,

S., Shakya, S., Owusu, G. Cross-training Policies for Service Industries: The Effects of

Stochastic Demand.

Central to incorporating uncertainty in this training model and in testing the ro-

bustness of the allocation model is a procedure with which to simulate multivariate

time series realisations for demand. Chapter 3 documents the data analysis leading to

a simulation procedure. The core methodologies called upon in this work are outlined

in Chapter 2.



Chapter 2

Core Methodology

2.1 Introduction

In this chapter we introduce the key statistical and mathematical modelling methodology

drawn upon in this work.

2.2 Univariate Time series

A key measure of the success of a workforce planning strategy is its ability to cover

continually changing demand. Being able to model time series of historic demand pro-

vides an understanding of the market which can prove valuable in planning supply to

meet future demand. It is common practice to test how new approaches to workforce

planning would have performed against historic time series for demand. If we have a

time series model for that demand, we can further assess planning approaches under a

wider range of realisations characteristic, but not identical to, historic demand. This is

critical to the development of robust strategies which are proven against a future not

necessarily identical to the past.

In this section we describe a traditional approach to time series modelling and iden-

8
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tify stochastic processes which prove useful in modelling residual variation of a time

series. An approach to the detection of change-points in a time series is also described.

2.2.1 Time Series Decomposition

Hamilton (1994) identifies a time series to be a single outcome of some underlying

stochastic process. We define a discrete time stochastic process {Xt}t∈T to be a set of

random variables ordered in time and defined at a discrete set of time-points t ∈ T .

Much of the probability theory of time series is applied to stationary time series,

characterised by the joint distribution of (Xt1 , . . . , Xtn) being the same as the joint

distribution of (Xt1+τ , . . . , Xtn+τ ) for all τ and t1, . . . , tn ∈ T . Time series analysis

therefore often requires non-stationary series to be transformed to stationary series so

that their associated probability theory can be exploited.

The classical approach to time series analysis involves decomposing the variation in

a series into four key components: trend T ; seasonal variation S; other cyclic variation

C; and residual variation ε. The goal is then to capture all systematic variation using

deterministic components T ,S and C, to reach stationary residual variation ε.

We now describe these components in more detail. Many time series, such as daily

temperature recordings, exhibit cyclic variation S which is annual in period. Such

seasonal cyclic variation is often well-understood and can therefore be directly modelled

or removed from the data. As well as seasonal variation, shorter-term cyclic variation C

may be a feature of the time series, e.g. within-day temperature fluctuation. The trend

component T is used to account for any long-term change in mean level. The meaning

of long-term, and hence the differentiation between trend and a cyclic component with a

long wave-length, depends on the application of interest. For the applications considered

in this work, we identify trend to be variation with period longer than one year. The

residual variation component of a time series then picks up any remaining variation
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around the underlying trend and cyclic components.

To provide an example, we might summarise univariate stochastic process {Xt}t∈T

in terms of these components using the following additive model:

Xt = Tt + St + Ct + εt.

Provided we can find some model for stationary residual variation εt, new realisations x
′
t

on the same interval t ∈ {1, . . . , |T |} can be generated by sampling εt from its model and

combining with deterministic components T ,S and C. Note that the structure of the

decomposition need not be additive, indeed popular alternatives feature multiplicative

components.

The decomposition of a time series into such components is typically not unique,

unless some assumptions are made. This highlights the descriptive but also inferential

role that time series decompositions can play.

2.2.2 Modelling Stationary Residual Variation

We highlight two stationary stochastic processes which are useful in modelling residual

variation εt: white noise and autoregressive stochastic processes.

White Noise Process

A sequence of random variables {Zt}t∈T is a white noise process if its variables are

serially uncorrelated with zero mean and finite variance (Shumway and Stoffer, 2006).

In the case that its variables are also independent and identically distributed (i.i.d),

the resulting white independent noise process has constant mean and variance and zero
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autocorrelation, so that

γ(k) = Cov(Zt, Zt+k)

= 0 for all k = ±1,±2, . . .

When residual variation εt has the characteristics of white independent noise, generat-

ing a new time series realisation, {x′1, . . . , x
′

|T |}, simply requires sampling ε
′
t from the

distribution fitted to independent values εt.

Assuming all underlying trend and cyclic behaviour has been removed, εt can be

modelled using any suitable zero-centred distribution, also called an error distribution.

The normal distribution centred at zero is often suggested in the definition of time series

decomposition. Our motivating application calls for error distributions with thinner tails

or skewness not characteristic of the normal distribution, however. The skewed Gener-

alised Error (sGE) distribution offers the required flexibility to model these properties

and contains the normal distribution as a special case (Theodossiou, 2015). The sGE

distribution has the following probability density function:

f(x;µ, σ, k, λ) =
C

σ
exp

(
− |x− µ+ δσ|k

(1 + sign(x− µ+ δσ)λ)kθkσk

)
(2.2.1)
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where

C =
k

2θΓ(1/k)

δ = 2λAG(λ)−1

θ = Γ(1/k)0.5Γ(3/k)−0.5G(λ)−1

G(λ) =
√

1 + 3λ2 − 4A2λ2

A = Γ(2/k)Γ(1/k)−0.5Γ(3/k)−0.5

δ = 2λAG(λ)−1.

We adopt the definition given by Bali and Theodossiou (2008) for its convenience in

writing computer code for both the distribution function and likelihood. Parameters µ

and σ are respectively the mean and standard deviation of random variable x; whilst

k is a positive valued kurtosis parameter and λ is a skewness parameter obeying the

constraint |λ| < 1. In the above density, µ− δσ is the mode and δ = (µ− mode(x))/σ

is Pearson’s measure of skewness. The sGE distribution contains several well-known

distributions as special cases:

• λ = 0 gives the generalised error distribution or power exponential distribution of

Subbotin (1923);

• λ = 0, k = 2 gives the normal distribution;

• λ = 0, k = 1 gives the Laplace or double exponential distribution; and

• λ = 0, k →∞ gives the uniform distribution.

This distribution is supported within the fGarch package of statistical freeware R. The

interested reader should bear in mind that we use an alternative parameterisation here.

In particular, the sged function adopts parameter set (µ, σ, α, ξ). The first 3 parameters
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are identical to (µ, σ, k) used here: location, scale, and kurtosis respectively. The skew

parameter, ξ, however has support on (0,∞), with ξ = 1 corresponding to no skewness;

ξ < 1 giving negative skew and ξ > 1 giving positive skew. This parameter can be

directly related to the λ skewness parameter favoured here by ξ = exp(λ).

Note that parameter ξ is a general skew-inducing parameter, used for transforming

any distribution to a skewed version of that distribution, with its role discussed in detail

in Fernández and Steel (1998).

Autoregressive Process

Let {Zt}t∈T be a white independent noise stochastic process with zero mean and let c

be any constant; an autoregressive process of order p, abbreviated to AR(p), is then

defined by

Xt = c+ ϕ1Xt−1 + ϕ2Xt−2 + . . .+ ϕpXt−p + Zt.

That is, the value of the stochastic process at period t is a function of the value of the

process at the previous p time-points and some random fluctuation Zt. The location of

the process is controlled by constant c. The first order process AR(1), also known as

the markov process, is characterised by

Xt = c+ ϕXt−1 + Zt. (2.2.2)

When |ϕ|< 1 equation (2.2.2) defines a stationary AR(1) process (Shumway and Stoffer,

2006), particularly useful in modelling residual random variation εt with serial correla-

tion. In this stationary case, the mean µ = E(Xt) is identical for all values of t, so that
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we can write

E(Xt) = E(c) + E(ϕXt−1) + E(Zt)

µ = c+ ϕµ+ 0

µ =
c

1− ϕ
.

The variance in this case is given by

var(Xt) =
σ2
Z

1− ϕ2
,

where σ2
Z denotes the variance of white independent noise process Zt.

2.2.3 Change-point Detection

A common problem faced when modelling time series is detecting points in time at which

the probability distribution of the time series (or generating stochastic process) changes

in some way. We might, for example be interested in locating changes in the mean or

variance of the series. This change-point detection problem involves establishing whether

or not a change has occurred; finding the number of change points; and identifying the

location of the change(s).

Let {Xt}t∈T be a sequence of independent random variables with associated cumula-

tive distribution functions F1, F2, . . . , F|T | belonging to some common parametric family

F (θ) where θ ∈ Rp.

The change point problem for parameters θ1, . . . , θ|T | can be posed as a hypothesis

test with null hypothesis

H0 : θ1 = θ2 = . . . = θ|T | = θ (unknown)
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being tested against alternative hypothesis

H1 : θ1 = . . . = θk1 6= θk1+1 = . . . = θk2 6= . . . 6= θkq−1 = . . . θkq 6= θkq+1 . . . = θ|T |

where the number of change points, q, and their locations, k1, k2, . . . , kq, have to be

estimated (Chen and Gupta, 2012).

Let us first consider the single change-point detection problem. In this case, H0

corresponds to there being no change-point (q = 0) and the alternative hypothesis, H1,

to there being one change-point (q = 1).

We use the likelihood ratio test statistic to decide whether a change has occurred.

Let {x1, . . . , x|T |} be a time series realisation of stochastic process {Xt}t∈T . Further,

let fθ(·) denote the probability density function associated with the distribution of the

data, characterised by parameter θ. Under the null hypothesis, the log-likelihood under

parameter θ is given by

l0(θ) := log fθ(x1, . . . , x|T |).

Let θ̂ = argmaxθ l0(θ) represent the associated maximum likelihood estimate of the

parameter(s) θ; then l0(θ̂) denotes the maximum log-likelihood value under the null

hypothesis of no change point.

Consider now the alternative hypothesis that a change point exists at time k ∈

{1, . . . , |T |−1}. For a given change point location k, the maximum log-likelihood is

given by

ML(k) := log fθ̂1(x1, . . . , xk) + log fθ̂2(xk+1, . . . , x|T |),

where θ̂1 = argmaxθ1 log(fθ1(x1, . . . , xk)) and θ̂2 is similarly defined for the data right

of the proposed change-point k. The maximum log-likelihood under the alternative

hypothesis is then simply given by maxk ML(k).
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These quantities combine to give the following likelihood ratio test statistic:

λ = 2
[
max
k

ML(k)− l0(θ̂)
]
.

Under certain regularity conditions, when H0 is true λ is asymptotically χ2 distributed

with df1 − df0 degrees of freedom. Here df0 and df1 are respectively the number of free

parameters in the models defined by the null and alternative hypotheses (Wilks, 1938).

The null hypothesis is rejected if λ exceeds some threshold c, in which case we detect

a change-point and estimate its position to be k̂, the value which maximises ML(k). The

appropriate value for parameter c remains an open research question. The interested

reader is directed to Chen and Gupta (2012) for discussion on this topic.

This single change-point detection test statistic can be extended to test for multiple

changes by summing the likelihood over (q + 1) > 1 segments. A popular approach to

solving the multiple change-point detection problem however, relies on solving a set of

iteratively defined single change-point detection problems. This Binary Segmentation

method proposed by Scott and Knott (1974) starts by applying a single change-point

test statistic to the entire data. If a change-point is detected, the data is split into two

at the location of the change and the single change-point detection procedure repeated

on the two newly created data sets. If there is a change-point in either of the new data

sets, they are split further; the process continuing until no further change-points can be

found in any part of the data.

Killick and Eckley (2014) highlight that Binary Segmentation is an approximate

method as it only considers a subset of the 2|T |−1 possible solutions. It has the benefit,

however, of computational speed superior to alternative approaches.
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2.3 Multivariate Dependence Modelling

Copulas provide a useful framework for modelling high-dimensional multivariate distri-

butions, permitting the marginal distributions and dependence structure (the copula) to

be estimated separately. In the following subsections we provide an introduction to the

theory of copulas and introduce four commonly used copula models. We also explore a

summary statistic for extremal dependence which contributes to a comparison of their

properties.

2.3.1 The Copula Function

A copula is a multivariate probability distribution which is used to describe the de-

pendence between random variables. Translated from Latin, a copula is a link, tie or

other connecting item. The statistical definition of a copula is faithful to this origin

- referring to a function which links a multivariate distribution to its one-dimensional

marginal distributions (Sklar, 1996).

To understand just how the copula makes this link, consider, without loss of gen-

erality to d dimensions, a 2 dimensional random vector (X, Y ). The joint cumula-

tive distribution function FX,Y (X, Y ) = P(X ≤ x, Y ≤ y) provides a complete de-

scription of the dependence between variables X and Y . It is possible to remove the

marginal aspects of this dependence, using the marginal cumulative distribution func-

tions FX(x) = P(X < x), FY (x) = P(Y < y) by applying the Probability Integral

Transform. This results in the random vector

(U, V ) =(FX(X), FY (Y )) (2.3.1)

with uniformly distributed margins U, V ∼ U(0, 1). The copula on (X, Y ) is then the
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joint cumulative distribution,

C(FX(x), FY (y)) = C(u, v) = P(U ≤ u, V ≤ v)

of (U, V ), defined on domain A = [0, 1] × [0, 1]. This copula function along with the

marginal distribution functions then fully specifies the joint distribution of X and Y ,

with

FX,Y (x, y) =C{FX(x), FY (y)}. (2.3.2)

Further, subject to continuity conditions, Sklar’s theorem states that this copula func-

tion C(·, ·) is unique. In other terms, the copula function describes the relationship

between X and Y in a form invariant to marginal transformation.

A welcome consequence of the theory of copulas is an elegant procedure for sampling

from multivariate distributions. Provided we have a procedure for generating a sample

(u, v) from the copula distribution, a sample from the full multivariate distribution can

be obtained simply by reversing the transformation in equation (2.3.1), that is

(x, y) =(F−1
X (u), F−1

Y (v)) (2.3.3)

where, assuming the cumulative distribution functions FX(·) and FY (·) are continuous,

their inverses are well-defined. An accessible introduction to multivariate dependence

sampling using copulas is provided by Nelsen (2007).

2.3.2 Examples of Useful Copulas

Intuition for the characteristics and application of copulas does not generally follow

immediately from their definition. It is useful to compare examples of commonly-used
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copula families to help address this issue. In this subsection we explore four such

copula families. The perfect-dependence and independence copulas are considered first,

followed by the popular bivariate Gaussian copula and the family of bivariate extreme

value copulas. Many more families of distributions are listed in Joe (1997).

Though copula functions easily extend to d dimensions, we maintain a 2-dimensional

presentation. This is partly for simplicity of presentation, but also because fitting of

high-dimensional copulas is generally a difficult task which is traditionally broken down

into a process of fitting pairwise bivariate copulas - adding one margin at a time by

conditioning on those already captured.

The independence copula

In the case of independence between X and Y , the joint distribution function is given

by FX,Y (x, y) = FX(x)FY (y). From equation (2.3.2) we have

C{FX(x), FY (y)} = FX(x)FY (y),

so that the independence copula function on domain A is C(u, v) = uv. This cumulative

distribution function (CDF), C(u, v), for the independence copula is illustrated in Figure

2.3.1. The lack of impact that the value of one margin has on the value of the other

is clear from the “flatness” of the surface plot, with all values of V equally likely given

some fixed value of U .

The perfect dependence copula

In the opposing case of perfect dependence between X and Y , X = F−1
X (FY (Y )) with

probability 1. The joint distribution function can then be expressed as FX,Y (x, y) =

min{FX(x), FY (y)}, resulting in the perfect dependence copula function C(u, v) =

min(u, v). In contrast to the independence copula, the plots of the cumulative dis-
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Figure 2.3.1: Surface and contour plots of the cumulative distribution function for the bivariate

independence copula

tribution function in Figure 2.3.2 illustrate the certainty of the value of V given the

value U , with all of the mass of the distribution lying on the line U = V .
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Figure 2.3.2: Surface and contour plots of the cumulative distribution function for the bivariate

perfect dependence copula
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The Gaussian copula

The Gaussian copula family has the flexibility to model varying degrees of dependence

between U and V , driven by linear correlation parameter ρ. This copula arises from the

bivariate normal distribution via the following application of the probability integral

transform.

Let (X, Y ) have a bivariate standard normal distribution with correlation coefficient

ρ, then the marginal distribution functions ΦX(·) and ΦY (·) are the distribution func-

tions of the standard univariate normal distribution, and the joint distribution function

is given by

ΦX,Y (x, y) =

∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
s2 − 2ρst+ t2

])
ds dt.

The bivariate Gaussian copula, characterised by ρ, is then defined via the following

application of the probability integral transform:

ΦX,Y (x, y) = Cρ{ΦX(x),ΦY (y)}

Cρ(u, v) = ΦX,Y (Φ−1
X (u),Φ−1

Y (v))

Cρ(u, v) =

∫ Φ−1
X (u)

−∞

∫ Φ−1
Y (v)

−∞

1

2π
√

1− ρ2
exp

(
− 1

2 (1− ρ2)

[
s2 − 2ρst+ t2

])
ds dt.

(2.3.4)

Examples of the Gaussian copula for different correlation coefficients ρ = 0.3 and 0.9

are given in Figure 2.3.3. As ρ → 0 the Gaussian copula resembles the independence

copula in Figure 2.3.1, whilst as ρ → 1 it resembles the perfect dependence copula of

Figure 2.3.2.

The symmetry illustrated in these contour plots is a key property of this model (as

well as the trivial independence and perfect dependence copulas) - meaning variables X
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Figure 2.3.3: Surface and contour plots of the cumulative distribution function for the Gaussian

dependence copula

and Y are interchangeable.

The extreme value copula class

Extreme-value copulas characterise the dependence structure between suitably nor-

malised component-wise maxima. They are of particular interest in insurance and

finance applications in which the occurrence of joint extremes is a concern for the man-
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agement of risk. This interest is common to our motivating service industry problem,

in which joint high demand for skills puts strain on the availability of human resources,

increasing the risk of fines or damaged reputation.

To define this copula class we first need to characterise univariate variation in the

maxima of sequences of i.i.d. random variables via definition of the generalised extreme

value distribution.

Univariate Extreme Value Distributions

Let X1, . . . , Xn be independent and identically distributed random variables with

distribution function FX(·), and let MX,n = max(X1, . . . , Xn) define their component-

wise maxima. If there exist sequences {an} > 0 and {bn} of normalising constants such

that

P{(MX,n − bn) /an ≤ z} = F n (anz + bn)

converges in distribution to a non-degenerate distribution G as n → ∞, then G must

necessarily be the generalised extreme value (GEV) distribution. This distribution sum-

marises three distributions originally identified by Fisher and Tippett (1928), namely

the Fréchet, Weibull and Gumbel distributions and has distribution function

G(z;µ, σ, k) = exp

[
−
{

1− k
(
z − µ
σ

)}1/k
]
,

where σ > 0 and the range of z follows from 1−k(z−µ)/σ > 0. The Fréchet distribution

arises when k < 0, the Gumbel distribution when k = 0 and the Weibull distribution

when k > 0.

The unit Fréchet distribution, with cumulative distribution function F (z) = exp(−1/z),

for z > 0, is a simple functional form of the GEV distribution that is commonly used
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in the presentation of theory relating to extreme values without loss of generality. We

follow this convention in the following introduction to the extreme value copula class.

Multivariate Extreme Value Distributions

Suppose that (Xi, Yi)i=1:n defines an independent and identically distributed series

of random vectors with unit Fréchet margins, and define the vector of componentwise

maxima as Mn = {MX,n,MY,n} (where MY,n is similarly defined to MX,n above). Sub-

ject to weak regularity conditions, the limiting distribution of n−1Mn has distribution

function

P(MX,n/n ≤ x,MY,n/n ≤ y) = {F (nx, ny)}n → G(x, y),

as n→∞, where G(x, y) is non-degenerate and can be written in the form

G(x, y) = exp{−V (x, y)}. Exponent measure V (·) summarises the extremal dependence

structure and provided that

V (x, y) =

∫ 1

0

max

(
w

x
,
1− w
y

)
2dH(w)

for some distribution function H on [0, 1] satisfying moment constraint

∫ 1

0

wdH(w) = 1/2,

distribution function G(x, y) belongs to the bivariate extreme value class (Coles et al.

(1999)).

One useful member of this class, the family of bivariate logistic extreme value distri-
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butions, arises when

Vα(x, y) =
(
x−1/α + y−1/α

)α
, and

Hα(w) =
1

2

[{
w(1−α)/α − (1− w)(1−α)/α

}{
w1/α + (1− w)1/α

}α−1
+ 1
]
,

for parameter 0 < α ≤ 1 which controls the strength of extremal dependence. The

joint distribution function for this bivariate logistic extreme value class, on unit Fréchet

margins FX(·) and FY (·), is given by

FX,Y (x, y) = P (X ≤ x, Y ≤ y) = exp
[
−
(
x−1/α + y−1/α

)]
,

for x > 0, y > 0 and α ∈ (0, 1). Noting that the inverse of the cumulative distribution

function for the unit Fréchet distribution is given by F−1
X (u) = −log (u)−1, we can pull

out the definition of the bivariate logistic extreme value copula on uniform margins:

C(u, v) = FX,Y
(
F−1
X (u), F−1

Y (v)
)

C(u, v) = FX,Y
(
−log(u)−1,−log(v)−1

)
C(u, v) = exp

[
−
{

(−log u)1/α + (−log v)1/α
}α]

. (2.3.5)

The strength of extremal dependence is governed by parameter α ∈ (0, 1], where α = 1

defines independence and α → 0 leads to increasing dependence up to perfect depen-

dence in the limit. This model shares the symmetry of the Gaussian copula model, with

variables X and Y again interchangeable.

The cumulative distribution function, illustrated in Figure 2.3.4, does not appear

markedly different to that of the Gaussian copula in Figure 2.3.3. The key difference

between these copula families is in their modelling of extremal dependence, and so a

comparison is more easily achieved on a scale which captures this probability of a large
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value for V given a large value of U . We explore summary measures for this domain in

the following subsection.
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Figure 2.3.4: Surface and contour plots of the cumulative distribution function for the logistic

extreme value copula

2.3.3 Extremal Dependence

It is often useful to be able to reduce the information in the copula to a single summary

parameter, or at least to a one-dimensional parameter function. Such summary measures
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can aid inference and ease interpretation of multi-dimensional dependence. As the

simultaneous occurrence of high demand in multiple skills is of particular relevance in

cross-trained workforce planning, we consider two closely related measures of extremal

dependence.

A natural measure of extremal dependence between non-identically distributed pairs

of variables (X, Y ) is given by transforming onto uniform margins (U, V ) and measuring

χ∗ = lim
u→1

P(V > u|U > u) = lim
u→1

P(U > u, V > u)

P(U > u)
, (2.3.6)

the probability of one variable being extreme when the other is extreme. When χ∗ =

0, the largest values of U and V are unlikely to occur simultaneously and so U and

V are said to be asymptotically independent. The complementary case of asymptotic

dependence follows from χ∗ = 1.

We can obtain measure χ∗ as the limit as u → ∞ of one of the following functions

described in Coles et al. (1999)

χ(u) = P(V > u|U > u)

=
P(V > u, U > u)

P(U > u)

=
1− 2u+ C(u, u)

1− u

= 2− 1− C(u, u)

1− u
; or (2.3.7)

χl(u) = 2− log C(u, u)

log u
. (2.3.8)

Function χl(u) is asymptotically equivalent to χ(u), with χl(u) ∼ χ(u) as u → 1, but

has different properties for u < 1.

As well as providing an alternative approach to measuring χ∗, functions χ(u) and
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χl(u) provide their own useful insights since they can be interpreted as quantile-dependent

measures of dependence. In particular, χl(u) is constant in u for three of the four copula

families introduced in Section 2.3.2 (all except for the Gaussian copula). Specifically,

for independent variables χl(u) = 0 and for perfectly dependent variables χl(u) = 1. In

the case of the bivariate logistic extreme value distribution

χl(u) = 2− log C(u, u)

log u

= 2−
log

(
exp

[
−
{

(−log u)1/α + (−log u)1/α
}α])

log u

= 2−
−
{

2 (−log u)1/α
}α

log u

= 2 +
{2α (−log u)}

log u

= 2− 2α

so that there is a clear relationship between extremal dependence measure χl(u) and

the extremal dependence parameter α specifying the distribution itself. Plots of em-

pirical estimates of χl(u) can therefore provide a useful diagnostic for the membership

or otherwise of a pair of variables to these copula models via a simple by-eye check of

constancy. Figure 2.3.5 illustrates χl(u) for a range of values of α with the upper-most

line corresponding to α = 0.1, and lines at lower levels corresponding to α ∈ [0.2, 0.9]

in increments of 0.1. The upper and lower bounds of χl(u) are given as dotted lines.

For the Gaussian dependence model, χl(u) is a considerably less trivial function

when its dependence parameter, correlation coefficient ρ, is non-zero. In such cases

χl(u) is non-constant in u and its evaluation requires numerical integration. Figure 2.3.6

demonstrates this function for a range of correlation coefficients ρ. The sign of χl(u)

immediately tells us whether the association between variables is positive or negative,

with the bottom curve corresponding to ρ = −0.9 and higher curves corresponding to
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Figure 2.3.5: Extremal dependence measure χl(u) for the bivariate logistic extreme value

copula: solid lines (bottom to top) correspond to α = 0.9, 0.8, . . . , 0.1 and dashed lines give

the bounds of χl(u)

ρ ∈ [−0.8, 0.9] in increments of 0.1. Again, the upper and lower bounds of χl(u) are

given as dotted lines.

Figure 2.3.6: Extremal dependence measure χl(u) for the bivariate Gaussian copula: solid

curves (bottom to top) correspond to correlation coefficient ρ = −0.9,−0.8, . . . , 0.9 and dashed

curves give the bounds of χl(u).

In contrast to the extremal dependence functions for the perfect dependence and

bivariate logistic extremal dependence copulas, as u → 1, the effect of dependence
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decreases, i.e. χl(u)→ 0 for all ρ < 1. The very slow convergence for ρ > 0, resulting in

an sudden drop to 0 when u is very close to 1, is of practical importance since empirical

estimates of χl(u) may appear constant and non-zero (suggesting perfect dependence or

bivariate logistic extreme dependence) even for asymptotically independent variables.

We therefore take caution in this respect when diagnosing membership of bivariate data

to these copula models.

2.4 Stochastic Linear Programming

In this section we introduce techniques for finding the best possible decisions given some

criteria expressed in the form of an objective function and constraints. Coordinating

the work of a hand-full of individuals is a complex task with time-off, different working

patterns and skills to consider amongst many other factors. Though this task is possible

and perhaps even best performed by a manager on a small scale, the explosion in the

complexity of the problem as the number of workers increases means it soon becomes

a combinatorial task too large for a single person to compute without the help of a

computer. Planning on a scale of tens of thousands of individuals soon benefits from

automated systems which can capture basic desirable outcomes (e.g. balancing supply to

meet demand within normal working hours) and optimise over the thousands of possible

deployments of the workforce.

We begin by describing the formulation of decision problems as mathematical pro-

grams with the simplest case: deterministic linear programs. Following this, we evaluate

how this theory stands up when certain input data is uncertain. This motivates an ex-

tension of the deterministic theory to a Stochastic Linear Programming framework.
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2.4.1 Decision Problems as Linear Programs

Linear programs express decision problems as a mathematical model in which require-

ments are represented by a linear objective function and linear equality and inequality

constraints. In vector-matrix notation, linear programs take the following form:

min cTx,

s.t. Ax ≤ b,

x ≥ 0;

where x is an (n×1) vector of decisions and c, b and A are known data of sizes (n×1),

(m × 1) and (m × n) respectively. This data might represent demand counts, supply

levels, productivity measures and so on. The quantity we wish to minimise with respect

to the decision x is captured using objective function cTx which might summarise total

costs or, say, incomplete work over a planning horizon. An optimal solution to the linear

program, x∗, must belong to the feasible set of decisions F = {x ∈ Rn|Ax ≤ b,x ≥ 0}

and satisfy

cTx ≥ cTx∗ for all x ∈ F \ x∗.

Since their introduction by George B. Dantzig in 1947, linear programs have been

extensively applied to practical decision problems. With extensions to integer decision

variables and the use of non-linear functions in the objective and constraints, a more

general class of mathematical programs emerged:

min f(x),

s.t. gi(x) = bi, for i ∈ {1, . . . ,m}

x ∈ Rn,

where functions f and gi may be non-linear. Many real systems are inherently non-linear
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and hence benefit from being modelled as a non-linear program in which some or all

functions f and gi are non-linear. Examples include economies of scale in manufacturing

or the drop in signal strength with distance from a transmitter.

