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Abstract 

 

This thesis addresses the question of the time spent by a transmitted wave packet 

within a scattering region. The study involves mathematical aspects of solving the 

Schrodinger equation in open systems with a view to developing new conceptual 

approaches to scattering theory. Efficient schemes to obtain scattering matrices from 

mean-field Hamiltonians are developed and these are implemented in new numerical 

codes. The relationship between the phase of S-matrix elements and Wigner delay 

times is also elucidated. 

 

I consider the scattering problem in a tight-binding lattice, as a simple way to 

understand the relation between M-functions and Greens functions and to investigate 

the connectivity dependence of Wigner delay times. To analyse delay times in 

bipartite lattices, tight binding calculations are used and a new computer code is 

developed to verify analytical predictions. In particular, Green’s functions and a mid-

gap theory are used to calculate Wigner delay times for different connectivities in 

graphene like molecules. One interesting and counterintuitive result is that in the weak 

coupling limit at the middle of HOMO and LUMO gap, the Wigner delay time does 

not depend on the distance between the connections to external reservoirs. 
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Chapter 1 

Introduction 

 

1.1   Molecular scale electronics 

In recent years much emphasis has been given to understanding the electronic 

structure and uncovering the properties of single molecules [1].  This has led to the 

possibility of utilising a few or single molecules as building blocks in a nanoscale 

device with the aim of miniaturizing electronic circuits and producing systems such as 

atomic scale sensors and thermoelectric devices. The advantage of single molecules 

lies in the ability to be able to chemically design and synthesise molecules with 

targeted functionality and this is an area where theory can help by predicting the 

optimum behaviour before synthesis. [2]. 

In the present study the molecular system is used for investigating significant 

characteristics of electron propagation such as the group velocity of electrons, energy 

bands, density of states and transmission coefficient that are defined as function of 

energy. Tight binding model has been used for investigating transmission coefficients.  

Greens function plays a significant role in determining the transmissions coefficients. 

The study presents the Landauer formula and greens function approach for analysing 

the scattering processes [3-5] in a system attached to infinite one-dimensional leads. 

The study involves the calculation of the retarded greens’ function in which the simple 

formula of a one-dimensional tight binding chain in presented. The periodicity of the 
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lattice is also broken at a single connection for showing the green’s function 

associated with the transmission coefficient along the scattering region. 

 

1.2   The concept of the Wigner delay time  

The concept of time delay was primarily introduced by using the explanation of a 

scattering process. If the transmission amplitude is t = |t|exp(i𝜃), then the time delay 

is usually represented as  ħ
𝑑𝜃

𝑑𝐸
 , and describes the amount of time spent by a wave 

packet passing through the scattering region. I present a theoretical and analytical 

study of this Wigner delay time in graphene-like cores by using a tight-binding 

calculation as a tool to achieve analytic and numerical solutions. 

 

1.3    Thesis outline 

Following this chapter, the overview of the thesis as follows:  

1. In the second chapter following I will present a simplest description of retarded 

Green’s function. First I consider a perfect one-dimensional tight binding 

chain, and then I break the periodicity at a single connection and show how the 

Green’s function is related to the transmission coefficient through the scattering 

region. Then I will introduce another method to calculate the transmission 

coefficient from the wave function starting with the Schrodinger equation. 

Finally,  I will show the relation between the green’s function and mid-gap 

transport for molecule structures such as bipartite lattices which their HOMO is 
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completely filled and EHL=0 where it is analytic everywhere unlike 𝐺 which 

includes poles at the eigenvalues 𝐸𝑛 of H. 

 

2. In chapter three I will introduce the analytical formula of Wigner delay time 

starting with the time dependent Schrodinger equation and by applying it to a 

scattering problem [6]. Then, I will relate this concept to the M-function 

and connectivities[7-9] to investigate Wigner delay time in graphene-like 

molecules using tight-binding calculations when the coupling to the 

molecule is very weak and the Fermi energy coincides with the center of the 

HOMO-LUMO gap. Finally, I will present and discuss my results related to the 

Wigner delay time. 

 

3. Chapter four is the last chapter. It will contain a summary of the outcomes of 

this work and the possible applications that could arise from this work in 

future.      
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Chapter 2 

 

Quantum transport 

 

2.1   Introduction 

 

The theory of single particle transport is introduced as the main numerical tool for 

studying a range of molecular geometrics and involves detailed investigation of 

electronic properties. Molecular electronics is focused on understanding the electrical 

properties of molecular junctions where a molecule is attached between electrodes and 

the ballistic transport is occurring through energy levels of the molecules. The 

coupling strength existing between lead and molecules is considered to be small in 

comparison to intra- electrode and inter molecular binding strengths. A scattered 

process is also involved in the movement from electrode to molecule and then from 

molecule to electrode. The scattering process from electrode junction and molecular 

bridge can be understood following a general approach of the green’s function 

formalism helps in achieving this process. In the beginning of this chapter I introduce 

a simple formula of a retarded green’s function has been explained for one 

dimensional tight binding chain. Then by breaking the periodicity of this lattice at a 

single connection, the green’s function directly related to transmission coefficient 

through the scatting region is obtained.  
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2.2   Theory of electron transport    

To have a good understanding of electron transport we should know about the 

transmission probability (T) which is related to the conductance G at Fermi energy 𝐸𝐹 

by the Landauer formula [1, 2]: 

                                               𝜎(𝐸) = 𝐺𝑜𝑇(𝐸)                                                      (2.2.1) 

Where the electrical conductance is 𝜎(E) as a function of energy and the quantum 

conductance is represented by 𝐺𝑜 =
2𝑒2

ℎ
  where ‘e’ is the electron charge and h is the 

Planck’s constant.  T (E) has denotes the transmission coefficient as a function of 

energy, and is the probability that an electron with energy E can transfer from one 

electrode to the other.  

This leads us to the scattering formalism shown schematically below: 

Diagram 1.The transport mechanism where it is combination of mathematical and physical structures. 

The transport mechanism is composed of two types of probabilities as probability of R (E) and 

probability of T (E) 

|𝑡|2 + |𝑟|2 = 1  → 𝑇(𝐸) + 𝑅(𝐸) = 1 

   Where 𝑟 and  𝑡 are the amplitudes of reflection and transmission respectively. 
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2.3   Green’s functions in one-dimension 

2.3.1   Perfect one-dimensional lattice 

 

It is helpful to calculate the scattering matrix for a simple one dimensional structure 

before representing a generalized methodology. I use the green’s function approach 

for the derivation and a later stage the scattering matrix of one dimensional scatter is 

calculated. In this section, a simple infinite one dimensional chain having on-site 

energies (𝜀𝑜) along with hopping elements(−𝛾) as shown in figure (2.3.1) is 

discussed for green’s functions.  

 

 

                  Figure 2.3.1.The tight-binding model of a one-dimensional periodic lattice with energy site 

𝜀𝑜 and hopping elements(−𝛾). 

 

For obtaining z row of Hamiltonian the Schrödinger equation is represented as; 

                               −𝛾Ψ(𝑧−1) + (𝐸 − 𝜀𝑜)Ψ(𝑧) − 𝛾Ψ(𝑧+1) = 0                              (2.3.1)           

For any function Ψ(𝑧) that has to be a wave function, it only needs to satisfy criteria of 

the Schrodinger equation (2.3.1) 

 

It is assumed that 𝛾 =  𝛾 ∗ and substituting a plane wave into equation (2.3.1) leads to 

the dispersion relation (2.3.2).  
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                               𝐸 = 𝜀𝑜 − 2𝛾 cos 𝑘                                                                   (2.3.2) 

 

The wave number is commonly represented by the quantum number (𝑘) and the wave 

function is linked to the retarded green’s function represented as 𝑔(𝑧, 𝑧′).                

This equation is very similar to the Schrödinger equation; 

 

(𝐸 − 𝐻) 𝑔(𝑧, 𝑧′) = 𝛿(𝑧,𝑧′)

−𝛾𝑔(𝑧 − 1, 𝑧′) + (𝐸 − 𝜀𝑜) 𝑔(𝑧, 𝑧
′) − 𝛾 𝑔(𝑧 + 1, 𝑧′) = 𝛿(𝑧,𝑧′)

}                          (2.3.3) 

                                     

Where 

𝛿(𝑧,𝑧′) = 1,         𝑖𝑓 𝑧 = 𝑧
′ 

And  

𝛿(𝑧,𝑧′) = 0,         𝑖𝑓 𝑧 ≠ 𝑧
′ 

 

Physically, the response of a system is defined at point 𝑧 described under retarded 

green’s function 𝑔(𝑧, 𝑧′) resulting from excitation at point 𝑧′. We expect two waves 

traveling outward from the excitation point with amplitude B and D as represented in 

figure (2.3.2). 
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   Figure 2.3.2.The structure of retarded Green’s function having an infinite one 

dimensional lattice. The wave is propagated towards the left and right sides through 

excitation at  𝒛 = 𝒛′ with amplitude B and D respectively. 

