



## Potential applications of subseasonal-to-seasonal (S2S) predictions

|                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Journal:                      | <i>Meteorological Applications</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Manuscript ID                 | MET-16-0083.R2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wiley - Manuscript type:      | Review Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Submitted by the Author: | n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Complete List of Authors:     | <p>White, Christopher; University of Tasmania, School of Engineering &amp; ICT; JBA Trust, -</p> <p>Carlsen, Henrik; Stockholm Environment Institute, -</p> <p>Robertson, Andrew; Columbia University International Research Institute for Climate and Society, -</p> <p>Klein, Richard; Stockholm Environment Institute, -</p> <p>Lazo, Jeffrey; NCAR, Research Applications Laboratory</p> <p>Kumar, Arun; National Oceanic and Atmospheric Administration, Climate Prediction Center</p> <p>Vitart, Frédéric; European Centre for Medium-Range Weather Forecasts, -</p> <p>Coughlan de Perez, Erin; Red Cross / Red Crescent Climate Centre, -; Columbia University International Research Institute for Climate and Society, -</p> <p>Ray, Andrea; National Oceanic and Atmospheric Administration, Earth System Research Laboratory</p> <p>Murray, Virginia; Public Health England, -</p> <p>Bharwani, Sukaina; Stockholm Environment Institute, -</p> <p>MacLeod, David; University of Oxford, Atmospheric, Oceanic and Planetary Physics</p> <p>James, Rachel; University of Oxford, Environmental Change Institute</p> <p>Fleming, Lora; University of Exeter, The European Centre for Environment &amp; Human Health</p> <p>Morse, Andrew; University of Liverpool, School of Environmental Sciences</p> <p>Eggen, Bernd; Public Health England Centre for Radiation Chemical and Environmental Hazards, -</p> <p>Graham, Richard; UK Met Office, -</p> <p>Kjellström, Erik; Swedish Meteorological and Hydrological Institute, Rossby Centre</p> <p>Becker, Emily; National Oceanic and Atmospheric Administration, Climate Prediction Center</p> <p>Pegion, Kathleen; George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences &amp; Center for Ocean-Land-Atmosphere Studies</p> <p>Holbrook, Neil; University of Tasmania, Institute for Marine and Antarctic Studies</p> <p>McEvoy, Darryn; RMIT University, Global Cities Research Institute</p> <p>Depledge, Michael; University of Exeter, The European Centre for Environment &amp; Human Health</p> <p>Perkins-Kirkpatrick, Sarah; University of New South Wales, ARC Centre of</p> |

|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <p>Excellence for Climate System Science<br/>Brown, Timothy; Desert Research Institute, -<br/>Street, Roger; University of Oxford, UK Climate Impacts Program<br/>Jones, Lindsey; London School of Economics and Political Science, -<br/>Remenyi, Tomas; Antarctic Climate &amp; Ecosystems Cooperative Research Centre , -<br/>Hodgson-Johnston, Indi; Antarctic Climate &amp; Ecosystems Cooperative Research Centre , -<br/>Buontempo, Carlo; UK Met Office, -<br/>Lamb, Rob; JBA Trust, -; JBA Consulting, -<br/>Meinke, Holger; University of Tasmania, Tasmanian Institute of Agriculture<br/>Arheimer, Berit; Swedish Meteorological and Hydrological Institute, -<br/>Zebiak, Stephen; Columbia University International Research Institute for Climate and Society, -; Climate Information Services Ltd., -</p> |
| Keywords:            | Climate Prediction < Forecasting, Decision-support < Forecasting, Ensemble Forecasts < Forecasting, Extremes < Forecasting, Medium-range < Forecasting, Seasonal < Forecasting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Manuscript keywords: | subseasonal, seasonal forecasting, applications, decision-making                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



## 1 Potential applications of subseasonal-to-seasonal (S2S) predictions

2 Christopher J. White<sup>1,2\*</sup>, Henrik Carlsen<sup>3</sup>, Andrew W. Robertson<sup>4</sup>, Richard Klein<sup>3</sup>, Jeffrey K.  
3 Lazo<sup>5</sup>, Arun Kumar<sup>6</sup>, Frederic Vitart<sup>7</sup>, Erin Coughlan de Perez<sup>4,8</sup>, Andrea J. Ray<sup>9</sup>, Virginia  
4 Murray<sup>10</sup>, Sukaina Bharwani<sup>11</sup>, Dave MacLeod<sup>12</sup>, Rachel James<sup>13</sup>, Lora Fleming<sup>14</sup>, Andrew P.  
5 Morse<sup>15</sup>, Bernd Eggen<sup>16</sup>, Richard Graham<sup>17</sup>, Erik Kjellström<sup>18</sup>, Emily Becker<sup>6</sup>, Kathleen V.  
6 Peginon<sup>19</sup>, Neil J. Holbrook<sup>20</sup>, Darryn McEvoy<sup>21</sup>, Michael Depledge<sup>14</sup>, Sarah Perkins-  
7 Kirkpatrick<sup>22</sup>, Timothy J. Brown<sup>23</sup>, Roger Street<sup>24</sup>, Lindsey Jones<sup>25</sup>, Tomas A. Remenyi<sup>26</sup>, Indi  
8 Hodgson-Johnston<sup>26</sup>, Carlo Buontempo<sup>17</sup>, Rob Lamb<sup>2,27</sup>, Holger Meinke<sup>28</sup>, Berit Arheimer<sup>18</sup> and  
9 Stephen E. Zebiak<sup>4,29</sup>

<sup>1</sup> School of Engineering & ICT, University of Tasmania, Hobart, Australia

<sup>2</sup> JBA Trust, Skipton, North Yorkshire, United Kingdom

<sup>3</sup> Stockholm Environment Institute, Stockholm, Sweden

<sup>4</sup> International Research Institute for Climate and Society, Columbia University, Palisades, New York, USA

<sup>5</sup> National Center for Atmospheric Research (NCAR) / Research Applications Laboratory (RAL), Boulder, Colorado, USA

<sup>6</sup> National Oceanic and Atmospheric Administration (NOAA) / Climate Prediction Center (CPC), College Park, Maryland, USA

<sup>7</sup> European Centre for Medium-Range Weather Forecasting (ECMWF), Reading, United Kingdom

<sup>8</sup> Red Cross / Red Crescent Climate Centre, International Research Institute for Climate and Society, Columbia University, Palisades, New York, USA

<sup>9</sup> National Oceanic and Atmospheric Administration (NOAA) / Earth System Research Laboratory (ESRL), Boulder, Colorado, USA

<sup>10</sup> Public Health England (PHE), London, United Kingdom

<sup>11</sup> Stockholm Environment Institute, Oxford, United Kingdom

<sup>12</sup> Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, Oxford, United Kingdom

<sup>13</sup> Environmental Change Institute, University of Oxford, Oxford, United Kingdom

<sup>14</sup> The European Centre for Environment & Human Health, University of Exeter, Truro, United Kingdom

<sup>15</sup> School of Environmental Sciences, University of Liverpool, United Kingdom

<sup>16</sup> Centre for Radiation, Chemical & Environmental Hazards, Public Health England (PHE), Chilton, United Kingdom

<sup>17</sup> UK Met Office, Exeter, United Kingdom

<sup>18</sup> Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden

<sup>19</sup> Department of Atmospheric, Oceanic and Earth Sciences & Center for Ocean-Land-Atmosphere Studies, George Mason University, Fairfax, Virginia, USA

<sup>20</sup> ARC Centre of Excellence for Climate System Science, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

<sup>21</sup> Global Cities Research Institute, RMIT University, Melbourne, Australia

<sup>22</sup> ARC Centre of Excellence for Climate System Science, Climate Change Research Centre, University of New South Wales, Sydney, Australia

<sup>23</sup> Desert Research Institute, Reno, Nevada, USA

<sup>24</sup> UK Climate Impacts Program (UKCIP), University of Oxford, Oxford, United Kingdom

<sup>25</sup> London School of Economics and Political Science (LSE), London, United Kingdom

<sup>26</sup> Antarctic Climate & Ecosystems Cooperative Research Centre (ACE CRC), Hobart, Australia

<sup>27</sup> Lancaster Environment Centre, Lancaster University, Lancaster, UK

<sup>28</sup> Tasmanian Institute of Agriculture, University of Tasmania, Hobart, Australia

<sup>29</sup> Climate Information Services Ltd., Tappan, New York, USA

10

11

Submitted to: Meteorological Applications

12 \*Corresponding author: Dr Christopher J. White, School of Engineering & ICT, University of  
13 Tasmania, Private Bag 65, Hobart, TAS, 7001, Australia. Email: [chris.white@utas.edu.au](mailto:chris.white@utas.edu.au).  
14 Phone: +61 (0) 3 6226 2135.

15

16

For Peer Review

17

18 **Abstract**

19 While seasonal outlooks have been operational for many years, until recently the extended-range  
20 timescale - referred to as 'subseasonal-to-seasonal' (S2S) - has received little attention. S2S  
21 prediction fills the gap between short-range weather prediction and long-range seasonal outlooks.  
22 Decisions in a range of sectors are made in this extended-range lead time, therefore there is a  
23 strong demand for this new generation of forecasts. International efforts are underway to identify  
24 key sources of predictability, improve forecast skill and operationalise aspects of S2S forecasts,  
25 however challenges remain in advancing this new frontier. If S2S predictions are to be utilised  
26 effectively, it is important that along with science advances, we learn how to develop,  
27 communicate and apply these forecasts appropriately. In this study, we present the emerging  
28 operational S2S forecasts to the wider weather and climate applications community by  
29 undertaking the first comprehensive review of sectoral applications of S2S predictions, including  
30 public health, disaster preparedness, water management, energy and agriculture. We explore the  
31 value of applications-relevant S2S predictions, and highlight the opportunities and challenges  
32 facing their uptake. We show how social sciences can be integrated with S2S development -  
33 from communication to decision-making and valuation of forecasts - to enhance the benefits of  
34 'climate services' approaches for extended-range forecasting. While S2S forecasting is at a  
35 relatively early stage of development, we conclude that it presents a significant new window of  
36 opportunity that can be explored for application-ready capabilities that could allow many sectors  
37 the opportunity to systematically plan on a new time horizon.