Certain functional forms for f and gi, due to their role in model formulation and

convenient mathematical properties, are predominant in mathematical programming.

Linear functions are by far the most applicable in formulation and define linear programs

which are particularly easy to solve. More generally, linear programs have the advantage

of belonging to an important class of convex optimisation problems in which f and gi

(for i ∈ {1, . . . ,m}) are convex functions and the feasible region is a convex set. A real

valued function f(x) defined over points (x1, . . . , xn) is said to be a convex function if

and only if for any two points x = (x1, . . . , xn) and y = (y1, . . . , yn),

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all λ ∈ [0, 1]. When the inequality is strict, the function is said to be strictly convex

(Dantzig and Thapa, 1997). The feasible region of a non-linear program is a convex set

provided it is specified by less-than-or-equal-to constraints involving convex functions.

Convex optimisation problems benefit from the guarantee that every local minimum so-

lution is in fact a global minimum. This property renders convex optimisation problems

considerably easier and faster to solve than their non-convex counterparts.

Another important consideration when formulating mathematical programs which

can be solved quickly, is the requirement or otherwise for some or all decision variables to

be integers. The associated class of integer programs are generally much harder to solve.

Roughly speaking, the efficient solution methods used to search the single continuous

and convex solution space (present in continuous convex optimisation problems) cannot

be applied to the disjoint integer solution space.
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2.4.2 Stochastic Linear Programming

In the optimisation problems discussed above, all inputs were assumed to be determin-

istic in nature. In many real problems however, it is not reasonable to assume that

problem parameters c, A, b, gi are deterministically known. The future productivity of

a worker or the demand experienced at different points in time, for example, are better

modelled by random variables and hence best characterised by probability distributions

(King and Wallace, 2012).

The aim of Stochastic Programming is to find optimal decisions for problems which

involve uncertain data. Uncertainty can be represented in terms of random experiments

with outcomes ω. The values that the various random variables take, denoted by vector

ξ, are known only after the random experiment so that ξ = ξ(ω).

Models in which some decisions are delayed until after information about uncertain

quantities has been disclosed are referred to as recourse problems and form a powerful

area of stochastic programming.

We can recognise decisions as falling into two groups (Birge and Louveaux, 1997):

1. First-stage decisions which have to be made before the experiment or before the

uncertain information is realised and available; and

2. Second-stage decisions which can be made after the experiment.

In general recourse program notation, x traditionally represents first stage decisions and

y(ω,x) the second stage decisions. We summarise the sequence of events with

x→ ξ(ω)→ y(ω,x).

The classical two-stage stochastic linear program with fixed recourse, introduced by
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Dantzig (1955) and Beale (1955), is then the problem defined by

min cTx+ Eξ[min q(ω)Ty(ω,x)],

s.t. Ax = b,

T (ω)x+W (ω)y(ω,x) = h(ω),

x,y(ω,x) ≥ 0. (2.4.1)

Our first-stage or here-and-now decision x does not respond to the outcome of ξ

in any way since it is determined before any information relating to uncertain data

has become available. Associated with the first stage problem are the vectors c, b and

matrix A.

In the second stage, any random event (from a set of possible events Ω) may be

realised. For a given realisation ω, the problem data q(ω), h(ω), T (ω) and W (ω)

become known, at which point the second stage decision y(ω,x) must be made. By

definition, the single random event ω influences several random variables, here they are

every component of ξ.

We can understand the goal of such models as identifying a first stage solution

well-positioned against all possible outcomes in the second stage so that advantageous

outcomes of ξ can be exploited without major vulnerability to disadvantageous ones.

The objective function contains both a deterministic term cTx and the expectation

of the second stage objective q(ω)Ty(ω,x) taken over all realisations of ξ. This second

stage term is the more difficult to compute since for each ω, y(ω,x) is the solution to

a linear program in itself. To be able to solve stochastic programs, we therefore need

to be able to effectively discretise the continuous distribution of stochastic variables ξ,

summarising it using a finite set of samples or ‘scenarios’. We wish to discretise the

distribution using as few scenarios as possible, without losing the key properties of the
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distribution. This discretisation problem is discussed in more detail in the following

subsection.

Discretisation of the expectation forming the second-stage sub-problem allows us to

define the deterministic equivalent linear program associated with the original continuous

problem. This notion is sometimes used to stress and clarify the ‘program within a

program’ structure of model (2.4.1).

Defining the second stage value function for a given realisation ω as

Q(x, ξ(ω)) = min y{q(ω)Ty(ω,x)|W (ω)y(ω,x) = h(ω)− T (ω)x,y(ω,x) ≥ 0},

the expected second stage value function, defined over discrete scenario set S, is thus

defined as

Q(x) =
∑
s∈S

psQ(x, ξ(ω)),

where ps ∈ [0, 1] is the probability associated with each scenario s ∈ S.

We then have the so-called deterministic equivalent program

min cTx+Q(x)

s.t. Ax = b,

x ≥ 0. (2.4.2)

This model’s name gives away the fact that it is essentially one very large-scale ver-

sion of a standard deterministic linear program and writing it in this form opens up a

range of decomposition based solution techniques which exploit its underlying structure.

Indeed we can solve increasingly large two-stage deterministic equivalent programs us-

ing a variant of Dantzig-Wolfe Decomposition (or Column Generation) called Benders

Decomposition. For more information on these techniques see Bertsimas and Tsitsiklis
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(1997).

Two-stage stochastic programs can be extended to multiple stages with a simple

amendment of the linear program above. The additional decision stages result in a

scenario tree which quickly explodes in size however. Despite the progress made in

solving two-stage stochastic programs, multi-stage programs remain elusively difficult

to solve for more than a few stages of decision making and a hand-full of scenarios.

2.4.3 Scenario Generation

There are numerous approaches to finding a representative discrete scenario set for the

second-stage sub-problem. Indeed a category of literature called scenario generation

dedicates itself to this problem.

The key goal of the scenario generation procedure is for it to be unobservable in the

solution of the model. The discretised model should function as it would have had the

whole distribution been used. That is, we want the model (the algebraic formulation

and decision variables) to drive the optimisation problem and not the discretisation

procedure.

Kaut and Wallace (2007) identify two useful properties in the evaluation of scenario

generation procedures:

• In-sample stability: a test for the robustness of the discretisation procedure, it

ensures that the optimal objective function value is roughly the same for any

scenario-tree generated by the (random) scenario generation procedure; and

• Out-of-Sample Stability: ensures that the true objective function value correspond-

ing to solutions resulting from different scenario trees are roughly equal.

Let Si and Sj represent two scenario trees resulting from two different runs of a

scenario generation procedure. Then let x̂i be the optimal solution of the model with
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objective function f defined with scenario tree Si, that is, from solving minx f(x;Si).

With x̂j similarly defined, if the optimal objective function values are (approximately)

the same in all cases, i.e.

f(x̂i;Si) ≈ f(x̂j;Sj),

then we have in-sample stability.

To test out-of-sample stability, ideally we would verify that

f(x̂i; ξ) ≈ f(x̂j; ξ).

Evaluating f(x̂i; ξ) equates to fixing the first stage solution and solving a large number

of second-stage sub-problems. If ξ is not discrete, this may well be an impossible task.

In such cases, the following weaker out-of-sample stability test can be performed:

f(x̂i;Sj) ≈ f(x̂j;Si).

Aside from stability, the quality of a discretisation is determined by the optimisation

problem using it. This marks a key difference between the goals of scenario generation

and generic statistical sampling of a distribution. The value of including an additional

scenario in the scenario set is evaluated not against the level by which it improves the

statistical representation of the distribution, but on whether it improves our under-

standing of the solution space of the stochastic program. A new scenario is of greatest

value if it results in a solution which has not already arisen from another scenario in

the set. It is rarely possible to evaluate the inclusion of a new scenario in this manner

without solving the stochastic program directly, however. More often, we aim to match

important properties of the distribution (e.g. mean, variance, kurtosis), identified using

understanding of the decision problem at hand. Unlike sampling of the distribution,
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we do not care if our scenario set differs from the distribution in properties which are

unimportant to the solution.

Scenario generation, though an important and active area of research within stochas-

tic programming, is beyond the scope of this work. We direct the interested reader

to Chapter 4 of King and Wallace (2012) for an introduction to property matching

methods. As the motivating application of this work involves planning a cross-trained

workforce for demand across multiple skills, correlation is a key property we will wish to

capture in scenario generation. For its flexibility to capture non-elliptical multivariate

distributions, we favour the copula-based scenario generation technique of Kaut (2011).



Chapter 3

Demand Modelling

The value of models designed for service-based workforce planning is strongly dependent

on their scalability to large and complex workforces. For this reason, we demonstrate the

performance of our proposed decision models in practice, on an industry-scale workforce

planning problem. This case study is based on an historic data set containing time series

of realised daily demand (in jobs) for seven skills which form a subset of services provided

by a section of the BT business.

Decision models which successfully coordinate supply to manage this historic realisa-

tion of demand will not necessarily perform well under an alternative demand outcome.

Indeed, our goal is to design planning tools which take the uncertainty of future demand

into account by making robust resourcing decisions based on model performance across

a distribution of demand outcomes. The requirement for a method for simulating mul-

tiple time series reflecting the characteristics of demand is therefore two-fold: to enable

reporting on the variability of model performance in a deterministic demand setting;

and to enable decision making in a stochastic demand setting by finding solutions well-

placed across multiple scenarios. The following subsections outline statistical models

for the case-study data.

39
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3.1 The Data

In its simplest form, the data we wish to model consist of seven time series for demand

measured across the course of one year from Monday 1st April 2015 to Tuesday 31st

March 2015. For each of the seven skills there exists one observation per day which

represents a count of incoming jobs requiring that skill across a region within the UK.

A 3-month sample of these data is plotted for three of these skills in Figure 3.1.1.

We will largely work with demand measured in man-hours rather than job counts as
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Figure 3.1.1: Sample of Case-study Historic Demand

this puts demand on a scale common to supply. This transformation is facilitated by

the availability of productivity data for work on each skill, giving the mean number of

jobs completed per day. These productivity measures can be easily translated to average

completion times in hours and hence provide a method for converting demand expressed

in job-count, to demand expressed in man-hours.

These data possess a number of interesting characteristics including cyclic weekly

variation and a high degree of variation around that cycle. There may be further auto-

correlation within and cross-correlation between the demand streams, though this is
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difficult to judge from the plot alone. Some of these characteristics have a special

degree of importance within this case-study, translating to critical service requirements

on the telecommunications network. Being prepared to cater for unexpected spikes in

demand is vital when the business is not in a position to reduce workload by turning

work away.

In the following sections we describe the approach taken to model this historic data.

Capturing all of the characteristics identified above is not a trivial task. At this point

we highlight the importance of targeting modelling efforts to the demand characteris-

tics which are likely to have an impact on operational workforce planning decisions.

It is rarely possible to perfectly model all aspects of data arising from real and com-

plex processes such as demand for services and so those aspects we wish to model are

based on a careful consideration of the end application. Though not discussed in detail

here, Sections 4.5.1 and 5.4.1 dedicate substantial attention to the identification of key

characteristics affecting cross-trained workforce planning.

3.2 Univariate Modelling

We begin by exploring the marginal behaviour of demand for each skill. The interaction

between demand for different skills will be considered in the following subsection.

Let w ∈ {1, . . . , 52} represent an index on a given week of the year (running April to

March) and t7 ∈ {1, . . . , 7} represent an index on days of the week (running Monday to

Sunday). Demand on a particular day of the year, t ∈ T := {1, . . . , 365}, associated with

skill j ∈ J := {1, . . . , 7}, can be decomposed into trend, seasonal, cyclic and random

variation using the additive model described in Section 2.2.1. Given the clear visual

evidence of weekly cyclic variation in Figure 3.1.1, we examine the suitability of a time
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series model for demand for skill j in period t given by

djt = Cjt7 + εjt, (3.2.1)

where

Cjt7 =

∑
w∈Wt7

dj,(7(w−1)+t7)

|Wt7|

defines the historic mean demand for skill j on a given day of the week, t7. We move

from period index, t, to day of the week index, t7, using the relationship

t7 = t− 7

(⌈
|T |
7

⌉
− 1

)
.

Periods t ∈ T falling on day of the week t7, are then those in the set

Wt7 = T ∩
{

7(w − 1) + t7 : w ∈
{

1, . . . ,

⌈
|T |
7

⌉}}
.

The size of this set for say t7 = 1, denoted |W1|, can then be interpreted as the number

of Mondays in the data set. For a data set spanning one year, we can therefore expect

|Wt7 | to be approximately 52 for t7 ∈ {1, . . . , 7}. We use this relationship to group

the residual variation εjt by day of the week, resulting in the plots of variation around

weekly trend for skill 1 on a selection of days in the week, ε1t7 , shown in Figure 3.2.1.

These plots exhibit systematic variation within ε1t7 . For some combinations of skill

j and period t7, {εjt7 | w = 1, . . . , |Wt7|} appear to have an increasing trend component

similar to that of the lower left plot for ε16. For the majority of weekday data sets (where

t7 ∈ {1, . . . , 5}) the remaining systematic variation comes in the form of a step change

around 9 months into the observation period (January). The top row of plots for t7 = 3

and t7 = 5 provide examples of this. Weekends on the other hand (t7 ∈ {6, 7}) generally

exhibited a step change around 6 months into the observation period (November).
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Figure 3.2.1: Step-change in empirical residual variation in demand for skill 1, ε1t7 , under time

series model 3.2.1

This visual identification is conducted at the level of a fixed skill and day of the

week to simplify the challenge of spotting systematic variation within the noise. Plots

equivalent to Figure 3.2.1 for each skill reveal that a subset of the seven skills cannot

be adequately modelled by the cyclic-component-only model given by equation (3.2.1).

The Augmented Dickey-Fuller (ADF) test, a test for the stationarity of a time series,

applied to εjt7 fails for the majority of skills j. The interested reader is directed to

(Chen and Gupta, 2012) for details of the ADF test.

Based on these observations, we propose a generalisation of model (3.2.1) to

djt = Sjt + Cjt7 + εjt, (3.2.2)

where Sjt represents a seasonal component which accounts for the observed step-change

in underlying mean demand. The appended seasonal component takes a step-wise func-
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tional form with value zero left of the step-change τjt7 and any real value right of the

change, that is

Sjt =

 0 for t < τjt7

kjt7 ∈ R for t ≥ τjt7

(3.2.3)

for each skill j and day of the week t7. We assume that the location of these changes

τjt7 in mean demand for a given skill j are common across all weekdays t7 ∈ {1, . . . , 5}.

That is, we expect that the process generating a step-change in demand level some way

through the year does not vary by weekday. Since the characteristics of weekend demand

are generally very different to weekday demand, the weekend change-point τj6 = τj7 is

permitted to differ from the weekday change-point τj1 = . . . = τj5.

This systematic variation is modelled as a seasonal step-change component rather

than a trend component for three reasons. In Section 2.2.1, non-cyclic variation lasting

longer than one year was assigned to the trend component and, since we have only one

year’s worth of data we have no evidence to claim that the step change is permanent in

nature. Secondly, the linear increase characteristic of trend was not a common feature of

the data. It would be unrealistic for demand variation εjt7 to be driven by different time

series models on different days t7. We therefore apply a step-change model, characteristic

of the majority of the data. Thirdly, the identification of this step change as a seasonal

effect is supported by the industrial sponsors of this work, based on experience with

similar data across multiple years.

The problem of locating these step-changes in mean can be formulated as a multi-

variate change-point detection problem. A heuristic approach is taken to solving this

problem whereby a Binary Segmentation algorithm (see Section 2.2.3) is used to solve

the univariate change-point detection problem defined for fixed skill j and day of the

week t7. The resulting solution is then adjusted by-eye to reach a change-point location
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for each skill which is common across all days.

The resulting random variation εjt around mjt := Sjt + Cjt for each skill j and day

of the week t7 is stationary, now passing the ADF test. This random variation for

fixed j is also identically distributed for working weekdays t ∈ Td := {t7 ∈ {1, . . . , 5}}.

This means we can fit and sample from a distribution of random variation based on

5 × 52 = 260 independent and identically distributed observations. This pooling of

observations for weekdays will lead to a model with greater statistical power of inference

compared to that obtained from a collection of per-skill, per-day models based on 52

observations each.

This pooling is not possible for weekend residual variation εjt where t ∈ Te :=

{t7 ∈ {6, 7}} however. Though time series model (3.2.2) results in stationary weekend

variation, Saturday variation (for a given skill j) is not common with that on Sundays. In

particular, kernel density estimates for variation on Saturdays typically exhibit greater

spread than those on Sundays. Pooling observations to create a 104-observation data

set for weekend variation requires the additional step of scaling {εjt|t7 = 6, t ∈ T} and

{εjt|t7 = 7, t ∈ T} through division by their standard deviations. Simulating time series

with the correct weekend variation therefore requires a subsequent re-scaling back to

distinct Saturday and Sunday characteristics.

We find that time series model (3.2.2) adequately captures the systematic variation

in demand for all skills via a cyclical weekly component and seasonal component. The

slightly differing approaches to pooling the random variation component by weekday

or weekend results in two data sets Ed
j := {εjt | t ∈ Td} and Ew

j := {εjt | t ∈ Te} for

each skill j ∈ {1, . . . , 7} which contain serially independent and identically distributed

observations. We verify the stationarity of these data by way of an Augmented Dickey

Fuller test. The following subsection addresses the fitting of univariate distributions to

these sets, to reach a fully specified model (3.2.2).
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Fitting Distributions to the Random Variation Component

A range of distributions for Ed
j and Ew

j for each skill j were considered, including the

normal distribution; skewed-normal distribution; triangular distribution; generalised

normal distribution and log-spline distribution. The skewed generalised error (sGE)

distribution, defined in Section 2.2.2, was found to provide the closest fit however. This

conclusion is based on application of the Kolmogorov-Smirnoff test as well as visual

inspection, an example of which is given below.

The strength of fit is illustrated for random weekday variation in demand for three

skills in Figure 3.2.2. The left hand column of plots provides a comparison of the

empirical kernel density estimates of raw and fitted data, whilst the right hand column

includes plots of empirical quantiles against the quantiles of a simulation from the fitted

distribution. Data sets corresponding to skills 1, 3 and 6 (Ed
1 , Ed

3 and Ed
6) are specifically

selected to demonstrate the range of characteristics that the sGE distribution is able to

capture, namely the slight positive skew typical of data sets within this case study and

short tailed distributions with pointedness akin to the Laplace distribution.

The parameters fitted (via maximum likelihood estimation) for these distributions

are outlined in Table 3.2.1 where, recall, µ and σ represent the mean and standard

deviation, k is a positive valued shape parameter dictating the pointedness of the distri-

bution, and λ is a skewness parameter on [−1, 1]. Matching these parameter estimates

µ σ k λ
Skill 1 -0.18 81.65 1.09 0.35
Skill 3 0.12 42.86 1.19 0.09
Skill 6 -0.00 15.09 1.58 0.32

Table 3.2.1: Skewed Generalised Error distribution parameters fitted for random variation in

weekday demand, Ed1 ,Ed3 and Ed6 , for skills 1,3 and 6.

up against their respective densities, the variation in standard deviation σ across the 3

skills is clearly visible with the densities presented in order of decreasing spread. Fur-
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Figure 3.2.2: Case study data example for a single demand skill

ther, the larger kurtosis parameter k for skill 6 reflects its higher degree of concentration

of mass around zero. Finally, the moderate level of positive skew in skills 1 and 6 in

comparison to the more symmetric distribution for skill 3 is reflected in their larger

skewness parameters λ.

Modelling random variation components Ed
j and Ew

j using appropriately parame-

terised sGE distributions, we have a fully specified time series model for univariate

demand for each skill, as defined by equation (3.2.2). Generating time series realisa-

tions of demand for a given skill then simply requires sampling εjt via the 14 fitted sGE

distributions (weekday and weekend distributions for each of the 7 skills) and combining

the result with weekly and seasonal variation mjt. Let Fj(·) characterise the resulting

fitted sGE distribution distribution function for skill j.

Bearing the practical application of these time series models in mind, it is important

that the simulated εjt do not result in infeasible (negative) or unrealistic quantities of

demand. In fitting smooth distributions with support over the whole real line, it is
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difficult to avoid small degrees of mass outside the range of the raw data. We introduce

a truncation step before re-combining the components of the time series model, re-

sampling values εjt < −mjt (which make-up on average less than 1% of the samples)

and hence putting corrective attention on preventing non-physical negative demand.

3.3 Multivariate Modelling

When coordinating supply in response to demand, it is important to understand whether

or not higher-than-expected demand is likely to occur for multiple skills simultaneously.

It is clear that positive correlation between demand for multiple skills will lead to in-

stances of universally high demand which the flexibility of a cross-trained workforce

cannot re-balance. When all skills are badly affected then there is no opportunity for

the workforce to pool its skills to better resource the crisis. In this subsection we anal-

yse and model cross-skill dependency in demand so that a full multivariate model for

demand for the seven skills can be reached.

It is clear from the plot in Figure 3.2.1 that all skills see significantly fewer job

requests on weekends in comparison to weekdays. This systematic variation captured

by mjt results in positive correlation between demand for all skills but this effect can

be easily mitigated by setting overall supply levels to mimic this pattern.

The primary concern in planning a cross-trained workforce then lies in the extent to

which demand fluctuates around this systematic underlying variation mjt, in particular,

the extent to which peaks and troughs around mjt occur simultaneously across skills. We

therefore analyse the correlation which remains when the systematic variation in demand

is accounted for, by considering the multivariate data set {Ed
1 , E

d
2 , . . . , E

d
7} defined by the

residual variation components of the time series model above. It is convenient to analyse

bivariate dependency with marginal effects removed by first transforming the data onto

common uniform margins using the univariate cumulative distribution functions fitted
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in Section 3.2 to define data set {Uj := Fj(E
d
j ) | j ∈ {1, . . . , J}}. Recognising the

challenges of modelling multivariate dependence based on a limited set of observations,

notice that we limit consideration to the pooled weekday data.

Copulas provide a useful framework for modelling high-dimensional multivariate dis-

tributions as they permit the marginal distributions and dependence to be estimated

separately. To get a feel for the copula models which might be appropriate for these

data, we first study visual representations and summary statistics for dependence be-

tween pairs of skills.

3.3.1 Data Exploration

Bivariate kernel density estimates of pairs of observations taken from {Uj|j ∈ {1, . . . , 7}},

provide initial insight into the structure of dependence underlying the full seven dimen-

sional data and are plotted for a selection of pairs in Figure 3.3.1. See Section 3.A.1

of Appendix 3.A for details of the 2-dimensional kernel density estimates which these

plots summarise.

This selection provides a representative sample of all 21 pairwise kernel density

estimates. Around half of the pairs appear to exhibit no systematic correlation with

density plots reflective of that for pair (1, 6) in the lower left panel of Figure 3.3.1,

with mass randomly distributed over [0, 1]× [0, 1]. The density plot for skill pair (1, 3)

in the lower right panel is similarly evenly distributed across the unit square though

one might argue that there is a substantial cluster of mass in the extreme upper-right

corner of the region. Were this cluster to represent systematic correlation then it would

suggest high demand for skills 1 and 3 tend to occur together. The top row of density

plots for skill pairs (1, 7) and (1, 5) reveal a ridge of density clustered around the line

y = x providing some evidence of moderate positive correlation between demand for

these skills. Again, there is some suggestion of a cluster of mass in the extreme joint



CHAPTER 3. DEMAND MODELLING 50

0.0 0.4 0.80.
0

0.
4

0.
8

Skills (1,7)

U1t

U
7t

0.0

0.5

1.0

1.5

2.0

2.5

0.0 0.4 0.80.
0

0.
4

0.
8

Skills (1,5)

U1t

U
5t

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.0 0.4 0.80.
0

0.
4

0.
8

Skills (1,6)

U1t

U
6t

0.0

0.5

1.0

1.5

2.0

0.0 0.4 0.80.
0

0.
4

0.
8

Skills (1,3)

U1t

U
3t

0.0

0.5

1.0

1.5

2.0

Figure 3.3.1: Pairwise 2-D kernel density plots

tail of these distributions.

It is not immediately clear from these plots which areas of mass can be attributed

to systematic correlation and which might be ruled out as noise however. To aid ex-

ploration, Spearman’s rank correlation coefficient is calculated for each pair of skills,

defined for skills 1 and 2 as

rs =
cov(rU1 , rU2)

σrU1
σrU2

,

where rU1 are the ranks of data U1 and σrU1
is the standard deviation of the rank data,

with rU2 and σrU2
similarly defined. This correlation coefficient, invariant to marginal

transformation, should not be confused with the Gaussian copula correlation parame-

ter ρ (see Section 2.3.2) which is estimated by Pearson’s linear correlation coefficient.

Spearman’s correlation is directly related to Pearon’s correlation coefficient however,

defined as Pearson’s correlation coefficient of the ranks of the data.
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Spearman’s rank correlation is given for each pair of skills in Table 3.3.1, with 95%

bootstrap confidence intervals for rs in Table 3.3.2 revealing the extent to which each

coefficient’s value varies by data-sample .

Skill 1 2 3 4 5 6 7
1 1.00
2 0.01 1.00
3 0.11 0.12 1.00
4 0.11 0.09 0.07 1.00
5 0.35 0.12 0.07 0.26 1.00
6 0.03 0.19 0.08 0.02 -0.06 1.00
7 0.46 0.16 0.15 0.06 0.25 0.10 1.00

Table 3.3.1: Spearman’s correlation coefficient rs for all pairs of skills.

Skill 1 2 3 4 5 6

2 (-0.12, 0.14)
3 (-0.01, 0.23) (0.01, 0.24)
4 (-0.02, 0.23) (-0.03, 0.20) (-0.06, 0.20)
5 (0.24, 0.45) (0.00, 0.23) (-0.06, 0.20) (0.14, 0.38)
6 (-0.09, 0.16) (0.06, 0.31) (-0.05, 0.20) (-0.10, 0.13) (-0.18, 0.07)
7 (0.35, 0.57) (0.02, 0.28) (0.02, 0.26) (-0.06, 0.18) (0.13, 0.36) (-0.03, 0.22)

Table 3.3.2: 95% bootstrap confidence intervals for Spearman’s correlation coefficient rs (cal-

culated with 100 bootstrap re-samples).

The values of Spearman’s correlation coefficient support the observations made on

the density plots of Figure 3.3.1. The majority of pairs have a degree of dependence not

statistically significant at the 5% level, with confidence intervals overlapping zero. Skill

pairs (1, 6) and (1, 3) are indeed uncorrelated over the central mass of the distribution.

This is evidenced by 95% bootstrap confidence intervals for rs of (−0.09, 0.15) and

(−0.02, 0.23) respectively. Pairs (1, 7) and (1, 5) have the highest mean correlation

coefficients at 0.46 and 0.35 respectively with their 95% confidence intervals confirming

that the positive correlation is statistically significant.

It is desirable that the pairwise copula model we devise is suitable for all pairs of

skills as we have no physical evidence to suggest that dependence between different pairs
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of skills should be born from fundamentally different processes. Considering the copula

models introduced in Section 2.3.2; the mix of zero and moderate positive correlation

evidenced by Spearman’s correlation coefficients suggest the independence and perfect

dependence models are not appropriate for this application. Both the Gaussian copula

family and the logistic extreme value copula family, on the other hand, offer the flexibility

to capture a range of strengths of dependence between demand for skills.

A further important consideration highlighted in prior discussion was the likelihood

of higher-than-average demand occurring in more than one skill at the same time. The

densities for skill pairs (1, 7), (1, 5), and (1, 3), with a cluster of mass in the extreme

upper-right corner further compels us to consider the suitability of the logistic extreme

value copula which, unlike the Gaussian copula, is asymptotically dependent.

The above data-exploration therefore motivates the following comparison of the

Gaussian and logistic extreme value copula models fitted to weekday random variation

{Ed
j |j ∈ {1, . . . , 7}}.