 

These waves can be simply expressed as: 

                                         𝑔(𝑧, 𝑧′) = {
𝐷𝑒𝑖𝑘𝑧   ,            𝑧 ≥ 𝑧′

𝐵𝑒−𝑖𝑘𝑧 ,          𝑧 ≤ 𝑧′
                                 (2.3.4) 

This expression satisfies equation (2.3.3) at every point, while the condition 𝑧 = 𝑧′ is 

not satisfied where the green’s function must be continuous at 𝑧 = 𝑧′.  

                                    [𝑔(𝑧, 𝑧′)]𝐿𝑒𝑓𝑡 = [𝑔(𝑧, 𝑧
′)]𝑅𝑖𝑔ℎ𝑡                                         (2.3.5) 

                                             𝐵𝑒−𝑖𝑘𝑧
′
= 𝐷𝑒𝑖𝑘𝑧

′
                                                      (2.3.6) 

                                             𝐵 = 𝐷𝑒2𝑖𝑘𝑧
′
                                                              (2.3.7) 

So I find that, 

     𝑔(𝑧, 𝑧′) = {
𝐷 𝑒𝑖𝑘𝑧                                              = 𝐷 𝑒𝑖𝑘𝑧′ 𝑒𝑖𝑘(𝑧−𝑧

′)         𝑧 ≥ 𝑧′

𝐷𝑒2𝑖𝑘𝑧
′
𝑒−𝑖𝑘𝑧 = 𝐷𝑒𝑖𝑘𝑧

′
𝑒𝑖𝑘(𝑧

′−𝑧) = 𝐷 𝑒𝑖𝑘𝑧′ 𝑒𝑖𝑘(𝑧
′−𝑧)         𝑧 ≤ 𝑧′

  (2.3.8) 

We know that, the power of the complex exponent has to be always positive and the 

simplified form of latter equation is represented as; 
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                                      𝑔(𝑧, 𝑧′) = 𝐷𝑒𝑖𝑘𝑧
′
𝑒𝑖𝑘|𝑧

′−𝑧|,           ∀𝑧                                 (2.3.9) 

Secondly, this expression must satisfy the green’s equation, (𝐸 − 𝐻)𝑔(𝑧, 𝑧′) = 𝛿𝑧,𝑧′ :    

       𝛿𝑧,𝑧′ = 𝐸𝑔(𝑧, 𝑧
′) − 𝜀0𝑔(𝑧, 𝑧

′) + 𝛾𝑔(𝑧 + 1, 𝑧′) + 𝛾𝑔(𝑧 − 1, 𝑧′)              (2.3.10) 

I find the solution at  𝑧 = 𝑧′: 

1 = (𝐸 − 𝜀0)𝑔(𝑧, 𝑧) + 𝛾𝑔(𝑧 + 1, 𝑧) + 𝛾𝑔(𝑧 − 1, 𝑧) 

                         =  𝐷 𝑒𝑖𝑘𝑧′[(𝐸 − 𝜀0)𝑒
𝑖𝑘|𝑧−𝑧′| + 𝛾𝑒𝑖𝑘|𝑧+1− 𝑧′| + 𝛾𝑒𝑖𝑘|𝑧−1− 𝑧′|]     (2.3.11) 

solving for 𝐷 𝑒𝑖𝑘𝑧′: 

1

𝐷 𝑒𝑖𝑘𝑧′
= (𝐸 − 𝜀0) + 𝛾𝑒

𝑖𝑘 + 𝛾𝑒𝑖𝑘 

= (𝐸 − 𝜀0) + 𝛾𝑒
𝑖𝑘 + 𝛾𝑒𝑖𝑘 + 𝛾𝑒−𝑖𝑘 − 𝛾𝑒−𝑖𝑘 

= 𝛾𝑒𝑖𝑘 − 𝛾𝑒−𝑖𝑘 

                                             = 2𝑖𝛾𝑠𝑖𝑛𝑘 → 𝐷 𝑒𝑖𝑘𝑧′ = 
1

2𝑖𝛾𝑠𝑖𝑛𝑘 
                             (2.3.12) 

Since we know that from the Schrödinger equation, the group velocity ℎ𝑣𝑔= 2γ sin k, 

and the green’s function for a one-dimensional chain can be written as: 

 

                                           𝑔𝑅(𝑧, 𝑧′) = 
1

𝑖ℎ𝑣𝑔 
 𝑒𝑖𝑘|𝑧−𝑧′|                                          (2.3.13) 

 There are more solutions that can be found for this problem in the literature [3,4,5]. In 

above equation, I have shown the retarded green’s function𝑔𝑅(𝑧, 𝑧′). On the other 

hand the advanced green’s function  𝑔𝐴(𝑧, 𝑧′) is an equally valid solution; 
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                       𝑔𝐴(𝑧, 𝑧′) =
−1

𝑖ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′| =
𝑖

ℏ𝑣𝑔
𝑒−𝑖𝑘|𝑧−𝑧

′|                                   (2.3.14) 

 

The retarded green’s function describes outgoing waves from an excitation point 

(𝑧 = 𝑧′), but the advanced green’s function is describing two incoming waves that 

vanish at the excitation point. From here I will use the retarded green’s function and 

for the sake of simplicity, drop the R from its representation. So  𝑔(𝑧, 𝑧′) = 𝑔𝑅(𝑧, 𝑧′). 

 

2.3.2   Semi-infinite one-dimensional lattice 

 

                 Figure 2.3.3.The tight-binding model of a semi-infinite one-dimensional 

lattice with energy site 𝜀𝑜 and hopping elements(−𝛾). 

 

I introduce another plane wave component with a new amplitude: 

                              𝑔(𝑧, 𝑧′) =
1

𝑖ℎ𝑣𝑔 
 𝑒𝑖𝑘|𝑧−𝑧′| + 𝐴 𝑒−𝑖𝑘|𝑧−𝑧′|                                  (2.3.15) 

To satisfy the boundary condition, we expect that a source at 𝑧0 when  𝑧′ =  𝑧0- 

doesn’t have any effect on the chain. In other words from this condition 𝑔(𝑧, 𝑧0) =

0  , 𝑧 ≤ 𝑧′, we find: 

                                              𝑔(𝑧, 𝑧0) = 
1

𝑖ℎ𝑣𝑔 
 𝑒𝑖𝑘(𝑧0−𝑧) + 𝐴 𝑒−𝑖𝑘(𝑧0−𝑧)                                  

                                               𝐴 = −
1

𝑖ℎ𝑣𝑔 
 𝑒2𝑖𝑘(𝑧0−𝑧)                                            (2.3.16) 
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By substituting this back into the green’s function, I find: 

                                        𝑔(𝑧, 𝑧′) = 
1

𝑖ℎ𝑣𝑔 
 𝑒𝑖𝑘(𝑧′−𝑧) − 

1

𝑖ℎ𝑣𝑔 
 𝑒2𝑖𝑘(𝑧0−𝑧) 𝑒−𝑖𝑘(𝑧′−𝑧) 

                                         𝑔(𝑧, 𝑧′) = 
1

𝑖ℎ𝑣𝑔 
[ 𝑒𝑖𝑘(𝑧′−𝑧) −  𝑒𝑖𝑘(2𝑧0−𝑧−𝑧′)]                (2.3.17) 

The second condition is that, any point beyond 𝑧0 − 1 does not have effect from a 

source in the chain. So if 𝑧 ≥ 𝑧′and z =𝑧0 , we expect 𝑔(𝑧0, 𝑧) = 0 so from this 

condition, I find: 

                                       𝑔(𝑧0, 𝑧) = 
1

𝑖ℎ𝑣𝑔 
 𝑒𝑖𝑘(𝑧0−𝑧′) + 𝐴 𝑒−𝑖𝑘(𝑧0−𝑧′) 

                                                     𝐴 = −
1

𝑖ℎ𝑣𝑔 
 𝑒2𝑖𝑘(𝑧0−𝑧′)                                     (2.3.18) 

By substituting this back into the green’s function, I find: 

                                          𝑔(𝑧, 𝑧′) = 
1

𝑖ℎ𝑣𝑔 
 𝑒𝑖𝑘(𝑧−𝑧′) − 

1

𝑖ℎ𝑣𝑔 
 𝑒2𝑖𝑘(𝑧0−𝑧′) 𝑒−𝑖𝑘(𝑧−𝑧′) 

                                         𝑔(𝑧, 𝑧′) = 
1

𝑖ℎ𝑣𝑔 
[ 𝑒𝑖𝑘(𝑧−𝑧′) −  𝑒𝑖𝑘(2𝑧0−𝑧−𝑧′)]                (2.3.19) 

By summarizing these two results I find: 

                                     {

1

𝑖ℎ𝑣𝑔 
[ 𝑒𝑖𝑘(𝑧−𝑧

′) −  𝑒𝑖𝑘(2𝑧0−𝑧−𝑧
′)]  ,    𝑧 ≥ 𝑧′

1

𝑖ℎ𝑣𝑔 
[ 𝑒𝑖𝑘(𝑧

′−𝑧) −  𝑒𝑖𝑘(2𝑧0−𝑧−𝑧
′)] ,        𝑧 ≤ 𝑧′

               (2.3.20)               

The above result can be written as: 