38

39

40 

## 1 Introduction

41 There is growing interest across the applications community in understanding and using a new  
42 generation of extended-range weather predictions that are currently in development by  
43 meteorological centres around the world. While long-range monthly and seasonal outlooks have  
44 been operational in some regions for many years (and are the subject of increasing research  
45 initiatives to explore and advance their application) the extended-range timescale, which sits  
46 between the medium- to long-range forecasting timescales (i.e. beyond 10 days and up to 30  
47 days), has received minimal attention until recently. This extended-range timescale has in recent  
48 years become referred to as the ‘subseasonal-to-seasonal’ (or ‘S2S’) forecasting range, and is  
49 generally regarded as bridging the gap between weather forecasts and monthly or seasonal  
50 outlooks (Figure 1a) (Vitart, 2014a; Robertson *et al.*, 2014; Kirtman *et al.*, 2014)<sup>1</sup>. This timescale  
51 has long been seen as a ‘predictability desert’ (Vitart *et al.*, 2012) as it is notoriously difficult to  
52 provide skilful predictions on subseasonal or monthly timescales (Hudson *et al.*, 2011), however  
53 recent advances have spurred an increasing interest in S2S prediction (Shapiro *et al.*, 2010;  
54 Brunet *et al.*, 2010). At least ten international weather centres now have some capability for  
55 issuing experimental or operational S2S forecasts, including the European Centre for Medium-  
56 Range Weather Forecasting (ECMWF), the National Oceanic and Atmospheric Administration  
57 (NOAA), the China Meteorological Administration (CMA) and the UK Met Office (UKMO)  
58 (Vitart, 2014a). While S2S forecasting is still in development, the potential availability of these

---

<sup>1</sup> Medium-, extended- and long-range definitions based on WMO meteorological forecasting ranges: <http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-AppI-4.html>.

59 forecasts provides a significant ‘window of opportunity’ whereby S2S predictions can start to be  
60 explored for both operational forecasting and application-focused capabilities to complement  
61 existing forecast services.

62 The ongoing World Meteorological Organization (WMO) World Weather Research Programme  
63 (WWRP)-World Climate Research Programme (WCRP) Sub-seasonal to Seasonal Prediction  
64 Project (Vitart *et al.*, 2012; Vitart, 2014a; Robertson *et al.*, 2014) (<http://s2sprediction.net/>) is  
65 aimed at improving forecast skill and understanding of the S2S timescale and promoting its  
66 uptake. This is the first collaboration between the WWRP and the WCRP, and contributes to the  
67 WMO Global Framework for Climate Services (GFCS) which aims to help society cope with  
68 extreme events through better forecast accuracy on longer lead times. A key output of this  
69 collaborative project is a data repository of near real-time S2S forecasts and hindcasts (Vitart *et*  
70 *al.*, 2016) produced by several operational meteorological institutions  
71 (<http://apps.ecmwf.int/datasets/data/s2s> and <http://s2s.cma.cn>), providing valuable repositories  
72 against which the potential skill of multiple model predictions on the S2S timescale can be  
73 evaluated, and their usability for societal applications assessed for the first time. This effort  
74 closely aligns with other WMO initiatives, such as the THORPEX Interactive Grand Global  
75 Ensemble (TIGGE) project, the HIWeather project that has identified connections to S2S  
76 timescales through the forecasting of weather-related hazards, and ongoing efforts through the  
77 WMO Lead Center for Long-Range Forecast Multi-Model Ensemble (LC-LRFMME) project to  
78 extend into the S2S timescale.

79 The expansion into S2S forecasting has been triggered by a combination of growing demand  
80 from the applications community and progress in identifying and simulating key sources of S2S

81 predictability (Vitart, 2014a). Although there are efforts underway to operationalise aspects of  
82 S2S forecasts (Robertson *et al.*, 2014), the S2S timescale is a developing frontier for forecasting  
83 science. S2S forecasting represents a potential opportunity for a range of applications, potentially  
84 enabling many sectors to systematically react and plan. However, to date there has not been a  
85 coordinated effort to examine the potential of application-relevant forecasts on the S2S timescale  
86 and a demonstration of how these forecasts can be employed to maximise societal benefit.

87 This paper reviews the advances since Brunet *et al.* (2010) first promoted the WWRP-WCRP  
88 weather-climate collaboration to jointly tackle the development of S2S prediction science.  
89 Focusing on potential user applications, we draw on recent advancements to demonstrate the  
90 status and prospects of S2S prediction, highlighting how they can be utilised and where the key  
91 challenges remain.

## 92 **2 Forecasting on the S2S timescale**

93 Accurate climate prediction requires a good representation of weather phenomena as well as the  
94 underlying physical laws that apply to all prediction timescales (Bauer *et al.*, 2015). While short-  
95 to medium-range weather forecasting is based on initial atmospheric conditions, for seasonal  
96 prediction the initial conditions of the coupled land-ocean system are more important, with the  
97 rapidly varying components of the atmosphere often less well predicted and initialised. The S2S  
98 timescale falls in between these time ranges and is influenced by both initial conditions of the  
99 atmosphere and the more slowly evolving boundary conditions such as sea surface temperatures  
100 (SST), soil moisture and sea-ice components. It is these different time and space scales of the

101 atmosphere, land and ocean - and the ability to predict them - which makes S2S forecasting a  
102 major challenge (e.g. Chen *et al.*, 2010; Doblas-Reyes *et al.*, 2013; Vitart, 2014a).

103 As with seasonal forecasting, S2S predictive skill relies on more than just realistic initialisation  
104 conditions and SST, but also large-scale circulation modes in the climate system, such as El  
105 Niño-Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), Indian Ocean Dipole  
106 (IOD) and North Atlantic Oscillation (NAO), and their known influence on specific weather  
107 phenomena including extreme events. For example, White *et al.* (2013), using the POAMA  
108 model, showed that increased skill in predicting extreme heat during the winter months over  
109 northern Australia comes mainly from La Niña periods, whereas skill over eastern and south-  
110 eastern Australia comes from El Niño periods, highlighting the importance of the state of ENSO  
111 for regional S2S prediction. S2S forecasts are, however, more generally limited geographically,  
112 working best in the tropics due to higher-frequency climate modes such as the Madden-Julian  
113 Oscillation (MJO), which is the dominant mode of convective activity in the mid to high  
114 latitudes and offers an enhanced source of predictability (e.g. Vitart, 2014a). MJO predictability,  
115 in particular, has improved significantly over the last decade, with MJO teleconnections over the  
116 Northern and Southern Extratropics improving dramatically through better representation of the  
117 MJO in the ECMWF model (Vitart, 2014b). The vertical resolution of the ocean component of  
118 forecasting systems, particularly in the top ocean layer, has also been documented to have a  
119 significant impact on the prediction of MJO on S2S timescales through a stronger diurnal cycle  
120 of SST (Woolnough *et al.*, 2007). Increased model resolution is expected to improve the forecast  
121 skill by allowing more physical processes to be resolved (Vitart, 2014a). Initial soil moisture  
122 conditions have also been shown to particularly increase the accuracy of both precipitation and  
123 temperature predictions on the S2S timescale, especially for summer extreme temperatures,

124 however the utilisation of sea-ice conditions is a largely untapped and unknown source of  
125 potential predictability (Doblas-Reyes *et al.*, 2013).

126 A number of persistent biases and errors, however, still exist in most climate simulations, such as  
127 tropical precipitation and low cloud cover (e.g. Randall *et al.*, 2007). Some of these biases arise  
128 solely from the errors in the models and some may arise from the systematic misrepresentation  
129 of the coupled atmosphere-ocean feedbacks, which may compound existing errors or generate  
130 new biases (Brunet *et al.*, 2010; Vitart, 2014a). The lack of vegetation components and  
131 stratospheric disturbances in current forecast models are other impediments to improving  
132 forecasts on S2S timescales (Brunet *et al.*, 2010; Doblas-Reyes *et al.*, 2013).

### 133 **3 The information gap**

#### 134 **3.1 Unlocking the potential of S2S forecasting**

135 Operational forecasting centres routinely issue weather and climate information products, but  
136 there remains a gap between what various industries and sectors of society need and what  
137 forecasters can produce. While weather forecasts have been proven to be useful for short-term  
138 decision-making (Brunet *et al.*, 2010), short-range weather forecasting - where predictability  
139 mainly comes from initial atmospheric conditions - has fundamental physical limits (i.e. up to  
140 about 10 days) (e.g. Slingo and Palmer, 2011). In contrast, instead of forecasting the weather for  
141 a given day, longer lead time forecasts provide information about the likelihood of averaged  
142 weather, such as rainfall totals, typically over periods up to a season in length. Seasonal forecasts  
143 do not predict the weather at a set location or time, instead they tell us about the likelihood of  
144 shifts from the normal climatic conditions - or put another way, a shift in the underlying

145 probability distribution - where predictability is driven primarily by slowly varying components  
146 of the Earth System, such SST.

147 Society is used to short- to medium-term weather forecasts, but is still less familiar with longer  
148 lead time forecasts. Providing a forecast for increased/decreased likelihoods is not adequate for  
149 the need for reliable, actionable information on the timing, location and scale of weather events.

150 For example, seasonal forecasts of oncoming 'colder than average' winters or 'hotter than  
151 average' summers - often delivered through mainstream media outlets - are the first stage of  
152 communication that can lead to a misinterpretation of what longer lead time forecasts are. Users  
153 are often exposed to someone's interpretation of forecasts, and the terminology typically used,  
154 such as 'increased or decreased likelihood' and 'normal conditions', are relative to past climate  
155 and therefore implicitly require additional knowledge to understand.

156 Communications issues therefore surround S2S forecasts given their probabilistic nature, yet it is  
157 recognised that to be of value S2S predictions must realistically represent day-to-day weather  
158 fluctuations and statistics (Brunet *et al.*, 2010). S2S predictions have the potential to support  
159 decision-makers through the ongoing development of skilful forecasts of high-impact weather  
160 events (e.g. Vitart, 2014a). For example, this has been demonstrated by skilful predictions of  
161 phenomena such as tropical cyclones on lead times of up to 28 days (Figure 2), but it is yet to be  
162 determined if S2S forecasts can predict such events with sufficient skill and reliability for many  
163 applications. Despite this, inroads have been made with forecast skill on the S2S timescale and  
164 there lies a largely unexplored middle ground between what is required and what is possible.

165 Vitart (2014a) also notes that while many end-users have benefited by applying weather and  
166 climate forecasts in their decision-making, there is evidence to suggest that such information is

167 underutilised across a wide range of economic sectors (e.g. Rayner *et al.*, 2005; O'Connor *et al.*,  
168 2005; Morss *et al.*, 2008). Indeed, there needs to be a distinction between what is 'useful' and  
169 what is 'usable' information, reflecting the different ways that forecasters and users perceive  
170 scientific information (Lemos *et al.*, 2012). Forecasters may make the assumption that  
171 knowledge is useful when they conduct research without fully understanding potential users'  
172 decision-making processes and contexts; in contrast, users may not know how they might make  
173 use of S2S forecasts (or may have unrealistic expectations) of how it fits within their decision-  
174 making processes and thus choose to ignore it, despite its usefulness (Lemos *et al.*, 2012).