3.3.2 Fitting Bivariate Copulas

Maximum likelihood estimation is used to fit both the Gaussian and logistic extreme

value copula models. Note that although it is common to present the theory of copulas

on uniform margins (as we have done here), the copula function is not restricted to

this domain. Indeed it can be useful to transform to alternative margins to reveal

different aspects of dependence in the data. It is more common to evaluate the Gaussian

copula on normal margins, whereas unit Fréchet margins are typically favoured for the

logistic extreme value copula. To ease comparison of the particular copula models fitted

however, it is convenient to evaluate the likelihood for each model on common uniform

margins. This parametrisation leads to tractable copula function derivatives and hence

simplifies definition of the likelihood in terms of the copula density.
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We build up a 7-dimensional multivariate copula by fitting 21 bivariate copulas for

pairs of skills (i, j) ∈ J ×J . The resulting pairwise copula parameters ρij (αij) combine

to define a 7-dimensional parameter matrix R (A) which characterises the multivariate

Gaussian (extreme value) copula.

That is, for each pair of skills (i, j) ∈ J × J , we seek out the value of generic copula

model parameter θij which maximises the probability of the data given the model:

max
θij∈R

L(θij) : =
N∏
t=1

f(Ed
it, E

d
jt|θij),

whereN = 260 is the total number of pairs of observations (Ed
it, E

d
jt) and f(·, ·) represents

their joint density function. It is convenient on the basis of numerical optimisation to

solve the analogous problem of minimising the negative log-likelihood

min
θij∈R

{−l(θij)} : = −
N∑
t=1

ln f(Ed
it, E

d
jt|θij).

The density term f(·, ·), describing the full multivariate distribution for Ed
i and Ed

j ,

must be derived from our candidate copula model (Gaussian or logistic extreme value)

combined with the marginal distributions Fi(·) and Fj(·) fitted in Section 3.2. Replacing

Ed
it, E

d
jt with x, y for clarity of presentation, we have

f(x, y|θij) =
∂2

∂x∂y
F (x, y|θij)

=
∂2

∂x∂y
Cθij(Fi(x), Fj(y)).

=: cθij(u, v)

Differentiating the bivariate copula distribution function Cρij(u, v) defined in equa-

tion (2.3.4) of Section 2.3.2, the Gaussian copula density for skill pair (i, j) on uniform
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margins is given by

cρij(u, v) =
φX,Y (Φ−1(u),Φ−1(v) | ρij)

φ(Φ−1(u))φ(Φ−1(v))
.

Here, φX,Y (·, ·) represents the bivariate standard normal density function whilst φ(·)

and Φ(·) represent the standard univariate normal density and cumulative distribu-

tion functions respectively. The bivariate density is marked by subscript “X,Y ” to ease

differentiation between multivariate and univariate analogues of the standard normal

distribution. To obtain the maximum likelihood estimate for correlation coefficient ρ̂ij,

we then solve

min
ρij∈R

{
−

N∑
t=1

ln cρij(Uit, Ujt)

}
.

Recall that Ujt = Fj(E
d
jt) is the random variation in demand for skill j transformed

onto uniform margins with Uit is similarly defined. The solution to this optimisation

provides a fitted Gaussian copula model Cρ̂ij(u, v).

Taking a similar approach to fitting the logistic extreme value copula; the distribution

function defined in equation (2.3.5) of Section 2.3.2 can be differentiated to obtain the

following logistic extreme value copula density for skill pair (i, j) on uniform margins:

cαij
(u, v) =

1

αuv
(−ln v)1/α−1 (−ln v)1/α−1 exp (−Sα)Sα−2 {α (Sα − 1) + 1} ,

where S = (−ln u)1/α + (−ln v)1/α. The maximum likelihood estimate, α̂ij, for the

extremal dependence coefficient is the solution to

min
αij∈R

{
−

N∑
t=1

ln cαij
(Uit, Ujt)

}
,

and leads to the fitted logistic extreme value copula model Cα̂ij
(u, v).
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3.3.3 Comparison of Model Fit

The above process of maximum likelihood estimation results in the pairwise Gaussian

copula models specified by parameter estimates ρ̂ij in Table 3.3.3.

Skill 1 2 3 4 5 6
2 0.05
3 0.22 0.17
4 0.16 0.16 0.14
5 0.44 0.16 0.19 0.32
6 0.04 0.22 0.10 0.01 -0.03
7 0.51 0.20 0.22 0.15 0.34 0.11

Table 3.3.3: Maximum likelihood estimates for bivariate Gaussian copula parameters ρ̂ij where

(i, j) ∈ J × J

It is clear that these model parameters are very closely related to the Spearman’s

correlation coefficient estimated for the data (see Table 3.3.1) with moderate positive

dependence evident in the same skill-pairs highlighted in the data exploration step,

namely, pairs (1, 7) and (1, 5).

Table 3.3.4 similarly outlines the maximum likelihood estimates for extremal depen-

dence parameters α̂ij of the bivariate logistic extreme value copula model. Recall from

Section 2.3 that small values of α indicate stronger dependence. The smaller values of

Skill 1 2 3 4 5 6
2 0.98
3 0.89 0.94
4 0.94 0.95 0.95
5 0.73 0.94 0.91 0.83
6 0.96 0.88 0.94 0.97 0.97
7 0.68 0.90 0.89 0.93 0.81 0.92

Table 3.3.4: Maximum likelihood estimates for bivariate logistic extreme value copula param-

eters α̂ij where (i, j) ∈ J × J

extremal dependence parameters α̂1,7, α̂1,5 and α̂1,3 support our hypothesis of a signifi-

cant collection of mass in the upper right region of the corresponding 2D kernel density

plots in Figure 3.3.1.
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Since the key property dividing these two copula models is extremal dependence, it is

natural that we compare the quality of fit on a scale reflective of this characteristic. One

useful summary statistic, introduced in Section 2.3 is the following function of quantile

u:

χ(u) = P(V > u|U > u) = 2− 1− C(u, u)

1− u
. (3.3.1)

The value of χ(u) resulting from the two fitted copula models is plotted against an

empirical calculation of P(V > u|U > u) for a sub-sample of skill-pairs in Figure 3.3.2.

The curve corresponding to the Gaussian copula model Cρ̂ij(·, ·) is plotted in blue; whilst

the curve for the opposing logistic extreme value copula model Cα̂ij
(·, ·) is plotted in

magenta. 95% confidence bands around the empirical function plotted in black provide

a range in which the fitted models might acceptably capture the extremal dependence

properties of the data. The fitted χ(u) functions generally fall comfortably between

the confidence bands implied by the data, suggesting that both copula models provide

a reasonable fit. The largely overlapping curves for skill pair (1, 6), and to a lesser

extent pair (1, 3), suggests there is very little to choose between the copula models.

That said, the divergence of the fitted χ(u) functions in pairs (1, 7) and (1, 5) highlight

the differing extremal characteristics of the two copula models. The Gaussian copula

appears to provide superior fit compared to the logistic extreme value copula for skill

pair (1, 7) whilst the opposite is true for skill pair (1, 5).

An alternative parameterisation of extremal dependence measure, χ(u), is

χl(u) = 2− log C(u, u)

log u
.

This measure was introduced in Section 2.3 as a additional aid to assessing membership

or otherwise of data to various copula models. In particular, Figures 2.3.6 and 2.3.5



CHAPTER 3. DEMAND MODELLING 57

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.2
0

.6
1

.0

Skills (1,7)

u

χ(
u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.2
0

.6
1

.0

Skills (1,5)

u

χ(
u

)

0.0 0.2 0.4 0.6 0.8 1.0

−
0

.2
0

.2
0

.6
1

.0

Skills (1,6)

u

χ(
u

)

0.0 0.2 0.4 0.6 0.8 1.0
−

0
.2

0
.2

0
.6

1
.0

Skills (1,3)

u

χ(
u

)

Figure 3.3.2: Comparison of extremal dependence measure χ(u) for the Gaussian copula model

(blue) and logistic extreme value copula (magenta) along with empirical χ(u) (black) with 95%

confidence limits

demonstrated the non-trivial functional form of χl(u) for the Gaussian copula in contrast

to its constant value for the logistic extreme value copula family. Figure 3.3.3 illustrates

the value of this quantile-dependent function for the fitted copula models in a manner

analogous to χ(u) in Figure 3.3.2. On this alternative scale, the overall constancy

of the empirical function χl(u) for skill-pair (1, 5) aids interpretation of the extreme

value copula model providing a favourable fit. The similar quality of fit for the two

copula models in the case of pairs (1, 6) and (1, 3) is further supported under this

parameterisation.

Above this visual comparison of model fit, a standard approach to comparing the

predictive power of a set of candidate models is to compare the value of the Akaike
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Figure 3.3.3: Comparison of extremal dependence measure χl(u) for the Gaussian copula

model (blue) and logistic extreme value copula (magenta) along with empirical χl(u) (black)

with 95% confidence limits

Information Criterion (AIC),

AIC = 2k − 2 ln(L(θ̂)).

defined for the number of parameters to be estimated, k, and maximum value of the

likelihood function L(θ̂). This criteria rewards goodness of model fit as well as model

simplicity in penalising against the number of parameters to be estimated. Candidate

models with a smaller AIC value are preferred. Since both dependence models considered

here are single-parameter (so that k = 1) the criterion reduces to a comparison of the

maximum value of the likelihoods. We therefore simplify the comparison by directly

studying the difference between the maximum value of the likelihood under the Gaussian
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copula model, LG(ρ̂), and under the logistic extreme value copula model, LE(α̂). Fair

comparison is further facilitated by reporting on

D := 100

(
LG(ρ̂)− LE(α̂)

min(LG(ρ̂), LE(α̂))

)
, (3.3.2)

the percentage improvement in maximum likelihood value that the Gaussian copula

(extreme value copula) offers over the extreme value copula (Gaussian copula) when

LG(ρ̂) > LE(α̂) (when LE(α̂) > LG(ρ̂)). Positive values of D then imply that the

Gaussian copula provides a favourable fit.

Note that this direct comparison is facilitated only by our choice of uniform margins

common to each model, ensuring that the resulting maximum likelihood values are on

a common scale. Table 3.3.5 illustrates D for pairs of skills.

Skill 1 2 3 4 5 6
2 -0.06
3 -12.54 6.79
4 7.59 5.56 4.58
5 -1.12 3.67 -6.23 28.97
6 -2.23 -2.25 -4.43 -0.90 -2.70
7 21.56 3.00 -0.01 1.49 5.27 -11.32

Table 3.3.5: Percentage improvement, D, in maximum likelihood resulting from a Gaussian

copula over an extreme value copula model for bivariate data defined by pairs of skills. Positive

values give the percentage improvement in Gaussian maximum likelihood value, LG(ρ̂), above

the logistic extreme value equivalent, LE(α̂). Negative values have an analogous meaning

in the other direction (improved likelihood under the logistic extreme value copula over the

Gaussian copula)

An equal number of skill-pairs see a superior fit under the Gaussian dependence

model as see a superior fit under the logistic extreme value model, evidenced by the

even mix of positive and negative values in Table 3.3.5. That said, the greatest swing

towards one model or another, i.e. the largest absolute percentage difference between

the maximum likelihoods, is in favour of the Gaussian dependence model. Bearing in

mind the desirability of having a common family of dependence model underlying all
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pairs of skills, we choose to model the pairwise dependence between (the variation in)

demand for skills using the Gaussian copula. There is very little difference between the

quality of fit of these models, to the point that the decision between the two is largely

subjective. In using the asymptotically independent Gaussian copula for all subsequent

analysis, we accept that this may lead to slight underestimation of the frequency of

jointly extreme events. The logistic extreme value copula may be more suited if the

workforce planner is risk averse. Ultimately, it is important that the data modeller and

workforce planner understand the implications of this decision on further inference.

3.4 Multivariate Demand Simulation

Recall that our motivation for modelling historic demand as a multivariate time series

was to provide a mechanism for generating alternative realisations or “simulations” of

demand reflective of the characteristics observed in the past. Given the resulting sim-

ulations will ultimately be used to evaluate the performance of cross-trained workforce

planning models, it is important that the dependence characteristics between demand

for difference skills are captured in multivariate simulation.

Extending the process for generating univariate simulations of demand for a given

skill j in Section 3.2; so long as we can simulate εt := (ε1t, ε2t, . . . , ε7t) from the joint dis-

tribution describing residual (stationary) variation in demand, we can reach multivariate

demand simulations by plugging the result back into time series model

dt = St + Ct7 + εt.

Note that bold symbols here represent vector forms of univarite components in a defi-

nition analogous to εt.

We characterise multivariate dependence between weekday variation in demand using
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a 7-dimensional Gaussian copula CR̂, where parameter matrix R̂ contains fitted bivariate

Gaussian dependence parameters ρ̂ij for skill-pairs (i, j). To capture this dependence in

simulating εt, we sample from the fitted copula CR̂ and transform the resulting sample

to the correct scale by applying the inverse marginal cumulative distribution functions

Fj (derived from the sGE distributions fitted in Section 3.2) for each skill j. That is,

using the probability integral transform in the manner described in Section 2.3.1.

Suppose one wanted to simulate a time series of length T days. To obtain a multivari-

ate sample ε
′

t = (ε
′
1t, . . . , ε

′
7t) for a given period t ∈ {1, . . . , |T |} we use the following

procedure:

1. Sample (u1, . . . , u7) from Gaussian copula CR̂ using the sampling procedure out-

lined in Section 3.A.2.

2. Let t7 = t − 7(bT
7
c − 1) represent a counter for the day of the week with t7 = 1

representing a Monday.

if t7 ∈ {1, . . . , 5}, i.e. a weekday then

{ε1t, . . . , ε7t} = {F−1
1 (u1), . . . , F−1

7 (u7)}

else if t7 ∈ {6, 7}, i.e. a weekend then

{ε1t, . . . , ε7t} = {σ1t7F
−1
1 (u1), . . . , σ7t7F

−1
7 (u7)}

end if

The re-scaling of samples relating to the weekend is a consequence of the transformations

we made to Saturday and Sunday observed variation, {εjt7|t7 = 6} and {εjt7|t7 = 7},

in Section 3.2. This transformation allowed Saturday and Sunday observations to be

pooled into a larger weekend data set to which we fit univariate sGE distributions.

Sampling the random variation in demand, εjt, for weekdays and weekends, and

combining with underlying mean demand mjt, we can simulate any number of demand

time series with the dependence structure defined by correlation matrix R̂. The output of

this simulation process, samples djt, can be used to evaluate workforce planning models’
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performance in a deterministic demand setting. Further, the model’s flexibility enables

the user to investigate the possible affects of serial dependence in the random variation

of demand around its mean behaviour mjt (a characteristic which our case study data

did not exhibit but which we recognise to be a common and influential feature of demand

in other organisations). An approach to capturing AR(1) serial dependence in variation

component εt is outlined in Section 3.A.3 and called upon in the numerical investigation

of Section 4.5.

Though the samples which result from the above process capture observed variation

in demand they do not incorporate forecasting components or forecast-based uncer-

tainty. Were forecast uncertainty and future trends for demand available, they should

be included in simulations. We propose a model which is statistically justified and easily

implemented through simulation but we do not claim it is the only possible or indeed,

best possible model. Rather it is the strongest model of the range we considered and it

is accepted based on serving the required purpose.

It is important to note that a large sample size is typically required to simulate

the characteristics of complex multivariate distributions. Effective simulation of com-

plex multivariate distributions can be a difficult task, with subtle (moderate) cross-

correlation between skills being particularly difficult to capture without a very large

sample size. Requiring a large sample size equates here to generating lengthy time

series so that we know our samples sufficiently capture the properties of historic de-

mand. When testing workforce planning models against shorter time series, variation

in the output of the sampling procedure should be accounted for by applying models to

multiple simulations of time series.
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3.4.1 Multivariate Scenario Generation

Recall from the opening discussion of this chapter that our motivations for modelling

historic demand were two fold. Testing planning models on a range of samples of demand

allows us to calculate distributions of deterministic decision model performance. We also

sought to incorporate stochastic demand into the decision making process itself to find

single training solutions well-placed against a range of scenarios.

In the deterministic setting, reaching a solution to a planning model requires only

one mathematical program to be solved. We therefore do not mind having to randomly

sample a very large set of demand realisations to capture the resulting distribution of

model performance.

In the stochastic setting however, this is not the case. Within the two-stage stochas-

tic linear programming framework introduced in Section 2.4.2, reaching a single (but

robust) solution requires solving multiple second-stage sub-problems. In particular, we

solve |S| linear programs where S is the scenario set which discretises the multivariate

distribution of unknown parameters. In generating discrete set S to define the determin-

istic equivalent linear program (see model (2.4.2)), it is therefore in our interests to find

the smallest possible set of scenarios which effectively represents stochastic demand. In

this sense, the emphasis here is on quality over the quantity of scenarios.

In this stochastic modelling setting, we therefore adapt the simulation approach

outlined above to reflect our subtly different priorities. We replace step 1, sampling

from the copula using a standard sampling approach, with the copula based scenario

generation algorithm proposed by Kaut (2011). The in- and out-of-sample stability

criteria described in Section 2.4.3 are then used to verify that the sample size is large

enough to give a representative sample of the multivariate distribution in terms of the

stochastic model solution.
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3.A Chapter 3 Appendix

3.A.1 Two-dimensional Kernel Density Estimation

Let {(xi, yi)}i=1:n be a sample of bivariate random vectors X, Y drawn from a common

distribution with density function f . The 2-dimensional kernel density estimate is given

by (Silverman, 1986)

f̂hx,hy(x, y) =
1

n

n∑
i=1

1

hxhy
K

(
x− xi
hx

,
y − yi
hy

)

For simplicity, we use a multiplicative form joint kernel with standard normal margins

so that our kernel density estimate becomes

f̂hx,hy(x, y) =
1

n

n∑
i=1

1

hxhy
φ

(
x− xi
hx

)
φ

(
y − yi
hy

)
,

where φ(·) represents the standard univariate normal density function. It is well known

that kernel density estimators, designed for estimating smooth densities, introduce a

large bias near the (discontinuous) boundaries of the domain (Karunamuni and Al-

berts, 2014). Numerous approaches to the correction of these boundary effects have

been proposed. We use the reflection method (Cline and Hart, 1991; Schuster, 1985;

Silverman, 1986) for its simplicity as our application of kernel density estimation is re-

stricted to early-stage data exploration. The basis of this method is to create a mirror

image of the data on the other side of the boundary; applying the estimate (3.A.1) to

the data and its reflection. This results in the following boundary corrected kernel den-

sity estimate on [0, 1]× [0, 1], where for conciseness of presentation we return to K(·, ·)
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notation:

f̂hx,hy(x, y) =
1

n

n∑
i=1

1

hxhy

{
K

(
x− xi
hx

,
y − yi
hy

)
+K

(
x+ xi
hx

,
y + yi
hy

)
+K

(
x− (2− xi)

hx
,
y − (2− yi)

hy

)}

3.A.2 Simulation from a Multivariate Copula

Let F be a multivariate distribution with continuous margins F1, . . . , Fd. Sklar’s theorem

states that we can express F as a combination of these marginal distribution functions

and a unique copula defined by joint cumulative distribution function C:

FX,Y (x, y) =C{FX(x), FY (y)}. (3.A.1)

This expression can be used to simulate a vector (X1, . . . , Xd) ∼ F by first draw-

ing a sample {U1, . . . , U7} from the copula distribution where Ui ∼ Unif(0, 1) for i ∈

{1, . . . , d}, and then utilising the Probability Integral Transform to transform the sample

onto the domain of F .

The following procedure can be used to sample from C. We assume that C is

absolutely continuous for simplicity.

1. Sample u1 from the Uniform distribution on [0, 1]

2. To sample u2 consistent with previously sampled u1, we require the distribution of

U2|{U1 = u1}. Let G2(·, u1) denote the corresponding distribution function; then

G2(u2|u1) = P(U2 ≤ u2|U1 = u1)

=
∂u1C(u1, u2, 1, . . . , 1)

∂u1C(u1, 1, . . . , 1)

= ∂u1C(u1, u2, 1, . . . , 1)
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Sample u
′
2 from the Uniform distribution on [0, 1], independent of u1. Then u2 =

G−1
2 (u

′
2|u1).

3. Generally, to sample uk|u1, . . . , uk−1:

Gk(uk|u1, . . . , uk−1) = P(Uk ≤ uk|U1 = u1, . . . , Uk−1 = uk−1)

=
∂u1,...,uk−1

C(u1, . . . , uk, 1, . . . , 1)

∂u1,...,uk−1
C(u1, , . . . , uk−1, 1, . . . , 1)

= ∂u1,...,uk−1
C(u1, u2, 1, . . . , 1)

Then uk = G−1
k (u

′

k|u1, . . . , uk−1), where u
′

k ∼ Unif(0, 1), independent of u1, . . . , uk−1.

To generate a sample (x1, . . . , xd) from the full multivariate distribution, we then

simply apply the Probability Integral Transform as follows

(x1, . . . , xd) =
(
F−1

1 (u1), . . . , F−1
d (ud)

)
.

3.A.3 Inducing AR(1) Serial Dependence in the Simulation of

Multivariate Time Series

Consider two stationary autoregressive stochastic processes of order one as introduced

in Section 2.2.2

Xt = c1 + ϕ1Xt−1 + ut (3.A.2)

Yt = c2 + ϕ2Yt−1 + vt (3.A.3)

where c1 and c2 are constants, t ∈ {1, . . . , |T |} and |ϕ1| and |ϕ2|< 1. For simplicity let

{ut}t∈T and {vt}t∈T be white independent noise processes, normally distributed with zero

mean and variances σ2
u and σ2

v respectively. Suppose that we wish to simulate cross-

correlated AR(1) time series {x′t | t = 1, . . . , |T |} and {y′t | t = 1, . . . , |T |} such that
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Corr(x
′
t, y

′
t) = ρ and Var(x

′
t) = σ2

x and Var(y
′
t) = σ2

y. To induce the desired variance and

correlation in the AR(1) time series, it suffices to sample (u
′
t, v

′
t) ∼ BV N(0,Σ) where

BVN denotes the bivariate normal distribution with covariance matrix

Σ =

 (1− ϕ2
1)σ2

u ρ(1− ϕ2
1)σuσv

ρ(1− ϕ2
2)σuσv (1− ϕ2

2)σ2
v

 ,

and iteratively substitute the samples into equation 3.A.2. Note that the scaling by

functions of ϕi for i ∈ {1, 2} is due to the relationship

σ2
x = var(xt) =

σ2
u

1− ϕ1

.

This approach naturally extends to 3 or more cross-correlated AR(1) series and gener-

alises to any multivariate distribution for (ut, vt) via, for example, copula based sampling

as described in Section 3.A.2.



Chapter 4

Workforce Planning with Carryover

This chapter develops a multi-period cross-trained workforce planning model with tem-

poral demand flexibility. The proposed allocation model incorporates the flow of in-

complete work (or carryover) through the planning horizon and provides the option to

advance some work to earlier periods of surplus supply. Set in an Aggregate Planning

stage, the model permits the planning of large and complex workforces over a horizon

of many months and provides a bridge between the traditional Tactical and Opera-

tional stages of workforce planning. The model is used to evaluate a range of allocation

strategies (permitting varying degrees of temporal and supply flexibility) in an indus-

try motivated case study. An extended numerical study, covering various supply and

demand characteristics, leads to an evaluation of the value of cross-training as a supply

strategy in this domain.

4.1 Introduction

The effective planning and deployment of an organisation’s workforce plays a vital role

within service industries. Delivery of services relies primarily on an expensive human

workforce which often accounts for a large proportion of overall running costs. Successful

68
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Strategic
Planning

Tactical
Planning

Aggregate
Planning

Operational
Planning

What: Location and number of service cen-
tres; staff ratios
When: 1-2 years in advance

What: Hiring; training; volume of demand to
be met
When: 12-18 months in advance

What: Aggregate allocation of workers’ skills
to demand for those skills
When: 1 to 90 days in advance

What: Scheduling and assignment of individ-
ual workers to tasks
When: Beginning of week or shift

Figure 4.1.1: Four-stage workforce planning hierarchy for large scale service industries

organisations can establish a competitive edge by carefully planning human resources

so that delivery is timely to demand (Owusu and O’Brien, 2013). Indeed, Pokutta and

Stauffer (2009) argue that in increasingly competitive markets, this challenge has become

paramount for the maximisation of profit and, increasingly, to ensure the survival of

organisations.

The importance of workforce planning has garnered considerable academic interest

in recent years, being applied to various service industry contexts such as nurse staffing

(Brusco and Johns, 1998; Campbell, 1999), call centres (Iravani et al., 2007) and man-

ufacturing (Hopp and Van Oyen, 2004; Iravani et al., 2005). A powerful contribution

to workforce planning has been the consideration of the skill make-up of the workforce.

Cross-training policies have been shown to provide organisations with improved demand

coverage via a flexible workforce better placed to cope with variations in demand (Hopp

et al., 2004; Inman et al., 2004). Such policies heighten the complexity of the planning

task however, bringing about the combinatorial challenge of distributing a workforce

over a complex network of skills and varying ability levels.

A typical approach to simplifying resource planning problems is to break the problem
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down into a sequence of interconnected stages of decision making. Figure 4.1.1 presents

a planning hierarchy containing three common planning stages: Strategic; Tactical and

Operational Planning. Strategic Planning involves the highest level decisions about the

scope of the activities of the organisation, typically made years ahead of operations.

Tactical Planning describes the actions required to achieve the plans set out in Strate-

gic Planning, in this case, the annual or bi-annual setting of required staffing levels

and training. The Operational Planning stage is then concerned with the day-to-day

scheduling of the resulting workforce and takes as input the configuration of this supply

resulting from the previous Tactical Planning stage. Typically, consideration of how a

cross-trained workforce’s flexibility can be exploited is left until the final stage when

assigning individuals to specific tasks within their skill-set. This assignment problem,

as an extension of the NP-hard Generalised Assignment Problem (Öncan, 2007; Heimerl

and Kolisch, 2010), becomes computationally intensive for large workforces however.

An important consideration when planning on such a hierarchy is the effective transi-

tion between decisions made at each level. We propose an Aggregate Planning stage, po-

sitioned at the interface between Tactical and Operational Planning, which contributes

to the effective deployment of large workforces with complex cross-training structures.

Taking the staffing and training decisions made in Tactical Planning, this stage es-

tablishes an effective utilisation of groups of workers’ skills on an aggregate level and

quantifies the resulting accumulation of unmet demand (or carryover) across a planning

horizon of a number of weeks. The result is a richer view of demand over the horizon

and targets for the time workers spend on each skill upon which effective schedules can

be built in the Operational Planning stage.

In service industry contexts in which unmet demand remains in the system, identi-

fying future supply and demand imbalances arising from the carryover phenomena is a

key issue for planners in this intermediate stage of the planning process. The Aggregate
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Planning stage provides several benefits to the organisation in the planning and deliv-

ery of services. It allows for a responsive approach well in advance of service delivery;

opposed to a reactive approach during the Operational planning phase. By providing

a snapshot of the skill utilisation over the planning horizon, the associated inventories

required (vehicles, specialist equipment and materials) can be established and put in

place. Hence ensuring that vehicles, specialist equipment and materials can be planned

for and are in place.

In the case where a portion of demand (such as scheduled maintenance) is pre-

planned, there is arguably a degree of flexibility to alter the timing of some service

deliveries. For example, if planned work occurs on a day with identified supply shortage,

there may be opportunities to advance work to earlier periods with excess supply. This

aspect of workforce planning, along with the need to incorporate late running incomplete

work in decision making, has received little attention in literature but is of particular

relevance to our service industry context. In the literature it is commonly assumed

that all demand must be addressed on the day to which it is initially assigned and that

any shortfall in supply can be made up with an infinite pool of extra resources (e.g.

outsourcing, overtime, etc.) at some additional cost. We contribute to the literature by

incorporating the accumulation of unmet demand over the horizon into an Aggregate

Planning model which sits prior to the presence of such restrictions on the timing of

demand. The proposed model can therefore be used to identify the potential value of

temporal demand flexibility, and cross-training as a strategy within this setting, where

work can be completed early and be made available for later completion through the

carryover of incomplete work across the horizon.

The remainder of the chapter is as follows. In Section 4.2 we provide a literature

review of the workforce planning process, with a particular focus on service industries

and the operational challenges faced. We discuss the key components of an aggregate
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cross-trained workforce planning model with temporal demand flexibility in Section 4.3,

concluding discussion with the model itself. The model’s performance and the impli-

cations of solutions for planners are explored for an industry motivated case study in

Section 4.4. This is extended to a broader numerical study exploring how performance

is affected by various supply and demand characteristics in Section 4.5. Finally, conclu-

sions and extensions are discussed in Section 4.6.