                           𝑔(𝑧, 𝑧′) =  
1

𝑖ℎ𝑣𝑔 
[ 𝑒𝑖𝑘|𝑧−𝑧′| −  𝑒𝑖𝑘(2𝑧0−𝑧−𝑧′)] = 𝑔𝑧,𝑧′

∞ +𝛹𝑧,𝑧′
𝑧0      (2.3.21) 
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2.3.3   Surface Green’s function 

In this case the surface Green’s function is evaluated with the site energy at point 

 𝑧0 − 1. So the surface Green’s function is: 

             𝑔( 𝑧0 − 1,  𝑧0 − 1) =  
1

𝑖ℎ𝑣𝑔 
[ 𝑒𝑖𝑘| 𝑧0−1− 𝑧0+1| −  𝑒𝑖𝑘(2𝑧0− 𝑧0+1− 𝑧0+1)]     (2.3.22) 

Then we end with the simple form; 

                                       𝑔( 𝑧0 − 1,  𝑧0 − 1) =  
1

𝑖ℎ𝑣𝑔 
(−2𝑖𝑠𝑖𝑛𝑘) 𝑒𝑖𝑘                   (2.3.23) 

                                     𝑔( 𝑧0 − 1,  𝑧0 − 1) = − 
2𝑖𝑠𝑖𝑛𝑘

2𝑖𝛾𝑠𝑖𝑛𝑘 
 𝑒𝑖𝑘 = − 

𝑒𝑖𝑘

𝛾
                 (2.3.24) 

 

 

2.3.4   One-dimensional Scattering Using green’s functions 

 

 

               Figure 2.3.4.The tight binding model of two semi-infinite leads with one site 

energies 𝜀0 and couplings – 𝛾, coupled by hopping element – 𝛼. 
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I consider two semi-infinite one-dimensional leads coupled by hopping element 𝛼. 

The total green’s function is obtained in the case of decoupled leads (𝛼 = 0)and it is 

represented by; 

                                         𝑔 = (
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾

) = (
𝑔𝐿 0
0 𝑔𝑅

)                              (2.3.25) 

This green’s function represents two decoupled semi-infinite leads , 𝑔 = (𝐸 − ℎ1)
−1 

where  ℎ1 is the Hamiltonian of two decoupled semi-infinite leads and by defining    

an infinite matrix  this Hamiltonian will be; 

  

                                       ℎ1 =

(

 
 
 
 
 

⋱
⋱
0
0
0
0
0
0

⋱
⋱
−𝛾
0
0
0
0
0

0
−𝛾
𝜀𝑜
−𝛾
0
0
0
0

0
0
−𝛾
𝜀𝑜
−𝜸
0
0
0

0
0
0
−𝜸
𝜀𝑜
−𝛾
0
0

0
0
0
0
−𝛾
𝜀𝑜
−𝛾
0

0
0
0
0
0
−𝛾
⋱
⋱

0
0
0
0
0
0
⋱
⋱)

 
 
 
 
 

                               (2.3.26)         

 

By connecting this two leads by  hopping element 𝛼 , and the Hamiltonian for whole 

system or coupled system in figure(2.3.4) becomes 𝐻 = ℎ1 + ℎ0 where ℎ0 contains 

the coupling parameters 

                                                        ℎ0 = (
0 𝛼
𝛼 0

)                                                (2.3.27) 

The green’s function obtained for coupled system will be found by using Dyson’s 

equation as follows;  
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                                                 𝐺 = (𝐸 − 𝐻)−1 = (𝐸 − ℎ1 − ℎ0)
−1                  (2.3.28) 

                                                          𝐺 = (𝑔−1 − ℎ0)
−1                                     (2.3.29) 

The solution, in this case, will be: 

                                        𝐺 =  

(

 
 
  (
−
𝑒𝑖𝑘

𝛾
0

0 −
𝑒𝑖𝑘

𝛾

)

−1

− (
0 𝛼
𝛼 0

)

)

 
 

−1

                  (2.3.30) 

                                            

                                     𝐺 =
1

𝛾2𝑒−2𝑖𝑘−𝛼2
(
−𝛾𝑒−𝑖𝑘 𝛼

𝛼∗ −𝛾𝑒−𝑖𝑘
)                               (2.3.31) 

 

In order to calculate the transmission 𝑡 and the reflection 𝑟⃖ amplitudes, we use the 

greens’ function presented in equation (2.3.31) and apply them to the Fisher Lee 

relation which calculates the scattering amplitudes of the scattering problem by 

relating it to the green’s function of the same problem [3,6].  

Since we know the green’s function components from equation (2.3.31), then we can 

define the transmission and reflection coefficients. The source from the excitation 

point sends two waves travelling outwards, one away from the scatter and one towards 

the scatter with amplitude B and D respectively. So the green’s function contains 

information about two waves, left wave or a reflected wave (𝐷 𝑒−𝑖𝑘|𝑧−𝑧
′| +

𝐵𝑟𝑒𝑖𝑘|𝑧−𝑧
′|) and the transmitted right wave (𝐵𝑡𝑒𝑖𝑘|𝑧−𝑧

′|)). Here we use symbol 𝑡 for 
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transmitted right wave and 𝑟⃖ for reflected wave where arrows are pointing directions 

of amplitudes. 

                                                  1 + 𝑟 =  −𝑖ℎ𝑣𝑔
𝛾 𝑒−𝑖𝑘

𝛾2𝑒−2𝑖𝑘−𝛼2
                                 (2.3.32) 

                                                 𝑡 =  𝑖ℎ𝑣𝑔
𝛼 𝑒𝑖𝑘

𝛾2𝑒−2𝑖𝑘−𝛼2
                                             (2.3.33) 

To calculate the transmission and reflection probabilities we use these coefficients as 

follows;  

                                          𝑇 = |𝑡 |2           𝑎𝑛𝑑        𝑅 =  |𝑟 |2   

So, by using the Landauer formula represented in equation (2.2.1) we can also 

calculate the conductance of the system. 

 

2.4   More general method to calculate the transmission from a wave 

function 

In this chapter I discuss the relationship between a wave function and green’s function 

in more detail and present a more general method for computing the transmission 

amplitude of an arbitrary scattering region connected to one-dimensional leads. 
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               Figure 2.4.1.A simple tight binding model having two different infinite leads 

that are connected with independent scattering regions via hoping elements (−𝛼𝐿) and  

(−𝛼𝑅).  

 

The structure presented in figure (2.4.1) can be described in details that will provide a 

clear picture of the methodology used. We have two different leads one of them called 

the left lead and another one the right lead. The left lead is a one-dimensional periodic 

lattice constructed with site energies  𝜀𝐿 and coupling −𝛾𝐿 and in the same  for the 

right lead just the values of the site energies are 𝜀𝑅 and the coupling −𝛾𝑅. The 

hopping elements −𝛼𝐿 and −𝛼𝑅 are used for connecting the infinite leads with 

independent scattering regions. In this section, I will use the form of green’s function 

to solve the problem and calculate the transmission coefficient as a function of energy.  

 

2.4.1   Schrödinger equation representation 

The problem is solved by considering the Schrödinger equation for the current system. 

The equation is represented below: 

                                                 𝐻|𝛹〉 = 𝐸|𝛹〉                                                        (2.4.1) 
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  The Hamiltonian of the scattering region is represented by 𝐻 that will be used for 

describing the current system. The eigenvalues are represented by 𝐸 of the 

Hamiltonian 𝐻 and  are used to present the wave function of the whole system and 

developing the equation. 

                                               H 

(

 
 
 
 
 
 
 
 

⋮
𝛹−2
𝛹−1
𝛹0
𝑓𝑎
⋮
𝑓𝑏
𝜙0
𝜙1
𝜙2
⋮ )

 
 
 
 
 
 
 
 

= E 

(

 
 
 
 
 
 
 
 

⋮
𝛹−2
𝛹−1
𝛹0
𝑓𝑎
⋮
𝑓𝑏
𝜙0
𝜙1
𝜙2
⋮ )

 
 
 
 
 
 
 
 

                                             (2.4.2) 

  

 The Schrödinger equation is derived as; 

                                       𝜀 𝐿𝛹0   ̶ 𝛾𝐿𝛹−1   ̶  𝛼𝐿𝑓𝑎 = E 𝛹0                                        (2.4.3)    

                                      𝜀 𝑅𝜙0   ̶  𝛾𝑅𝜙+1   ̶  𝛼𝑅𝑓𝑏 =E𝜙0                                         (2.4.4) 

                                     ∴(𝜀 𝐿 − 𝜀𝐿)𝛹0 +𝛾𝐿𝛹1 = 𝛼𝐿𝑓𝑎                                           (2.4.5) 

                                      (𝜀 𝑅 − 𝜀𝑅)𝜙0 + 𝛾𝑅𝜙−1 = 𝛼𝑅𝑓𝑏                                       (2.4.6) 

 From the physical structure:  

𝛹1 = 𝑒𝑖𝑘 + r 𝑒−𝑖𝑘 

While 

𝛹0 = 1+r 
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A new equation is obtained 

                                               𝛹1=  2𝑖 sin 𝑘𝐿 + 𝛹0𝑒
−𝑖𝑘𝐿                                        (2.4.7) 

Where 

                          𝜙−1 = 𝜙0𝑒
−𝑖𝑘𝑅                and          𝜙0 = t͞          

So,                    

                                                t = (
𝑣𝑅

𝑣𝐿
) 1/2 × t͞                                                          (2.4.8)                                  

So, the aim here is to write 𝛹1 and 𝜙−1 in terms of  𝛹0 and 𝜙0 to make the problem 

easier where (𝑡 ) is the transmission amplitude and (𝑟⃖ ) is the reflection amplitude. 