175 It has been shown that an interactive, co-production approach to science and decision-making  
176 between information producers and users positively affects the rate of information use (e.g.  
177 Lemos and Morehouse, 2005; Feldman and Ingram, 2009; Lemos *et al.*, 2012) as well as the  
178 effective communication of decision-relevant science. Prioritising collaboration between  
179 scientists and those who rely on climate and weather information to make policy and  
180 management decisions through a 'co-exploration' approach supports this co-production of usable  
181 information (Meadow *et al.*, 2015; Steynor *et al.*, 2015), especially when exploring decisions  
182 where needs or sensitivities are yet to be identified. This iterative process explores the limits of  
183 climate model data in a place-based context that recognises the complex nature of decision-  
184 making and goes beyond the simplistic dichotomy of 'climate services' and 'end-users' by  
185 incorporating multifocal learning across the decision-making space (e.g. Hurrell *et al.*, 2009).

186 At the same time as understanding the 'information gap', there is a need to better understand user  
187 needs, including identify potential change agents and 'champions' who can communicate new

188 information effectively, recognise competing stakeholder goals, and reception of user-centred

189 information in innovative ways.

190 In support of understanding user needs, there is an additional need to increase awareness of the

191 S2S timescale through better data visibility and accessibility. S2S data archives such as the North

192 American Multimodel Ensemble (NMME; Kirtman *et al.*, 2014) and the new WWRP-WCRP

193 S2S project repository are improving access to forecasts, as well as providing information about

194 forecast uncertainty and quality (e.g. Slingo and Palmer, 2011). A lack of information about the

195 accuracy of such forecasts precludes users from making effective use of them, whereas a more

196 thorough understanding of forecast performance may help decision-makers determine how much

197 and when to rely on them (Hartmann *et al.*, 2002). There may also be a lack of understanding

198 and appreciation of the complexity of weather and climate processes and the yet-to-be quantified

199 forecast skill on the S2S timescale (from the decision-makers' perspective) and of the numerous

200 facets involved in decision-making (from the weather and climate scientists' point of view).

## 201 **3.2 Putting the user first**

202 S2S prediction is ultimately applied research with potentially significant value to society, and is

203 an opportunity to create a scientific discipline characterised by co-design and co-production

204 between the scientific and the application communities. Traditional applied research can be

205 described by the linear (sequential) model of research and innovation where scientific discovery

206 precedes innovation (i.e. the process in which the scientific findings are transferred into

207 applications). A contrasting model is the 'user-centred' model of innovation (e.g. Lemos *et al.*,

208 2012), referred to as the 'climate services' concept, in order to meet the demand for customised

209 climate-related tools, products and information (EU COM, 2015). This model puts an emphasis

210 on the role played by users in the development and improvement of products and services, which  
211 can be used to illustrate the ‘top-down’ vs. ‘bottom-up’ debate<sup>2</sup>.

212 Recent efforts in Europe, such as the EUPORIAS project (<http://www.euporias.eu/>) (e.g. Taylor  
213 *et al.*, 2015; Bruno Soares and Dessai, 2016), developed semi-operational prototypes of climate  
214 services to address the needs of specific users on seasonal to decadal timescales. By applying a  
215 similar user-centred climate services approach, the S2S research community could similarly  
216 increase the likelihood for successful development of S2S predictions. In doing so, the scientific  
217 community should focus on working with users to understand their decisions, including which  
218 ones are climate/weather-sensitive, and on what timescales; efforts to determine specifically  
219 what information might be of interest to users is then the next step after understanding the  
220 decisions (Ray and Webb, 2015). Decision-dependencies across a range of end-users could be  
221 determined through user-centred studies, including assessing which information, spatial and  
222 temporal scales and locations are most relevant to the seamless weather and climate services

---

<sup>2</sup> There is an ongoing debate on the pros and cons of ‘top-down’ and ‘bottom-up’ approaches (e.g. Dessai and Hulme, 2004; Ray and Webb, 2015). The ‘top-down’ approach follows the sequence of first projecting future emissions of greenhouse gases, then developing climate scenarios, and thirdly studying impacts and adaptation options; in contrast, a ‘bottom-up’ approach starts from a given system and then studies vulnerabilities (i.e. the degree to which the system is susceptible to, and unable to cope with, adverse impacts of climate change). Most likely, the most successful approach for forecasting on longer lead times such as S2S needs to include a combination of both. For example, experience in the UK from a national ‘top-down’ probabilistic climate service demonstrated that although the probability-based climate information provided greater credibility, there was still a requirement to tailor the climate information generated so that stakeholders could use the information in decision-making (Tang and Dessai, 2012).

223 approach (e.g. Graham *et al.*, 2011; Vaughan and Dessai, 2014). However, the weather and  
224 climate community might engage with individual sectoral decision-makers in cases in which user  
225 studies have already matched the decision-maker with the forecast product. Scientists and users  
226 could co-develop tools and processes for fostering the joint development of S2S predictions, with  
227 stakeholder-based modelling (Voinov and Bousquet, 2010) or co-exploration/co-production  
228 processes (Lemos and Morehouse, 2005; Meadow *et al.*, 2015; Steynor *et al.*, 2015) involving  
229 the user-community not only as consumers, but as co-producers of climate information. Climate  
230 services need to move towards a demand-driven and science-informed approach and that  
231 boundary organisations will need to focus on use-inspired research (Lourenço *et al.*, 2015).  
232 Bringing partner boundary organisations into the process for co-production, co-exploration and  
233 communication of information, including translation of scientific products into usable formats,  
234 balances the trade-offs between salience, credibility and legitimacy and increases the potential  
235 overall uptake of climate information (McNie, 2007).  
236 Collaboration and co-production across sectors and disciplines is key to narrowing the gap  
237 between S2S forecast information and application; a transformation is therefore needed in the  
238 way both industry and the weather and climate community conceptualise and communicate S2S  
239 predictions.

#### 240 **4 Potential sectoral applications of S2S predictions**

241 The primary rationale for international efforts in pursuing a seamless weather-to-climate  
242 prediction process - which by default includes the S2S timescale - is that the resulting  
243 information influences decisions across predictive timescales, contributing to objectives such as

244 protection of life and property, enhancement of socio-economic well-being, and sustainability of  
245 the environment (Brunet *et al.*, 2010). There is a range of efforts underway to operationalise  
246 aspects of S2S forecasts that may be used to demonstrate the potential value of applications-  
247 relevant S2S products, such as the NOAA Climate Prediction Center's operational outlooks and  
248 the Tropics Hazards and Benefits Outlook. However, S2S predictions provide new opportunities  
249 for 'user-centred' applications because many decisions fall into the interceding S2S timescale  
250 between the well established and utilised short- to medium-range weather forecasts on one side,  
251 and seasonal forecasts on the other. Where existing decision processes exist that already use  
252 information on these other time scales, there may be readiness to more easily uptake this new  
253 forecast information. S2S forecasts therefore provide a significant opportunity to provide  
254 actionable information on this relatively unexplored applications time horizon.

255 In the following section, we review some of the potential sectoral uses of S2S forecasts,  
256 highlighting key decisions that can be made on this timescale and their information requirements  
257 (Figure 1b).

#### 258 **4.1 Humanitarian sector**

259 There is strong demand in the humanitarian sector for reliable longer-range forecasts (Braman *et*  
260 *al.*, 2012) - particularly of extreme events such as floods and droughts - and it is the S2S  
261 timescale where many risk reduction and disaster preparedness actions can be taken to mitigate  
262 impacts. S2S forecasts offer the opportunity for disaster risk reduction (DRR) managers to track  
263 the progress of the slowly evolving, large-scale climate modes that may have been predicted to  
264 shift in a preceding seasonal outlook, therefore supporting the transition from seasonal outlooks

265 to weather forecasts to inform both disaster planning and systematic response (Tadesse *et al.*,  
266 2016).

267 In this context, the Red Cross Climate Centre have adopted the 'Ready-Set-Go!' approach to  
268 decision-making for disaster management that utilises short- to long-range predictions (Goddard  
269 *et al.*, 2014). Seasonal forecasts can provide the 'Ready' monitoring information and early  
270 contingency planning such as volunteer training; subseasonal forecasts provide the 'Set' early  
271 warnings and alerting of volunteers; and short-range weather forecasts the 'Go!' activation stage,  
272 including evacuation and distribution of aid (Vitart *et al.*, 2014a). This concept highlights an  
273 increased/decreased likelihood of a particular event occurring over the forecast period,  
274 empowering DRR managers to adapt and react accordingly to instigate preparedness activities  
275 during the 'Set' phase as well as supporting the crucial shift to short-term actions in the 'Go!'  
276 phase.

277 Many of the disaster preparedness actions that can be taken based on increased risk of an  
278 extreme event require time to activate. Procurement of disaster response supplies can take  
279 several weeks (e.g. Boston Consulting Group, 2015) and is often the reason that actual response  
280 time to a disaster can lag well behind the event itself. While a short-term forecast allows for a  
281 head-start, a S2S forecast would allow for such response materials to be pre-purchased and  
282 prepositioned in the at-risk region in advance of the actual event, allowing for more immediate  
283 responses. Similarly, supplies needed for risk reduction actions, such as pesticides for mosquito  
284 fumigation, chlorine tablets for water purification, or sandbags to reinforce river banks, are  
285 subject to the same time constraints as the response materials. The prepositioning of emergency

286 supplies has been shown to yield a return on investment of between 1.6 and 2.0 (Boston  
287 Consulting Group, 2015).

288 Continuing the 'Ready-Set-Go!' concept, there are a number of quick and resource-independent  
289 actions that can then be taken by vulnerable people a few days in advance of a potential disaster,  
290 including evacuation and preparing food or water to last through the emergency period. Such  
291 actions appear in heat wave early warning plans (e.g. Ebi *et al.*, 2003; Knowlton *et al.*, 2014) and  
292 cyclone preparedness plans (e.g. Roy *et al.*, 2015), which could be expanded to include 'Ready'  
293 actions within the S2S timescale. The Sendai Framework for Disaster Risk Reduction 2015-2030  
294 (UNISDR, 2015) points to an opportunity to connect the joint weather and climate communities'  
295 efforts surrounding S2S prediction to global DRR activities and planning, as well as utilising  
296 seamless forecasting and climate services approaches. Priority 4 of the Framework recommends  
297 investment in the development, maintenance and strengthening of people-centred, multi-hazard  
298 and multi-sectoral forecasting and early warning systems, developed through a participatory  
299 process and tailored to the needs of users.

300 Advances in S2S prediction - specifically if focused towards extreme events - could allow the  
301 humanitarian sector to systematically react before potential disasters, saving lives and livelihoods  
302 through a better informed early response.