4.2 Literature Review

For organisations providing a broad range of services to a varied customer base, plan-

ning service operations is a required and important activity. Resource planning for

service industries has therefore gathered considerable interest from organisations and

academics alike. The overarching aim of such planning is to make the most effective use

of the supply capacity to meet the operational needs of the organisation, for example,

reduce worker idle and travel time, maximise demand coverage, regularise ongoing un-

met demand, etc. In this section we review the hierarchical stages of decision making

typically employed in service organisations and summarise the key literature addressing

the planning problems faced at each stage.

Effective planning and deployment of supply capacity is a complex combination of

the interrelated stages of the planning hierarchy in Figure 4.1.1. The upper tier of the

hierarchy, Strategic Planning, determines the requirements and scope of activities for the

organisation over the long term. Expected demands for services are considered alongside

the organisation’s strategic business objectives to determine a target level of demand and

the associated size and composition of the workforce required to serve it. At the Tactical

Planning stage the high-level demand and supply profiles from the Strategic Planning

stage are reconciled with up to date information on the operational requirements faced

by the organisation. Actions may include decisions on the volume of demand to service
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and adaptations to the skill make-up of the workforce through training. Hence, after

this mid-range planning stage, a provisional allocation of the workforce can be made

by matching the planned volumes of workers’ skills to the demand volumes requiring

these skills. The final tier of the planning hierarchy is the short-range Operational

Planning stage. This is concerned with the more immediate aspects of an organisation’s

operations through the allocation of individuals to tasks or schedules. These may be

decided days to a few weeks in advance of the period of operation, with the supply

allocations set in the Tactical Planning stage and a further updated record of demand

used as inputs. Hence, the quality of the outputs from the Operational Planning stage

are highly dependent upon the quality of prior planning efforts. The hierarchy described

here contains within it the sequence of planning decisions featured in Abernathy et al.

(1973) which is commonly cited in the workforce planning literature. Their staffing and

training level is represented by our Tactical Planning stage, while their days-off and shift

scheduling level as well as their daily allocation of individuals to tasks both pertain to

planning of individual workers and hence sit in our Operational Planning stage.

The model presented in this chapter acts as an interface between the Tactical and

Operational Planning stages. As such, the Strategic Planning stage is beyond the scope

of this chapter and hence literature relating to this level is largely left out of this review.

The composition of the workforce is a key consideration in Tactical Planning in which

decisions to augment and train the workforce may be taken. Efforts to evaluate the

potential benefits of creating cross-trained workforces have been a crucial development

in Tactical Planning. As opposed to having a dedicated workforce in which workers

service only one skill, cross-training enables workers to be deployed to what ever service

is most in need at the time. A fully cross-trained workforce in which all workers can

perform all services results in supply capacity which is best able to cope with variations

in demand but, as highlighted by Inman et al. (2004), such an extreme level of training
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is costly and often ineffective.

In a manufacturing production context, Jordan and Graves (1995) introduce a cross-

training configuration which provides a high level of flexibility at reduced cost. Here,

factories represent worker-like entities with the potential to service multiple tasks and

products behave like demand for these skills. They propose creating a chain between

factories and products such that all factories and products are directly and indirectly

interconnected, allowing production to be shifted along this chain in response to demand

variation. They show that the majority of the benefits of full production flexibility (all

factories producing all products) can be realised with each factory producing only two

products in a chained structure. Their chaining concept has been extended to workforce

planning and is shown to perform well, for example, in maintenance operations (Brusco

and Johns, 1998), serial production lines (Hopp et al., 2004), assembly lines (Inman

et al., 2004) and job shops (Yang et al., 2007). While chain structures are shown

to provide robust performance there may be better alternatives depending upon the

requirements of the system. In a dual resource constrained job shop application, Davis

et al. (2009) propose a modified skill chaining structure which offers heightened flexibility

by ensuring workers who share the same primary skill each have differing secondary skills.

Evaluating the effectiveness of competing cross-training structures is a challenging task

which has been explored by Jordan and Graves (1995), Iravani et al. (2005) and Iravani

et al. (2011).

At the Operational Planning stage, work schedules for individual members of the

workforce are made. This involves, for example, days-off scheduling, allocating work-

ers to specific tasks and arranging overtime. There exists a considerable body of work

related to Operational Planning for nurse staffing problems faced by healthcare organ-

isations, specifically on the allocation of cross-trained nurses to departments. Nurse

planning was the motivating context for Abernathy et al. (1973) and their hierarchy of
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planning activities. Campbell (1999), Campbell and Diaby (2002) and Brusco (2008)

model the beginning of shift allocation of nurses to departments as an assignment prob-

lem. Using an objective which maximises a non-linear utility function of departmental

requirements, they are able to assess the benefits of a number of cross-training struc-

tures. By considering the interrelated nature of the stages of the planning hierarchy,

the work of Warner and Prawda (1972) and Warner (1976) address both the scheduling

and allocation of nurses. This is extended by Campbell (2011) by taking into account

uncertainty in the requirements of departments. Brusco and Johns (1998) consider a

joint staffing and allocation problem in which staffing costs are minimised subject to

meeting task requirements and providing breaks. These ideas are extended by Billion-

net (1999) to schedule days off and by Bard (2004) to develop daily work schedules

for employees under a hierarchical training structure. Recent work by Easton (2011,

2014) models the staffing, cross-training, scheduling and allocation of the workforce as

a 2-stage stochastic model under demand and worker attendance uncertainties.

In addition to addressing supply flexibility, flexibility with respect to the nature of the

demands has also been incorporated. Zhu and Sherali (2009) introduced flexibility in the

delivery of demand by modelling movement of demand around different service centres,

while He and Down (2009) and Akgun et al. (2011, 2012, 2013) model customer flexibility

within queuing environments. Here, customers may be willing to receive service from

different service centres, for example, being willing to go to alternative hospitals for

treatment or accept service at a call centre in a second language. In manufacturing,

Zhang and Tseng (2009) consider demand flexibility in the order process with respect to

customer preferences on due date, quantity, price and product specification to determine

optimal order commitment decisions.

There are examples of approaches to tackling the difficult task of simultaneous deci-

sion making across multiple stages of planning (Brusco and Johns, 1998; Easton, 2011,
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2014). The need to account for more of the above stages of decision making is increas-

ingly argued in the literature with authors pushing for these inherently inter-dependent

stages to be more frequently be considered together. Shakya et al. (2013) highlight an

operational need to understand how current planned supply matches expected demand

as the different planning stages progress. For large scale service operations this means

that, when taking into consideration the need to link the Tactical and Operational

Planning stages, finding exact solutions to the allocation of individuals to tasks is a

considerable computational challenge. The requirement is then to make an aggregate

allocation of cross-trained supply to demand, sufficiently well in advance of operations

to allow the time to recognise and act on imbalances. Despite Henderson et al. (1982)

commenting on the apparent absence of Aggregate Planning in the literature in compar-

ison to scheduling and allocation of individuals, it remains largely over-looked. Indeed

we comment that a detailed scheduling solution is only as good as the inputs of supply

capacity and demand provided from the earlier planning stages. We propose an alloca-

tion model set in this aggregate domain and intended to provide an interface between

Tactical and Operational Planning.

Workforce planning research has highlighted cross-training as a valuable source of

flexibility at the Operational Planning stage, particularly in industries which rely on the

timely provision of resources. At these late stages of planning with days or hours until

operations, the target is to do the best we can on each day in isolation, with surplus

demand either leaving the system (in call centres), or being resolved with expensive

emergency outsourcing (in healthcare). We contribute to this literature by investigat-

ing the value of planning the use of workers’ alternative skills at an earlier Aggregate

Planning stage which spans a horizon of inter-connected planning periods. This inter-

mediary stage allows for organisations to ensure that resources are on hand and fit for

purpose for the Operational Planning stage. Capturing the flow of incomplete work
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carrying over the planning horizon creates opportunities for a cross-trained workforce

to pick up surplus work in later periods experiencing over-supply, at some delay cost,

and hence could reduce the need for outsourcing in Operational Planning. In a similar

vein, organisations which have flexibility to move demand to earlier periods can benefit

in the other direction by utilising oversupply in these preceding periods. Consideration

of a long planning horizon will also identify any supply and demand imbalances after

capitalising upon the supply and demand flexibilities available to the planners. To the

best of our knowledge both the planning of workers’ skill usage before Operational Plan-

ning and the modelling of flexibility in the timing of demand at an Aggregate Planning

stage have not considered in existing literature.

4.3 An Aggregate Cross-trained Workforce Planning

Model with Temporal Demand Flexibility

We begin by detailing the aggregation of the inputs to the model. Consider an organi-

sation which offers a range of services, demand for which can be broken down into a set

of skill requirements J = {1, 2, . . . , |J |}. These skills should be sufficiently distinct that

a worker trained in more than one skill offers some supply flexibility by being available

to work on more than one type of service. Over a planning horizon of length |T | we

measure demand djt for skill j ∈ J in period t ∈ {1, 2, . . . , |T |} as the man-hours re-

quired to complete jobs requiring skill j. The time taken to complete a job is subject to

the efficiency of the worker assigned to the task. We estimate the man-hours required

based on the average completion time rj of a worker experienced in skill j. This may

include any delay associated with travel between tasks and/or alignment with required

inventory. For example, if we have n jobs requiring skill j, the required man-hour mea-

sure of demand is given by rjn. Assuming the productivity of a worker does not vary
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over time, the completion times are independent of t.

Supply is provided through workers belonging to a set of worker classes, I =

{1, 2, . . . , |I|}. Workers in class i ∈ I are trained identically in a primary (first pref-

erence) skill and up to |J |−1 other skills ordered by preference. Similar to Campbell

(1999), preferences are interpreted as a measure of the efficiency of a worker of class

i in skill j, denoted wij ∈ [0, 1]. Given h hours of skill j demand to service, a class i

worker with 0 < wij ≤ 1 would take h{wij}−1 hours to complete the work. wij = 0

represents no training in skill j. For simplicity we assume that class i preferences are

uniquely defined, although the model we present is not restricted to this assumption.

Hence, we can describe the skill-set of a class i worker using a |J |-vector containing their

efficiency level in each skill. For example, skill set {0, 0.8, 1, 0.6, 0} defines a worker class

with primary, secondary and tertiary skills 3, 2 and 4 respectively. By aggregating the

working hours of workers of the same class, we then have a measure of hours of supply

of each type of skilled worker and, in doing so, adopt a supply-class definition similar

to that seen in Easton (2011).

An effective utilisation of our cross-trained workforce can be viewed as allocation,

yijt, of hours of supply of worker class i to one of their skills j in period t such that

demand coverage is maximised over the planning horizon. For a single period t and skill

j, this equates to finding an allocation yijt which minimises expression

max

0, djt −
∑
i∈Aj

wijyijt

 , (4.3.1)

where Aj = {i ∈ I : wij > 0} is the set of worker classes trained in skill j. The

optimisation model presented later in this Section is built upon this characterisation of

the problem.

In Aggregate Planning we are seeking to get the most out of the full-time equivalent

(FTE) workforce we already have available to us for ‘free’, with their costs already
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incurred whether or not the workers are used. We therefore omit consideration of

further emergency supply options such as overtime or outsourcing, both of which incur

additional costs. That said, the model output aids the identification of periods of

excess demand, information which may guide planners on the requirement for a remedial

injection of additional resources.

Unless we are consistently over-supplied or our prior workforce planning efforts have

resulted in a perfect alignment of supply to our latest forecast of demand, our allocation

will result in the presence of incomplete work in some periods. The reality in some service

industries is that there is the flexibility to let some work run late, as it remains within a

service level agreement, albeit at some cost. Indeed, for many companies carryover has

an unavoidable presence with the prevention of its accumulation being a key challenge

to planners and one that we attempt to address here. We assume that any outstanding

work carries over into future periods and incurs a cost cj per day per hour of demand

for skill j delayed. This incomplete work will elevate the level of demand in subsequent

periods until there is the spare capacity to reduce the cumulative demand on the system.

We do not track the number of days late that each hour of demand runs or attempt to

prioritise the latest-running demand in allocation. Indeed, the re-scheduling of unmet,

specific demand for a particular job is part of the process and activity of Operational

planning. Rather, modelling this flow of demand through the system serves to provide

a more accurate count of demand and of volumes left incomplete in each period.

Capturing carryover in this way renders the associated allocation problem one of

infinite horizon, with |T |= ∞. In reality, workforce allocations are applied over finite

horizons of decreasing length as the period of operation approaches. For this reason, we

define a finite-horizon allocation model with a dummy extra period, |T |+1 < ∞, used

to measure any outstanding work which should be incorporated in applications of the

model to subsequent periods.
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We can adapt this modelling of the flow of incomplete work to consider flow in the

opposite direction, i.e. the opportunity to recommend some demand for early comple-

tion. With months or weeks until Operational Planning it would be undesirable to make

wholesale changes to pre-agreed working hours from earlier stages. However, we assume

that some specialist types of demand, such as non-essential upgrades, can be completed

early. Hence, surplus supply in periods previous to excess demand can be utilised to

better balance the system. The early completion or advancing of demand has three

positive effects: the reduction of excess demand in future periods that would otherwise

remain in the system; a greater utilisation of the workforce; and a heightened service

level provided to some customers.

Temporal demand flexibility both through modelling carryover and the advancing of

demand is not intended for the re-scheduling of demand. It is instead an optimisation

on the aggregate utilisation of a workforce and, as such, we wish to limit changes made

to the existing demand schedule via the following rules.

i Demand may only be advanced in time. Delays to demand are modelled only by

incomplete work carrying over to the following day;

ii Advances to demand incur some cost, aj, which is the cost associated with advancing

an hour of skill j demand to a period earlier than initially planned. This may reflect

an administrative cost for linking the work up with its new supply or an artificial

cost acting as a lever on our willingness to amend the initial due-day of work;

iii The number of periods demand for skill j can be advanced is limited to lj days.

Skills for which it is infeasible to advance demand are captured by setting lj to 0.

To incorporate temporal demand flexibility we introduce additional decision variables

δjtτ defined to be the hours of demand for skill j moved from period t to period τ . These

variables have different practical interpretations depending on the value of τ in relation
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Indices

i Worker class

j Demand class (skill)

t Planning period (day)

Domains

I The set of all worker classes

J The set of all demand classes

T The set of all periods in the planning horizon

Aj The set of worker classes trained in skill j, that is {i ∈ I : wij > 0}
where wij is defined below under Parameters

Decision Variables

yijt Hours worker class i ∈ I spends working on skill j ∈ J in period t ∈ T
δjtτ Hours of demand for skill j ∈ J moved from period t ∈ T to τ ∈ T

Parameters

djt Demand for skill j ∈ J in period t ∈ T (in man-hours)

Nit Supply of worker class i ∈ I in period t ∈ T (in man-hours)

wij Efficiency weight of worker class i ∈ I working on skill j ∈ J
cj Cost, per day, for delaying an hour of skill j ∈ J demand

aj Cost of advancing an hour of skill j ∈ J demand

lj The maximum number of days skill j ∈ J demand can be advanced

Table 4.3.1: Model notation

to t. To demonstrate this, let us consider fixing skill j and study the resulting 2-

dimensional matrix δj−−. This matrix represents the movement of demand for skill j

from period (row) t to period (column) τ . This can be broken down into four cases.

• t = τ : Demand moved from a period to itself (the diagonal of matrix δj−−). δjtt

is the quantity of demand committed for completion in period t;

• τ < t: Demand moved to a previous period (the lower left triangle of matrix δj−−).

δjtτ represents advancing of demand by adding δjtτ hours of work to previous period

τ so that less demand is tackled in current period t;
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• τ = t + 1: Demand moved from period t to the following period t + 1. δj,t,t+1

represents carryover of incomplete work by adding to demand in the following

period t+ 1 and reducing the quantity tackled in current period t;

• τ > t+ 1: Carryover is modelled day-to-day only. Hence δjtτ = 0 in this case.

We additionally require a dummy period |T |+1 at the end of the planning horizon so

that carryover from the final period |T | can be evaluated. Any such demand carried over

into period |T |+1 should be counted in subsequent planning horizons or be considered

for completion using external resources during the current horizon. Note that our ability

to meet demand on each day results from the supply allocations yijt that feed directly

into the amount of committed demand δjtt and hence carryover δj,t,t+1. This, in turn,

informs where advances to demand may be beneficial. The notation defined here and

which will be used for the remainder of the chapter is outlined in Table 4.3.1.

4.3.1 The Aggregate Planning Model

The following model takes as input an updated forecast of demand djt for each skill j

in each period t of the planning horizon. We assume that worker classes (skill sets and

efficiency weights wij) are predefined and, further, that the full-time equivalent capacity

of this workforce (in hours) has already been distributed across the planning horizon

such that supply aligns with the best available forecast of demand, dTPjt ≈ djt at Tactical

Planning (TP). For example, supply Nit might be set such that the capacity of worker

classes with primary skill j sum to dTPjt in a given period t. These supply measures are

not intended to include details of overtime or unplanned days-off which are assumed to

be considered later in the planning process.

With these inputs provided, the model below gives as output any recommended

advances of demand (δjtτ , for τ < t); the volumes of incomplete work carried over from

period to period (δj,t,t+1); and a utilisation (yijt) of the skills of each worker class in each
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period. Objective:

min

|J |∑
j=1

|T |∑
t=1

cjδj,t,t+1 +
t−1∑

τ=(t−lj)+

ajδjtτ

 (4.3.2)

Constraints:

djt −
t−1∑

τ=(t−lj)+

δjtτ − δj,t,t+1 + δj,t−1,t = δjtt for j ∈ J ; t ∈ T, (4.3.3)

∑
i∈Aj

wijyijt = δjtt for j ∈ J ; t ∈ T, (4.3.4)

|J |∑
j=1

yijt ≤ Nit for i ∈ I; t ∈ T, (4.3.5)

δjtτ = 0 for t ∈ T ; and

τ ∈ {t+ 2, . . . , |T |+1} (4.3.6)

δjtτ , yijt ≥ 0 for i ∈ I; j ∈ J ; t ∈ T ; and

τ ∈ {1, . . . , |T |+1}. (4.3.7)

The objective penalises demand left incomplete in each period (to carry over into

the following period(s)) and the number of hours of demand which are moved to earlier

periods. It therefore minimises the cost of any changes to the timing of demand. The

relationship between allocation decision variables yijt and committed demand variables

δjtt is captured in constraints (4.3.4) which state that the volume of demand we are able

to cater for in any period is equal to our allocation of supply. In minimising the cost

of incomplete work, the objective combined with this constraint leads to an allocation,

yijt, of the workforce which maximises committed demand δjtt. We ensure that we do

not exceed available supply in our allocation via constraints (4.3.5).

Constraints (4.3.3) are a further set of conservation constraints which ensure the level

of demand is preserved in the system, i.e. committed demand matches original demand
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with any carryover and early completion accounted for. Our original expression for the

single period workforce allocation problem, (4.3.1), is recognisable in these constraints

as the value of carryover, δj,t,t+1, when movements to earlier periods,
∑t−1

τ=(t−lj)+ δjtτ ,

and carryover from the previous period, δj,t,t−1, are set to zero. A consequence of these

constraints is that incomplete work does not escape the system once the cost of its

carryover is incurred. Rather, that incomplete work continues to contribute to the cost

of carryover in all subsequent under-supplied periods. This property ensures that, if

work cannot be completed on time, it is resolved as soon as there is the capacity to do

so.

Work is naturally carried over one period at a time; this is reflected by constraints

(4.3.6). These constraints are not strictly required in the model (note that the associated

variables do not contribute to the objective function) but do assist in pre-processing the

set of feasible solutions, reducing the space which the solver needs to search over for an

optimal solution.

Constraints (4.3.6) ensure work is carried over one day at a time, while constraints

(4.3.7) ensure the non-negativity of all decision variables. The non-negativity of allo-

cation variables yijt combined with constraints (4.3.6) ensure that committed demand,

δjtt, also takes a non-negative value. The non-negativity of δj,t,t+1 ensures that spare

capacity in a period cannot be used to create a negative quantity of carryover so that

there is no benefit in the over-allocation of supply.

Comments

Using aggregate measures of supply and demand, we are able to effectively plan the util-

isation of large workforces with complex cross-training structures over lengthy planning

horizons. This complex planning problem combined with an attempt to incorporate

temporal flexibility in demand would be extremely computationally intensive if con-
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ducted at the level of the individual worker. The output of this Aggregate Planning

model provides a richer input to Operational Planning via a target utilisation of workers’

skills and an improved view of the volumes of excess work on the system with carryover

and advances to demand considered.

To benefit from the tractability of a model in this aggregate domain, we pay the price

of losing some detail relating to supply and demand. Aggregation of supply removes

the detail required to schedule individuals to tasks (within constraints involving days-

off scheduling, limiting the length of a working day, balancing time spent on preferred

skills, etc). Aggregating demand for a range of services into demand for a set of core

skills similarly leads to a loss of information about job characteristics. For example, in

some service settings jobs comprise a mix of skill requirements so that matching them

with workers having the same portfolio of skills required by the job becomes beneficial.

The detail required to model such allocations is not included in the above aggregate

framework. This research is strictly rooted prior to Operational Planning, where our

interest is in establishing a balance between the broad tactical level measures of FTE

resources and forecast demand. We stress here that the model presented in Section

4.3.1 is not designed take care of the interests of the individual employee or individual

job request. It is the responsibility of the scheduler or scheduling tool to blend this

aggregate, tactical target for skill utilisation, with the requirements of the individual

worker and task to reach the culmination of the planning process: a detailed daily

schedule of work for each employee.

Modelling carryover is in contrast to the approaches typical of existing workforce

planning literature. It is more commonly assumed that any excess demand can and will

be dealt with by infinite pools of additional resources through overtime and outsourc-

ing. These options are expensive, last minute fixes to supply shortage which we argue

should be reserved for much later in the planning process. In fact, making such mod-
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elling assumptions, even with non-linear penalties for unmet demand, is detrimental to

the planning activities in service organisations for which controlling ongoing demand

carryover is a key requirement. Further, assuming an unlimited pool of outsourcing will

be utilised implies that we are unwilling to allow any demand to be left incomplete at

the end of any period. Such an inflexible view to the timing of operations constrains

us to address demand only in the period it was first planned for, reducing the plan-

ning task over the whole horizon of length |T | to planning for each day in isolation.

Hence, resulting workforce allocations are developed to deal with on-the-day demand

concerns not the true demand concerns through the build-up of demand carryover. Ex-

isting cross-training research, such as that conducted by Campbell (2011) and Easton

(2011), advocates the benefits of cross-training when demand is constrained to comple-

tion on a given day. Part of the contribution of this work is to assess how the value of

cross-training is affected by the modelling of late running work in the system.

With the model objective and constraints linear in real-valued decision variables yijt

and δjtτ , the resulting continuous convex model has the benefit of being solvable in

a matter of seconds even for large scale problems where we have tens of skill classes

and hundreds of worker classes. We argue that at this early stage of planning, integer

quantities of man-hours are not necessary to gain insight from the Aggregate Planning

model. Further, with varying efficiency levels and hours of work, integer quantities of

human resources are rarely an accurate representation of reality.

A consequence of using a linear objective is that it can be difficult to reach a balance

in the proportion of demand covered for each skill. When cj are equal for each skill j,

each hour of carryover contributes the same cost so that an extra hour of incomplete

work in one skill costs the same as any other, even if one skill has a very low completion

level compared to the other. When cj varies by skill, solutions will ensure that as

much demand for the highest cost skill is completed as possible before lower cost skills
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are afforded supply. An alternative approach to greater equality in the completion of

demand across skills can be obtained by using an objective function which is quadratic

in δj,t,t+1, though at substantial additional computational cost.

The supply flexibility given by cross-training in combination with temporal demand

flexibility can result in non-uniqueness of optimal solutions, or multiple solutions with

very similar objective function values. Users of the above model could therefore consider

post-processing of allocation solutions by assessing desirable solution properties such as

balance in the time workers spend on their different skills.

4.3.2 Model Variants

As well as providing valuable information about how supply should be deployed and

the extent to which incomplete work can be resolved earlier or later by the existing

workforce, the above model can be used to compare the value of the three key sources of

flexibility in Aggregate Planning. Let CT represent the incorporation of cross-training

by allowing a worker to use any of their skills; Ca represent the modelling of carryover;

and Ea represent the option to commit work to an earlier period. The model defined

in Section 4.3.1 represents a planning strategy, π, which utilises all three, namely Ca+

CT + Ea.

We can study the value of any combination of these flexibilities by switching-off the

elements of model (4.3.2) which enable them. The required amendments are described

below and lead to eight distinct strategies, Π := {Ba, Ca, CT, Ea, Ca + CT, Ca +

Ea, CT + Ea, Ca + CT + Ea}. Here, Ba is a baseline model in which only primary

skills are available and carryover and early completion of demand are omitted from

consideration.

A model which does not capture the opportunity to utilise cross-training is equivalent

to one in which workers have efficiency wij = 0 in all skills j other than their primary
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skill. To remove cross-training from the model we simply amend constraints (4.3.4) so

that any non-zero, non-primary efficiencies are rounded down to zero by

|I|∑
i=1

bwijcyijt = δjtt, for j ∈ J and t ∈ T. (4.3.8)

Secondly, removing the option to complete some work early simply requires the early

completion limit, lj, to be set to 0 for all skills j ∈ J . To omit the modelling of carryover,

our expression for committed demand δjtt which appears in constraints (4.3.3), becomes

djt −
t−1∑

τ=(t−lj)+

δjtτ − δj,t,t+1 = δjtt, j ∈ J, t ∈ T. (4.3.9)

This amendment results in incomplete work incurring a one-off cost at the time it is

generated, after which it is removed from the system assumed to be picked up via

additional resources. This work therefore ceases to contribute to ongoing incomplete

work and is not available for late completion in future periods.

The performance of strategies π ∈ Π are assessed based on a comparison of the ter-

minal cumulative demand carryover, Hπ
|T |, resulting from each solution. This represents

the total count of hours of unresolved work remaining at the end of the horizon. The

definition of this quantity relies on values δj,t,t+1, the interpretation of which depends

on whether constraints (4.3.3) or (4.3.9) are used, i.e., whether or not we model carry-

over. For carryover inclusive models, δj,|T |,|T |+1 incorporates the work carried over from

all preceding periods in the planning horizon. For non-carryover models however this

is not the case and the terminal cumulative demand carryover must be calculated by

taking the sum of the individual carryover quantities in each period up to and including

|T |. Let ΠCa := {Ca, Ca + CT, Ca + Ea, Ca + CT + Ea} define the set of strate-

gies which include carryover modelling. We then have the following definition for the

terminal cumulative demand carryover
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Hπ
|T | =



|J |∑
j=1

δj,|T |,|T |+1 if π ∈ ΠCa,

|J |∑
j=1

|T |∑
t=1

δj,t,t+1 otherwise.

(4.3.10)

4.4 Case Study

We begin by exploring the merits of the planning strategies of Section 4.3.2 for a fixed

environment based on a data set provided by BT. In service sector based workforce plan-

ning environments, solution properties are influenced by characteristics of the operating

environment as well as the planning strategies themselves. In Section 4.5 we therefore

explore the effect of a range of environmental conditions in an extensive numerical study.

4.4.1 Study Design

We apply the Aggregate Planning model of Section 4.3 to time series of demand for

7 skills in the BT data set. Time series realisations are simulated based on historic

demand data. A sample historic series of demand for one of these skills is plotted in

Figure 4.4.1(a). We briefly depart from the model notation for discussion of time series

simulation using notation consistent with that literature. Decomposing historic time

series into seasonal and cyclic components and random variation, we express demand

for skill j in period t as

djt = µjt + εjt,

where µjt := Tjt + Cjt7 represents underlying mean demand, a combination of trend Tjt

and weekly cyclic variation Cjt7 measured by taking day of the week averages over all
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full weeks in the planning horizon T . That is,

Cjt7 :=

∑b |T |
7
c

u=1 dj,7(u−1)+t7

b |T |
7
c

,

where u is a week number index and t7 = t−7(u−1) is an index on the day of the week.

Random variation εjt around µjt for each skill j is assumed independent over time and

identically distributed within weekdays t ∈ Td := {7(u−1) + t7 : t7 ∈ {1, . . . , 5}, u ∈ U}

and weekends t ∈ Te := {7(u − 1) + t7 : t7 ∈ {6, 7}, u ∈ U}, where U = {1, . . . , |U |}

is the set of weeks covered by the planning horizon. The resulting {εjt : t ∈ Td} and

{εjt : t ∈ Te} for each skill j ∈ J are modelled using the univariate skewed generalised

error (sGE) distribution centred around 0 (see Theodossiou (2015)). An example of an

sGE distribution fitted to {ε6t : t ∈ Td} is illustrated in Figure 4.4.1(b) along side the

empirical density estimate. The sGE family of distributions is chosen as it effectively

captures tails thinner than the normal distribution as well as the positive skew typical

of random variation in this problem instance.