An appropriate boundary condition has been introduced in order to derive the green’s 

function for an infinite leads and the system will be represented as; 

                                             𝑓𝑎 =  
ϒ𝐿

𝛼𝐿
𝛹1                                                                 (2.4.9)      

                                            𝑓𝑏 =  
ϒ𝑅

𝛼𝑅
 𝜙−1                                                              (2.4.10)        

Hence; we know that from the general Schrödinger equation: 

                                             H|𝑓𝑗⟩ = E|𝑓𝑗⟩  +|S⟩                                                   (2.4.11)                                                          

  

Also,  

                              ∑ 𝐻𝑖𝑗 𝑓𝑗
𝑁
𝑗=1  = E 𝑓𝑖 + 𝛼𝐿 𝛹0 𝛿𝑖 + 𝛼𝑅 𝜙0 𝛿𝑖                                                                                                                          



26 
 

        (𝐸 − 𝐻)|𝑓⟩ = − |𝑆⟩      where,     |𝑆⟩ = 

(

 
 
 
 
 
 

 

0
0
⋮

−𝛼𝐿𝛹0
0
0
⋮

−𝛼𝑅𝜙0
⋮ )

 
 
 
 
 
 

                         (2.4.12)                                         

So, the above equation is transformed as:  

                                                 |𝑓⟩ =− 𝑔(𝐸) |𝑆⟩                                                (2.4.13)                                             

 

The problem can be solved after calculating the green’s function of the normal form 

and it can be written as; 

                                                 𝑔(𝐸) = (𝐸 − 𝐻)−1                                              (2.4.14)                                                      

So, 

                                                (
 𝑓𝑎
𝑓𝑏
) = - (𝑔𝑎𝑎   

𝑔𝑏𝑎

    𝑔𝑎𝑏
    𝑔𝑏𝑏

) (
 −𝛼𝐿𝛹0
−𝛼𝑅𝜙0

)                          (2.4.15)                         

This yields to: 

 

           -(
𝑔𝑎𝑎 𝛼𝐿+

ϒ𝐿
𝛼𝐿
 𝑒−𝑖𝑘𝐿

𝑔𝑏𝑎 𝛼𝐿                    

            𝑔𝑎𝑏 𝛼𝑅 

    𝑔𝑏𝑏 𝛼𝑅+
ϒ𝑅
𝛼𝑅
 𝑒−𝑖𝑘𝑅

)  (
 𝛹0
𝜙0
)  + 

ϒ𝐿

𝛼𝐿
  2𝑖 sin 𝑘𝐿 (

 1
0
)                (2.4.16)                                   

 

I want to calculate the transmission coefficient and it’s comes from 𝜙0 

 

So, 

                      ( 𝛹0
𝜙0
) = −𝑔−1 × (

 1
0
) 

ϒ𝐿

𝛼𝐿
  2𝑖 sin 𝑘𝐿                                      (2.4.17)                      
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                           (
 𝛹0
𝜙0
) = 

1

𝑑𝑒𝑡𝑔
  (
𝑔𝑎𝑎 𝛼𝐿 +

ϒ𝐿

𝛼𝐿
 𝑒−𝑖𝑘𝐿  

𝑔𝑏𝑎 𝛼𝐿
) × 

ϒ𝐿

𝛼𝐿
  2𝑖 sin 𝑘𝐿                  (2.4.18)             

 

I calculate the determinant of ɡ and find  

det ɡ = 
ϒ𝐿  ϒ𝑅

𝛼𝐿  𝛼𝑅
 𝑒−𝑖(𝑘𝐿+ 𝑘𝑅) [1 + 𝑔𝑎𝑎 

𝛼𝐿
2

ϒ𝐿
 𝑒𝑖𝑘𝐿 + 𝑔𝑏𝑏 

𝛼𝑅
2

ϒ𝑅
 𝑒𝑖𝑘𝑅  + (𝑔𝑎𝑎 𝑔𝑏𝑏  _ 𝑔𝑏𝑎 𝑔𝑎𝑏 ) 

𝛼𝐿
2 𝛼𝑅

2

ϒ𝐿 ϒ𝑅
   𝑒𝑖(𝑘𝐿+ 𝑘𝑅)        (2.4.19)                                                                                                                                                                          

So, 

                                              𝜙0 = t͞   =  
𝑔𝑏𝑎𝛼𝐿 

𝑑𝑒𝑡𝑔
 × 

ϒ𝐿

𝛼𝐿
  2𝑖 sin 𝑘𝐿                               (2.4.20)                                       

Where, 

                                             𝜙0 = t͞   = 
𝛼𝐿  𝛼𝑅

𝛶𝐿  𝛶𝑅
 ×𝑒𝑖(𝑘𝐿+ 𝑘𝑅) × 

𝑔𝑏𝑎 

𝑑𝑒𝑡𝑔
 ×ϒ𝐿2𝑖 sin 𝑘𝐿      (2.4.21)    

               

So, by using equation (2.4.8) we obtain: 

 

                                              t  =  
𝑖 (𝑣𝑅 𝑣𝐿)

1/2

𝛼𝐿 𝛼𝑅
 × 

𝑔𝑏𝑎

𝑑𝑒𝑡𝑔
 × 𝑒𝑖(𝑘𝐿+ 𝑘𝑅)                           (2.4.22)                 

 

Where 𝑣𝐿 = 2𝛾𝐿 sin 𝑘𝐿   is the group velocity of the left lead. 

 

From this, the transmission coefficient T is obtained from 

                   T =|𝑡|2                                                                       (2.4.23)    
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2.5   Molecules and Quantum dot 

If we have a closed system with discrete energy levels then for molecules the energy 

level spacing will be much larger than that found in a quantum dotard for the molecule 

the chemist can control their connectivity as shown in figure (2.5.1). In the case of the 

quantum dot, where the object is very small, the connectivity is problematical. 

Working with molecules therefore gives us a much wider scope to study the effect of 

these connectivities. Polyaromatic hydrocarbons  PAHs are a class of molecules which 

I will concentrate on in this thesis as their connectivities can be carefully controlled. 

In particular I will study how the Wigner delay time depends upon the connectivity. I 

will introduce a simple method to understand how the electron interference effects due 

to the connectivity can influence the Wigner delay time. 

                  

              Figure 2.5.1.The figure illustrates the connectivity set up across a PAH, in 

this case coranine. The connectivities are labelled by numbering the atoms as shown. 
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The connectivity dependence of the conductance has already been published [7], but 

here I’m going to highlight the main points and give an overview about what is in the 

literature. 

To study the effect of the connectivity on the conductance we should know how we 

connect a molecule, by looking at figure (2.5.1) a linker group has been used to 

connect the molecule between two gold electrodes.Therefore to model the single 

electron transport across the PAH with different connectivities the effective scattering 

region now includes both linker group and PAH. To simplify the study and results I 

introduced the three different examples of connectivity as shown in the lower three 

illustrations in figure (2.5.1). Initially I can calculate the electrical conductance to find 

which connectivity gives the highest conductance or which one gives the lowest 

conductance. A simple way to answer of all these questions uses the magic ratio rule 

which is explained in the following section. 

 

2.6   Mathematics underpinning the magic ratio rule  

 

 

               Figure 2.6.1.A simple tight binding model having two different infinite leads 

that are connected with independent scattering region via hoping elements (−𝜶𝑳) and  

(−𝜶𝑹).  
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We calculate the electrical conductance by using Landauer formula which is given by 

this relation: 

                                             𝜎(𝐸) =  𝐺0 𝑇(𝐸)                                                       (2.6.1) 

 

In order to obtain the electrical conductance we calculate the transmission coefficient 

by using a green’s function method by following relation: 

 

                                    𝑇(𝐸) = ħ 𝑣𝐿ħ 𝑣𝑅 × |𝐺𝑎𝑏|
2 ×  

𝛼𝐿
2

𝛾2
 ×  

𝛼𝑅
2

𝛼2
                         (2.6.2) 

 

I’m trying to solve the green’s function of an open system and I found that, the 

green’s function of an open system is related to the green’s function of a close system 

via this relation: 

                                                        𝐺𝑎𝑏(E) =  
𝑔𝑎𝑏(𝐸)

∆
                                            (2.6.3) 

Where 

∆ =1 + 
𝛼𝐿
2

𝛾
 𝑔𝑎𝑎 𝑒𝑖𝑘𝐿 +  

 𝛼𝑅
2

𝛼
𝑔𝑏𝑏 𝑒𝑖𝑘𝑅 +

𝛼𝐿
2

𝛾
 
𝛼𝑅

2

𝛼    
(𝑔𝑎𝑎 ×  𝑔𝑏𝑏 –  𝑔𝑎𝑏 ×  𝑔𝑏𝑎 )    (2.6.4) 

                                                                                                                 ×  𝑒(𝑖𝑘𝐿+ 𝑖𝑘𝑅) 