## 303 4.2 Public health

304 Brunet *et al.* (2010) highlighted public health as one of the key potential domains of application  
305 of seamless weather-to-climate forecasts, where decisions cover a wide range of temporal scales  
306 that directly relate to positive health outcomes (e.g. expected disease outbreak patterns, available

307 medical supplies, poverty indicators). Heat waves, for instance, are amongst the weather events  
308 that have the strongest societal impact with severe disruption of activities and significant loss of  
309 life. In the 2003 European heat wave, health authorities estimated that about 14,000 died in  
310 France alone (Vitart, 2005; Murray *et al.*, 2012). The prediction of the evolution of such an  
311 extreme event (including onset, persistence and decay) a few weeks in advance would be  
312 particularly useful (Vitart, 2014a). Case studies of subseasonal heat wave prediction are starting  
313 to demonstrate significant promise (e.g. Vitart, 2005; Hudson *et al.*, 2015), however, issues  
314 around the accuracy of forecasts - especially for predicting the timing, duration, location and  
315 severity of heat events (e.g. Perkins and Alexander, 2013) - as well as a lack of an internationally  
316 recognised definition, makes heat wave forecasting complex and difficult to tailor to individual  
317 users' needs.

318 The potential benefits of S2S applications are perhaps greatest in developing nations, especially  
319 in Africa where at least 30 climate-sensitive diseases pose a major threat to the lives and  
320 livelihoods of millions of people. More than 500 million Africans live in regions endemic with  
321 malaria that is highly correlated with the seasonal climate for example (Brunet *et al.*, 2010).  
322 Malaria forecasting on seasonal timescales has been well documented, including Morse *et al.*  
323 (2005) that show skilful one-month lead seasonal predictions using a malaria transmission model  
324 driven with output from seasonal predictions, and Thomson *et al.* (2006) and MacLeod *et al.*  
325 (2015) that demonstrate skilful malaria epidemic forecasts in Africa two months before the start  
326 of the season.

327 It is likely, however, that one of the major challenges with integrating S2S predictions into  
328 public health practices will be working with an initially less familiar (and perhaps less receptive)

329 set of decision-makers than some other sectors. The necessary infrastructure (e.g. near real-time  
330 hospital patient data) may be in place in some regions to develop an operational weather-related  
331 hospital admissions forecast, but not in others. In developing country contexts, logistical access  
332 to forecasts and data has its own additional challenges and may be reliant on humanitarian  
333 disaster-related activities.

334 **4.3 Energy**

335 Weather-related risk is a primary driver for energy pricing, production and usage. Because  
336 formal decision-making processes already exist within the energy generation sector, it may be  
337 easier to develop successful relationships with this sector than many other sectors with less  
338 formal practices (Brunet *et al.*, 2010). For instance, it is routine practice for the wind energy  
339 sector to utilise short-range weather forecasts (Barthelmie *et al.*, 2008; Foley *et al.*, 2012) and, to  
340 a lesser degree, seasonal outlooks (Roulston *et al.*, 2003). Taylor and Buizza (2003), for  
341 example, show that energy demand scenarios based on ensemble predictions are more accurate  
342 than those produced using traditional weather forecasts up to 10 days in advance, therefore S2S  
343 forecasts could be used to support these activities by hedging for anticipated energy peaks and  
344 other weather-related energy trading opportunities and risks.

345 In recent years, wind power has experienced rapid growth, contributing close to 5% of global  
346 electricity production (Pryor and Barthelmie, 2010). One of the biggest challenges facing the  
347 wind power industry is intermittency, where energy grid operators must match production to  
348 demand at all times, irrespective of whether wind energy is produced or not (Albadi and El-  
349 Saadany, 2010). S2S wind speed forecasts could help address the challenge of intermittency by  
350 enabling transmission service operators to plan operations further ahead and increase grid

351 efficiency (Pinson, 2013), although at present only mean wind values (zonal and meridional) are  
352 available on the S2S timescale. However, as S2S forecasts become more skilful and more  
353 complete, grid operators may further optimise the pricing system by using forecasts relevant to  
354 supply (e.g. wind speed for wind power, precipitation and temperature for hydropower  
355 operations) as well as demand (especially temperature) to inform switching on and off longer-  
356 start fuel sources like nuclear. This challenge of balancing a fluctuating wind energy resource  
357 with more stable energy sources will only grow as more wind power capacity is installed.

358 Related to this, S2S forecasts could be used to manage distribution and transmission  
359 infrastructure and maintenance scheduling. For example, specialist maintenance vessels are  
360 scheduled several weeks in advance for offshore wind farm maintenance and installation. Work  
361 is halted and money lost when high wind and waves prevent operations. Currently the decision to  
362 leave port is informed by current wave height and trend over previous hours, but a reliable S2S  
363 forecast of an optimal operational window could potentially save money and minimise risks.

#### 364 **4.4 Water management**

365 Most international operational forecast centres issue flood forecasting and warning services  
366 based on short-range rainfall forecasts. At the other end of the forecasting timescale, many  
367 meteorological/hydrological centres have been issuing probabilistic seasonal streamflow  
368 forecasts as part of climate outlook services for many years; i.e. 3-month outlooks of total flow  
369 volumes rather than flood forecasts (e.g. Wood and Lettenmaier (2006) in the U.S.; Robertson  
370 and Wang (2012) in Australia) or have documented needs for S2S forecasts in short-term water  
371 management decisions (e.g. Raff *et al.*, 2013). Seasonal streamflow forecasts are contingent on  
372 climate information for short-term planning (e.g. water allocation) and setting up contingency

373 measures during extreme years. However, the water allocated based on seasonal forecasts issued  
374 at the beginning of the season requires revision using updated (i.e. subseasonal) forecasts  
375 throughout the season (Sankarasubramanian *et al.*, 2009).

376 There have been some efforts to forecast streamflow on longer-range timescales, with Bennett *et*  
377 *al.* (2014) finding positive forecast skill for higher streamflows in the 1-month lead time in  
378 southeast Australia, Sankarasubramanian *et al.* (2009) modelling seasonal and subseasonal water  
379 allocation in the Philippines, and Werner *et al.* (2005) for operational streamflow forecasting in  
380 the U.S. Similarly, whilst specific flood predictions cannot be made on S2S lead times (i.e. they  
381 reflect risks but are not intended for predicting the timing, frequency, severity or extent of flood),  
382 S2S forecasts could be employed to highlight an increased chance of flooding where total  
383 streamflow volume has already been predicted to be high for a given season (White *et al.*, 2015).  
384 African hydrological centres, for example, would benefit from S2S forecasts of the onset and  
385 subseasonal evolution of the rainy season, whilst S2S forecasts of the frequency of daily rainfall  
386 amount could be relevant to rain-dependent agricultural applications and flood prediction in the  
387 tropics (Robertson *et al.*, 2014).

388 S2S forecasting therefore provides a significant opportunity to bring together the flood warning  
389 and streamflow forecasting communities in a seamless hydrological forecasting service,  
390 extending flood forecasting to longer lead times through the integration with rainfall-runoff  
391 hydrological models (White *et al.*, 2015), and improving water resource allocation and  
392 management decision-making on timescales less than a season.

393 **4.5 Agriculture**

394 The agriculture sector is one of the most advanced user groups in terms of using weather  
395 forecasts and outlooks to support operational decisions on the timing of irrigation, spraying and  
396 harvesting (e.g. Meinke and Stone, 2005; Harrison *et al.*, 2007 and references therein). Clements  
397 *et al.* (2013) show the S2S timeframe to be highly relevant in agriculture, noting studies that  
398 evaluated the use of meteorological information in agriculture for crop management, irrigation  
399 decisions, product marketing, input use (e.g. fertilizers), and commodity pricing. Using a similar  
400 approach to the ‘Ready-Set-Go!’ concept, by extending downward from the seasonal scale, a  
401 seasonal forecast of rainfall totals might inform strategic decisions regarding crop-planting  
402 choices, whereas S2S forecasts of rainfall extremes or heat waves could help irrigation  
403 scheduling and pesticide/fertilizer application (Vitart, 2014a). S2S forecasts could be used as  
404 dynamic updates to an existing cropping calendar, such as for the estimation of crop yields  
405 (Vitart, 2014a) to help alleviate global food security issues (CGIAR, 2009). Regional  
406 mechanisms such as the strong intraseasonal oscillation, which is a major cause of monsoon  
407 breaks within the Indian monsoon season, could add valuable information for irrigation  
408 scheduling.

409 The experienced user-base within the agriculture sector is very familiar with the need to express  
410 seasonal forecasts in terms of daily weather characteristics, such as dry spells during critical  
411 growth periods (e.g. Verbist *et al.*, 2010), and presents perhaps one of the best opportunities to  
412 bridge the gap between the weather and climate forecasting timescales. As weather impacts are  
413 just one of many stressors shaping users’ decisions in the agriculture sector, to successfully  
414 integrate S2S forecasts into existing decision-making practices, highly participatory, context-

415 specific dialogues, aided by modelling approaches bringing together producers and users of  
416 knowledge across disciplines, are needed (Meinke *et al.*, 2009).

417 **4.6 Emerging sectors**

418 There are many other sectors that could potentially benefit from skilful S2S forecasts but which  
419 have not yet been explored in detail. For example, S2S forecasts could be used to augment the  
420 existing use of seasonal environmental management forecasts, such as providing additional  
421 decision support information for marine fisheries and aquaculture (e.g. Spillman and Hobday,  
422 2014), and wildfire risk management (Owen *et al.*, 2012). Similarly, S2S forecast applications  
423 that target the retail sector could be used for advanced stock orders where the timing of seasonal  
424 changes is important, or support preparedness ahead of extreme weather events such as heat  
425 waves (e.g. Hudson *et al.*, 2015), tropical cyclones/hurricanes (e.g. Vitart *et al.*, 2010), and snow  
426 (e.g. Cohen, 2003).

427 In a broader sense, the value of weather forecasts needs to be better understood and quantified. It  
428 has, however, proven difficult to isolate the benefits and assess the economic value of longer  
429 lead time forecasts in applications (Kumar, 2010). The financial derivatives markets and  
430 insurance industry understand the concept of weather-related risk and the application of forecasts  
431 (e.g. through hedging strategies, weather-based decision rules, loss scenarios) perhaps better than  
432 any sector (e.g. Zeng, 2000; Jewson and Caballero, 2003), which the weather and climate  
433 community can benefit from. For the potential benefits of S2S predictions to be fully realised,  
434 there needs to be a focus on economic impacts and benefits, understanding the asymmetry of the  
435 cost loss and benefit matrix, a measure of sensitivity of the impact of particular weather  
436 phenomena, and an understanding of how they could influence decision-making across sectors.

## 437 5 Challenges and opportunities of the S2S timescale

438 After three decades of research into seasonal climate predictability and the development of  
439 dynamical prediction systems (Kirtman *et al.*, 2014), there is substantial evidence that dynamic  
440 S2S prediction offers a significant opportunity to be useful to the applications community  
441 (Pegion and Sardeshmukh, 2011; Kirtman *et al.*, 2014). However, we find many challenges to  
442 the successful application of S2S predictions summarised in Table 1).