Historic cross-correlation between random variation in demand, εjt, for skills j ∈

{1, . . . , 7} is captured in simulation by sampling from a Gaussian Copula CR with fitted

correlation parameter matrix

R =



1

0.01 1

0.22 0.17 1

0.16 0.16 0.14 1

0.44 0.16 0.19 0.32 1

0.04 0.22 0.10 0.01 −0.03 1

0.51 0.20 0.22 0.15 0.34 0.11 1


.

The resulting samples are then transformed to the correct scale by applying the inverse

marginal cumulative distribution functions (derived from fitted sGE distributions) for
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Figure 4.4.1: Case study data example: subplot (a) illustrates a time series of demand for

skill 6 while subplot (b) illustrates an sGE distribution fitted to random variation around the

cyclic component of demand for the same skill
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each skill j. For an introduction to multivariate dependence sampling using copulas,

see Nelsen (2007).

Sampling random variation in demand using the above described procedure for week-

days and weekends (to reach new variation samples ε
′
jt) and combining with underly-

ing mean demand µjt, we can simulate any number of demand time series with the

cross-correlation structure characterised by Gaussian copula CR. Note that samples d
′
jt

then capture observed (historic) variation in demand but do not incorporate forecasting

components or forecast-based uncertainty. Applying the Aggregate Planning model to

a range of demand outcomes, we can measure mean performance and study the extent

to which performance varies by particular demand realisation.

We set supply to match the mean underlying level of demand µjt with a modified

chain cross-training structure with breadth of training equal to 2. This structure is

illustrated for |J |= 4 by the efficiency matrix in Table 4.4.1, containing efficiency weights

wij with rows, i, representing worker classes and columns, j, representing skills. Mean

demand µjt is split equally across the set of worker classes with skill j as their primary

skill, Pj := {i ∈ I : wij = 1}, so that Nit = µjt/|Pj|.

To accurately replicate the complex properties of the demand time series, we apply

the planning model over a horizon of length |T |= 84 (12 weeks). We solve an allocation

problem for 100 time series simulations of demand so that distributions of the perfor-

mance of planning strategies π ∈ Π\Ba can be compared. The performance indicator

used is a measure of the percentage reduction in terminal cumulative demand carry-

over caused by using allocation strategy π (in relation to carryover resulting from using

baseline strategy Ba), defined as

Iπ = 100×

(
HBa
|T | −Hπ

|T |

HBa
|T |

)
. (4.4.1)

In this study, the cost of carryover cj is set to 1 for all skills j ∈ J . We consider two
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i\j 1 2 3 4

1 1 0.8

2 1 0.8

3 1 0.8

4 1 0.8

5 1 0.8

6 0.8 1

7 1 0.8

8 0.8 1

9 0.8 1

10 0.8 1

11 0.8 1

12 0.8 1

Table 4.4.1: Worker class efficiency matrix defining a modified chain cross-training structure

for 4 skills with a training depth of 2. Rows describe the abilities (efficiencies) of worker class

i in skills j ∈ {1, . . . , 4}.

limits on the number of days that demand can be advanced, namely lj = 1 and 3. For

simplicity in the interpretation of results, this limit will common to all skills. The cost

of advancing demand, aj, is set to 0.9 for all skills. This means that allowing work to

run 1 or more days late is always more costly than completing work up to 3 days early.

All problem instances are solved using the dual simplex algorithm invoked using the

Concert Technology C++ API of CPLEX v12.5.1 via a High Performance Computing

cluster with typical node specification of 2.26 GHz Intel Xeon E5520 processor. Solving

a single instance of an 84-period allocation problem took at most 4.5 seconds to run.

All model variants restricting demand advancement to one day were solvable in up to

0.75 seconds however.
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Early completion limit

Strategy (π) lj = 1 lj = 3

CT 34.9 (0.458) 34.9 (0.458)

Ea 25.1 (0.320) 58.5 (0.587)

CT+Ea 50.7 (0.581) 70.4 (0.798)

Ca 78.5 (0.823) 78.5 (0.823)

Ca+CT 86.4 (0.931) 86.4 (0.931)

Ca+Ea 85.5 (0.782) 87.3 (0.810)

Ca+CT+Ea 90.6 (0.880) 91.6 (0.909)

Table 4.4.2: Case Study: mean (standard error) percentage reduction in terminal cumulative

demand carryover for strategies π ∈ Π\Ba, relative to strategy Ba, by early completion limit

4.4.2 Study Results

Table 4.4.2 summarises strategy performance measure, Iπ, defined in Equation (4.4.1),

averaged across 100 simulations with associated standard errors given in parentheses.

The boxplots in Figure 4.4.2 support the summary statistics in Table 4.4.2, clearly

demonstrating the value of accounting for the carryover of incomplete work in Aggregate

Planning. For example, we see from the Ca boxplot that capturing the flow of incomplete

work over the horizon can provide the opportunity to resolve on average 78.5% of the

incomplete work resulting from a primary skill allocation for each period independently

(Ba).

The baseline model reflects the use of workers’ highest efficiency skills only, with work

constrained to the day it is initially planned for. Work left incomplete after allocation

will require completion via expensive outsourcing or overtime options. We can therefore

interpret ICa as an upper bound on the proportion of savings that can be made by using

the existing workforce to resolve carryover instead of paying for extra resources.

With incomplete work carrying over until there are the spare resources to resolve it, a

longer planning horizon naturally provides more opportunity to resolve all demand. This
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Figure 4.4.2: Case Study: boxplots of percentage reduction in terminal cumulative demand

carryover for strategies π ∈ Π\Ba, relative to strategy Ba, by early completion limit

relationship between the length of the planning horizon, |T |, and the value of modelling

carryover is summarised in Figure 4.4.3. The solid line in this plot illustrates how

the mean improvement from modelling carryover increases with the length of planning

horizon considered. Across an 84-day horizon, the benefit of incorporating carryover

measures in allocation (using strategy Ca instead of Ba) approaches 80%. It can be seen,

however, that much of the value of widening the planning horizon beyond independent

single-period allocations can be gained from planning across a much shorter 21-period

window. This is illustrated by the solid curve increasing steeply from zero as the length

of the planning horizon is increased. Modelling the carryover of incomplete work across

just one day (by solving multiple two-day allocation problems with strategy Ca) can

lead to resolving on average 25.1% of excess work, with the benefit rising to 58.8% with

a window of 3 days.

The value of modelling the opportunity to advance demand by one day is much less
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Figure 4.4.3: Mean percentage reduction in terminal cumulative demand carryover for strate-

gies Ca and Ea, relative to strategy Ba, as a function of planning horizon length. The solid

line represents the value of using strategy Ca. The dashed line represents the value of using

strategy Ea with an early-completion limit, lj , of 1 day

influenced by the length of the planning horizon however. This is illustrated by the

almost stationary dashed curve in Figure 4.4.3. Indeed, allocating using an Ea strategy

over a window of only 2 days results in almost all the value that an 84-day horizon

might provide. More generally, to reap the benefits of an Ea allocation strategy with

early-completion limit lj we need only plan over horizons which accommodate lj, i.e.

horizons of length |T |≥ lj + 1.

It is important to note the trade-off that exists between utilising spare capacity for

the early completion of work versus the picking up of late running work. Comparing

the boxplots for strategies Ca and Ca + Ea, we see the marginal benefit of the model

allowing the early completion of work is small in comparison to its added value in a

non-carryover setting. Late running work takes priority over completing some work

early, a property we encouraged by setting aj < cj. Late running work occupies some of

the spare capacity we might otherwise have used to advance work. The effect that the
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value of aj (in relation to cj) has on the quantity of work that is advanced is discussed

in more depth in Section 4.5.3.

The day-by-day approach reflected by the baseline model Ba (and any strategy not

featuring Ea or Ca) is more appropriate for latter stages of planning with short notice

before the start of operations. At this higher level of planning, we argue that it is bene-

ficial for the planner to open up their horizon of consideration and exploit opportunities

for resolving excess work with previous and future spare capacity. Solutions only resort

to an alteration in the timing of demand when supply at their intended period is ex-

hausted. That said, the reported benefits of these temporal demand flexibility measures

should be viewed as upper bounds in application. The early completion or delay of

some work will likely not be feasible for all types of demand or during all phases of the

planning horizon, with the negative impact on the customer increasing as the notice

before operations decreases.

An additional benefit of capturing carryover in modelling is that it allows us to mon-

itor the evolution of excess work throughout the planning horizon. The plots in Figure

4.4.4 give an example of the evolution of total cumulative carryover, Hπ
t , across the

horizon (for t ∈ {1, . . . , |T |}) for a particular time series realisation of demand. Here,

early completion of demand was restricted to 1 day. Strategies in isolation and in combi-

nation are plotted separately in Figures 4.4(a) and 4.4(b) respectively, with the trace for

baseline strategy Ba appearing in both as a reference point. Figure 4.4(a) demonstrates

the unique flexibility afforded by carryover strategies to contain the amount of cumula-

tive carryover over time. This results in excess work being diminished in periods with

spare capacity, with the count of excess work maintained at a level below 2000 hours for

the majority of periods. Figure 4.4(b) highlights the additional benefit of strategies CT

and Ea in combination with Ca, with all three such combinations mitigating cumulative

incomplete work across the horizon very well.
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Figure 4.4.4: The evolution of cumulative demand carryover throughout a planning horizon

for a single problem instance and demand realisation
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The up-shift in cumulative carryover at day 73, seen most clearly in the solid line

plot for baseline model Ba, highlights a particularly higher than average level of de-

mand pushing incomplete work up significantly. These plots of cumulative incomplete

work over time, are of particular use in assessing when these spikes in demand can be

absorbed by the existing workforce (using temporal flexibility and cross-training) and

how long it may take to restore cumulative carryover to 0. In this case, it takes one week

(until day 80) to resolve the impact of this spike in demand so that there are 7 successive

days of excess work which could result in some work running 7 days late. This high-

lights this period in the horizon as one for which we may consider an injection of extra

resources through outsourcing or overtime. Although a similar sized jump in cumulative

carryover can be seen at day 36, it is quickly resolved using temporal flexibility and/or

cross-training. Solving an Aggregate Planning model which incorporates these flexible

strategies aids the identification of problem periods which cannot be easily identified

from the time series of demand, or the baseline strategy cumulative carryover alone. It is

the balance between supply and demand which dictates a period to be problematic and

so identification of such periods relies on the output of an Aggregate Planning model

which quantifies the carryover of incomplete work after supply allocation.

The final key observation we draw from Table 4.4.2 concerns the potential gains of

considering the utilisation of the cross-trained workforce early in the planning process.

The allocation solution provided by the model is designed to provide the scheduler with

richer information upon which to make informed decisions about the proportion of time

that individual workers should aim to spend on their different skills. Secondary and

tertiary skills are more commonly omitted from these early stages of planning and de-

ployed as emergency efforts to balance supply and demand at the Operational Planning

stage. By planning the utilisation of cross-training early in the horizon we see that

on average 34.9% of the incomplete work resulting from a primary-skill only alloca-
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tion can be resolved by also considering secondary and tertiary skills in allocation. In

combination with the above discussed temporal demand flexibility, we reach a powerful

Ca + CT + Ea planning strategy which sees, on average, up to 91.8% of the terminal

cumulative demand carryover resulting from the baseline strategy being resolved.

The marginal gains of incorporating cross-training are rather less in the temporal

demand flexibility domain however, adding an additional 4.3% mean improvement to

the Ca + Ea model (with lj = 3) compared to the the 58.5% marginal benefit when

when Ca and Ea are not available. Since incomplete work remains in the system when

the timing of demand is not totally fixed as, opposed to exiting the system under the Ba

strategy, the system experiences a greater level of demand, reducing opportunities to

exploit secondary and tertiary skills. The spare capacity required to benefit from cross-

training is more frequently soaked up in resolving late running work or to accommodate

the early completion of work, to the detriment of the utilisation of secondary and tertiary

skills. This highlights the strength of cross-training to be in cases where there is limited

flexibility to alter the timing of demand delivery. It is therefore important that, when

evaluating the benefits of cross-training, the extent to which there is some flexibility to

complete work early and the extent to which carryover is a real and present feature of

the planning problem should be carefully considered.

The later in the planning horizon that we have the flexibility to amend the timing

of demand, the closer the additional benefit of cross-training will be to 4.3%. In or-

ganisations that must commit to the timing of demand early in the horizon when it is

likely to be subject to further significant change ahead of operations, the value of cross-

training will approach the fixed-timing value (strategy CT ) of 58.5%. Existing studies

into the value of cross-training are universally conducted in the latter-described domain,

with restrictions typical of Operational Planning. We argue that organisations should

consider modelling early completion of work and carryover to obtain a more accurate
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evaluation of the potential value of cross-training.

4.5 Extended Numerical Study

We now extend the analysis of the previous section to consider the performance of

the planning strategies of Section 4.3.2 under a range of hypothetical environmental

characteristics. To simplify the presentation of this large study we first describe the

environmental factors under consideration and the design of the study. The analysis

of the results follows in Section 4.5.2 and concludes with discussion on the relationship

between, and impact of, demand movement costs cj and aj.

4.5.1 Environmental Factors and Study Design

The environmental characteristics which influence the benefit of planning strategies Ca,

Ea and CT can be separated into three key categories: properties of demand; properties

of supply; and the costs or penalties associated with each planning strategy. We discuss

these categories in detail in the following subsections, identifying the factors and levels

which will be explored in the numerical study. Table 4.5.1 provides a summary of these

environmental factors as well as the experimental factors included in this study.

Characteristics of Demand

As in the case study of Section 4.4, we assume that the supply level of each worker class

across the planning horizon has been set (at Tactical Planning) to match the forecast for

demand at that time. As highlighted in Section 4.3, we expect our updated forecast for

demand at the Aggregate Planning level to result in some imbalance between demand

and the supply levels set in Tactical Planning. It is this ever-evolving view of demand

which motivates the introduction of supply flexibility through cross-training. Higher

levels of variability in demand for a given skill can be expected to provide more cases of
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Factors Levels Level Descriptions

Experimental:

Strategic Components 8 Ba, Ca, CT, Ea, Ca+CT, Ca+Ea, CT+Ea, Ca+CT+Ea

Early Completion Limit 2 lj ∈ {1, 3} for skills j ∈ J
Environmental:

Coefficient of Variation 2 vj ∈ {0.1, 0.3} for all skills j

Cross-correlation 6 ρ1,2 = ρ3,4 ∈ {−0.8,−0.5, 0, 0.5, 0.8}, and (ρ1,2, ρ3,4) = (0.8,−0.8)

Auto-correlation 3 AR(1) with φ1 ∈ {0, 0.3, 0.9}
Worker Ability 2 {1, 0.9, 0.8} and {1, 0.8, 0.6}
Training Configuration 3 Block, Chain, Modified Chain

Breadth of Training 2 2 or 3 skills

Costs 2 (cj, aj) ∈ {(1, 0.1), (1, 0.9)} for skills j ∈ J

Table 4.5.1: Experimental and environmental factors and levels

imbalance between supply and demand and hence more opportunities to benefit from

temporal demand flexibility and from cross-training. Indeed studies by Campbell (1999),

Netessine et al. (2002), Brusco (2008) and Easton (2011) confirm that higher levels of

cross-training are favoured in problems with higher variance. In this study, we consider

demand for five skills (|J |= 5). The variability εjt of demand around mean level µjt

is assumed independent of t and normally distributed with mean 0 and variance σ2
j (a

special case of the sGE family of distributions described in Section 4.4.1). As supply

is set such that it mirrors mean demand µjt, without loss of generality, we simplify

demand to be stationary across the horizon so that µjt = µj = 150 hours for each

skill j ∈ {1, . . . , 5}. We summarise the variability in demand using the coefficient of

variation, vj := σj/µj. Two levels for vj are then investigated, namely, vj = 0.1 or 0.3,

common for all skills j ∈ J .

Opportunities to exploit workers’ secondary and tertiary skills rely on there being

spare capacity for one skill and shortage for another in the same period t so that the

cross-correlation between demand time series can be expected to affect the value of

allocation strategies involving cross-training. Fine and Freund (1990) suggest that the

value of cross-training flexibility decreases as positive correlation approaches perfect.
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With |J |= 5, we have the flexibility to explore a number of different cross-correlation

patterns. We investigate six levels for cross-correlations between skills 1 and 2, and 3

and 4 respectively. These are ρ1,2 = ρ3,4 ∈ {−0.8,−0.5, 0.0, 0.5, 0.8} and (ρ1,2, ρ3,4) =

(0.8,−0.8). For problems with ρ 6= 0, we simulate ε
′
jt ∼MVN(0,Ω), where MVN refers

to the multivariate normal distribution. The covariance matrix is given by

Ω = DTRD

where R represents the cross-correlation matrix for εjt and D = diag(σ1, . . . , σ|J |) where

σj = µj/vj. Values ε
′
jt < −µj (resulting in a negative demand sample djt) are re-sampled

so that we in fact sample from a left-truncated multivariate normal distribution.

Finally, we expect to benefit most from temporal demand flexibility if there ex-

ists a shortage and surplus in supply in adjacent periods. We therefore explore auto-

correlation as a further potentially influential characteristic of demand. To evaluate

the influence of auto-correlation we simulate time series of demand from auto-regressive

models of lag 1 (AR(1)), that is

ε
′

jt = ϕ1ε
′

j,t−1 + ejt,

where ejt ∼ N(0, σ2
j ). Dependence parameter ϕ1 is studied at three levels, ϕ1 =

{0, 0.3, 0.9}. We treat auto-correlation and cross-correlation properties in isolation as

the simulation of |J | time series with both of these characteristics as well as a target

mean and variance is a very challenging task, particularly for |J |> 2. The arima.sim()

method from the stats package in statistical software R is used to to generate time series

with the desired AR(1) properties. A reliable procedure for simulating cross-correlated

AR(1) series for the number of skills and time series or the required length was not

found.
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Characteristics of Supply

The training configuration and abilities of worker groups also clearly affect the extent

to which cross-training is of benefit in allocation. Based on the findings of existing

research which indicate limited marginal benefits from training workers in 4 or more

skills (Brusco and Johns, 1998; Gomar et al., 2002), we limit the breadth of training

considered in this chapter to 2 and 3 skills.

Previous Operational Planning studies (Brusco and Johns, 1998; Campbell, 1999)

have demonstrated diminishing benefits from cross-training with decreasing relative ef-

ficiency of cross-trained workers. We consider two sets of efficiency levels, {1, 0.9, 0.8}

and {1, 0.8, 0.6}, where the weights listed are those for primary, secondary and tertiary

efficiencies respectively. We consider three training structures frequently used in the

literature: block; chain and modified chain. Illustrative examples are provided in Table

4.5.2, with row i and column j providing the efficiency weight wij of worker class i in

skill j. A 2-level breadth of training for the chain and modified chain can be obtained

by replacing the tertiary weight with 0. The 5-skill version of the modified chain is a

simple extension of the 4-skill version provided.

Within the block and chain structures we acknowledge the importance of the order

in which skills are arranged, a consideration which is proposed by Paul and MacDonald

(2014). Although we do not attempt to provide a solution to the problem of finding the

best order for skills in these structures, we will report on the impact the ordering has

on the value of our planning strategies. This ordering problem does not apply to the

modified chain we defined as its more exhaustive network structure results in all pairs of

skills being represented. Invariant to ordering and offering the greatest level of flexibility

from the above training structures (see Davis et al. (2009)), we fix cross-training to the

modified chain for the majority of the experiments.

Throughout experiments, we assume that supply for the sets of worker classes defined
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(a) Block

Breadth of Training = 2

i\j 1 2 3 4 5

1 1 0.8

2 0.8 1

3 1 0.8

4 0.8 1

5 1

Breadth of Training = 3

i\j 1 2 3 4 5

1 1 0.8 0.6

2 0.6 1 0.8

3 0.8 0.6 1

4 1 0.8

5 0.8 1

(b) Chain

i\j 1 2 3 4 5

1 1 0.8 0.6

2 1 0.8 0.6

3 1 0.8 0.6

4 0.6 1 0.8

5 0.8 0.6 1

(c) Modified Chain

i\j 1 2 3 4

1 1 0.8 0.6

2 1 0.8 0.6

3 1 0.6 0.8

4 1 0.8 0.6

5 0.6 1 0.8

6 0.8 1 0.6

7 0.6 1 0.8

8 0.8 0.6 1

9 0.8 1 0.6

10 0.8 0.6 1

11 0.8 0.6 1

12 0.6 0.8 1

Table 4.5.2: Example worker class efficiency weight matrices for different cross-training struc-

tures

in Table 4.5.2 combine to match typical demand across the planning horizon in the same

way described for the case study in Section 4.4.1. Chronic shortage of supply across

all skills will lead to solutions in which only primary skills are utilised where each

hour of allocated capacity has greatest return in terms of hours of completed demand.

Over-supply in all skills leads to a similarly trivial outcome where the flexibility of

cross-training is simply not required.

The benefit of modelling carryover is clearly related to the length of the planning

horizon, with longer horizons presenting more opportunities to resolve late running

work. For simplicity, we study one planning horizon length per study (|T |= 42 for

cross-correlated instances, and |T |= 84 for auto-correlated instances) and invite the

reader to bear in mind the discussion supporting Figure 4.4.3 in Section 4.4. Note

that, since auto-correlation reduces the effective sample size, a longer horizon is used

in auto-correlated cases to ensure time series simulations exhibit the intended location

and spread characteristics.



CHAPTER 4. WORKFORCE PLANNING WITH CARRYOVER 106

Costs

The final environmental factor we consider is the cost, aj, of moving an hour of demand

to an earlier period relative to the cost, cj, associated with letting an hour of work

run late. If aj greatly exceeds cj then early completion of work will rarely be utilised

whether it is included in the model as a planning strategy or not. To assess the effect of

this relationship, we study 2 levels with aj = {0.1cj, 0.9cj}. Without loss of generality,

all studies are conducted with cj = 1 and cj and aj take a value common across all skills

so that solution interpretation is not obscured by demand for some skills having higher

importance than for others.

4.5.2 Performance Analysis: Environmental Effects

In the following discussion we focus upon each environmental characteristic to establish

the aspects of supply and demand which influence the performance of strategies Ca, Ea

and CT beyond those evaluated in the case study.

Variance and Cross-correlation Study

In the first set of experiments, all environmental factors are incorporated with the

exception of auto-regressive dependence and the chain and block training structures.

This leads to 96 distinct problem instances, each of which are replicated by generating

100 demand simulations. A planning horizon of length |T |= 42 (6 weeks) is used for

all problems, providing a sample size sufficient to capture the stipulated correlation

and variance properties. Table 4.5.3 summarises the mean percentage reduction in

terminal cumulative demand carryover, Iπ, for strategies π ∈ Π\Ba, relative to strategy

Ba. Performance is averaged across 9,600 experiments, with associated standard errors

given in parentheses. The table is supported by the boxplots in Figure 4.5.1.

Due to the variety of problems included in this wider numerical study, we see greater
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Early completion limit

Strategy (π) lj = 1 lj = 3

CT 52.1 (0.115) 52.1 (0.115)

Ea 46.5 (0.193) 67.5 (0.099)

CT+Ea 72.9 (0.132) 82.1 (0.105)

Ca 73.3 (0.089) 73.3 (0.089)

Ca+CT 87.3 (0.095) 87.3 (0.095)

Ca+Ea 83.5 (0.089) 85.0 (0.090)

Ca+CT+Ea 91.6 (0.089) 92.2 (0.090)

Table 4.5.3: Numerical Study: mean (standard error) percentage reduction in terminal cumu-

lative demand carryover for strategies π ∈ Π\Ba, relative to strategy Ba, by early completion

limit

variation in performance than in the case study of Section 4.4.2. This is seen most clearly

in the wider boxplots in Figure 4.5.1. The smaller standard errors reported in Table 4.5.3

(in comparison Table 4.4.2) are due to the larger sample size in the numerical study, with

9,600 experiments in comparison to the 100 of the case study. An alternative comparison

of the associated standard deviations reflects the same increased performance variability

seen in the boxplots.

Despite the increased performance variability, the relative performances of the strate-

gies is roughly in line with those of the case study. Hence, we conclude that the relative

benefit of different strategies is not strongly influenced by environmental characteris-

tics. The mean performances of the allocation strategies are higher across the range of

problem instances covered in this numerical study than in the case study. This suggests

that the particular combination of supply and demand characteristics in the case study

are those unfavourable to the performance of the planning strategies. The added flex-

ibility afforded by an early completion limit lj = 3 is similar to that observed in the

case study. Subsequent reporting of results is restricted to cases with lj = 1, removing
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Figure 4.5.1: Numerical Study: boxplots of percentage reduction in terminal cumulative de-

mand carryover for strategies π ∈ Π\Ba, relative to strategy Ba, by early completion limit

the predictable variation introduced by lj and hence easing comparison of performance

across environmental factors.

Table 4.5.4 concerns performance at the different coefficient of variation levels con-

sidered. The value of temporal flexibility strategies Ca and Ea is highest in the presence

of greater variation about mean demand µjt. With a higher coefficient of variation we

expect to experience greater magnitudes of imbalance between supply and demand and

hence more opportunity for corrections via temporal demand flexibility. This observa-

tion does not hold when modelling supply flexibility however, with the higher coefficient

of variation having limited impact on the value of strategy CT. This also holds true at

all cross-correlation levels and so a table for all combinations of variance and correlation

is not reproduced here. This demonstrates that we are limited in the extent to which

we can stabilise imbalances between supply and demand via an effective utilisation of

cross-training. In particular, our utilisation of the workforce is always constrained by
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CV

Strategy (π) vj = 0.1 vj = 0.3

CT 53.2 (0.632) 51.9 (0.164)

Ea 28.1 (0.425) 46.4 (0.272)

CT+Ea 65.5 (0.790) 72.6 (0.187)

Ca 72.6 (1.021) 73.0 (0.121)

Ca+CT 87.2 (1.078) 86.8 (0.133)

Ca+Ea 80.9 (0.987) 83.3 (0.123)

Ca+CT+Ea 90.6 (1.001) 91.3 (0.128)

Table 4.5.4: Mean (standard error) percentage reduction in terminal cumulative demand car-

ryover for strategies π ∈ Π\Ba, relative to strategy Ba, by coefficient of variation

the fixed supply and abilities of the workforce itself. In contrast, the extent to which we

can re-balance with amendments to the timing of demand is less constrained. Assuming

supply matches mean demand, whenever we observe high demand we are likely to have

experienced, in a sufficiently long horizon, an equally large excess of capacity so that

imbalances of conceivably any degree could cancel one-another out.

Table 4.5.5 clearly demonstrates the impact that the correlation between the vari-

ation in demand for each skill has on the value cross-training. The CT -only strategy

sees mean percentage reduction in terminal cumulative carryover varying according to

cross-correlation by almost 30%. We observe the intuitive result that there are more

opportunities to gain from applying secondary and tertiary skills when demand for skills

does not rise and fall in unison, i.e. when they are not strongly positively correlated.

When demand for skills rises and falls in unison (strong positive correlation), we expe-

rience over-supply and under-supply for multiple skills at the same time. Hence, skills

combined in cross-training are unlikely to see the excess capacity available for secondary

and tertiary skills to become valuable. This observation provides explanation for the

weak performance of CT in the case study compared with the problem instances studied
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here. With positive correlation evident between all pairs of skills, demand in the case

study presented few opportunities to capitalise on workers’ alternative skills. A second

point of note regarding Table 4.5.5 is the apparent invariance of the value of temporal

demand flexibility strategies to correlation between skills.

Auto-regression Study

The effect of auto-regressive dependence is considered under the same environmental

conditions covered previously with cross-correlation fixed to 0 for all pairs of skills. A

planning horizon of T = 84 days (12 weeks) is required to reliably simulate mean and

variance properties. The results of this study are summarised in Table 4.5.6. Comparing

the mean performance, Iπ, for strategies involving advancing of demand (Ea) for varying

levels of auto-correlation, it is clear that strong AR(1) dependence limits performance.