If 𝛼𝐿 and  𝛼𝑅 are zero then the green’s function of an open system is equal to the 

green’s function of a close system but if 𝛼𝐿 and  𝛼𝑅  are very weak and much less than 

one then ∆ could be negligible just if the energy of electron is not go inside any one of 

the eigenvalues of the isolated molecule then in this case; 

 

                          𝐺𝑎𝑏(E) ≈  𝑔𝑎𝑏(𝐸)    , then   𝑇𝑎𝑏(𝐸) ∝ |𝑔𝑎𝑏(𝐸)|
2                       (2.6.5) 
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And the ratio of the two transmission coefficient is given by the following weakly 

coupled ratio rule (WRR): 

                                                
𝑇𝑎𝑏(𝐸)

𝑇𝑙𝑚(𝐸)
=  

|𝑔𝑎𝑏(𝐸)|
2

|𝑔𝑙𝑚(𝐸)|
2
                                              (2.6.6) 

 

Finally, if E =𝐸𝐹 = 0  which located at the center of the H-L gap and for PAHs which 

have identical site that is described by a tight-binding model 

                                     𝑔𝑎𝑏(𝐸𝐹) = (𝐸𝐹 − 𝐻)
−1 =  (−𝐻 )−1 = (𝐶)−1                   (2.6.7) 

                                                    𝑔𝑎𝑏(0) = − 
1

𝑑
  𝑀𝑎𝑏(0)                                      (2.6.8) 

Then the ratio of the two transmission coefficient for two different connectivities a,b 

and l,m is given by the following magic ratio rule (MRR): 

                                       
𝑇𝑎𝑏(0)

𝑇𝑙𝑚(0)
 = 

(𝑀𝑎𝑏)
2

(𝑀𝑙𝑚)
2
                                             (2.6.9) 

 

 

2.6.1   Relationship between Green’s functions and M-functions  

 

From the above analysis, if the Green’s function 𝑔 of the isolated scattering region is 

known (ie when 𝛼𝐿 = 𝛼𝑅 = 0 ), then t is determined. 

In the study of graphene-like molecules described in reference [7] a description of 

mid-gap transport was obtained in which the Hamiltonian describing the molecular 

core was simply a tight binding Hamiltonian, with zeroes for on-site energies and -1 

for nearest neighbour couplings. If the energy E of electrons passing through the core 
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is equated to the middle of the HOMO-LUMO gap 𝐸𝐻𝐿, then a simple and parameter 

free theory is obtained which describes how the transmission coefficient at the gap 

centre depends on the connectivity 𝑎, 𝑏 (ie on the atoms 𝑎, 𝑏 of the core which connect 

to the external leads). In the following we look at the relation between mid-gap 

transport theory and Greens function. 

To obtain the simplest-possible theory of transport, for electrons of energy E near the 

middle of the HOMO-LUMO gap of a molecule, it is convenient to introduce  M- 

functions, which are related to the Green’s function 𝐺(𝐸) of the isolated molecule by 

M(E) = D(E)G(E), where 𝐷(𝐸) is chosen to cancel any divergences in 𝐺(𝐸). If the 

Hamiltonian describing the isolated molecule is H, then the isolated-molecule Greens 

function is defined by (𝐸 − 𝐻)𝐺 = 1. ie 𝐺(𝐸) = 𝐹(𝐸)/𝑑𝑒𝑡(𝐸 − 𝐻), where 𝐹(𝐸) is 

the transpose of the cofactor matrix of (𝐸 − 𝐻). Hence if D(E) is chosen to be 

proportional to 𝑑𝑒𝑡(𝐸 − 𝐻) then M(E) is proportional to the well-behaved matrix 

𝐹(𝐸).  The main reason for using M(E), rather than G(E) is that for molecular cores 

described by bipartite lattices, M(𝐸𝐻𝐿) can be chosen to be a matrix of integers, which 

makes the connectivity dependence of conductances easy to understand.  

If  𝐻|𝜑𝑛⟩ = 𝐸𝑛|𝜑𝑛⟩, then (𝐸) = ∑
|𝜑𝑛⟩⟨𝜑𝑛|

𝐸−𝐸𝑛
𝑛  , 𝑑𝑒𝑡(𝐸 − 𝐻) = ∏ (𝐸 − 𝐸𝑛)𝑛  and  

𝐹(𝐸) = 𝐺(𝐸) 𝑑𝑒𝑡(𝐸 − 𝐻) and is analytic everywhere unlike 𝐺 which contains poles 

at the eigenvalues 𝐸𝑛 of H. We therefore choose 𝑀(𝐸) = a𝐹(𝐸),  where the choice of 

the scalar 𝑎 is arbitrary. This is equivalent to choosing 𝑀(𝐸) = 𝐷(𝐸)𝐺(𝐸), where 

𝐷(𝐸) = 𝑎 𝑑𝑒𝑡(𝐸 − 𝐻). Such a choice yields M-functions which are analytic 

everywhere and inside the range EH < E < EL (where EH  is the HOMO energy and EL 

is the LUMO energy) and they can be approximated by low-order polynomials in EM. 
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In bipartite lattices describing molecules with a filled HOMO and EHL=( EH + EL )/2 

=0, then the M-functions Ma,b(E) are either odd or even functions of E. For the former, 

Ma,b(0)=0, whereas for the latter Ma,b(0) is an integer.  

The crucial observation is that when the linker groups are very weak, and the Fermi 

energy EF is located at the mid-gap E= EHL, then the denominator in equation 2.6.4 

can be approximated by unity, because EHL is far from the poles of the Greens 

function in the denominator of 2.4.6. Consequently the low-temperature electrical 

conductance σa,b  ~ [Ma,b(EHL)]
2
.  

 

Hence the ratio of two conductances linked to ( a and b or l and m) is given by the 

mid-gap M-ratio rule:                                     

                                              𝜎𝑎,𝑏/𝜎𝑙,𝑚 = [𝑀𝑎,𝑏(𝐸𝐻𝐿)/𝑀𝑙,𝑚(𝐸𝐻𝐿)]
2
                   (2.6.10)

                                       

More generally, the ratio of two conductances σa,b for arbitrary EF  in the vicinity of 

the mid-gap is given by: 

                                               𝜎𝑎,𝑏/𝜎𝑙,𝑚 = [𝑀𝑎,𝑏(𝐸𝐹)/𝑀𝑙,𝑚(𝐸𝐹)]
2
                   (2.6.11)                         

 

If the coupling from the molecule to the electrodes are very weak via atomic orbitals a 

and b, then the transmission coefficient is proportional to ‘isolated-core transmission 

coefficient’ Ta,b(E), where; 

                𝑇𝑎,𝑏(𝐸) = (𝑀𝑎,𝑏(𝐸)/  𝐷(𝐸))
2 = (𝐺𝑎,𝑏(𝐸))

2                   (2.6.12) 

 

Comparing the plots of Ta,b(E) versus E with other theories of electron transmission 

may be of interest , but it is much more complicated with the plotting of  Ma,b(E), 

because of the presence of the denominator D(E).  
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2.6.2 Taylor expansions of M-functions, Green’s functions and core 

transmission functions 

 

Later we shall be interested in Taylor expansions of Green’s functions and M- 

functions, which we now examine for subsequent use. 

In terms of the mid-gap energy EHL,  

 

𝐺(𝐸) = (𝐸 − 𝐻)−1 = (𝐸𝐻𝐿 − 𝐻)
−1[1 + (𝐸 − 𝐸𝐻𝐿)(𝐸𝐻𝐿 − 𝐻)

−1]−1  = (𝐸𝐻𝐿 −

𝐻)−1∑ (𝐸𝐻𝐿 − 𝐻)
−𝑛∞

𝑛=0 [−(𝐸 − 𝐸𝐻𝐿)]
𝑛 = 𝐺(𝐸𝐻𝐿)∑ 𝐺(𝐸𝐻𝐿)

−𝑛∞
𝑛=0 [−(𝐸 − 𝐸𝐻𝐿)]

𝑛            

(2.6.13)                                          

 

 

Hence to order (𝐸 − 𝐸𝐻𝐿)
2,  

 

                                 

                  𝐺(𝐸) =  𝐺(𝐸𝐻𝐿) + (𝐸𝐻𝐿 − 𝐸)𝐺
2(𝐸𝐻𝐿) + (𝐸𝐻𝐿 − 𝐸)

2𝐺3(𝐸𝐻𝐿)       (2.6.14) 

The above equation allows us to generate a low-order power series for M-functions, 

Since 𝑀(𝐸) = 𝐷(𝐸)𝐺(𝐸), and it will be convenient to define 𝜺 = (𝐸 −  𝐸𝐻𝐿)/𝐷(𝐸𝐻𝐿) 

and therefore to order 𝜺𝟐,  

 

                        𝐺(𝐸) =  𝐺(𝐸𝐻𝐿)[1 − 𝜀𝑀(𝐸𝐻𝐿) + 𝜀
2𝑀2(𝐸𝐻𝐿)] + …                 (2.6.15)                           

 

And 

 

                     𝑀(𝐸) = 𝐷(𝐸)𝐺(𝐸𝐻𝐿)[1 − 𝜀𝑀(𝐸𝐻𝐿) + 𝜀
2𝑀2(𝐸𝐻𝐿)] + …           (2.6.16)               

 

Here , 𝐷(𝐸) = 𝑎 𝑑𝑒𝑡(𝐸 − 𝐻) /𝑃(𝐸), where 𝑃(𝐸) cancels degeneracies.  
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The M-function can be represented by a low-order polynomials in 𝐸𝑀 in contrast with 

a Green’s function. In what follows, we shall generate low-order Taylor expansions in 

EM of the form: 

              𝑀𝑎𝑏(𝐸) = 𝑀𝑎𝑏(𝐸𝐻𝐿) + 𝑀𝑎𝑏
(1)
𝐸𝑀 + 𝑀𝑎𝑏

(2)
𝐸𝑀
2 +⋯                                (2.6.17) 

 

Where 𝐸𝐻𝐿 = 0, 𝑀(3) = −1/2𝐼 (I is the unit matrix) and  𝑀(1) , 𝑀(2) can be 

constructed from a knowledge of 𝑀(𝐸𝐻𝐿) alone. So 𝑀(1) = 
1

2
 𝑀2(𝐸𝐻𝐿) and  𝑀(2) = 

𝑀(𝐸𝐻𝐿) {
1

4
 [𝑀2(𝐸𝐻𝐿) − 5]}.                     
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Chapter 3  

        

 Wigner delay time in graphene-like 

molecules. 