443 The potential utility of longer lead time forecasts by the applications community - including both  
444 S2S and seasonal - is based on end-user decision support (e.g. Morse *et al.*, 2005). To achieve  
445 this, an improved understanding of how perceptions, willingness and ability to use information  
446 changes across predictive timescales including S2S, and understanding how a piece of  
447 information goes from being useful to usable (Lemos *et al.*, 2012) is required, such as Bruno  
448 Soares and Dessai (2016) that provide examples of barriers and enablers to the uptake and use of  
449 long-range seasonal forecasts in Europe. The current lack of 'success stories' of S2S predictions  
450 (e.g. case studies that focus on a high-impact weather events or other successful uses) though  
451 needs to be addressed to support promotion of S2S forecasts and their integration into  
452 applications, which in turn would help raise awareness of the S2S prediction timescale and its  
453 potential uses.

454 The fundamental limits to skill of longer lead time predictions need to be identified to manage  
455 expectations of potential users. Brunet *et al.* (2010) suggests a practical first step is to determine  
456 where the greatest potential for use of S2S forecasts exists, and where the largest social benefit  
457 can be realised. Here, the social sciences (e.g. Demuth *et al.*, 2007) can contribute by identifying  
458 effective mechanisms for generating and communicating decision-relevant information,

459 assessing the integration, use and value of this information in decision-making, transferring  
460 knowledge and experiences to other users (Brunet *et al.*, 2010) and understanding the context  
461 into which the information can be usable (Ray and Webb, 2015). A similar approach could  
462 advance the understanding of potential stakeholders, uses and research needs in the S2S  
463 timescale, potentially avoiding the applications community having unrealistic expectations of  
464 about S2S predictions, as well as the forecasting community understanding end-users' limitations  
465 on what information can be useful.

466 Raising awareness of both the S2S predictive timescale and the availability of such data provides  
467 a unique opportunity for a participatory approach across the weather and climate communities to  
468 develop decision-relevant information for a range of sectoral applications. The WWRP-WCRP  
469 S2S project's database of S2S forecasts co-hosted by ECMWF and the CMA (delayed behind  
470 real time by three weeks but including hindcasts), is a significant resource that will allow model  
471 output to be more widely assessed to identify when and where there is skill, better understand the  
472 underlying processes and model weaknesses, and develop applications that can support decision-  
473 making.

474 To address the science challenges of understanding and improving the predictive skill of S2S  
475 forecasts, identifying sources of predictability (including locations and times of skill),  
476 teleconnections to known climate modes, and quantifying the limitations and uncertainties of  
477 S2S forecasting are all areas of active research. Important modelling design issues remain,  
478 including initialisation techniques, initial conditions (e.g. soil moisture, sea-ice), model  
479 resolution and ensemble size, ocean-atmosphere coupling, post-processing and downscaling, and  
480 coordination between forecast producers all need to be improved before the full potential of S2S

481 prediction can be realised (Vitart, 2014a). To address these issues, improved quantitative  
482 information regarding uncertainty in forecasts and probabilistic measures of forecast quality in  
483 their verification (e.g. Palmer *et al.*, 2004; DeWitt, 2005; Doblas-Reyes *et al.*, 2005; Slingo and  
484 Palmer, 2011) needs to be included with S2S forecasts. There is also a growing recognition that a  
485 multimodel ensemble strategy is a viable approach for resolving some of the forecast uncertainty  
486 (e.g. Doblas-Reyes *et al.*, 2005; Palmer *et al.*, 2008; Kirtman *et al.*, 2014), which will present  
487 additional data management and communication issues.

## 488 **6 Conclusions**

489 Since Brunet *et al.* (2010) recommended that the weather and climate communities collaborate to  
490 jointly tackle the challenge of providing skilful and useable S2S forecasts, many advancements  
491 have been made. Through initiatives and data repositories such as the WWRP-WCRP S2S  
492 project and the NMME, we are now in a position to explore some of the potential sectoral  
493 applications of S2S forecasts in earnest. However, their integration into decision-making is  
494 neither easy nor straightforward (Lemos *et al.*, 2012). For instance, although the ability to  
495 forecast the specific details of high-impact events within the S2S timescale is not yet possible  
496 (and perhaps may not be for some time), there exists a growing repository of untapped predictive  
497 information that presents tangible and realistic opportunities that can be explored by the  
498 applications community for socio-economic benefits.

499 Forecasts on the S2S timescale need to be tailored to specific users' needs and communicated in  
500 a way that allows the applications community to be able to make informed decisions. To achieve  
501 this, decision-makers and forecasters need to collaborate to determine essential S2S forecast

502 attributes, including determining appropriate thresholds and their usefulness in decision-making,  
503 as well as their economic value (Hartmann *et al.*, 2002). Part of this involves the inclusion of  
504 realistic and unbiased messages on forecast skill (or lack thereof), potential usefulness and  
505 quantified uncertainties to manage expectations, as well as the continued integration of S2S as a  
506 key component in the concepts of seamless prediction and co-production.

507 There are three broad categories that require attention, each of which present their own set of  
508 challenges and opportunities: 1) identifying where and when the skill of the S2S forecasts lie and  
509 how they could be improved, 2) quantifying and addressing systematic model deficiencies, errors  
510 and uncertainties, and 3) communicating and delivering forecasts in collaboration with the  
511 applications community such that they have value in a societal decision-making context. A great  
512 return on investment in both science and model development may be expected if S2S forecasts  
513 can be successfully connected to societal applications (Vitart, 2014a); the goal over the next 5-10  
514 years is therefore to generate useful, usable and actionable S2S forecast information and services  
515 for (and with) the applications community that can be integrated with existing risk management  
516 and decision-making practices across sectors and timescales.

## 517 Acknowledgements

518 This paper is the result of a Churchill Fellowship awarded to C. J. White from the Winston  
519 Churchill Memorial Trust of Australia, which enabled him to visit the co-authors of this paper to  
520 hold cross-disciplinary conversations around potential applications of S2S predictions. This  
521 paper is supported by University of Tasmania's Research Enhancement Grants Scheme grant  
522 W0022828.

523

524

525 **References**

526 Albadi MH, El-Saadany EF. 2010. Overview of wind power intermittency impacts on power  
527 systems. *Elect. Power Syst. Res.* 80: 627-632, doi:10.1016/j.epsr.2009.10.035.

528

529 Barthelmie RJ, Murray F, Pryor SC. 2008. The economic benefit of short-term forecasting for  
530 wind energy in the UK electricity market. *Energ. Policy* 36: 1687-1696,  
531 doi:10.1016/j.enpol.2008.01.027.

532

533 Bauer P, Thorpe A, Brunet, G. 2015. The quiet revolution of numerical weather prediction.  
534 *Nature* 525: 47-55, doi:10.1038/nature14956.

535

536 Bennett JC, Wang QJ, Pokhrel P, Robertson DE. 2014. The challenge of forecasting high  
537 streamflows 1-3 months in advance with lagged climate indices in southeast Australia. *Nat.*  
538 *Hazards Earth Syst. Sci.* 14: 219-233, doi:10.5194/nhess-14-219-2014.

539

540 Boston Consulting Group. 2015. UNICEF / WFP Return on Investment for Emergency  
541 Preparedness Study. Boston Consulting Group, 35 pp. [Available online at  
542 [http://www.unicef.org/publications/index\\_81164.html](http://www.unicef.org/publications/index_81164.html)].

543

544 Braman LM, van Aalst MK, Mason SJ, Suarez P, Ait-Chellouche Y, Tall A. 2012. Climate  
545 forecasts in disaster management: Red Cross flood operations in West Africa, 2008. *Disasters*  
546 37(1): 144-64, doi:10.1111/j.1467-7717.2012.01297.x.

547

548 Bruno Soares M, Dessai S. 2016. Barriers and enablers to the use of seasonal climate forecasts  
549 amongst organisations in Europe. *Climatic Change* 137: 89-103, doi:10.1007/s10584-016-1671-  
550 8.

551

552 Brunet G, Shapiro M, Hoskins B, Moncrieff M, Dole RM, Kiladis GN, Kirtman B, Lorenc A,  
553 Mills B, Morss R, Polavarapu S, Rogers D, Schaake J, Shukla J. 2010. Collaboration of the

554 Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction. *Bull. Am.*  
555 *Meteorol. Soc.* 91: 1397-1406, doi:10.1175/2010BAMS3013.1.

556

557 Chen M, Wang W, Kumar A. 2010. Prediction of Monthly Mean Temperature: The Roles of  
558 Atmospheric and Land Initial Condition and Sea Surface Temperature. *J. Clim.* 23: 717-725.

559

560 CGIAR. 2009. Climate, agriculture and food security: A strategy for change. The Consultative  
561 Group on International Agricultural Research (CGIAR), 56 pp. [Available online at  
562 [https://www.cgiar.org/www-archive/www.cgiar.org/pdf/CCAFS\\_Strategy\\_december2009.pdf](https://www.cgiar.org/www-archive/www.cgiar.org/pdf/CCAFS_Strategy_december2009.pdf)].

563

564 Clements J, Ray A, Anderson G. 2013. The Value of Climate Services Across Economic and  
565 Public Sectors: A Review of Relevant Literature. United States Agency for International  
566 Development (USAID). [Available online at [http://www.climate-services.org/wp-content/uploads/2015/09/CCRD-Climate-Services-Value-Report\\_FINAL.pdf](http://www.climate-services.org/wp-content/uploads/2015/09/CCRD-Climate-Services-Value-Report_FINAL.pdf)].

568

569 Cohen J. 2003. Introducing sub-seasonal spatial and temporal resolution to winter climate  
570 prediction. *Geophys. Res. Lett.* 27: 779-782, doi:10.1029/2002GL016066.

571

572 Demuth JL, Gruntfest E, Morss RE, Drobot S, Lazo JK. 2007. WAS\*IS: Building a community  
573 for integrating meteorology and social science. *Bull. Am. Meteorol. Soc.* 88: 729-1737.

574

575 Dessai S, Hulme M. 2004. Does climate adaptation policy need probabilities? *Clim. Policy* 4:  
576 107-128.

577

578 DeWitt DG. 2005. Retrospective forecasts of interannual sea surface temperature anomalies from  
579 1982 to present using a directly coupled atmosphere-ocean general circulation model. *Mon.*  
580 *Weather Rev.* 133: 2972-2995.

581

582 Doblas-Reyes FJ, Hagedorn R, Palmer TN. 2005. The rationale behind the success of multi-  
583 model ensembles in seasonal forecasting - II. Calibration and combination. *Tellus* 57A: 234-252,  
584 doi:10.1111/j.1600-0870.2005.00104.x.

585

586 Doblas-Reyes FJ, García-Serrano J, Lienert F, Pintó Biescas A, Rodrigues LRL. 2013. Seasonal  
587 climate predictability and forecasting: status and prospects. *WIREs Clim. Change* 4: 245-268,  
588 doi:10.1002/WCC.217.