This is not surprising as Ea can only be applied when a period of spare capacity is fol-

lowed (within lj days) by a period of excess demand. If demand is highly auto-correlated

we will see a smooth transition between periods of under- and over-supply so that such

opportunities will be rare. The invariance of the value of cross-training strategies to

auto-correlation implies that workers’ secondary and tertiary skills are likely to play a

greater role in series with higher AR(1) coefficients, ϕ1. We see here that cross-trained

Cross-correlation

Strategy (π) ρ = −0.8 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.8 ρ = 0.8,−0.8

CT 67.2 (0.131) 60.4 (0.161) 50.5 (0.159) 43.7 (0.163) 39.4 (0.169) 51.4 (0.157)

Ea 46.7 (0.467) 46.8 (0.468) 46.5 (0.471) 46.6 (0.479) 46.5 (0.476) 46.2 (0.474)

CT+Ea 80.4 (0.211) 76.7 (0.251) 72 (0.305) 69.1 (0.349) 66.5 (0.358) 72.9 (0.313)

Ca 73.3 (0.157) 73.8 (0.202) 73.2 (0.209) 73.1 (0.247) 73.4 (0.247) 73.3 (0.226)

Ca+CT 90.9 (0.14) 88.9 (0.189) 86.8 (0.228) 85.4 (0.263) 84.2 (0.265) 87.3 (0.242)

Ca+Ea 83.9 (0.171) 83.9 (0.199) 83.4 (0.216) 83.1 (0.249) 83.4 (0.244) 83.3 (0.225)

Ca+CT+Ea 94.0 (0.136) 92.3 (0.175) 91.3 (0.224) 90.5 (0.256) 89.7 (0.252) 91.6 (0.228)

Table 4.5.5: Mean (standard error) percentage reduction in terminal cumulative demand car-

ryover for strategies π ∈ Π\Ba, relative to strategy Ba, by cross-correlation
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AR(1) Coefficient

Strategy (π) ϕ1 = 0 ϕ1 = 0.3 ϕ1 = 0.7

CT 51.1 (0.117) 51.3 (0.142) 52.7 (0.244)

Ea 48.0 (0.480) 38.0 (0.485) 22.1 (0.376)

CT+Ea 73.4 (0.277) 68.7 (0.295) 62.7 (0.332)

Ca 80.8 (0.147) 74.0 (0.181) 61.7 (0.312)

Ca+CT 91.1 (0.156) 87.4 (0.211) 82.2 (0.350)

Ca+Ea 88.8 (0.148) 84.0 (0.195) 74.6 (0.323)

Ca+CT+Ea 94.6 (0.148) 92.0 (0.213) 87.8 (0.344)

Table 4.5.6: Mean (standard error) percentage reduction in terminal cumulative demand car-

ryover for strategies π ∈ Π\Ba, relative to strategy Ba, by AR(1) dependence

workforce allocation at the aggregate level, operating independently of the planning

horizon, is a strong strategy. On the other hand, temporal demand flexibility strategies

were shown to perform consistently under a variety of cross-correlation conditions in the

earlier analysis.

Cross-training Structure

Looking first to the modified chain, we assess the performance impact of the depth

(worker ability) and breadth of cross-training. With little to distinguish between the

values in the first two columns of Table 4.5.7, the addition of tertiary skills appears to

be of no extra value here. This suggests that tertiary skills are rarely, if ever exploited

in allocation for the modified chain applied to problem instances in this study. This

is in part induced by the already highly flexible nature of the modified chain training

structure with training breadth of 2. Higher worker ability does however afford a pre-

dictably greater coverage of demand when secondary and tertiary skills are used, though

the impact is small.

All previous analyses represent the best case of flexibility from training configurations
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Breadth of Training Worker Ability

Strategy (π) 2 3 {1, 0.8, 0.6} {1, 0.9, 0.8}

CT 52.1 (0.163) 52.1 (0.164) 50.4 (0.156) 53.8 (0.167)

CT+Ea 73.0 (0.186) 72.9 (0.187) 71.4 (0.188) 74.4 (0.183)

CT+Ca 87.3 (0.134) 87.2 (0.134) 86.6 (0.134) 87.9 (0.133)

CT+Ea+Ca 91.6 (0.127) 91.6 (0.126) 91.1 (0.128) 92.0 (0.125)

Table 4.5.7: Mean (standard error) percentage reduction in terminal cumulative demand car-

ryover for CT -type strategies, relative to strategy Ba, by breadth and depth of training

Block Chain Mod. Chain

Strategy Worst Best Worst Best

CT 19.9 (0.340) 46.9 (0.454) 54.4 (0.476) 57.2 (0.507) 63.0 (0.549)

CT+Ea 41.5 (0.458) 59.6 (0.477) 59.9 (0.545) 63.0 (0.564) 70.1 (0.588)

Ca+CT 76.8 (0.801) 83.5 (0.633) 84.6 (0.664) 85.5 (0.673) 87.8 (0.691)

Ca+CT+Ea 83.8 (0.830) 88.2 (0.644) 88.6 (0.698) 89.4 (0.689) 90.6 (0.692)

Table 4.5.8: Mean (standard error) percentage reduction in terminal cumulative demand car-

ryover for CT -type strategies, relative to strategy Ba, by training structure and configuration

in Table 4.5.2 via the modified chain. Here we additionally compare the performance

of the chain and block structures identified in Table 4.5.2 over a 42-day horizon. The

breadth of cross-training is fixed to 2 and efficiency to the {1.0, 0.8} level. Further,

to ease comparison across training structures, we focus on the problem instance with

negative correlation (ϕ1,2 = ϕ3,4 = −0.8) and a high coefficient of variation (cv = 0.3).

Solving for all 30 configurations of 5 skills in a block structure, and 24 configurations of

the chain structure, we report on the best and worst configurations for each, based on

performance averaged over 100 demand simulations. These results are reported along

side those for the modified chain in Table 4.5.8.

The block and chain structures are less flexible than the modified chain, reflecting

a lesser benefit from cross-training as a planning strategy. However, much of the cross-
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training performance of the modified chain is obtained with the best case configuration

of the block or chain structure. The number of distinct worker classes required of a

block or chain structure, |J |, is less than the modified chain which requires |J |(|J |−1)

worker classes. The simpler combinatorial optimisation problem which results from

fewer worker classes, combined with the high value of a well-configured chain or block

may make these structures more desirable than the extensive modified chain to some

organisations.

The impact of the order of skills on the performance of cross-training is most evident

in the block structure which sees the mean percentage reduction in terminal cumulative

carryover (relative to strategy Ba) vary by 27% between the best and worst skill con-

figuration. The performance of the chain cross-training structure is less dependent on

the ordering of skills, with all skills being connected to one-another via its closed loop

structure. The separable nature of skills in a block-trained workforce makes it suscepti-

ble to poor performance given an inappropriate configuration. For example, combining

positively correlated skills in a block will lead to few opportunities to utilise their cross-

training, based on similar logic to that discussed in Section 4.5.2. These observations

highlight the importance of carefully choosing a training structure appropriate for the

environmental characteristics of the planning problem at hand.

4.5.3 The Cost of Completing Work Early

We conclude the study with a discussion on the impact that the early completion cost

aj has on the quantity of work recommended for early completion; and hence on the

performance of the Ea strategy. Table 4.5.9 demonstrates the leverage that aj has on

the performance of this strategy alone, with aj = 0.1 leading to an additional 35.7%

reduction in terminal cumulative carryover relative to the aj = 0.9 case. The more

limited impact of aj on models incorporating carryover mirrors the trade-off recognised
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between carryover and early completion of demand in the discussion around Table 4.5.3

and Figure 4.5.1. The presence of carryover reduces the spare capacity opportunities

that the Ea strategy is able to capitalise on when used in isolation. It is clear from

these studies that so long as the timely spare capacity exists, early completion of work

will be exploited to positive effect. This is true, whether carryover is modelled or not,

when aj < cj.

Early Completion Cost

Strategy (π) aj = 0.1 aj = 0.9

Ea 64.4 (0.110) 28.7 (0.066)

CT+Ea 81.5 (0.139) 64.3 (0.140)

Ca+Ea 85.0 (0.128) 82.0 (0.121)

Ca+CT+Ea 92.3 (0.128) 90.9 (0.123)

Table 4.5.9: Mean (standard error) percentage reduction in terminal cumulative demand car-

ryover for Ea-type strategies, relative to strategy Ba, by early completion cost

This condition is not required for the utilisation of the Ea strategy however. Recall

from Section 4.3.2 that the definition for the quantity of incomplete work, δj,t,t+1, differs

for models which include or exclude carryover. This means that the cost trade-off

between using spare capacity to resolve late running work versus completing work early

differs for π ∈ ΠCa and π ∈ Π\ΠCa.

Consider a quantity of incomplete work, gj, for skill j in period t and suppose there

exists sufficient spare capacity in period t−1 to complete all of this work early. In models

that do not capture carryover, constraints (4.3.9) define δj,t,t+1 such that incomplete

work incurs a one-off cost before being removed from the system. We will therefore

take up the opportunity to complete this work early when the one-off cost of moving

it to the previous period is less than the cost of letting it run on as incomplete work,

i.e. if ajδj,t,t−1 ≤ cjδj,t,t−1. Since we assume we have enough capacity in period t − 1

to accommodate gj we would therefore take the opportunity to move it all so that this
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inequality becomes ajgj ≤ cjgj. The exploitation of early completion as a strategy then

reduces to the one-to-one comparison of costs aj ≤ cj so that non-carryover strategies

would be costed out if aj > cj.

Consider now the same situation in a strategy that does incorporate carryover. Con-

straints (4.3.3) define δj,t,t+1 such that incomplete work continues to incur a cost for

every subsequent period that experiences demand which outstrips supply. That is, until

we reach a future period of spare capacity which we can use to resolve late running

work, we continue to incur the cost cjgj. Suppose that there is no spare capacity for

skill j work in the p periods that follow t, i.e. until period t + (p + 1). We will utilise

early completion of demand if ajgj ≤ (p+ 1)cjgj, i.e. if aj ≤ (p+ 1)cj. This means that

the active range for aj is greater for strategies which model carryover.

This property is illustrated in Figure 4.5.2 for a fixed problem instance. For a single

demand simulation the proportion of total demand identified for early completion is

defined by

∑|T |
t=1

∑t−1
τ=(t−lj)+ δjtτ∑|T |
t=1 djt

.

For a range of early-completion costs, aj, we average this value over 100 simulations to

give plots of the mean percentage of demand completed early. When carryover is not

modelled, we see the quantity of demand moved to an earlier period falls to 0 when

aj > cj. When carryover is captured in allocation, a non-zero quantity of demand is

completed early even when aj > cj. Note that the inclusion of carryover reduces the

volume of demand completed early.

The value of p, the number of successive under-supplied days which follow a given

period, clearly differs for each skill and at each period in the planning horizon. It is a

quantity hidden within the optimisation process. This strong relationship between the

number of periods for which an hour of carryover continues to incur a cost and the cost
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Figure 4.5.2: Mean percentage of demand completed early by early completion cost
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of moving work to an earlier period can be utilised in practice. When the cost aj is

not directly measurable it can be used as a lever within the optimisation model. For

example, we might choose aj to reflect the number of days, q, we can conceivably allow

work to run late without violating service level agreements. This would simply involve

setting aj ≤ (q + 1)cj.

All studies presented in this chapter have featured aj ≤ cj, reflecting a belief that we

would always rather look to move work to an earlier period than let it run even q+1 = 1

day late. Note that model 4.3.2 is not restricted to this case however.

4.6 Conclusions and Future Work

In this chapter we have used a multi-period cross-trained workforce planning model to

explore the benefits of accounting for demand carryover and early completion of work in

an Aggregate Planning domain. It was found that opening up the window of workforce

planning from a day-to-day view to a horizon of at least one week provides valuable

opportunities to link spare capacity up with excess demand in neighbouring periods. In

particular, capturing the presence of late running work over a 3-week planning horizon

(without using cross-training) provided the opportunity to reduce total incomplete work

by up to 60% in a service industry case study. Modelling the option to advance some

work by up to 3 days could similarly reduce incomplete work by around 20% over

planning windows of just 7-days.

The quality of output available from a model at this Aggregate Planning stage com-

prises a view of the evolution of excess work across the planning horizon; recommended

timings for the early completion of work; and a recommended utilisation of the work-

force’s skills. This provides a rich basis upon which to make finer level decisions in

the subsequent Operational Planning stage. The aggregate solutions require careful

dis-aggregation when included in scheduling considerations. However, Aggregate Plan-
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ning contributes to the smooth transition between planning stages and enables planning

of large cross-trained workforces which is computationally intensive at the level of the

individual.

A key observation made possible using the model is the importance of recognising the

presence of carryover and early completion of work when establishing the value of cross-

training as a supply strategy. Cross-training is of greatest additional value, reducing

incomplete work by around 50% (averaged across a range of demand scenarios), when

demand must be addressed on the day it is initially assigned. When carryover is a

common feature of the planning environment, or when there remains some flexibility to

complete work early, the value of cross-training is less (between 10 and 20%) as there is

more opportunity to utilise primary skills which will take precedence for their greater

return on completed work.

Experiments across a wide variety of environmental conditions highlighted auto-

regressive dependence as a key factor influencing the value of allowing the early comple-

tion of work. Cross-training presents itself as a powerful strategy in the face of highly

auto-correlated demand, its focus on making best use of supply to meet demand on

the day making this strategy relatively invariant to auto-correlation. The early comple-

tion of work, invariant to cross-correlation between variability in demand, is a valuable

strategy when there is strong positive correlation between skills, i.e. the case when

cross-training is of limited value.

Exploring the value of cross-training across different configurations of the same train-

ing structure, the manner in which skills are combined in training was shown to have

strong impact on the extent to which cross-training could be used. For example, in-

complete work resulting from allocating a block cross-trained workforce was found to

vary by 27% depending on the ordering of skills in the block. With the performance

of different configurations highly dependent on demand characteristics, a valuable area
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for future research would be the exploration of a wider range of pre-defined training

structures and identification of strongly performing configurations within these.

With any model designed for a particular stage in the planning hierarchy, solutions

are only as good as the dis-aggregation process translating them to the later, more

detailed stages of planning. A further interesting extension to this work would model

the merging of these aggregate allocations of supply in man-hours with the interests

of the individual, namely, their preference for different types of work and their need to

work on skills frequently enough to retain them. In a similar vein, when we acknowledge

the need for some work to run late, at some stage individual tasks must be recognised

by a prioritisation system based upon the number of days they are running late.

The model and experiments presented in this chapter provide a first step towards

exploring the impact of modelling the inevitable carryover of incomplete work in service

industry based planning. Much more can be done to integrate this Aggregate Planning

concept into the wide array of planning methods which already exist at other levels of

the workforce planning hierarchy.



Chapter 5

Cross-training Policies & Stochastic

Demand

5.1 Introduction

For service industries demand is often uncertain at the time that the key resource - a

human workforce - is planned. Planning a workforce involves decisions with important

implications on cost and productivity - over-supply leads to unnecessary human resource

expense while service level agreements can be breached with under-supply. Further, with

no ability to inventory human resources, delivery of supply must be timely with demand.

Increasingly competitive markets have elevated the need for efficient resource plan-

ning (Pokutta and Stauffer, 2009). Out of a surge of research into improving prac-

tices, cross-training has emerged as an effective method for increasing workforce flexibil-

ity, benefiting workforce output and productivity (J.C.McCune, 1994; Bergman, 1994).

Cross-training the workforce so that some proportion of workers are able to work on two

or more task types allows the dynamic shifting of supply to where and when it is needed

most. This brings with it added planning challenges however. Choosing a training

configuration relevant to the uncertainties of demand and ensuring its benefits are fully

120



CHAPTER 5. CROSS-TRAINING POLICIES & STOCHASTIC DEMAND 121

Strategic
Planning

Tactical
Planning

Aggregate
Planning

Operational
Planning

What: Location and number of service cen-
tres; staff ratios
When: 1-2 years in advance

What: Hiring; training; volume of demand to
be met
When: 12-18 months in advance

What: Aggregate allocation of workers’ skills
to demand for those skills
When: 1 to 90 days in advance

What: Scheduling and assignment of individ-
ual workers to tasks
When: Beginning of week or shift

Figure 5.1.1: Four-stage workforce planning hierarchy for large scale service industries

exploited by effectively allocating that workforce to its skills are not trivial problems.

The model presented in this chapter contributes to solving both of these problems.

A substantial effort has been made to improve understanding of the benefits of cross-

training for both manufacturing systems (Hopp et al., 2004; Hopp and Van Oyen, 2004;

Inman et al., 2004; Iravani et al., 2005) and service environments (Brusco and Johns,

1998; Campbell, 1999; Inman et al., 2005; Iravani et al., 2007). Contributing to the

complexity of this task is the set of interrelated stages of decision making required to

reap the benefits of cross-training. Abernathy et al. (1973) provide a summary of the

planning hierarchy which has proved a popular basis for framing existing work in this

area. An extended version of their hierarchy is illustrated in Figure 5.1.1.

Abernathy et al. refer to three levels of planning embedded within the Tactical

and Operational Planning levels outlined above: staffing and training on an annual or

semi-annual basis; the scheduling of employees’ days-off and daily shift patterns weeks

or months in advance; and the day-to-day allocation of individuals to tasks. Note that

we have combined their latter two planning levels into one Operational Planning stage

as they both pertain to the planning of individuals. Like Abernathy et al., our interests
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do not span to the infrequent Strategic Planning decisions relating to overall company

strategy but we include this stage in our diagram for completeness.

These levels are typically treated separately, with the scheduling and allocation of

individuals (Operational Planning) traditionally having received the greatest research

interest. Taking staffing and training as exogenous parameters, Inman et al. (2005)

use simulations to model the assignment of individuals to tasks to compare the bene-

fits of different cross-training strategies. Warner and Prawda (1972) and Warner (1976)

study joint scheduling and allocation of individuals to tasks. Trivedi and Warner (1976),

Campbell (1999), Campbell and Diaby (2002) and Brusco (2008) develop heuristics for

the temporal allocation of cross-trained workers to departments in a way which max-

imises demand coverage. The model formulation featured in these papers is a variant of

the generalised assignment problem which is known to be difficult to solve to optimality

(Cattrysse and Wassenhove, 1992). This highlights a typical limitation of scheduling

and allocation research: a lack of scalability to industry sized workforces due to the

high-dimensional combinatorial nature of planning for individuals.

With this in mind, Henderson et al. (1982) claim there is an absence of aggregate

planning as a contributor to managing large-scale planning problems. The inclusion of

the intermediary Aggregate Planning stage in Figure 5.1.1 is based on the arguments

made in Chapter 4 which culminate in proposing a cross-trained workforce planning

model using aggregate measures. The proposed model is able to measure the benefits of

cross-training for industry-scale problems when incomplete work and the opportunity

to advance work into quieter periods is incorporated. This chapter extends the work of

Chapter 4 into the Tactical Planning level of the hierarchy.

Within the Tactical Planning stage, Iravani et al. (2007) evaluates cross-training

structures for call centres using the average path-lengths of their network formulations.

Kao and Tung (1981) and Li and King (1999) both attempt to find minimum staffing
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levels for various classes of dedicated and multi-skilled workers. Their decisions are based

on ensuring that average demand is met along with other targets such a minimising new

hires and task substitutions. To enable their valuation of different staffing level decisions,

candidate solutions are carried through to an aggregate allocation stage.

Acknowledging the need for these interrelated levels to be considered together as

much as possible, some authors have modelled decisions which span multiple stages of

decision making. Brusco and Johns (1998) simultaneously consider staffing and cross-

training (Tactical Planning) and allocation of individuals (Operational Planning). A

staffing and allocation model incorporating meal break times for a set of eight different

predetermined cross-training structures is proposed. The resulting optimal staffing levels

are compared across the different training configurations to come to recommendations

for the optimal breadth and productivity for a cross-trained workforce. Billionnet (1999)

and Bard (2004) also integrate staffing and scheduling decisions but pick up on details

of scheduling which were left out by Brusco and Johns (1998): days-off scheduling and

daily work schedules for one week respectively. Easton (2011) takes decision integration

one step further by modelling the full set of decisions present in both the Tactical and

Operational Planning stages: staffing, cross-training, scheduling and task assignment.

The above-mentioned authors explore the effect of uncertain demand via factorial

experimentation or simulation. Gnalet and Gilland (2014) and Paul and MacDonald

(2014) on the other hand, directly incorporate demand uncertainty in the decision mak-

ing process by modelling their problems as two-stage stochastic programs. Hospital

nurse staffing decisions are made in the first stage and allocation decisions in the sec-

ond. Their modelling efforts lead to conclusions about the gains of chained cross-training

structures and the impact of productivity levels on optimal staffing levels respectively.

By accounting for demand variability in their models they come to robust staffing de-

cisions over a predetermined training structure. In doing so, they contribute to the
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understanding of how staffing levels should vary with various demand and training pol-

icy characteristics. Much like the purely Operational Planning models discussed above,

by attempting allocation of individuals in the second stage, these models are very lim-

ited in the size of problem which can be solved. The work of Netessine et al. (2002), in

seeking closed-form, tractable results, is further limited to normally distributed demand

with small variance.

The above papers also demonstrate a typical approach to understanding how the

configuration of a cross-trained workforce interacts with the characteristics of uncertain

demand. They introduce some fixed set of cross-training patterns and study their rela-

tive effectiveness by varying conditions. This process has yielded useful insights into, for

example, the optimal breadth of training and required workforce sizes. These insights

are however limited to the set of predefined training configurations represented in their

experiments.

Further, it can be argued that a more relevant research question is the more fre-

quently encountered ‘how should we train our existing workforce to improve demand

coverage?’. This is in contrast to ‘how should we staff a starting workforce according to

a fixed training structure?’, the question routinely considered in existing literature. This

argument forms the basis of this chapter which extends existing research by allowing the

structure of cross-training to vary freely in response to the characteristics of uncertain

demand.

In the following Section 5.2, we present a two-stage stochastic programming model

which recommends training actions in the first stage based on aggregate allocations

of supply to demand in the second stage. This model will allow us to reach training

structures targeted to be robust to the specific characteristics of uncertain demand such

as variance and cross-correlation.

In Section 5.3 the model is applied to a case study provided by telecommunications
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services company BT. Results from a wider range of numerical experiments are presented

in Section 5.4, leading to a summary of the managerial implications of the model. Section

5.5 concludes the chapter and discusses possible extensions to this work.

5.2 Modelling

The goal of the model proposed in this section is to recommend cross-training actions for

an existing workforce which maximise the ability of the workforce to deal with uncertain

demand. The resulting output is intended to contribute to overall understanding of how

the characteristics of stochastic demand influence the structure of an effective cross-

trained workforce.

To compare training decisions at the tactical level of planning, solutions must be

carried through to Aggregate Planning where their ability to cover demand can be

measured. In doing so, decisions are made across two different time frames: annual or

bi-annual training decisions which take time to implement and cannot be easily reversed;

and the easily altered aggregate allocations which are made weeks or a few months in

advance. Training is a ‘here-and-now’ decision. It must be made at a time when full

knowledge of demand is not available and will play out regardless how demand is realised.

We therefore seek training decisions which are robust to uncertainties in demand, i.e.,

which set us up to perform well under a wide variety of possible future realisations.

Some time after the training decision is made, demand is realised and we are able to

exploit the workforce flexibility resulting from the earlier training decision by allocating

aggregate quantities of supply to maximise demand coverage. It should be noted that

this ‘realisation’ of demand weeks in advance will still have uncertainties associated

with it. True realised demand is observable only at the period of implementation and

may continue to update until this time. Shorter term adjustments, such as the use

of overtime and outsourcing, may be considered in the subsequent scheduling stage
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and beyond but are not treated here. This structure of decision making and arrival of

information is that of an inherently two-stage stochastic program (King and Wallace,

2012). The corresponding model is presented at the end of this section after the key

challenges to its definition are considered in the following subsections.

5.2.1 Allocation and the Carryover of Incomplete Work

It is clear that effective training and allocation solutions are inherently linked. To justify

training solutions we must already have an allocation approach which we know to be

effective. The benefits of that training solution are then only reaped if we deploy the

resulting workforce via a sensible approach. The allocations informing and following

training solutions then must naturally be born from a common mechanism.

The aggregate allocation model of Chapter 4 provides a flexible framework with

which to evaluate training solutions for large scale work forces over lengthy horizons.

The model was used to highlight a key contributor to the complexity of multi-period

workforce allocation problems: the flow of incomplete work through time. That is, when

supply is insufficient to meet demand today, the work left incomplete will then add to

the work which should be completed tomorrow. In the service industry applications we

are motivated by, demand only leaves the system when it is addressed by an available

worker. In other words, abandonment does not occur and the work carries over until

the capacity is found to complete it.

This carryover phenomenon is most commonly avoided in existing literature in favour

of modelling infinite resources of outsourced supply, used to meet all demand in all peri-

ods. For BT and many other organisations, such an approach is infeasible. Controlling

carryover is therefore an important issue, particularly in a stochastic demand setting in

which it is not reasonable to assume we can always match supply exactly to demand.

This property poses a challenge to the modelling of training as a stochastic program
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however, as it renders the second-stage allocation problem to be one of infinite horizon.

To proceed in defining a tractable (finite horizon) decision model, we must restrict

the duration of the aggregate allocation sub-problem to |T |<∞ periods. In the interests

of reducing computation time by defining a model over |T |� ∞ periods, we consider

a simplification of reality in which incomplete work does not add to demand in the

following period. We rationalise that the nature of training decisions resulting from the

model may not be significantly affected by the inclusion or otherwise of compounding

incomplete work. Based on the results of Chapter 4, we anticipate this model abstraction

to affect (if anything) the quantity trained. In particular, the rank of different training

structures by their relative value in reducing incomplete work was found to be consistent

across carryover exclusive and inclusive allocation models. The inclusion of carryover

appeared only to affect the overall opportunity to gain from any form of cross-training.

Clearly this modelling approach has the potential to negatively impact the value of

training solutions. The results of Sections 5.3 and 5.4, however, demonstrate that it

results in valuable solutions regardless. In particular, the performance of the training

solutions are tested under a carryover-inclusive simulation of the aggregate allocation

step.

In the following subsection, we see the affect that this modelling decision has on the

stochastics of our model.

5.2.2 Model Stochastics

This subsection discusses the stochastics of demand which contribute to the construction

of our two-stage model.

Before we discuss stochastic demand, we note that uncertainty surrounding supply

remains at the tactical and aggregate allocation planning stages (due to absenteeism,

holidays and variable efficiency levels affecting completion times). We omit any stochas-
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tic modelling of supply in this work however, based on three grounds:

1. We view demand uncertainty as the main contributor to the uncertainties which

make Tactical and Operational Planning challenging;

2. Our interests lie in how cross-training, a property of supply, is influenced by un-

certainties in demand. This renders demand as our primary input and supply as

our primary output;

3. Existing papers have found cross-training alleviates the need to model anticipation

of worker absence (Easton, 2011).

Our goal is to find a training solution which provides a workforce well placed to

cope with a range of demand outcomes. Here we consider the form that these demand

outcomes should take. Training decisions influence our flexibility in meeting demand in

every period of the planning horizon after the training action is taken. The performance

of the resulting updated workforce should therefore be evaluated on an aggregate alloca-

tion over time series realisations of demand, say of length |T |. To aid further discussion,

we provide a brief aside on time series modelling.

Time Series Modelling

A traditional approach to time series modelling involves decomposing demand for skill

j ∈ J at time t ∈ T into a cyclical contribution Cjt, seasonal contribution Sjt, trend

component Tjt, and a random ‘noise’ component εjt (Shumway and Stoffer, 2006). For

example, demand might be summarised by the following additive model

djt = Cjt + Sjt + Tjt + εjt. (5.2.1)

Note that demand measures djt may be based on historical data, some forecast based

on sales information, or some combination of the two.
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The deterministic cyclical, seasonal and trend components can be estimated by using

filters or parametric regression models. Assuming these components capture all of the

serial dependence in the data, the remaining set {εjt}t∈T will have the properties of

white independent noise: with zero mean and, critically, independent and identically

distributed (i.i.d). Let Fj(·) denote the cumulative distribution function fitted to data

set {εjt}t∈T .