 

 

3.1   Introduction 

 

The Wigner delay time function was proposed by Wigner in 1955 for a single 

scattering channel and was first derived from a Hermitian operator based on the 

scattering amplitude  and then generalized by Smith  in 1960 to the multichannel 

scattering matrices[1, 2]. 

Wigner delay time is a measure of time spent by the electron within a scatter, as it 

passes from one electrode to another through the scattering region [1].  Scattering 

processes are common in many areas of physics, and therefore many systems are 

candidates for the measurement of this time delay [3]. 

In this chapter, I will discuss the concept of Wigner delay time with a quick summary 

of the most fundamental properties. I consider a molecule as a scattering region 

which is described by the Hamiltonian, and I’m interesting to see how much 

time the electron spends when it comes from one lead through the molecule to 

another lead. In this chapter I focus on the analytical formula to have a clear 

understanding for the derivation of Wigner delay time in graphene like 

molecules. In the beginning, I will introduce the solution of the time dependent 
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Schrödinger equation for Wigner delay time by using a scattering problem as a 

simple model leading to understand the concept of                                                                                                                    

time delay. Then, I present a simple tight-binding model of two identical (1-D) 

infinite leads connected with an independent scattering region by hopping 

elements (−𝛼𝐿) and (−𝛼𝑅) to have a clear picture about the phase and their 

relation with time delay. This scattering problem allows us to describe the phase 

difference between a scattered wave and a freely propagating one by using Wigner 

delay time[2] 

 

3.2   Analytical formula of Wigner delay time in graphene-like 

molecules. 

In the following sections I will derive the analytical formula for the Wigner delay 

time. 

 3.2.1   Solution of time dependent Schrödinger equation for Wigner 

delay time 

First, I consider the Schrödinger equation in a one-dimensional system with no 

scattering: 

     

                                             𝐻(𝑥) 𝛹(𝑥) = 𝐸 𝛹(𝑥)                                                     (3.2.1) 

Where                             𝐻(𝑥) = −
ħ2

2𝑚
 
𝑑2

𝑑𝑥2
         ,   𝛹(𝑥) =  𝑒𝑖𝑘𝑥        and      E  = 

ħ2𝑘2

2𝑚
 

 

To solve                                                                                       
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                                              𝑖ħ 
𝜕𝛹(𝑥,𝑡) 

𝜕 𝑡
=  𝐻(𝑥) 𝛹(𝑥, 𝑡)                                       (3.2.2) 

We write;                                         

                                                              𝛹(𝑥, 𝑡) =  𝑒𝑖𝑘𝑥 𝑒−𝑖𝜔𝑡                                           (3.2.3) 

Since                                             
𝜕 

𝜕𝑡
𝛹 = −𝑖𝜔𝛹                                                         (3.2.4) 

                                                              
−𝜕2

𝜕𝑥2
𝛹 = 𝑘2𝛹                                                         (3.2.5) 

By putting equation (3.2.4) and (3.2.5) into (3.2.2) we get: 

                                                             ħωΨ = 
ħ2𝑘2

2𝑚
 Ψ                                                         (3.2.6) 

So that,  ħ𝜔  = 
ħ2𝑘2

2𝑚
 

More generally an electron wave packet moving in one dimension is: 

                                                          𝛹(𝑥, 𝑡) = ∫𝑑𝑘 𝑎𝑘 𝑒
𝑖(𝑘𝑥−𝜔𝑘𝑡)                              (3.2.7) 

If the time  𝑡 = 0 then; 

                                        𝛹(𝑥, 0) =  ∫ 𝑑𝑘 𝑎𝑘 𝑒
𝑖𝑘(𝑥−𝑥0)                                               (3.2.8) 

If this initial wave packet has a maximum at 𝑥0, and if 𝑎𝑘 has a maximum at 𝐸0 =

 ħ𝜔0 then at a later time 𝑡  , the wave packet will have a maximum at 

𝑥𝑡 = 𝑥0 + 𝑣𝑡 

𝑣 =  
𝜕𝜔

𝜕𝑘
  ,       ħ𝑣 =  

𝜕𝐸

𝜕𝑘
         where,   𝐸 = 𝐸0 =  ħ𝜔0 

If such a wave passes through a scatter, then the transmitted wave packet will have the 

form; 

                                           𝛹𝑇(𝑥, 𝑡) ∫ 𝑑𝑘 𝑎𝑘 𝑡(𝜔𝑘)  𝑒
𝑖(𝑥−𝜔𝑘𝑡)                                    (3.2.9) 

Where  

                                          𝑡(𝜔𝑘) = |𝑡(𝜔𝑘)|𝑒
𝑖𝜃(𝜔0)𝑒𝑖[𝜃(𝜔𝑘)−𝜃(𝜔0)]        (3.2.10) 
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Assuming  |𝑡(𝜔𝑘)| is approximately constant |𝑡(𝜔0)| on the scale of the width in energy 

of the   amplitudes  𝑎𝑘  yields 

                                       𝛹𝑇(𝑥, 𝑡) ≈ 𝑡(𝜔0) ∫𝑑𝑘 𝑎𝑘 𝑒
𝑖[𝜃(𝜔𝑘)−𝜃(𝜔0)]  𝑒𝑖(𝑥−𝜔𝑘𝑡)                                           

Writing                         𝜃(𝜔𝑘) ≈ 𝜃(𝜔0) +
𝜕𝜃(𝜔0)

𝜕𝜔0
 (𝜔𝑘 − 𝜔0)             (3.2.11)      

yields 

                                      𝛹𝑇(𝑥, 𝑡) = 𝑡(𝜔0) ∫𝑑𝑘 𝑎𝑘 𝑒
𝑖𝛽(𝜔𝑘−𝜔0) 𝑒𝑖(𝑥𝑘−𝜔𝑘𝑡)                   (3.2.12) 

                        ie          𝛹𝑇(𝑥, 𝑡) = 𝑡(𝜔0) 𝑒
−𝑖𝛽(𝜔0) ∫ 𝑑𝑘 𝑎𝑘 𝑒

𝑖𝑘𝑥 𝑒−𝑖𝜔𝑘(𝑡−𝛽)              (3.2.13) 

Where  𝛽 = 
𝜕𝜃(𝜔0)

𝜕𝜔0
 . 

 The modulus squared of the transmitted wave is exactly the same the wave without a 

scattering region but multiplied by 𝑡(𝜔0)
2, but t  is shifted by 𝛽 so this 𝛽 is a delay 

time. 

 

In what follows, we show that when the coupling to the molecule is very weak and the 

Fermi energy of the molecule is at the centre of the HOMO-LUMO gap, the Wigner 

delay time of graphene-like molecules between two atoms a, b  depends on the value 

of M-functions at each site (𝑀𝑎𝑎 , 𝑀𝑏𝑏)[4]. 
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              Figure 3.2.1.The simple tight-binding model of two identical (1-D) infinite 

leads connected with an independent scattering region by hopping elements  (−𝛼𝐿) 

and (−𝛼𝑅). 

 

 

  
In particular, the tight-binding model related to the Wigner delay time for scattering 

theory of molecules represented by lattices shown in figure (3.5.1) model are reviewed in 

this study. In the paradigm example of a tight-binding model figure (3.2.1) where there 

are two identical (1-D) infinite leads connected with an independent scattering region 

in the limit of weakly coupling by (−𝛼𝐿) and (−𝛼𝑅). When the electron comes from 

one lead and passes through the molecule to the other lead, the associated dispersive 

behavior leads to the time delay. 