589

590 Ebi K, Teisberg T, Kalkstein L, Robinson L, Weiher R. 2003. Heat watch/warning systems save  
591 lives: Estimated costs and benefits for Philadelphia 1995-98: ISEE-165. *Epidemiology* 14: S35-  
592 S35.

593

594 EU COM. 2015. A European research and innovation roadmap for climate services. Directorate-  
595 General for Research and Innovation. European Commission, 56 pp. [Available online at  
596 [http://bookshop.europa.eu/en/a-european-research-and-innovation-roadmap-for-climate-services-  
597 pbKI0614177/](http://bookshop.europa.eu/en/a-european-research-and-innovation-roadmap-for-climate-services-pbKI0614177/)].

598

599 Feldman DL, Ingram HM. 2009. Making science useful to decision makers: Climate forecasts,  
600 water management and knowledge networks. *Weather Clim. Soc.* 1: 9-21.

601

602 Foley AM, Leahy PG, Marvuglia A, McKeogh EJ. 2012. Current methods and advances in  
603 forecasting of wind power generation. *Renew. Energ.* 37: 1-8, doi:10.1016/j.renene.2011.05.033.

604

605 Goddard L, Baethgen WE, Bhojwani H, Robertson AW. 2014. The International Research  
606 Institute for Climate and Society: why, what and how. *Earth Perspectives* 1: 1-14,  
607 doi:10.1186/2194-6434-1-10.

608

609 Graham RJ, Yun WT, Kim J, Kumar A, Jones D, Bettio L, Gagnon N, Kolli RK, Smith D. 2011.  
610 Long-range forecasting and the Global Framework for Climate Services. *Clim. Res.* 47: 47-55.

611

612 Harrison M, Kanga A, Magrin GO, Hugo G, Tarakidzwa I, Mullen C, Meinke H. 2007. Use of  
613 seasonal forecasts and climate prediction in operational agriculture. Report 1344, World  
614 Meteorological Organization, Geneva [Available online at  
615 <http://www.wamis.org/agm/pubs/CAGMRep/CAGM102.pdf>].

616

617 Hartmann HC, Pagano TC, Sorooshian S, Bales R. 2002. Confidence Builders: Evaluating  
618 Seasonal Climate Forecasts from User Perspectives. *Bull. Am. Meteorol. Soc.* 83: 683-698.

619

620 Hudson D, Alves O, Hendon HH, Marshall AG. 2011. Bridging the gap between weather and  
621 seasonal forecasting: intraseasonal forecasting for Australia. *Q. J. R. Meteorol. Soc.* 137: 673-  
622 689, doi:10.1002/qj.769.

623

624 Hudson DA, Marshall AG, Alves O, Young G, Jones D, Watkins A. 2015. Forewarned is  
625 forearmed: Extended range forecast guidance of recent extreme heat events in Australia. *Weather  
626 Forecasting*, doi:10.1175/WAF-D-15-0079.1.

627

628 Hurrell J, Meehl GA, Bader D, Delworth TL, Kirtman B, Wielicki B. 2009. A Unified Modeling  
629 Approach to Climate System Prediction. *Bull. Am. Meteorol. Soc.* 90: 1819-1832,  
630 doi:10.1175/2009BAMS2752.1.

631

632 Jewson S, Caballero R. 2003. The use of weather forecasts in the pricing of weather derivatives.  
633 *Meteorol. Appl.* 10 : 377-389.

634

635 Kirtman BP, Min D, Infanti JM, Kinter III JL, Paolino DA, Zhang Q, van den Dool H, Saha S,  
636 Pena Mendez M, Becker E, Peng P, Tripp P, Huang J, DeWitt DG, Tippett MK, Barnston AG, Li  
637 S, Rosati A, Schubert SD, Rienecker M, Suarez M, Li ZE, Marshak J, Lim Y-K, Tribbia J,  
638 Pegion K, Merryfield WJ, Denis B, Wood EF. 2014. The North American Multimodel  
639 Ensemble: Phase-1 Seasonal-to-Interannual Prediction; Phase-2 toward Developing Intraseasonal  
640 Prediction. *Bull. Am. Meteorol. Soc.* 95: 585-601, doi:10.1175/BAMS-D-12-00050.1.

641

642 Knowlton K, Kulkarni SP, Azhar GS, Mavalankar D, Jaiswal A. 2014. Development and  
643 implementation of South Asia's first heat-health action plan in Ahmedabad (Gujarat, India). *Int.  
644 J. Environ. Res. Public Health* 11: 3473-3492, doi:10.3390/ijerph110403473.

645

646 Kumar A. 2010. On the assessment of the value of the seasonal forecast information. *Meteorol.*  
647 *Appl.* 17: 385-392.

648

649 Lemos MC, Morehouse B. 2005. The co-production of science and policy in integrated climate  
650 assessments. *Global Environ. Change* 15: 57-68.

651

652 Lemos MC, Kirchhoff CJ, Ramprasad V. 2012. Narrowing the climate information usability gap.  
653 *Nature Clim. Change* 2: 789-794, doi:10.1038/nclimate1614.

654

655 Lourenço TC, Swart R, Goosen H, Street R. 2015. The rise of demand-driven climate services.  
656 *Nature Clim. Change*, doi:10.1038/nclimate2836.

657

658 MacLeod DA, Jones A, Di Giuseppe F, Caminade C, Morse AP. 2015. Demonstration of  
659 successful malaria forecasts for Botswana using an operational seasonal climate model. *Environ.*  
660 *Res. Lett.* 10: 1-11, doi:10.1088/1748-9326/10/4/044005.

661

662 McNie EC. 2007. Reconciling the supply of scientific information with user demands: an  
663 analysis of the problem and review of the literature. *Environ. Sci. Policy* 10: 17-38.

664

665 Meadow A, Ferguson D, Guido Z, Horangic A, Owen G, Wall T. 2015. Moving toward the  
666 deliberate co-production of climate science knowledge. *Weather Clim. Soc.* 7: 179-191,  
667 doi:10.1175/WCAS-D-14-00050.1.

668

669 Meehl GA, Lukas R, Kiladis GN, Wheeler M, Matthews A, Weickmann KM. 2001. A  
670 conceptual framework for time and space scale interactions in the climate system. *Clim. Dyn.* 17:  
671 753-775.

672

673 Meinke H, Stone RC. 2005. Seasonal and inter-annual climate forecasting: the new tool for  
674 increasing preparedness to climate variability and change in agricultural planning and operations.  
675 *Climatic Change* 70, 221-253.

676

677 Meinke H, Howden SM, Struik PC, Nelson R, Rodriguez D, Chapman SC. 2009. Adaptation  
678 science for agriculture and natural resource management - urgency and theoretical basis. *Curr.*  
679 *Opin. Environ. Sustain.* 1: 69-76.

680

681 Morse AP, Doblas-Reyes FJ, Hoshen MB, Hagedorn R, Palmer TN. 2005. A forecast quality  
682 assessment of an end-to-end probabilistic multimodel seasonal forecast system using a malaria  
683 model. *Tellus* 57A: 464-475, doi:10.1111/j.1600 -0870.2005.00124.x.

684

685 Morss RE, Lazo JK, Brown BG, Brooks HE, Ganderton PT, Mills BN. 2008. Societal and  
686 economic research and applications for weather forecasts: Priorities for the North American  
687 THORPEX program. *Bull. Am. Meteorol. Soc.* 89: 335-346.

688

689 Murray V, McBean G, Bhatt M, Borsch S, Cheong TS, *et al.* 2012. Case studies. In: *Managing*  
690 *the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation*, Field CB, *et*  
691 *al.* Eds., A Special Report of Working Groups I and II of the Intergovernmental Panel on  
692 Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 487-  
693 542. [Available online at <http://ipcc-wg2.gov/SREX/report/full-report/>].

694

695 O'Connor RE, Yarnal B, Dow K, Jocoy CL, Carbone GL. 2005. Feeling at risk matters: Water  
696 managers and decision to use forecasts. *Risk Anal.* 25: 1265-1275.

697

698 Owen G, McLeod JD, Kolden CD, Ferguson DB, Brown TJ. 2012. Wildfire Management and  
699 Forecasting Fire Potential: The Roles of Climate Information and Social Networks in the  
700 Southwest United States. *Weather Clim. Soc.* 4: 90-102.

701

702 Palmer TN, Andersen U, Cantelaube P, Davey M, Deque M, Doblas-Reyes FJ, Feddersen H,  
703 Graham R, Gualdi S, Gueremy J-F, Hagedorn R, Hoshen M, Keenlyside N, Latif M, Lazar A,  
704 Maisonnave E, Marletto V, Morse AP, Orfila B, Rogel P, Terres J-M, Thomsen MC. 2004.  
705 Development of a European Multimodel Ensemble System for Seasonal-to-Interannual  
706 Prediction (DEMIETER). *Bull. Am. Meteorol. Soc.* 85: 853-872.

707

708 Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ. 2008. Toward seamless prediction:  
709 Calibration of climate change projections using seasonal forecasts. *Bull. Am. Meteorol. Soc.* 89:  
710 459-470.

711

712 Pegion K, Sardeshmukh PD. 2011. Prospects for Improving Subseasonal Predictions. *Mon.*  
713 *Weather Rev.* 139: 3648-3666, doi:10.1175/MWR-D-11-00004.1.

714

715 Perkins SE, Alexander LV. 2013. On the measurement of heat waves. *J. Clim.* 26: 4500-4517,  
716 doi:10.1175/JCLI-D-12-00383.1.

717

718 Pinson P. 2013. Wind Energy: Forecasting challenges for its operational management. *Stat. Sci.*  
719 28: 564-585, doi:10.1214/13-STS445.

720

721 Pryor S, Barthelmie R. 2010. Climate change impacts on wind energy: A review. *Renew. Sust.*  
722 *Energ. Rev.* 14: 430-437, doi:10.1016/j.rser.2009.07.028.

723

724 Raff D, Brekke L, Werner K, Wood A, White K. 2013. Short-Term Water Management  
725 Decisions: User needs for improved climate, weather & hydrologic information. Climate Change  
726 & Water Working Group, 261 pp. [Available online at [http://www.ccawwg.us/docs/Short-Term\\_Water\\_Management\\_Decisions\\_Final\\_3\\_Jan\\_2013.pdf](http://www.ccawwg.us/docs/Short-Term_Water_Management_Decisions_Final_3_Jan_2013.pdf)].

727

728 Randall DA, Wood RA, Bony S, Colman R, *et al.* 2007. Climate Models and their evaluation. In:  
729 *Climate Change 2007: The Physical Science Basis*. Contribution of Working Group I to the  
730 Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Solomon S, *et al.*  
731 Eds., Cambridge University Press, Cambridge, UK, and New York, NY, USA. [Available online  
732 at [https://www.ipcc.ch/publications\\_and\\_data/ar4/wg1/en/ch8.html](https://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch8.html)].