To construct a univariate time series realisation d
′

j = (d
′
j1, . . . , d

′

j|T |) for skill j, we

sample ε
′
jt from the univariate distribution fitted to {εjt}t∈T and combine with deter-

ministic components Cjt, Sjt and Tjt. As the utilisation of a cross-trained workforce is

affected by the cross-correlation between demand for different skills, we construct multi-

variate time series realisations (for all skills in J) by instead sampling ε
′
t = (ε

′
1t, . . . , ε

′

|J |t)

from the joint distribution of {(ε1t, . . . , ε|J |t)}t∈T .

Serial Dependence

Suppose that demand features no systematic source of serial dependence, so that Cjt,

Sjt and Tjt do not feature in time series model (5.2.1). In this case, demand on one day

is independent from demand on another day and assessing the value of a cross-training

policy over a time series representing the planning horizon reduces to measuring demand

coverage for all possible daily demand realisations in isolation. That is, in the case of

no serial dependence in demand, it is enough to solve multiple single-period aggregate

allocation problems to measure the performance of a training solution.

A more likely case is that daily demand observations do have some underlying serial

dependence. In this circumstance, this demand characteristic will be lost by considering

daily demands in isolation. This could result in our training model underestimating

the presence of cross-correlation between the skills (if demand streams contain similar

patterns over time then their cross-correlation will inevitably be higher) which could

result in an undervaluation of the benefits of cross-training. To capture such serial
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dependence we need to perform aggregate allocations over time series realisations of

demand which last the duration of the serial dependence. The performance of the

training configuration will therefore be measured over multiple days at once via a multi-

period aggregate allocation.

To provide an example, suppose that demand for a skill j has some weekly cyclic

pattern but is otherwise stationary across the year so that the following model is repre-

sentative of its time series:

djt = Cjt7 + εjt

where

Cjt7 =

∑b |T |
7
c

u=1 dj,7(u−1)+t7

b |T |
7
c

,

and weekly cyclic variation Cjt7 measured by taking day of the week averages over all

full weeks in the planning horizon T . That is,

Cjt7 :=

∑b |T |
7
c

u=1 dj,7(u−1)+t7

b |T |
7
c

,

where u is a week number index and t7 = t − 7(u − 1) is an index on the day of the

week.

This model says there is no relationship between the demand level from one week to

the next, meaning we can capture the randomness of demand over a whole year with a

collection of week-long scenarios. Assessing the performance of a training scheme over

the whole year then simply requires aggregate allocation to week-long time series scenar-

ios. This comes as a consequence of our modelling assumption that carryover need not

be accounted for in this particular model. For brevity of argument and relevance to our

case study application, we continue with this weekday variation case. Note that further

discussion and, ultimately, the stochastic model are not limited to this case however.

For example, dependence between demand at the weekly level but independence at the
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monthly level would require |T |= 28-day scenarios to capture variation over the year.

In general, we note that time series scenarios for demand do not need to run the full

length of planning horizon. If we observe independence in the variation around neigh-

bouring cyclical subsets of the planning horizon, we can assess performance over such

subsets independently. Were the carryover of incomplete work through time included

in our demand count djt in period t, there would clearly be autocorrelation in demand

lasting the full length of the planning horizon. Without this non-carryover assumption,

we would therefore need to test training solutions against aggregate allocations over

time series lasting the full duration of the planning horizon. It is in our interests to

limit the length of the time series making up the demand scenarios so that the scale of

the resulting stochastic program is manageable.

The non-carryover assumption is of further value when searching for solutions to

the resulting stochastic program. In rendering the second-stage sub-problem separable

by period and scenario, this assumption provides further opportunities for computation

time improvement via parallelisation.

Having established the nature of the stochastics underlying the training problem, we

now provide a method for generating the time series scenarios required.

Scenario Generation Process

Let us assume that we have a continuous |J |-dimensional multivariate distribution F (·)

capturing joint residual variation (ε1, . . . , ε|J |) in demand for skills j ∈ J . Ideally,

we base training decisions on an expectation (of performance in aggregate allocation)

taken over this continuous distribution. In reality, calculating an expectation over a

continuous distribution of uncertain parameters - forming the second stage sub-problem

of a stochastic program (King and Wallace, 2012) - renders the majority of stochastic

programs unsolvable. To find a solution to such a model we must find a discrete version

of this probability distribution, that is, we must approximate the distribution with a
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finite set of scenarios.

The discretisation process is not trivial, indeed it merits its own body of research

under the term scenario generation. The procedure we use from this literature draws on

the theory of copulas. Note that, by Sklar’s theorem (Sklar, 1996), joint distribution F (·)

can be fully specified using a copula dependence function C and marginal distribution

functions Fj as follows:

F (x1, . . . , x|J |) =C{F1(x1), . . . , F|J |(x|J |)}. (5.2.2)

Generating time series scenarios for multivariate demand can then be broken down

into the following process. For each period t ∈ T :

1. Sample (u1, . . . , u|J |) from copula C (on uniform margins) using the copula-based

scenario generation method of Kaut (2011);

2. Transform the resulting samples to the correct scale:

εsjt = F−1(uj)

where recall, Fj(·) is the inverse marginal cumulative distribution function fitted

to {εjt}t∈T . This gives a multivariate scenario (εs1t, . . . , ε
s
|J |t) for random variation

in period t;

3. Add the resulting scenario εsjt onto the cyclic component Cjt7 (and seasonal and

trend components if they exist) to obtain multivariate demand sample dst =

(ds1t, . . . , d
s
|J |t) for period t.

Concatenating the values dst by time index t, we reach a multivariate time series scenario

with desired variance, cyclic serial dependence and cross-correlation properties. For an

introduction to multivariate dependence sampling using copulas, see Nelsen (2007).
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Note that the copula based scenario generation method of Kaut (2011) is favoured

for its flexibility to capture non-elliptic distributions. There may exist more efficient

or otherwise more suitable scenario generation methods for this model but, given the

primary focus of this work lies in the modelling process and not the field of scenario

generation, we proceed with these methods on the basis that they fulfil the requirements

of an effective scenario generation technique. Those requirements, as discussed by King

and Wallace (2012), are

• In-sample stability : a test for the robustness of the discretisation procedure, it

ensures that the optimal objective function value is roughly the same for any

scenario set generated by the (random) scenario generation procedure; and

• Out-of-Sample Stability : ensures that the true objective function value correspond-

ing to solutions resulting from different scenario sets are roughly equal.

Let Sp and Sq represent two scenario sets resulting from two different runs of a scenario

generation procedure. Then let f(x;Sp) denote the objective function (in terms of

decision variable x) associated with scenario set Sp, and x̂p denote the optimal solution

of the corresponding minimisation problem: minx f(x;Sp). With x̂q similarly defined, if

the optimal objective function values are (approximately) the same in all cases, i.e.

f(x̂p;Sp) ≈ f(x̂q;Sq),

then we have in-sample stability.

To test out-of-sample stability, ideally we would verify that

f(x̂p; ξ) ≈ f(x̂q; ξ).

Evaluating f(x̂p; ξ) equates to fixing the first stage solution and solving a large number

of second-stage sub-problems. As ξ is not discrete, f(x̂p; ξ) is very difficult to obtain.
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We will therefore perform a weaker out-of-sample stability test here:

f(x̂p;Sq) ≈ f(x̂q;Sp).

5.2.3 Two-stage Training Model

Recall, our model aim is to establish the best policy of cross-training applied to an

existing workforce given uncertain demand for skills. In the numerical studies which

follow this section, we will refer to training policies resulting from the model as Targeted

Training. The model notation is presented in Table 5.2.1.

In defining the model, we limit the breadth of training of worker classes to 3 skills.

We can therefore define a worker’s skills using a skill vector “j, k, l” where j denotes their

primary skill, k their secondary skill and l their tertiary skill. Though the model can

easily be generalised to cope with a higher breadth of training (number of possible skills

per worker), there are technical grounds for limiting our consideration to three skills.

Brusco and Johns (1998) and Gomar et al. (2002) conclude that much of the benefit of

a fully cross-trained workforce is achieved with a chained cross-training structure with

depth of just three skills, showing the benefit an additional skill was marginal.

Each worker is assumed to have a primary skill in which they are most experienced

and this skill makes up the first element of any skill vector. Any additional skills come

after this in descending order of experience. In this chapter we define experience to be

the efficiency of a worker in completing a skill relative to a worker who has it as their

primary skill. We capture these varying efficiency levels with weights wij ∈ [0, 1] (where

0 implies worker class i cannot work on skill j and 1 implies full, primary skill efficiency

in skill j) in alignment with the approach of Campbell and Diaby (2002) and Chapter

4. Workers with identical skill vectors are assumed to be homogeneous and are grouped

into the same worker class.
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Indices

i Worker class

j Demand class (skill)

t Planning period (day)

s Scenario for an uncertain input parameter

Domains

I The set of all worker classes

J The set of all demand classes/skills

T The set of all periods in the aggregate allocation sub-problem

S The set of all scenarios

Nj = {i ∈ {1, . . . , |I|} | wij 6= 0} set of worker classes i ∈ I which are trained in skill j ∈ J
R1 = {i = (k, l,m) | k 6= 0, l = m = 0} the set of all single-skill worker classes

R2 = {i = (k, l,m) | k 6= 0, l 6= 0,m = 0} the set of all double-skill worker classes

R3 = {i = (k, l,m) | k 6= 0, l 6= 0,m 6= 0} the set of all triple-skill worker classes

Li = {i′ = (k
′
, l
′
,m

′
) | k′ = k, l

′ 6= 0,m
′
= 0, where i = (k, l,m)} the set of double-skill worker

classes i
′ 6= i ∈ I which share a common primary skill with class i ∈ I

Mi = {i′ = (k
′
, l
′
,m

′
) | k′ = k, l

′
= l,m

′ 6= 0, where i = (k, l,m)} the set of all triple-skill worker

classes i‘ ∈ I which share primary and secondary skills of class i ∈ I
Dn Set of n-skill worker classes, i.e. worker classes trained in n skills (for n = 1, 2 or 3)

Decision Variables

xi Number of full-time workers to be trained into worker class i ∈ I
ysijt The hours worker class i ∈ I should spend working on skill j ∈ J in demand scenario s ∈ S

Parameters

dsjt Demand for skill j ∈ J in period t ∈ T under scenario s ∈ S
ps Probability of demand scenario s ∈ S
Nit Supply of worker class i ∈ I in period t ∈ T (in man-hours)

wij Efficiency weight of worker class i ∈ I working on skill j ∈ J
cj Cost (per period) of having an hour of incomplete work in skill j ∈ J
ki Cost (per period) of training one full time equivalent worker into class i ∈ I
F Number of working hours in a day equating to full time equivalence

αi Average proportion of the week a full time worker of class i ∈ I is on shift

αi,t7 Scaling of αi to account for differing supply level on each day of the week t7 (see

discussion around Equation (5.2.13) for details)

Table 5.2.1: Model notation

We consider training of full time equivalent (FTE) quantities of supply only, since

training single hours of a worker in a new skill does not make practical sense. When

an FTE worker is trained in a new skill, that skill is added on to the end of their
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existing skill vector. This means workers cannot be trained to tertiary ability unless,

for example, they already have a secondary skill.

The model presented in this chapter is intended to help recommend training actions

to an existing workforce in the Tactical Planning stage only. We do not consider the

hiring of additional staff in this model, rather we attempt to maximise the output of

an existing workforce through training. This distinguishes our model from the staffing-

scheduling models of Brusco and Johns (1998), Billionnet (1999) and Bard (2004) which

address the less frequently faced problem of finding the optimal staffing for a newly

formed workforce given some pre-fixed training structure.

We assume that total supply of these worker classes over the planning period T =

{1, . . . , |T |} is known in advance and that further, it has been spread out across periods

t ∈ T in a way which mirrors cyclic (plus, if present, seasonal and trend) variation

in demand. We therefore assume that the workforce we start with is not completely

arbitrary, rather it has been coordinated to match mean demand. This input condition

is of both modelling and practical importance. Without it, training solutions resulting

from the model will be dominated by resolving chronic imbalances resulting from supply

unfit for demand. We argue that in such conditions, planners’ first concern should be

to adjust staffing to reach an effective working supply. Ideally, cross-training is applied

to an already functioning single-skilled workforce. Training solutions are then directly

driven by the nuances of stochastic demand, adding flexibility where it is required. This

condition does not render the training model unfit for cases of poorly balanced supply,

rather it serves as a note of caution on the cause of training solutions which result.

The two-stage stochastic program for training and aggregate allocation over multiple

periods is then as follows:
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minimize

|I|∑
i=1

kixi+

|S|∑
s=1

ps


|T |∑
t=1

|J |∑
j=1

cj

dsjt − |I|∑
i=1

wijy
s
ijt

+
subject to

∑
i∈Li

xi ≤ Nit/F for i ∈ R1, t ∈ T

(5.2.3)∑
i∈Mi

xi ≤ Nit/F for i ∈ R2, t ∈ T

(5.2.4)

|J |∑
j=1

ysijt ≤ Nit − αit7F
∑
i′∈Li

ti′ for i ∈ R1, t ∈ T, s ∈ S

(5.2.5)

|J |∑
j=1

ysijt ≤ Nit + αit7F

xi − ∑
i′∈Mi

ti′

 for i ∈ R2, t ∈ T, s ∈ S

(5.2.6)

|J |∑
j=1

ysijt ≤ Nit + αit7Fxi for i ∈ R3, t ∈ T, s ∈ S

(5.2.7)

xi = 0 for i ∈ R1 (5.2.8)

xi ∈ R+ for i ∈ I (5.2.9)

ysijt ∈ R+ for i ∈ I, j ∈ J, t ∈ T, s ∈ S

(5.2.10)

The objective function minimises the cost of training plus the expected cost of in-

complete work after allocating the resulting supply to demand for skills. Note that,

to prevent solutions which over-allocate supply, only positive quantities of incomplete
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work,

zsjt := dsjt −
|I|∑
i=1

wijy
s
ijt,

count towards the objective. As this renders the above model non-linear, in practice we

solve a linearised version of the model by rewriting the object and constraints in terms

of variables xi and zsjt, and introducing additional constraints

zsjt ≥ 0 (5.2.11)

dsjt −
|I|∑
i=1

wijy
s
ijt ≤ zsjt (5.2.12)

for s ∈ S, j ∈ J and t ∈ T .

To ensure that both components of the objective function are on the same monetary

scale, the up-front cost of training a worker into class i is amortised to a per-period cost

ki. The number of periods this cost is amortised over will depend on the application

but should generally be considered as a combination of how long we expect that worker

to continue that work at the company and how long we expect the skill to be relevant.

The cost, cj, of leaving an hour of work of type j incomplete can be estimated from

problem data such the the probability of incurring a future fine for late service. In

the absence of such data, one of these costs (with the other fixed) can be treated as a

tuning parameter to aid in finding a desirable balance between the quantity of training

and associated cost. Each second stage allocation sub-problem associated with scenario

s contributes equally to the objective function, being scaled by scenario probabilities

ps = 1/|S| for all s ∈ S.

Members of a single-skill worker class i1 ∈ R1, can be trained out of class i1 and into

a double-skilled class i2 ∈ Li1 which shares a common primary skill with i1. Similarly,

members of a double-skill worker class i2 ∈ R2 can be trained out of class i2 and into

a triple-skill class i3 ∈ Mi2 which shares common primary and secondary skills with i2.
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Having restricted the breadth of training to 3 skills, triple-skill worker classes cannot

be trained out of their class and into one with more skills. Further, since our model

focuses on the training of an existing workforce, we cannot add to primary-skill worker

classes as this would represent a hiring action. Training into single-skill worker classes

i1 ∈ R1 is therefore prevented via constraints (5.2.8).

Further, constraint sets (5.2.3) and (5.2.4) say we can only train a quantity of workers

up to the existing number of FTEs in the workforce, while constraint sets (5.2.5) to

(5.2.7) prevent us from allocating more supply than we have available after training.

As highlighted by Easton (2011), the benefits from cross-training are intermittent

since workers take their skills home with them at the end of a working day. For this

reason, training can only contribute to supply over a subset of the interval considered.

Further, if overall demand varies by some weekly cyclic time series component Cjt7 ,

supply Nit must mirror it, by our prior assumption on starting supply being balanced to

demand. This means that workers have a higher probability of being on shift on certain

high-demand days of the week. These properties pose a challenge to quantifying the

supply contribution of worker after training.

To approximate the intermittent effect of training and still maintain feasible supply

Nit through the week, we must therefore scale the contribution of each newly trained

FTE by

αi,t7 :=
αiCji,t7

maxt7(Cji,t7)
(5.2.13)

where ji ∈ J is the primary skill of worker class i and αi represents the average propor-

tion of the week that a full time worker of class i is on shift. This factor is calculated

by counting the average proportion of days a full time worker of class i is on shift in a

given week and further scaling it by fraction of total supply required on each weekday.

Note that denominator maxt7(Cji,t7) is equivalent to the maximum supply level (across
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the week) for workers with primary skill ji by the assumption that supply levels Nit are

set to mirror mean demand.

We justify this approximation based on the following points:

i) Our second stage sub-problem is merely intended to approximate the overall im-

pact of training on demand coverage via aggregate allocation to skills and so our

αit7-approximation is sufficient for our purposes. We could attempt to count ac-

curately the effect of training a group by being precise about when those newly

trained individuals are on shift. This would however pull us towards the detail re-

quired of later stages of planning (scheduling individuals) and associated problems

of scale.

ii) This multiplier smooths the effect of training across the working week by assuming

that newly trained individuals appear on shift in a level constant (relative to supply

required on a given day of the week t7) across the week. This encourages our model

towards training which addresses frequently encountered imbalances in supply and

demand and away from training which counteracts imbalances due to severe but

rare events. Rare events are more suited to treatment via temporary injection of

resource using overtime and outsourcing.

Finally, we highlight the continuous nature of training decision variables xi. Though

it is desirable to train in integer quantities of workers, integrality is of diminished im-

portance in this high-level Tactical Planning stage. With the large quantities associated

with aggregate measures of a large-scale workforce, we lose very little information about

valuable training structures and quantities by approximating integer solutions using

continuous variables. Our prior arguments about the need to scale the value of training

by the availability of a worker in a given week highlight the inherent non-integrality of

planning with human resources. It is not unreasonable to train 0.5 of a FTE worker, for

example, as part-time staff and contractors are not uncommon in service industries. This
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continuity assumption along with the model convexity resulting from a linear objective

and constraints, also allows us to solve much larger problems in reasonable time.

This model represents an extension of that presented in Chapter 4 to the tactical

stage of workforce planning. The modelling arguments of Section 5.2.1 are based on

insights from Chapter 4 whilst the aggregate allocation sub-problem above equates to

the model under a strategy of no carryover or early completion of work options. Further,

we use the carryover-inclusive model in the following section to validate the carryover

argument made in Section 5.2.1.

5.3 Case Study

In this section, we apply the proposed cross-training model to a case-study based on a

data set provided by BT. This study compares the performance of the targeted training

policy resulting from the model against the most flexible and hence highest performing

pre-fixed training structure from the literature: the modified chain. In Section 5.4 we

extend the range of demand characteristics explored beyond those of the case study to

allow wider insights into the interactions between stochastic demand and cross-training.

5.3.1 Demand Modelling

This case study is based on historic time series of demand for a set of 7 BT skills. The

data consists of daily job counts across one year (1st April to 31st March 2014), converted

to man-hour measurements of demand through multiplication by mean job-duration in

hours. A sample series of demand for one of these skills is plotted in Figure 5.3.1(a).

These historic time series can be expressed as functions of weekly cyclic variation plus

random variation. That is, demand for skill j in period t can be expressed using time
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series model

djt = Sjt + Cjt7 + εjt,

= µjt + εjt

where Sjt is a step function representing seasonal variation in demand, equal to zero

between April and December and increasing to a non-zero but constant value from

January for all j ∈ J . Weekly cyclic variation, discussed in Section 5.2.2, is represented

by Cjt7 . To ease the interpretation of results, the small step-change in seasonal variation

is reduced to zero so that Sjt = 0 for all t ∈ T and j ∈ J . Random variation εjt around

mean underlying demand Cjt7 for each skill j is assumed independent over time and

identically distributed within weekdays t ∈ Td := {7(u−1) + t7 : t7 ∈ {1, . . . , 5}, u ∈ U}

and weekends t ∈ Te := {7(v − 1) + t7 : t7 ∈ {6, 7}, u ∈ U}, where U = {1, . . . , |U |}

is the set of weeks covered by the planning horizon. The resulting {εjt : t ∈ Td} and

{εjt : t ∈ Te} for each skill j ∈ J are modelled using the univariate skewed generalised

error (sGE) distribution centred around 0 (see Theodossiou (2015)). An example of an

sGE distribution fitted to {ε6t : t ∈ Td} is illustrated in Figure 5.3.1(b) along side the

empirical density estimate. The sGE family of distributions effectively captures tails

thinner than the normal distribution as well as the positive skew typical of random

variation in this problem instance.

Dependence between the random variation {εjt}t∈T in demand for pairs of skills

(j, k) ∈ {1, . . . , 7}× {1, . . . , 7} is modelled using a Gaussian copula CR with correlation
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Figure 5.3.1: Case study data example: subplot (a) illustrates a time series of demand for

skill 6 while subplot (b) illustrates an sGE distribution fitted to random variation around the

cyclic component of demand for the same skill
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parameter matrix

R =



1

0.05 1

0.22 0.17 1

0.16 0.16 0.14 1

0.44 0.16 0.19 0.32 1

0.04 0.22 0.10 0.01 −0.03 1

0.51 0.20 0.22 0.15 0.34 0.11 1


.

Recall that the second stage allocation sub-problem of our training model is made

up of |S| week-long demand scenarios. To generate a scenario dt := (ds1t, . . . , d
s
7t) for a

given period t ∈ {1, . . . , 7}, we follow the procedure given at the end of Section 5.2.2,

replacing generic copula model C with CR.

5.3.2 Setting Supply

For the portion of the workforce servicing this subset of skills, detailed supply data

was not available. We describe here the overall characteristics of existing supply but

generally, we are forced to set fictional quantities for each worker type. Individuals

typically possess numerous skills, resulting in a large number of distinct worker groups

with complex skill sets. Training (and hence the grouping of skills into worker types) in

many service companies is generally supply driven. That is, newly introduced skills are

often those closely related to a worker’s existing skills due to the ease in which they can

be acquired. This is in contrast to the basis for training solutions proposed by our model

in which skills paired in training are driven entirely by the characteristics of uncertain

demand.

When setting fictional starting supply, we feature single-skill workers only and ensure

that the quantity of workers we have in each skill is set to mirror mean underlying

demand µjt. In setting supply to match mean demand, we encourage solutions to be
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driven by mitigating the effects of stochastic demand. This falls in line with the supply

level arguments of Section 5.2.3.

A single application of the training model can at most add one extra level of depth

to a workers’ skill vector. Starting with a workforce of single-skill workers will therefore

result in a trained workforce with one and two-skill workers. We limit our consideration

to one application of the training model in part for brevity but also because it was found

in Chapter 4 that tertiary skills were rarely of value in aggregate allocation. Finally, we

fix workers’ efficiency wij in primary skills to 1, and in secondary skills to 0.8.

5.3.3 Setting Training Cost ki

Clearly, the cost of training relative to incomplete work will affect the uptake of training

in model solutions. With an absence of accurate monetary costs associated with the

carryover of incomplete work and of training an individual in a skill, we set fictional

values for these costs. As it is their relative values (not their scale) which impacts on

solutions, we fix the cost of carryover cj to 1 for all skills j ∈ J , and consider three

training costs ki ∈ {1.3, 4.5, 6} common to all worker types i ∈ I. This choice was

motivated by the results of a small scale parametric analysis. This analysis involved

counting the mean percentage of the workforce trained at a variety of training costs.

Three problem instances were studied: the case study described here; the case study with

higher variance and negative cross-correlation; and the case study with lower variance

and stronger positive correlation. The two amended case-study instances were predicted

to result in higher and lower quantities of training respectively, based on the results of

Chapter 4.

Figure 5.3.2 summarises the relationship between the quantity trained and training

cost ki. The location of the elbow in the decaying relationship motivated ki = 1.3, whilst

larger costs were chosen to span the remainder of the active range of ki. Setting costs to
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line corresponds to an equivalent problem with inflated variation in demand and negative

cross-correlation. The dashed line corresponds to a lower-variation and positive correlation

case.
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be common across skills and worker types, in an argument similar to setting supply to

match mean demand, gives equal importance to all skills and hence encourages training

solutions to be driven solely by the stochastics of demand.

5.3.4 Quantifying the Benefit of Training Solutions

In order to quantify the benefit of training suggested by the model, the performance of

the newly trained workforce is tested in a simulation of the subsequent Aggregate Plan-

ning stage. This simulation reintroduces details of the aggregate allocation stage which

were omitted from the second-stage sub-problem of the training model for tractability.

In particular, we solve allocation models on a horizon of 12 weeks instead of 1; and

capture the carryover of incomplete work through time.

We therefore measure supply performance under two key allocation strategies. Let

CT denote a strategy of utilising cross-training in allocation but discounting incomplete

work at the end of each period (e.g. by assuming it is outsourced at some high cost).

Then let CT+Ca denote utilisation of cross-training whilst also modelling carryover. We

solve for two further baseline strategies where cross-training is not utilised in allocation.

This allows us to measure the relative benefit of introducing cross-training. Baseline

strategy Ba denotes the case where carryover and cross-training are not modelled in the

allocation decision (only using workers’ primary skills). In baseline carryover strategy

Ca, carryover is modelled in allocation but cross-training is again not used.

Let Hπ
|T | denote the total count of hours of unresolved work remaining at the end

of the horizon under allocation strategy π ∈ {Ba,Ca, CT,CT+Ca}, the terminal cu-

mulative carryover. The reader is directed to Section 4.3.2 for details of the aggregate

allocation models corresponding to these strategies as well as the mathematical defini-

tion of Hπ
|T | in terms of their carryover-inclusive model formulation.

We can then report on the percentage by which terminal cumulative carryover is
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reduced by including cross-training under strategies CT and CT+Ca:

ICT = 100×

(
HBa
|T | −HCT

|T |

HBa
|T |

)
,

ICT+Ca = 100×

(
HCa
|T | −H

CT+Ca
|T |

HCa
|T |

)
.

We will frequently refer to quantities ICT and ICT+Ca as the benefit of a training solution.

In considering a carryover-inclusive version of the allocation model, we are able to assess

the probable effects of the carryover simplification central to ensuring our training model

is on a finite horizon.

To avoid positively biasing training model solutions we use a different sampling

procedure for demand in the allocation model simulation to the copula based scenario

generation procedure used in the two-stage model. That is, we randomly sample from

the Gaussian copula in stage 1 of the scenario generation process described in Section

5.2.2.

We provide a further point of reference to the performance of pre-fixed cross-training

structures popular in the literature by calculating Iπ for the modified chain. In Chapter

4, the modified chain was highlighted to be the most flexible and hence highest perform-

ing of the fixed training structures popular in the literature. Illustrated by the efficiency

matrix in Table 5.3.1, this structure is characterised by requiring 100% of the workforce

to be trained in a secondary skill, resulting in |J |×(|J |−1) distinct worker classes. To

ensure that supply matches up to mean underlying demand µjt in the modified chain, a

quantity of supply equal to µjt is split equally across the set of worker classes with skill

j as their primary skill.

We check the stability of the training model across 100 scenario sets generated from

different runs of the copula based scenario generation process. Each discretisation of

the multivariate distribution for demand variation consists of |S|= 100 scenarios. Fur-
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i\j 1 2 3 4

1 1 0.8

2 1 0.8

3 1 0.8

4 1 0.8

5 1 0.8

6 0.8 1

7 1 0.8

8 0.8 1

9 0.8 1

10 0.8 1

11 0.8 1

12 0.8 1

Table 5.3.1: Illustration of the modified chain cross-training structure with training depth of 2

and number of skills |J |= 4. The matrix contains efficiency weights wij with rows representing

worker classes and columns representing skills.

ther, we test a random sample of 5 of the resulting training solutions on an aggregate

allocation simulation (incorporating carryover). Again, the simulation is run for 100

different time series demand realisations. Note that we do not take all 100 training

solutions through to the allocation simulation as this would require a computationally

burdensome |S|×100 × 100 × 2 = 2 million allocation problems to be solved for each

problem instance. This simplification is later justified in demonstrating the in-sample

stability of both the objective function of the training model and the training solutions

themselves.