Therefore, we know that each particular wave component of a transmitted wave 

packet has following form of the transmission coefficient:  

                                                   𝑇(𝐸) = |𝑡(𝐸)|2                                                        (3.2.14)                                                                           

  The transmission amplitude contains the magnitude and the phase 

                                           𝑡(𝐸) = |𝑡(𝐸)| × 𝑒𝑖𝜃(𝐸)                                              (3.2.15)                                                  

The corresponding Wigner delay time  𝜏𝑤 is defined by:                
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     𝜏𝑤 =
 𝑑𝜃

𝑑𝜔
= ħ

 𝑑𝜃

𝑑𝐸
                                                                  (3.2.16)                                                

For a molecule which is weakly coupled to electrodes, shall I now prove that the delay 

time takes the form ; 

                                      θ(E) = tan−1( 
∆2

1+ ∆1
 )                                                      (3.2.17)                                                                  

From the previous chapter I introduced a method to calculate a transmission 

coefficient using wave functions and we end with equation (2.4.22) where in this 

equation the transmission amplitude for a scattering problem connected with two 

identical leads as shown in figure (3.2.1) is given by: 

                                    𝑡 =  2𝑖 𝑠𝑖𝑛 𝑘 × е2𝑖𝑘  × (
 𝛼𝐿 ×𝛼𝑅

𝛾
) × 

ɡ𝑎𝑏

∆
                              (3.2.18)                   

In this equation, 𝛼𝐿 , 𝛼𝑅 in figure (3.2.1) are the coupling between molecule and the 

left and right lead respectively , 𝛾 is the coupling of the atoms in the leads.  ɡab is the 

green’s function of site element ‘a’ and ‘b’ when the electron comes from ‘a’ site and 

passes from ‘b’ site , which is a property of the core molecule where ɡ= ( 𝐸 − 𝐻)−1 

and H is the Hamiltonian describing the isolated core. So when H is real, the Green’s 

function is real.  Δ is a complex because it contains a real part and an imaginary part and 

we are interested in Wigner delay time which is  a derivation of the phase, and the phase 

here is a contribution of е2𝑖𝑘    and  also from an imaginary part of Δ. But in  е2𝑖𝑘      the 

phase is zero where 𝑖 is a phase of  𝜋 2⁄  this is not going to change anything in the 

delay time and k which is a property of the lead does change, but only very slowly 

with energy because the barriers in the leads are not big. So the only parameter which 

is changed by energy is the phase of Δ and then when we differentiate the phase of Δ 

with different energy we end with 
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        ∆= 1 +
 𝛼𝐿

2

ϒ
 𝑔𝑎𝑎 𝑒

𝑖𝑘 + 
 𝛼𝑅

2

ϒ
𝑔𝑏𝑏 𝑒

𝑖𝑘 + 
𝛼𝐿
2× 𝛼𝑅

2

ϒ
2  (𝑔𝑎𝑎 × 𝑔𝑏𝑏 - 𝑔𝑎𝑏  × 𝑔𝑏𝑎 )  (3.2.19) 

                                                                                                                        × 𝑒2𝑖𝑘                      

 

Where,                                            ∆ = 1 + ∆1 + 𝑖∆2                                         (3.2.20) 

                                                      ∆1=  𝛼 𝑐𝑜𝑠𝑘 +  𝛽 𝑐𝑜𝑠2𝑘                                (3.2.21) 

                                                      ∆2=  𝛼 𝑠𝑖𝑛𝑘 +  𝛽 𝑠𝑖𝑛2𝑘                                (3.2.22) 

And 

                                                    𝛼 =  
1

ϒ
× (𝑔𝑎𝑎× 𝛼𝐿

2+ 𝑔𝑏𝑏× 𝛼𝑅
2)                    (3.2.23) 

                                               𝛽 = (𝑔𝑎𝑎 × 𝑔𝑏𝑏 - 𝑔𝑎𝑏  × 𝑔𝑏𝑎 ) × ( 
𝛼𝐿
2× 𝛼𝑅

2

ϒ
2 )         (3.2.24) 

 

In the weak coupling limit; 

θ = 
𝜋

2
 +2k+Sπ – ϕ          where            S = 0 if 𝑔𝑎𝑏 > 0 

                                                               = 1 if   𝑔𝑎𝑏 < 0 

                                                           𝑡𝑎𝑛𝜙 =( 
∆2

1+ ∆1
 )                                                    (3.2.25)       

                 
𝑑 tan𝜙

𝑑𝐸
 = 
𝑑 tan𝜙

𝑑𝜙
× 
𝑑𝜙

𝑑𝐸
  =  (1 + 𝑡𝑎𝑛2𝜙) × 

𝑑𝜙

𝑑𝐸
  =  

𝑑∆2
𝑑𝐸

1+∆1
 × 
∆2  × 

𝑑∆1
𝑑𝐸

(1+∆1)2
 

                                                   
𝑑𝜙

 𝑑𝐸
 = 
(1+ ∆1) ∆2̇ −∆2 ∆1̇

(1+∆1)2
                                           (3.2.26)     

In the weak coupling limit; 
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𝑑𝜙

 𝑑𝐸
 ≈ ∆2̇ ≈ 𝛼̇ sin 𝑘 + 𝛽̇𝑠𝑖𝑛2𝑘                             (3.2.27) 

In the limit of weakly coupling to the electrodes,   β≪ 𝛼 

                                                   𝜏𝑎𝑏 ≈  ћ 
 𝑑𝜙

𝑑𝐸
 ≈  

ћ

ϒ
 (𝑔̇𝑏𝑏𝛼𝑅

2 + 𝑔̇𝑎𝑎𝛼𝐿
2)                        (3.2.28)  

Where we have defined an intrinsic core delay time to be 

                                                     𝜏𝑎𝑎 =
𝑑𝑔𝑎𝑎

𝑑𝐸
=  𝑔̇𝑎𝑎                                                        (3.2.29) 

                                

This equation shows that the total delay time is a sum of independent times due to 

each contact and is of the form: 

                                                      𝜏𝑎𝑏 ≈ 
ћ

ϒ
(𝜏𝑏𝑏𝛼𝑅

2 + 𝜏𝑎𝑎𝛼𝐿
2)                                       (3.2.30) 

Which is independent of the coupling to the leads. 

 
 

3.3   M-function, relation between connectivities and Wigner delay 

time 

I predict that when the coupling to the molecule is very weak and the Fermi energy 

coincides with the center of the HOMO-LUMO gap, the contribution to the delay time 

due a lead connected to site ‘a’ is 𝜏𝑎𝑎 , which I have found to be proportional to 𝑔̇𝑎𝑎.  

Now I use this expression to compute Wigner delay times in graphene-like cores 

which can be represented by lattices of identical sites whose Hamiltonian H is simply 

proportional to a parameter-free connectivity matrix C.  In this case for electrons of 

energy E entering the core at site a and exiting at site b, then I obtain the delay time 
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from the M-function 𝑀𝑎𝑏(𝐸), which is parameter-free and depends on connectivity 

alone.  

 

3.4   Properties of the intrinsic core delay time 𝝉𝒂𝒂. 

As I discussed in chapter 2, M-functions are related to the green’s function of a core by:  

                                                    𝑀(𝐸)=det(𝐸 − 𝐻)×ɡ(E)                                     (3.4.1)   

From equation ( 2.6.14) to order (𝐸 − 𝐸𝐻𝐿)
2                                                                    

                                               𝐺(𝐸) =  𝐺(𝐸𝐻𝐿) + (𝐸𝐻𝐿 − 𝐸)𝐺
2(𝐸𝐻𝐿) 

Therefore 

                   𝐺̇(𝐸𝐻𝐿) =  −𝐺
2(𝐸𝐻𝐿) = −𝑀

2(𝐸𝐻𝐿)/𝐴
2            (3.4.2) 

Where = det(𝐸𝐻𝐿 − 𝐻). 

So the Wigner delay time of intrinsic core is given by: 

                    

                                         𝜏𝑎𝑎 = −(𝑀0
2)𝑎𝑎/𝐴

2                                                     (3.4.3)                                           

 

 Where   𝑀0 =  𝑀(𝐸𝐻𝐿) and (𝑀0
2 )𝑎𝑎 is the 𝑎𝑎 elements of the squared 

matrix 𝑀2(𝐸𝐻𝐿). 

Therefore, by just looking at the table of  (𝑀0
2) we obtain the connectivity 

dependence of the Wigner delay time of a given PAH core. 
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3.5   Results and discussion 

Consider the graphene-like molecules shown in figure (3.5.1) in which (a) represents a 

benzene ring, (b) Naphthalene, (c) Anthracene, (d) Tetracene, (e) Pentacene, (f) 

Pyrene, (g) Anthanthrene and (k) Azulene, all of which are bipartite lattices except 

azulene which is a non-bipartite lattice. I predict that when the coupling to the 

molecule is weak and the Fermi energy coincides with the center of the HOMO-

LUMO gap the delay time of the intrinsic core for example of site ‘a’ is proportional 

to  𝜏𝑎𝑎 which is equal to 𝑔̇𝑎𝑎. Here I use a minimal tight-binding description where 

only pi orbitals were taken into account and without losing any generality, the 

Hamiltonian constructed by considering site energies to be 0 and coupling between 

connected sites to be -1. 

 

 

                 Figure 3.5.1.Molecular structure of substituted a) benzene ring, b)  

naphthalene, c) anthracene, d) 4-ring, e) 5-ring, f)  pyrene, g) anthanthrene and k)  

Azulene. 