733

734

735 Ray AJ, Webb RS. 2015. Understanding the user context: decision calendars as frameworks for  
736 linking climate to policy, planning and decision-making. In: *Climate in Context: Lessons learned*  
737 *from the RISA Program*, Parris A, *et al.* Eds., pp 27-49, Wiley & Sons, *In press*.

738

739 Rayner S, Lach D, Ingram H. 2005. Weather forecasts are for wimps. *Climatic Change* 69: 197-  
740 227.

741

742 Robertson AW, Kumar A, Peña M, Vitart F. 2014. Improving and promoting subseasonal to  
743 seasonal prediction, *Bull. Am. Meteorol. Soc.* 96: ES49-ES53, doi:10.1175/BAMS-D-14-  
744 00139.1.

745

746 Robertson DE, Wang QJ. 2012. A Bayesian approach to predictor selection for seasonal  
747 streamflow forecasting. *J. Hydrometeorol.* 13: 155-171, doi:10.1175/JHM-D-10-05009.1.

748

749 Roulston MS, Kaplan DT, Hardenberg J, Smith LA. 2003. Using medium-range weather  
750 forecasts to improve the value of wind energy production. *Renew. Energ.* 28: 585-602.

751

752 Roy C, Sarkar SK, Åberg J, Kovordanyi R. 2015. The current cyclone early warning system in  
753 Bangladesh: Providers' and receivers' views. *Int. J. Disaster Risk Reduction* 12: 285-299,  
754 doi:10.1016/j.ijdrr.2015.02.004.

755

756 Sankarasubramanian A, Lall U, Devineni N, Espinueva S. 2009. The role of monthly updated  
757 climate forecasts in improving intraseasonal water allocation. *J. Appl. Meteorol. Climatol.* 48:  
758 1464-1482.

759

760 Shapiro M, Shukla J, Brunet G, Nobre C, Béland M, Dole R, Trenberth K, Anthes R, Asrar G,  
761 Barrie L, Bougeault P, Brasseur G, Burridge D, Busalacchi A, Caughey J, Chen D, Church J,  
762 Enomoto T, Hoskins B, Hov Ø, Laing A, Le Treut H, Marotzke J, McBean G, Meehl G, Miller  
763 M, Mills B, Mitchell J, Moncrieff M, Nakazawa T, Olafsson H, Palmer T, Parsons D, Rogers D,  
764 Simmons A, Troccoli A, Toth Z, Uccellini L, Velden C, Wallace JM. 2010. An earth-system  
765 prediction initiative for the twenty-first century. *Bull. Am. Meteorol. Soc.* 91: 1377-1388.

766

767 Slingo J, Palmer T. 2011. Uncertainty in weather and climate prediction. *Phil. Trans. R. Soc. A*  
768 369: 4751-4767, doi:10.1098/rsta.2011.0161.

769

770 Spillman CM, Hobday AJ. 2014. Dynamical seasonal ocean forecasts to aid salmon farm  
771 management in a climate hotspot. *Clim. Risk Manage.* 1: 25-38.

772

773 Steynor A, Jack C, Padgham J, Bharwani S. 2015. Using climate information to achieve long-  
774 term development objectives in coastal Ghana and Mozambique, Future Climate For Africa  
775 policy brief. [Available online at [http://cdkn.org/wp-  
776 content/uploads/2015/01/FCFA\\_PolicyBrief\\_Accra-Maputo\\_WEB1.pdf](http://cdkn.org/wp-content/uploads/2015/01/FCFA_PolicyBrief_Accra-Maputo_WEB1.pdf)].

777

778 Tadesse T, Haigh T, Wall N, Shiferaw A, Zaitchik B, Beyene S, Berhan G, Petr J. 2016. Linking  
779 Seasonal Predictions to Decision-Making and Disaster Management in the Greater Horn of  
780 Africa. *Bull. Am. Meteorol. Soc.* 97(4), ES89-ES92, doi:10.1175/BAMS-D-15-00269.1.

781

782 Tang S, Dessai S. 2012. Usable science? The UK Climate Projections 2009 and Decision  
783 Support for Adaptation Planning. *Weather Clim. Soc.* 4: 300-313, doi:10.1175/WCAS-D-12-  
784 00028.1.

785

786 Taylor JW, Buizza R. 2003. Using weather ensemble predictions in electricity demand  
787 forecasting. *Int. J. Forecast.* 19: 57-70.

788

789 Taylor AL, Dessai S, Bruine de Bruin W. 2015. Communicating uncertainty in seasonal and  
790 interannual climate forecasts in Europe. *Phil. Trans. R. Soc. A* 373: 20140454,  
791 doi:10.1098/rsta.2014.0454.

792

793 Thomson MC, Doblas-Reyes FJ, Mason SJ, Hagedorn R, Connor SJ, Phindela T, Morse AP,  
794 Palmer TN. 2006. Malaria early warnings based on seasonal climate forecasts from multi-model  
795 ensembles. *Nature* 439: 576-579, doi:10.1038/nature04503.

796

797 UNISDR. 2015. Sendai framework for disaster risk reduction 2015-2030. *UN World Conference  
798 on Disaster Risk Reduction*, 14-18 March 2015, Sendai, Japan. United Nations Office for  
799 Disaster Risk Reduction (UNISDR), Geneva, 38 pp. [Available online at

800 [http://www.wcdrr.org/uploads/Sendai\\_Framework\\_for\\_Disaster\\_Risk\\_Reduction\\_2015-2030.pdf](http://www.wcdrr.org/uploads/Sendai_Framework_for_Disaster_Risk_Reduction_2015-2030.pdf)].

802

803 Vaughan C, Dessai S. 2014. Climate services for society: Origins, institutional arrangements, and design elements for an evaluation framework. *WIREs Clim. Change* 5: 587-603, doi: 10.1002/wcc.290.

804

805

806

807 Verbist K, Robertson AW, Cornelis WM, Gabriels D. 2010. Seasonal Predictability of Daily Rainfall Characteristics in Central Northern Chile for Dry-Land Management. *J. Appl. Meteorol. Climatol.* 49: 1938-1955, doi:10.1175/2010JAMC2372.1.

808

809

810

811 Vitart F. 2005. Monthly forecast and the summer 2003 heat wave over Europe: a case study. *Atmos. Sci. Lett.* 6: 112-117.

812

813

814 Vitart F. 2014a. Sub-Seasonal to Seasonal Prediction: linking weather and climate. *Proc. of the World Weather Open Science Conference (WWOSC)*, Montreal, Canada, 16-21 August 2014.

815

816

817 Vitart F. 2014b. Evolution of ECMWF sub-seasonal forecast skill scores. *Q. J. R. Meteorol. Soc.* 140: 1889-1899.

818

819

820 Vitart F, Leroy A, Wheeler MC. 2010. A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. *Mon. Weather Rev.* 138: 3671-3682.

821

822

823

824 Vitart F, Robertson AW, Anderson DLT. 2012. Subseasonal to seasonal prediction project: Bridging the gap between weather and climate. *WMO Bull.* 61(2): 23-28.

825

826

827 Vitart F, Ardilouze C, Bonet A, Brookshaw A, Chen M, Codorean C, Deque M, Ferranti L, Fucile E, Fuentes M, Hendon H, Hodgson J, Kang H, Kumar A, Lin H, Liu G, Liu X, Malguzzi P, Mallas I, Manoussakis M, Mastrangelo D, MacLachlan C, McLean P, Minami A, Mladek R, Nakazawa T, Najm S, Nie Y, Rixen M, Robertson A, Ruti P, Sun C, Takaya Y, Tolstykh M,

828

829

830

831 Venuti F, Waliser D, Woolnough S, Wu T, Won D, Xiao H, Zaripov R, Zhang L. 2016. The Sub-  
832 seasonal to Seasonal Prediction (S2S) Project Database. *Bull. Am. Meteorol. Soc.*,  
833 doi:10.1175/BAMS-D-16-0017.1.

834

835 Voinov A, Bousquet F. 2010. Modelling with stakeholders. *Environ. Modell. Softw.* 25: 1268-  
836 1281.

837

838 Werner K, Brandon D, Clark M, Gangopadhyay S. 2005. Incorporating medium-range numerical  
839 weather model output into the ensemble streamflow prediction system of the National Weather  
840 Service. *J. Hydrometeorol.* 6: 101-114.

841

842 White CJ, Hudson D, Alves O. 2013. ENSO, the IOD and intraseasonal prediction of heat  
843 extremes across Australia using POAMA-2. *Clim. Dyn.* 43: 1791-1810, doi:10.1007/s00382-013-  
844 2007-2.

845

846 White CJ, Franks SW, McEvoy D. 2015. Using subseasonal-to-seasonal (S2S) extreme rainfall  
847 forecasts for extended-range flood prediction in Australia. *Proc. IAHS* 370: 229-234,  
848 doi:10.5194/piahs-370-229-2015.

849

850 Wood AW, Lettenmaier DP. 2006. A new approach for seasonal hydrologic forecasting in the  
851 western U.S. *Bull. Am. Meteorol. Soc.* 87: 1699-1712, doi:10.1175/BAMS-87-12-1699.

852

853 Woolnough SJ, Vitart F, Balmaseda MA. 2007. The role of the ocean in the Madden-Julian  
854 Oscillation: Implications for the MJO prediction. *Q. J. R. Meteorol. Soc.* 133: 117-128.

855

856 Zeng L. 2000. Weather derivatives and weather insurance: concept, application, and analysis.  
857 *Bull. Am. Meteorol. Soc.* 81: 2075-2082.