All problem instances are solved using the dual simplex algorithm invoked using the

Concert Technology C++ API of CPLEX v12.5.1 via a High Performance Computing

cluster with typical node specification of 2.26 GHz Intel Xeon E5520 processor. Solving

a single instance of the training model (with a second stage sub-problem consisting

of 7-period allocation problems solved for |S|=100 demand scenarios) took at most 26
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seconds to run. The subsequent 84-period aggregate allocation simulations then took

at most 0.46 seconds to solve.

5.3.5 Case Study Results

Stability

We first validate the training model by verifying that we have in-sample stability for the

3 problem instances associated with different training costs. Let o∗r denote the objective

function value evaluated for optimal training solution t∗ = (t∗1, . . . , t
∗
|I|) for repetition

r ∈ {1, . . . , 100}. Letting ō =
∑100

r=1 o
∗
r/100 define the mean objective function value

across all repetitions r, we evaluate the percentage variation in values o∗r relative to

mean ō:

δo∗r = 100×
(
o∗r − ō
ō

)
.

The standard error of data set δo∗r is 0.166, 0.123, and 0.119% for training costs ki =

1.3, 4.5 and 6 respectively. This confirms that a 100-scenario discretisation of stochastic

demand is sufficient for a high degree of in-sample stability.

To test for out-of-sample stability, recall from Section 5.2.2 that we must check that

f(x̂p;Sq) ≈ f(x̂q;Sp). We make this comparison for all pairs of solutions (x̂p, x̂q) within

the random sample of 5 training solutions which are tested in the aggregate allocation

simulation. The objective function values differed by a percentage in the range [0.536,

2.402], suggesting we also have out-of-sample stability.

The Benefit of Training Solutions

The benefit of a random sample of 5 targeted training solutions (marked TS 1 to TS

5 ) resulting from the model are compared against the benefit of the modified chain
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(Mod.Chain) in Figure 5.3.3. Recall, benefit refers to Iπ, the percentage by which ter-

minal cumulative carryover is reduced by including cross-training in allocation. The

benefit of training within allocation strategy π = CT (utilising training but discounting

carryover) is illustrated in Figure 5.3.3(a). Figure 5.3.3(b), on the other hand, corre-

sponds to a strategy of utilising training and accounting for carryover in allocation, i.e.

π =CT+Ca.

Clearly, the uptake of training is strongly dependent on the cost of training in relation

to incomplete work. For training cost ki = 1.3 in the non-carryover allocation strategy,

CT , all 5 targeted training solutions perform similarly. Further, they perform at least

as well as the modified chain over the 100 repetitions. In particular, the mean benefit

of targeted training solutions was 37% compared to 35% for the modified chain.

Critically, this strong performance is achieved by training a small proportion of the

workforce. Targeted training is just as valuable as the modified chain but at the cost

of training only 22% of the workforce compared to the 100% required of the modified

chain.

Targeted training solutions compare even more favourably to the modified chain in

the carryover inclusive allocation strategy to aggregate allocation (CT+Ca). Figure

5.3(b) demonstrates that at training cost ki = 1.3, targeted training has a mean benefit

of 78% compared to 43% for the modified chain. As incomplete work remains in the

system until it can be picked up by spare demand, there are generally more opportunities

to tackle demand in the carryover case hence more room for cross-training to have a

valuable impact.

It is important to bear in mind the results of Chapter 4, however. Specifically, the

longer the planning horizon for aggregate allocation, the more opportunity we have to

balance supply and demand so that incomplete work is reduced to zero across the length

of the horizon. This means that there is a positive relationship between the length of the
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Figure 5.3.3: Box-plots of the benefit of utilising cross-training over 100 simulations. TS 1

corresponds to a training solution resulting from one repetition of the training model. Plot

(a) demonstrates the benefit of cross-training when the carryover of incomplete work through

time is not included in the allocation. Plot (b) is equivalent but with carryover included in

allocation.
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planning horizon and the benefit of cross-training. When planning over shorter horizons

of a few weeks, the benefit of cross-training under allocation strategy CT +Ca will more

closely resemble Figure 5.3(a).

At this point we highlight that comparisons made between the performance of tar-

geted solutions against the modified chain are not one-to-one. Targeted training has

two functions: choosing the most suitable training structure and choosing the optimal

staffing of that structure. The modified chain used here is based on a simplistic staffing

approach, equally dividing primary skilled workers into the 6 double-skill worker types

which share the same primary skill. There may exist a more effective such division but

regardless, the modified chain by definition requires 100% of the workforce to be trained.

Further, provided the training cost is low enough, targeted training will suggest that

100% of the workforce is trained in a secondary skill, giving a structure akin to the

modified chain. This means that the targeted training model can, in principle, be used

to reach an optimal staffing solution for the modified chain.

Despite the previously mentioned caveats, the effectiveness of targeted training so-

lutions is clear. Specifically, targeted training consistently results in large reductions in

total incomplete work for a very small cost in terms of the percentage of the workforce

trained.

Patterns in the Nature of Training Solutions

Having established the overall benefit of the targeted training solutions, we now look

at the nature of those solutions in closer detail. Figure 5.3.4 illustrates the quantity of

FTE workers trained into a new secondary skill. Figure 5.3.4(a) summarises a sample

of 5 solutions resulting from training cost ki = 4.5. Skill vectors “j, k” summarise the

skills combined in training, where j and k ∈ J respectively correspond to primary and

secondary skills.

In Figure 5.3.4(a) we see that there are a number of worker classes into which a
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Figure 5.3.4: Quantity of FTE workers trained into a new worker type defined by skill vector

“j, k” where j is their primary skill and k their secondary skill. Sub-figure (a) picks a random

sample of 5 training solutions to illustrate, distinguishable by the shade of bars plotted. Sub-

figure (b) summarises 100 repetitions of the training model with box-plots for each worker

type. The shade of box-plots relates to the cross-correlation between the skills combined in

the worker type.
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negligible number of FTEs are trained. In applying the results of targeted training, a

workforce planner may choose to train worker types which see a training count higher

than some threshold, say 5 FTEs. Four worker types are consistently marked for train-

ing of around 10 or more FTEs: combining skills (4,3), (1,4), (2,1) and (7,2) in all 5

repetitions of the training model.

The stability within the 5 training solutions illustrated in Figure 5.3.4(b) is common

across the other 95 replications. This is illustrated by the tight box-plots of Figure

5.3.4(b).

The box-plots, coloured by the correlation between skills paired in training, also

illustrate an apparent lack of relationship between strength of correlation and quantity

trained. Dark and light box-plots are randomly scattered amongst the skill vectors

which are ordered by quantity trained. This is perhaps unsurprising as the strongest

observed correlation in skills for this case study is a moderate 0.51. Accurate simulation

of moderately correlated data can be difficult, especially in a 7-dimensional setting.

For this reason, this moderate correlation is unlikely to impose itself as a strong factor

influencing training.

We now return discussion to the 4 skill pairings consistently favoured in training:

(7,2), (2,1), (4,3), (1,4). We examine whether the popularity of these combinations is

related to the two remaining influential characteristics of demand: mean overall demand

level and variance. We summarise mean demand for skill j using the pooled weekday

mean µj =
∑5

t7=1 Cjt7/5. Variance for skill j is summarised by standard deviation

parameter, σj, resulting from fitting an sGE distribution to weekday random variation

{εjt | t = Td}.

Figure 5.3.5 illustrates the mean demand (horizontal axis) and variation (vertical

axis) of the skills paired in training. Each intersection of 2 dashed lines represents a

worker type we might train into (excluding those which pair a skill with itself). Which
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Figure 5.3.5: Plot illustrating the mean and variance properties of demand for skills combined

in training. Each intersection of 2 dashed lines represents a worker class we might train into

(defined by skills paired-up in training). Larger points plotted reflect a larger number of

workers trained into that class.

skills are paired in training can be read from the parenthesised values in the axis labels.

Larger dots indicate that more FTEs were trained into the given worker type. Note

that for each skill involved in a pairing, we are interested in both characteristics: mean

demand and variation. This means any skill pairing can be plotted in two ways. Darker

dots correspond to mean demand capturing the primary skill and variance the secondary

skill, i.e. (1st, 2nd) = (µj, σj). Paler dots correspond to the reverse, i.e. (1st, 2nd) =

(σj, µj).

Though the pattern is not conclusive, one can argue that the pairs seeing the highest

level of training (largest dots) are concentrated to the middle and upper right regions

of the plot. This suggests that the 4 popular pairings are based on adding flexibility to

fight demand which is both large in scale and in variance.
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5.4 Extended Numerical Study

In this section we extend the case study to explore the impact of a range of hypothetical

demand characteristics on the benefit and nature of training solutions. All problem

instances are based on an alteration of the conditions of the BT case study. In particular,

an identical approach to scenario generation and post-processing through allocation

simulation is used. We also retain mean underlying demand Cjt7 and starting supply set

to match.

We begin by identifying environmental factors which are potentially influential to

the performance of a flexible workforce and hence which may have an impact on training

solutions.

5.4.1 Environmental and Experimental Factors

The proposed model bases training actions on the ability of the workforce to meet

variable demand, i.e. based on the typical quantity of work left incomplete in a week. In

service-sector based workforce planning environments, incomplete work after allocation

is influenced by two key properties of demand: variance and cross-correlation. Studies

by Campbell (1999), Brusco (2008), Netessine et al. (2002) and Easton (2011) confirm

that higher levels of cross-training (according to a pre-fixed structure) are favoured in

problems with higher variance. The latter three mentioned papers, along side Brusco and

Johns (1998), also found that cross-training to pre-fixed structures had greatest impact

when demand streams were negatively correlated. Fine and Freund (1990) conclude

the complementary result that the benefit of such cross-training decreases as positive

correlation approaches perfect.

We aim to contribute to this understanding by studying the influence of variance

and correlation on targeted cross-training solutions in which the structure of training

is free to vary. We also investigate the nature of targeted training solutions, look-
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ing for relationships between skills combined in training and their underlying demand

characteristics. To asses how variance affects training solutions, we vary the standard

deviation, skewness and kurtosis parameters of the marginal sGE distributions.

It is useful to measure standard deviation on a common scale, relative to mean

demand. We therefore define the coefficient of variation for skill j on day of the week

t7 ∈ {1, . . . , 7} as

vjt7 :=



σdj /Cjt7 if t7 ∈ {1, . . . , 5}

σSaj /Cjt7 if t7 = 6

σSuj /Cjt7 if t7 = 7

where σdj , σ
Sa
j , σSuj are the standard deviation parameters of the sGE margins fitted for

pooled weekday data and Saturday and Sunday data respectively. We can therefore

summarise variation in demand for skill j using vector vj = (vj,1:5, vj6, vj7). We consider

4 levels for this coefficient of variation vector. These correspond to the minimum and

maximum coefficients of variation observed in the historic data, plus two levels which

contain a mix of high and low variation across skills. We similarly consider high and

low levels for skewness parameter λj = (λj1:5, λj6, λj7) and kurtosis κj = (κj,1:5, κj6, κj7)

of the sGE distribution. Details are found in Table 5.4.1.

We investigate six different levels for the cross-correlation parameter matrix R defin-

ing Gaussian copula dependence function CR. All matrices R feature zero correlation in

the majority of skill pairs. A subset of pairs, based on those with moderate correlation

in the case study, are then given varying degrees of non-zero correlation. The levels rep-

resented are strong negative (– –), moderate negative (–), zero (0), moderate positive

(+), strong positive (++) and strong mixed (+/–) correlation. Details are summarised

in Table 5.4.1. Note that the positive value of ρ57 in the strong negative correlation case

ensures parameter matrix R is positive semi-definite, a key property of a correlation

matrix.
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We experiment with different levels for training cost ki when defining the training

model. Training solutions are then tested under 4 different strategies in the aggregate

allocation simulation. The levels used for both of these experimental factors are identical

to those described in the case study.

Factors Levels Level Descriptions

Environmental:

Coef. of Var. 4 - Low vj = (0.1, 0.1, 0.1) common for all skills j

- High vj = (0.3, 0.2, 0.1) common for all skills j

- Mixed: Low vj = (0.1, 0.1, 0.1) for j ∈ {2, 4, 6, 7},
high vj = (0.3, 0.2, 0.1) for j ∈ {1, 3, 5}

- Mixed + deterministic skill 7: As in Mixed but v7 = (0, 0, 0)

Skewness 2 - Low λj = (1.1, 1.1, 1.1) for all skills j

- High λj = (1.5, 1.5, 1.5) for all skills j

Kurtosis 2 - Low κj = (0.7, 0.7, 0.7) for all skills j

- High κj = (1.6, 2.4, 2.4) for all skills j

Cross-corr. 6 - Zero (0): ρij = 0 ∀i 6= j

- Moderate positive (+): (ρ17, ρ15, ρ57, ρ23) = (0.5, 0.4, 0.3, 0.6)

- Strong positive (++): (ρ17, ρ15, ρ57, ρ23) = (0.8, 0.7, 0.6, 0.9)

- Moderate negative (–): (ρ17, ρ15, ρ57, ρ23) = (−0.5,−0.4, 0.3,−0.6)

- Strong negative (– –): (ρ17, ρ15, ρ57, ρ23) = (−0.8,−0.7, 0.6,−0.9)

- Strong mixed (+/-): (ρ17, ρ15, ρ57, ρ23) = (−0.8,−0.7, 0.6, 0.9)

Experimental:

Costs 3 (cj, kj) ∈ {(1, 1.3), (1, 4.5), (1, 6)} for skills j ∈ J
Allocation strategies 4 Ba, Ca, CT, CT+Ca

(Allocation simulation only)

Table 5.4.1: Experimental and environmental factors and levels

The above described experimental and environmental factors define 4 × 2 × 2 ×

6 × 3 = 288 problem instances to which we apply the training model. As in the case

study, the continuous distribution of stochastic demand is discretised using |S|= 100

scenarios and the training model is run for 100 replications of the scenario generation

procedure. Again, a random sample of 5 training solutions are tested in an aggregate

allocation simulation, repeated 100 times. Each allocation simulation is solved using
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4 different strategies so that the benefit of cross-training in carryover-inclusive and -

exclusive planning can be evaluated. One difference between the studies of this section

and the case study is that the allocation simulation is solved over a shorter horizon of

8 weeks.

5.4.2 Numerical Study Results

We begin by commenting on the benefit of targeted training solutions as well as the

associated cost of training a percentage of the workforce. Note that the in- and out-

of-sample stability properties we verified in the case study model apply to all problem

instances outlined in Table 5.4.1. In-sample stability is evidenced by the standard error

of δo∗r lying within [0.086, 0.302]% across all 288 problem instances. Testing for out-of-

sample stability, we compare f(x̂p;Sq) ≈ f(x̂q;Sp) as in the case study and observed a

percentage difference in the range [0.037, 2.961]%, suggesting we again have reasonable

out-of-sample stability.

Benefit of Targeted Training and Proportion of the Workforce Trained

We first look at how the benefit of targeted cross-training compares against the modified

chain for combinations of cross-correlation and variance properties. Having observed

the predictable effect of training cost ki on the quantity of workers trained and hence

the benefit of training, we fix ki = 1.3 for this sub-section. We report on results of

the carryover inclusive allocation simulation (CT+Ca) as it is most representative of

reality. The reader is invited to bear in mind the discussion points from the case study.

In particular, the benefit of cross-training, ICT+Ca, is related to length of the planning

horizon and naturally more variable due to the inclusion of carryover.

We begin by reporting the benefit of targeted cross-training as a function of the

coefficient of variation and correlation only, hence fixing skewness λj and κj to their
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low factor level. Table 5.4.2 reports the mean (and corresponding standard errors) for

ICT+Ca for both targeted cross-training and the modified chain.

Correlation

Training Coef. var. vj – – – +/– 0 + ++

Targeted High 83.3 (1.2) 80.7 (1.4) 82.6 (1.5) 80.1 (1.6) 73.2 (1.9) 74.1 (2.1)

Mix 74.1 (1.3) 73.2 (1.6) 67.0 (1.7) 71.1 (1.9) 63.4 (2.1) 57.2 (2.3)

Mix+Det 77.2 (1.5) 79.3 (1.5) 73.6 (1.7) 70.7 (1.8) 64.4 (2.1) 61.3 (2.2)

Low 79.1 (1.3) 74.5 (1.5) 73.2 (1.7) 71.6 (1.7) 67.7 (2.2) 62.1 (2.2)

Mod.Chain High 63.6 (1.6) 57.9 (2.1) 57.7 (2.1) 51.9 (2.1) 48.6 (2.5) 44.1 (2.7)

Mix 62.4 (1.6) 57.1 (2) 52.8 (2.1) 50.4 (2.3) 42.8 (2.6) 35.5 (2.4)

Mix+Det 60.4 (1.9) 58.5 (2) 53.5 (2.1) 46.8 (2.2) 40.3 (2.4) 40.2 (2.4)

Low 61.9 (1.6) 53.0 (2) 54.8 (2.3) 47.0 (2) 46.5 (2.6) 36.8 (2.6)

Table 5.4.2: Mean benefit of targeted and modified chain training solutions, measured in %

of incomplete work removed due to utilising cross-training. The standard error of estimates is

parenthesised. Results correspond to ki = 1.3, low kurtosis κj , and low positive skewness λj .

Targeted training has a higher mean benefit (in terms of reducing incomplete work

after allocation) than the modified chain for all problems represented in the table. Fur-

ther, this superior benefit comes at a considerably lower cost than the modified chain

which involves training 100% of the workforce. Table 5.4.3 outlines the associated mean

(and standard error) of the percentage of the workforce trained under targeted cross-

training. In the case of high variation and strong negative correlation, training as little

as 37% of the workforce had a benefit of 83.3%. The benefit of targeted training is also

consistently more stable than the modified chain. This reliability in performance comes

from the lower bound on the benefit of targeted training being generally higher than

the modified chain.

Recall that the above results relate to a fixed training cost of ki = 1.3. When the cost

of training is higher, less of the workforce is trained and hence the benefit of targeted

training is reduced. This flexibility to alter the quantity trained via the training cost is

valuable. The modified chain has a strong impact on reducing incomplete work but it

comes at a very high cost. Much more justifiable is the relatively small cost associated
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Correlation

Coef. var. vj – – – +/– 0 + ++

High 37.0 (0.09) 35.1 (0.08) 30.6 (0.08) 31.2 (0.08) 26.0 (0.08) 23.2 (0.07)

Mix 23.7 (0.05) 21.7 (0.05) 18.8 (0.05) 18.6 (0.05) 15.2 (0.05) 13.3 (0.05)

Mix+Det 23.2 (0.06) 21.2 (0.06) 17.8 (0.05) 17.9 (0.05) 14.2 (0.05) 12.3 (0.05)

Low 14.8 (0.03) 14.0 (0.03) 12.2 (0.03) 12.4 (0.03) 10.5 (0.03) 9.6 (0.04)

Table 5.4.3: Mean proportion of the workforce trained as a result of targeted training measured

in %. The standard error of estimates is parenthesised. Results correspond to ki = 1.3, low

kurtosis κj , and low positive skewness λj .

with training less than 10% of the workforce but for considerable marginal benefit.

Further, we generally see a higher degree of stability in the benefit of targeted training

when a smaller quantity is trained.

The above results for targeted training fall in line with the results of Chapter 4

for pre-fixed cross-training structures. That is, the benefit of utilising cross-training

is higher when there is negative cross-correlation between skills and when demand has

higher variance. Though the benefit of targeted training appears similar for cases of

low and mixed variance in demand (see Table 5.4.2), there is a clear difference between

in the quantities trained for these cases (see Table 5.4.3). We see less targeted training

(implying less benefit) when demand variation is low in all skills. Introducing determin-

istic demand for skill 7 via Mix+Det variation also slightly reduces the quantity trained

compared to the Mixed case.

The uptake of targeted training is therefore subject to the same relationship with

cross-correlation and variance as pre-fixed structures. The resulting benefit of targeted

training is less variable across problem instances than the modified chain however. This

means that targeted training is more consistent in its performance when applied to a

range of demand settings.

Our final observation on the overall benefit of targeted training relates to the impact

of skewness and kurtosis. The low level of skewness λj considered here (see Table 5.4.1)
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corresponds to a near-symmetric marginal distribution for demand variation. The higher

skewness parameter level results in slight positive skew and hence a heavier upper tail.

Higher skewness, at least at this level, does not have a clear impact on the quantity

of the workforce trained. For brevity we therefore do not report the corresponding

results here. Kurtosis, on the other hand, was found to be influential. High kurtosis

characterises a distribution with a large proportion of observations centred around zero

but with slowly decaying tails. Higher kurtosis was found to significantly increase the

quantity of training.

To illustrate this, consider the problem instance defined by training cost ki = 1.3,

strong positive correlation, low standard deviation and low skewness. Higher kurtosis led

to 18.3% of the workforce trained, a mean increase of 20.2% above the 14.6% trained in

the lower kurtosis case. Further, higher kurtosis had a stronger impact in the presence of

strong negative correlation between skills, increasing the quantity trained by 22.2%. We

interpret this effect as follows: rare cases of demand far outstripping mean levels call for

a higher quantity of targeted training than more frequent but less severe high-demand

events.

Nature of solutions

In this section we aim to understand the nature of effective training actions, asking ‘how

are skills combined in training’?

The case study featured skills with very similar coefficients of variation and moder-

ate to low positive correlation. This homogeneity in variance and correlation appeared

to cause the nature of training solutions to be driven by the differing levels of mean

demand Cjt7=1:5 and standard deviation σjt7=1:5 across skills. Recall that skill-pairs

(7, 2), (2, 1), (4, 3) and (1, 4) were consistently popular in training solutions, combining

the highest mean demand classes. This effect of differing mean demand is further con-

firmed by the targeted training solutions resulting from a problem instance homogeneous
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Figure 5.4.1: Quantity of FTE workers trained into a new worker type defined by skill vector

“j, k” where j is their primary skill and k their secondary skill. Box-plots summarise 100

replications of the training model applied to a problem instance with zero cross-correlation;

low standard deviation; low skewness and kurtosis; and training cost ki = 1.3

(across skills) in all properties of demand except the mean Cjt7 . Figure 5.4.1 summarises

the result of 100 replications of the training model applied to the problem instance with

zero cross-correlation and low standard deviation, skewness and kurtosis common across

all skills.

When variance and cross-correlation do not vary by skill, mean demand Cjt7 drives

the skills given priority in training. Even in this ‘base case’, skills do not therefore

have equal preference in training. This poses a challenge to interpreting the influence of

alternative variance and cross-correlation characteristics. We therefore study the impact

of introducing mixed variance and non-zero cross-correlation relative to the solution in

Figure 5.4.1.

Note that similarity in the nature of training solutions across replications of the

training model (seen in Figure 5.3.4) was a property present in all problem instances
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Figure 5.4.2: Bar plots of the change in quantities of worker types trained caused by introducing

non-zero correlation. Comparison is made against a baseline solution for 0 correlation; high

variation and low skewness and kurtosis common to all skills.

considered. For simplicity of presentation, we therefore base all comparisons on one

randomly chosen training solution.

Figure 5.4.2 illustrates the manner in which training solutions change due to the

introduction of: strong negative correlation; moderate negative correlation; and mixed

coefficient of variation. In sub-figure 5.4.2(a), worker types are ordered (from top to

bottom) in descending order of the cross-correlation between their skills. Introducing

strong negative correlation results in increased training into worker types involving

negatively correlated skills. An additional 43 FTEs in total (around 3% of the total

workforce) are recommended for training into negatively correlated skill combinations.

This pattern is repeated on a smaller scale when training under moderate negative
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correlation is compared against training in the zero correlation case of Figure 5.4.2(b).

Further, at the top of the plot we see the highest positive correlation pairing (5, 7) falling

out of favour.

The effect of introducing strong positive correlation (++), not plotted here for

brevity, was to reduce cross-training in all worker types. Introducing mixed correlation

(+/–) had an effect comparable to that seen in Figures 5.4.2(a) and 5.4.2(b). Specif-

ically, workers with negatively correlated skills were preferred in training whilst those

with positively correlated skills were avoided.

Figure 5.4.3 plots the change in training resulting from introducing mixed coefficients

of variation: increasing vj from 0.1 to 0.3 for j ∈ {2, 4, 6} and reducing v7 from 0.1 to

0.
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Figure 5.4.3: Bar plot of the change in quantities of worker types trained caused by introducing

demand variation which differs across skills. Comparison is made against a baseline solution

for 0 correlation; high variation and low skewness and kurtosis common to all skills.
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In this figure, worker types are sorted instead by the sum of their skills’ coefficients

of variation. For example, a worker type with skills 1 and 7 has 0.1 + 0 = 0.1 combined

coefficient of variation. The clearest effect here is the overall increase in training due to

three skills having higher coefficient of variation. It appears that there is more training

into worker types featuring skills with lower demand variation (nearer the bottom of

the plot). The impact of differing variation in demand for skills is not as clear as the

impact of cross-correlation however. Further, there does not appear to be a preference

to train workers featuring one high variance and one low variance skill.

5.4.3 Discussion and Managerial Insights

It is clear from Section 5.4.2 that targeted training solutions offer significant benefits in

enabling the workforce to cover more demand, at a total training cost significantly less

than the popular modified chain. Further, the benefit of targeted training is more stable

than the modified chain. This ‘reliability’ in performance is across multiple realisations

of a fixed demand environment but also across different demand environments.

Patterns in the nature of targeted training solutions observed in Section 5.4.2 lead

to useful rules of thumb for combining skills in training. When correlation between

demand for skills is moderate, it is valuable to train workers into skills with the highest

mean demand level. When there is negative correlation between demand for skills, it is

useful to train workers in skills negatively correlated with their existing skill. Negative

correlation will override conflicting preference from skills with higher mean demand.

Clearly the aggregate quantites of training resulting from this model must, at some

stage, be disaggregated to a decision on which individuals to train. This consideration

is beyond the scope of this work but it is clear that targeted training solutions provide

a valuable insight into the nature and quantity of training required to improve demand

coverage by a given percentage ICT+Ca. The interested reader is directed to Hopp et al.
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(2004) in which important issues regarding disaggregation are discussed.

Finally, we reflect on the impact of the non-carryover assumption made in the second-

stage sub-problem of the training model. The benefit of targeted training solutions was

clear in both the carryover and non-carryover versions of the allocation simulation. We

justify the finite-horizon with no carryover modelling assumption by the fact that the

model resulted in training solutions which were valuable not only to the non-carryover

setting. This assumption also allowed us to define a model with number of allocation

periods |T |� ∞, resulting in problems which could be solved in a matter of seconds.

It is important to bear the results of Chapter 4 in mind when judging the benefit of

targeted training. The longer the horizon over which the aggregate allocation simulation

is solved, the more opportunity there is to address incomplete work and hence the more

opportunities there are for training to have a positive impact demand coverage. Though

this does not change the nature of the useful targeted training solutions we get from

the training model, it means that the benefit we associate with those solutions might be

under- or over-estimated depending on the preferences of the organisation. That is, if an

organisation places high importance on completing work on time, then their valuation

for the benefit of training will be closer to that of the non-carryover allocation stratgy

ICT than the carryover strategy ICT+Ca.

5.5 Conclusion

This chapter considers the problem of training an existing single-skilled workforce so

that its flexibility to meet uncertain demand is improved. The proposed two-stage

stochastic programming model extends existing literature by allowing the structure of

cross-training to vary freely. This allowed training to be driven entirely by the particular

characteristics of the uncertain demand that the workforce is required to service. The

resulting Targeted Training solutions were shown to provide similar or improved benefit
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(reduction in incomplete work after allocation) compared to the fixed modified chain

structure but at a substantially lower cost in the percentage of the workforce trained.

Further, targeted training solutions were found to be more stable in their performance

across different realisations of demand.

In studying the nature of training solutions resulting from a variety of characteris-

tics for uncertain demand, two useful rules of thumb for training were found. When

correlation between demand for skills is moderate, it is valuable to train workers into

skills with the highest mean demand level. When there is negative correlation between

demand for skills, it is useful to train workers in skills negatively correlated with their

existing skill.

There are a number of opportunities to extend the work of this chapter. The value

and nature of a targeted triple-skill workforce could be investigated by performing two

rounds of training using this model. An interesting research question which could be

answered with careful application of this model is how to train a full time workforce

to cope with demand which has very different characteristics within different seasons.

Finally, the model could be extended to cover more stages of the planning hierarchy.

For example, the second-stage allocation problem could feature subsequent operational

outsourcing and overtime decisions, whilst the strategic hiring and firing of workers

might be appended as a decision stage made prior to training.
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