 

 

a) b) c) 

d) e) 

f) g) k) 
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We now examine three examples: 

 

Example 1 

Consider a naphthalene core shown in figure (3.5.2,a) the Wigner delay time for the 

connectivity with equal M-number is equal. So, for those connectivities where 

𝑀𝑎𝑎 = 𝑀𝑏𝑏 then  𝜏𝑎𝑎 = 𝜏𝑏𝑏. For example as shown in the  table of figure (3.5.2,c) for 

sites 1 and 6 where their M-number are equal figure(3.5.2,b) then 𝜏11 = 𝜏66 whereas 

for those connectivity that the M-numbers are different the τ’s are different (if the 

𝑀𝑎𝑎 ≠ 𝑀𝑏𝑏 then 𝜏𝑎𝑎 ≠ 𝜏𝑏𝑏, for example 𝜏11 ≠ 𝜏99). From equation (3.2.30) it is 

apparent that the Wigner delay time from site ‘a’ to ‘b’ (𝜏𝑎𝑏) could be obtained by 

having 𝜏𝑎𝑎 and 𝜏𝑏𝑏. The table of figure (3.5.2,c) describes the Wigner delay time in 

the middle of HOMO-LUMO gap. To obtain the Wigner delay time for other 

reference energies, one needs to use the M-function.  

 

 

 

                  Figure 3.5.2.a) The molecule structure of naphthalene with numbering. b) 

Energy-dependent M-functions of naphthalene. c)   𝑀0
2 table of naphthalene.  

 

 

b) c) a) 

1 2 3 4 5 6 7 8 9 10

1 72 0 -18 0 -9 0 36 0 -45 0

2 0 99 0 -63 0 36 0 -9 0 -45

3 -18 0 45 0 -18 0 -9 0 -9 0

4 0 -63 0 99 0 -45 0 -9 0 36

5 -9 0 -18 0 72 0 -45 0 36 0

6 0 36 0 -45 0 72 0 -18 0 -9

7 36 0 -9 0 -45 0 99 0 -63 0

8 0 -9 0 -9 0 -18 0 45 0 -18

9 -45 0 -9 0 36 0 -63 0 99 0

10 0 -45 0 36 0 -9 0 -18 0 72
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Example 2 

Consider a benzene ring, as shown in figure (3.5.3,a) where M-function for all sites 

are the same then Wigner delay time of all connectivities is equal as shown in figure 

(3.4.3,b and c). 

 

 

 

                

                Figure 3.5.3.a)The molecule structure of benzene with numbering. b)  Energy-dependent M-

functions of benzene. c)   𝑀0
2

 table of benzene.  

 

 

Example 3 

Consider an azulene as shown in figure (3.5.4,a) and we found from  𝑀0
2 table and M-

function in figure (4.5.4,b and c) 𝑀33 = 𝑀55 then  𝜏33 = 𝜏55 also 𝑀66 ≠ 𝑀99 then 

𝜏66 ≠ 𝜏99. 

a) b) c) 
1 2 3 4 5 6

1 12 0 -4 0 -4 0

2 0 12 0 -4 0 -4

3 -4 0 12 0 -4 0

4 0 -4 0 12 0 -4

5 -4 0 -4 0 12 0

6 0 -4 0 -4 0 12
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                  Figure 4.5.4.a) The molecule structure of azulene with numbering. b) 

Energy-dependent M-functions of azulene. c)   𝑀0
2 table of azulene.  

 

Note that the Wigner delay time is independent on the distance between atoms, for 

example the Wigner delay time of connectivy 1 and 10 (short distance) is equal to the 

Wigner delay time of connectivy  1 and 6 (long distance) in figure (3.5.2,a and c). So, 

this is due to the equality of the M-function. 

 

 

To demonstrate how the Wigner delay time changes with the number of rings in 

series, I calculate the maximum and minimum values of τ as a function of the number 

of rings in structures in figure (3.5.5). Then I plotted the envelope of the maximum 

and minimum of the Wigner delay time as shown in figure (3.5.6) and from this figure 

it is apparent that by increasing the number of N-rings for the PAH molecules shown 

in figure (3.5.5) τ also is increased. 

For benzene all the Wigner delay times are equal whereas for other molecules shown 

in figure (3.5.5) we have different delay times, the maximum is shown in red and the 

minimum in blue.  For example in naphthalene the maximum delay time corresponds 

to atoms number 2, 4, 9, 7 and atoms 3 and 8 have the minimum value.  

a) b) c) 
1 2 3 4 5 6 7 8 9 10

1 20 -10 -12 9 5 -9 2 -10 -11 10

2 -10 28 4 -20 2 12 -9 5 9 -12

3 -12 4 21 -3 -13 2 5 11 4 -11

4 9 -20 -3 28 -3 -20 9 4 -9 4

5 5 2 -13 -3 21 4 -12 -11 4 11

6 -9 12 2 -20 4 28 -10 -12 9 5

7 2 -9 5 9 -12 -10 20 10 -11 -10

8 -10 5 11 4 -11 -12 10 32 1 -24

9 -11 9 4 -9 4 9 -11 1 19 1

10 10 -12 -11 4 11 32 32 32 32 32
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               Figure 3.5.5.The molecules structure by increasing the number of rings.  

 

 

 

 

              Figure 3.5.6.Graph of max –min τaa by increasing number of rings. 

 

 

It is interesting to note that the maximum and minimum Wigner delay time 𝜏𝑎𝑎 of the 

PAH core molecules shown in figure (3.5.5) are located at the center of the molecule 

as shown with blue (minimum) and red (maximum) in the figure.  

 

a) b) c) 

d) e) 
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 Now I examine the relation between Wigner delay time 𝜏𝑎𝑎 and the local density of 

states  𝜂𝑎𝑎, which allows us to compare with results obtained from density functional 

theory calculations. If 𝜍 is a small positive number, then 

                                   𝑔 = ∑
|𝛹𝑛⟩ ⟨𝛹𝑛|

𝐸−𝐸𝑛+𝑖𝜍
𝑛                                                                     (3.5.1) 

                                   𝑔 = ∑
|𝛹𝑛⟩ ⟨𝛹𝑛|

(𝐸−𝐸𝑛)2+(𝐸−𝐸𝑛−𝑖𝜍)
𝑛                                                      (3.5.2) 

Hence 

                                    𝐼𝑚 𝑔 = ∑
𝜍    |𝛹𝑛⟩ ⟨𝛹𝑛|

(𝐸−𝐸𝑛)2+  𝜍2
𝑛                                                         (3.5.3)   

Also 

                                   (𝑔2)𝑎𝑏 = ∑
⟨𝑎|𝛹𝑛⟩ ⟨𝛹𝑛|𝑏⟩

(𝐸−𝐸𝑛)2
𝑛                                                       (3.5.4) 

Therefore 

                                    𝜂𝑎𝑎 =   − 𝐼𝑚 (𝑔𝑎𝑎)/𝜋  = 𝜍 (𝑔2)𝑎𝑎/𝜋                                (3.5.5) 

 

This means that for those connectivities which the core wave-function is more 

localized, the Wigner delay time is higher, as shown in figure (3.5.7). For example for 

naphthalene the M-table predicts the maximum Wigner delay time is for connectivity 

2,4,7,9 whereas the minim delay is for 3,8 and for the LDOS calculation of figure 

(3.5.7) it is clear that there is more weight on sites 2, 4, 7, and 9 but there is no weight 

on sites 3 and 8.  
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                       Figure 3.5.7. LDOS  of molecules obtained from the DFT code SIESTA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) c) 

d) e) 

f ) g) k) 
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Chapter 4 

 

Conclusion and future work 

 

4.1   Summary 

This Thesis has focused on the following:   

1) Green's functions based calculations of electronic transmission in quantum 

transport have been carried out. The study involved the calculation of the 

retarded Greens’ function in which simple formula of one-dimensional tight 

binding chain in presented and by breaking the periodicity of the lattice at a 

single connection it was shown that the Greens’ function is associated with 

transmission coefficient along the scattering region. 

 

 

2) Investigation of the Wigner delay time in graphene-like molecules has been 

studied and the solution of the analytical formula for the Wigner delay time 

shows that when the coupling to the molecule is very weak and the Fermi 

energy of the molecule is at the centre of the HOMO-LUMO gap the Wigner 

delay time of graphene-like molecules between two atoms a, b  just depend on 

the value of M-functions at each site (𝑀𝑎𝑎, 𝑀𝑏𝑏). Also when the M-functions 

of two connectivities are the same then the Wigner delay time of those 

connectivities are equal. 
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4.2   Future Work 

In this thesis, I have concentrated on the connectivity-dependence of Wigner delay 

times for electrons. For the future it would of interest to examine the connectivity-

dependence of delay tames for phonons [1,2] and quasi-particles associated with 

superconducting leads [3] , spin-dependent delay times in the presence of 

ferromagnetic leads or more complex metals[4,5], combinations of superconducting 

and ferromagnetic leads [6,7] and the connectivity dependence of current-induced 

forces [8]. In practice, for such complex structures, it may not be possible to obtain 

simple analytic results. Nevertheless such problems could be investigated numerically, 

using quantum transport codes such as the multiple-scattering code Gollum [9].  
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