858

859

860 **Tables**861 **Table 1** Categorised challenges and opportunities related to applications of S2S forecasts.

| Category                      | Challenges                                                                                                                                                                                                                                                                       | Opportunities                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Systematic model deficiencies | Systematic misrepresentation of coupled atmosphere-ocean feedbacks, which may compound existing errors or generate new biases, and a number of persistent biases and errors remain in the climate models, as well as limited understanding of some aspects of the physical world | Continued investment in supercomputers, data collection (including long-term observations) and initiatives that support both the further development and uptake of S2S forecasts, such as the WMO WWRP-WCRP S2S project (Vitart <i>et al.</i> , 2012; Robertson <i>et al.</i> , 2014; Vitart <i>et al.</i> , 2016) and the WMO GFCS                                                                |
| Quantifying uncertainty       | Inherent errors and uncertainties in probabilistic prediction systems due to predictability limits and deficiencies in models and initialisation (e.g. Slingo and Palmer, 2011)                                                                                                  | Utilise the multimodel S2S datasets, such as the NMME ( <a href="http://www.cpc.ncep.noaa.gov/products/NMME/data.html">http://www.cpc.ncep.noaa.gov/products/NMME/data.html</a> ) and the S2S Project ( <a href="http://apps.ecmwf.int/datasets/data/s2s">http://apps.ecmwf.int/datasets/data/s2s</a> ) repositories, to quantifying forecast uncertainty in a practical and relatively simple way |
| Forecast verification         | Verification is critical in the context of making S2S forecasts useful (and usable) for applications                                                                                                                                                                             | Develop new seamless verification methods, such as time averaging windows that are equal to the forecast lead time (e.g. 1-week means used to                                                                                                                                                                                                                                                      |

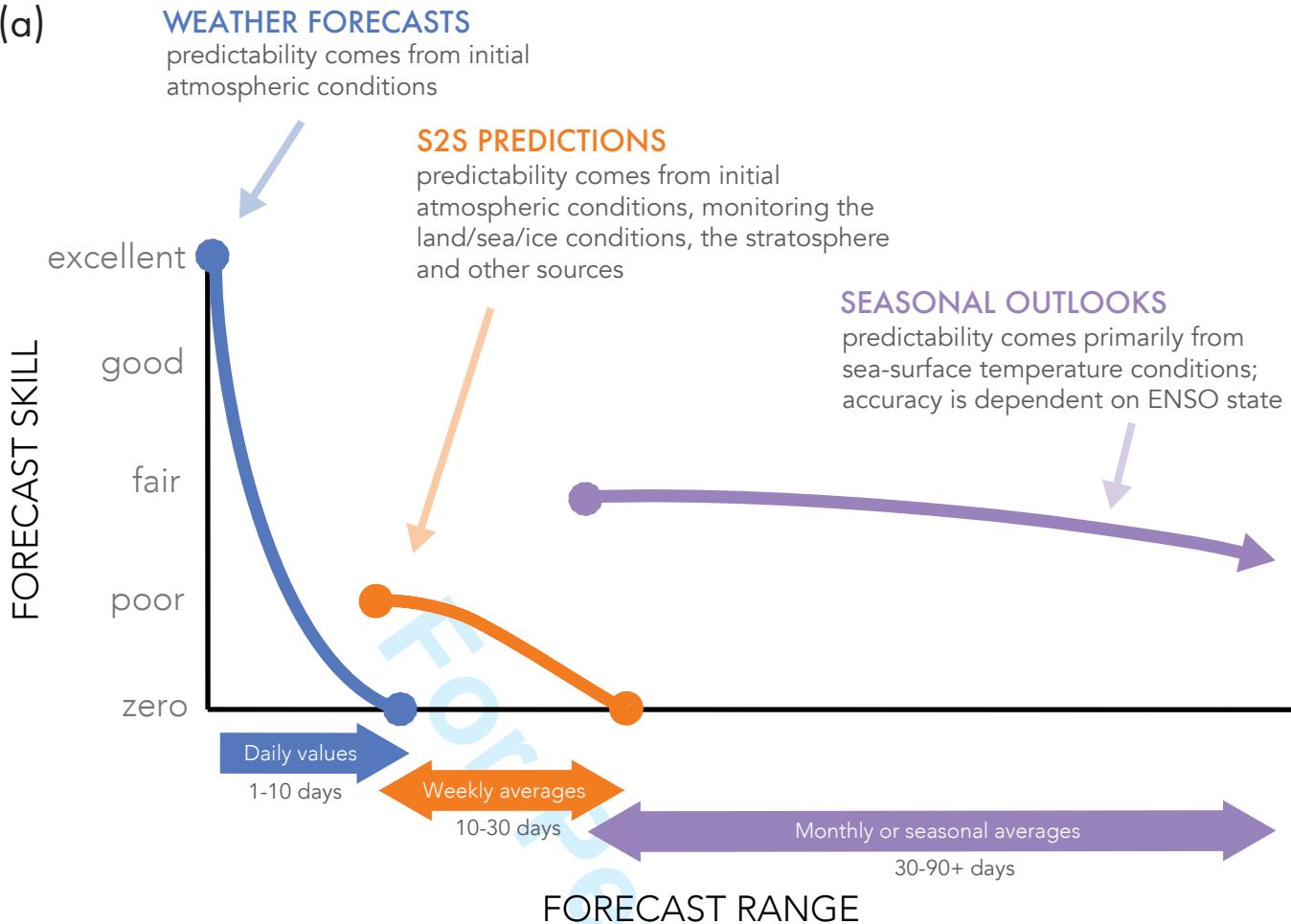
|                                                                            |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                            |                                                                                                                                                | verify forecasts at day 7; 2-week means for forecasts at day 14, and so forth) (Robertson <i>et al.</i> , 2014)                                                                                                                                                                                                                                                                                                        |
| Awareness of S2S                                                           | Raising awareness of the ‘new’ S2S timescale, data availability, and its potential uses                                                        | Promote the NMME and S2S Project repositories, and possible integration of S2S forecasts into the Regional Climate Outlook Forums (RCOFs), which provide real-time regional seasonal outlook products in several parts of the world<br>( <a href="https://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html">https://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html</a> ) |
| Case studies                                                               | Few ‘success stories’ of S2S predictions to support promotion of S2S forecasts and their integration into applications                         | Increase the number of case studies using S2S hindcast repositories, demonstrating retrospective forecast skill                                                                                                                                                                                                                                                                                                        |
| Integration with social sciences to ensure forecasts are useful and usable | Little current understanding and characterising of decision-making frameworks and processes at relevant spatial, temporal, and end-user scales | Collaborate with the social science communities to leverage existing knowledge on information creation, communication, use, and valuation of S2S predictions                                                                                                                                                                                                                                                           |

862

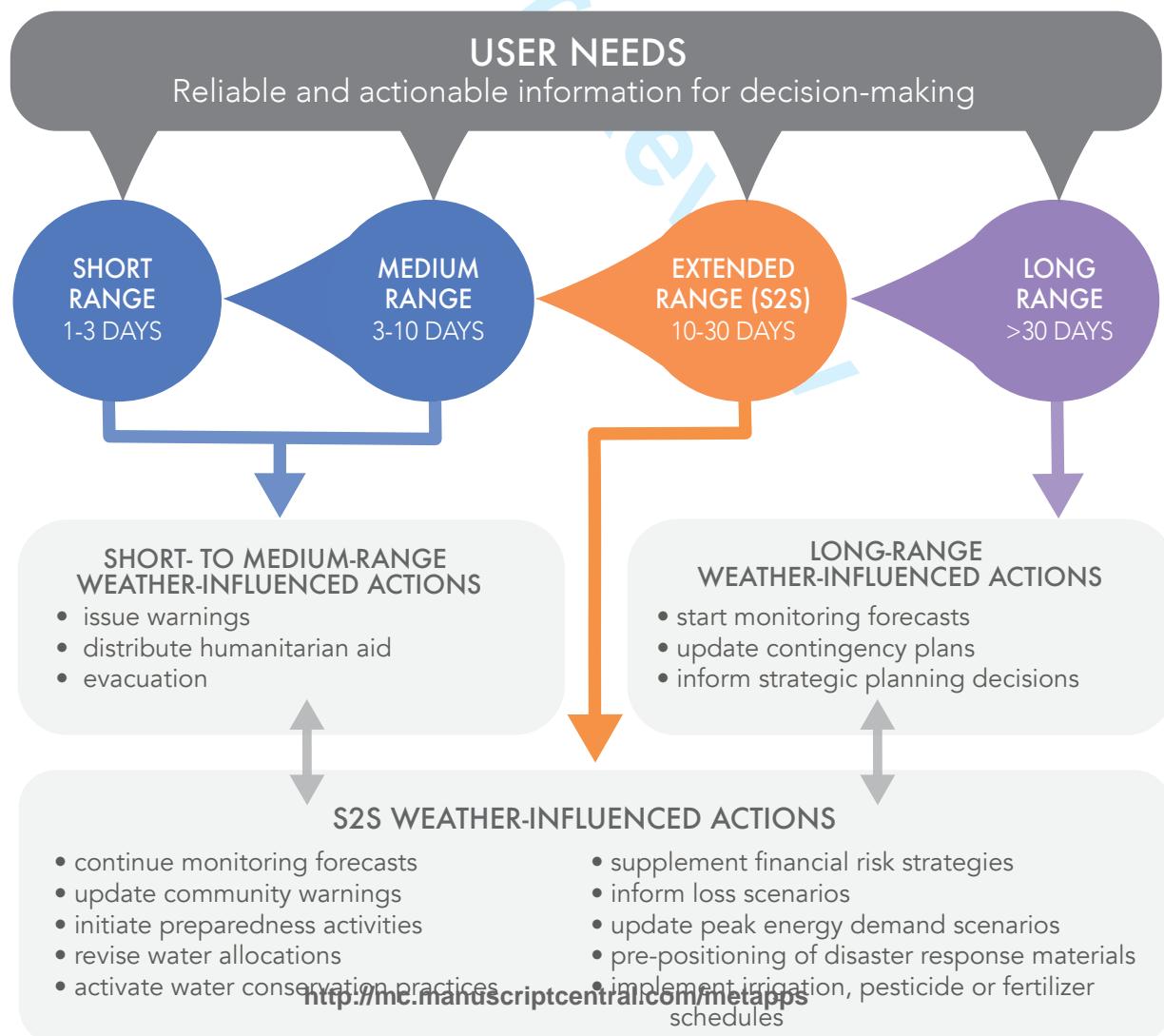
863

864

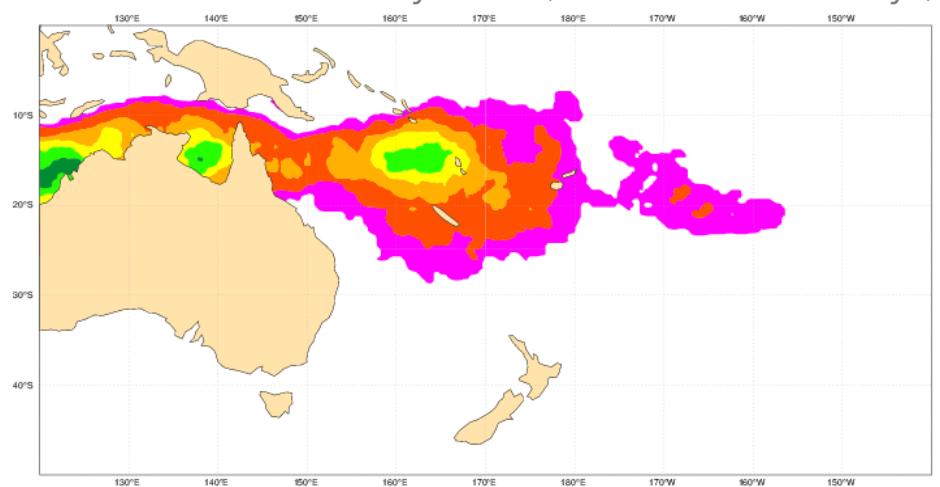
865 **Figure captions**


866 **Figure 1** (a) Qualitative estimate of forecast skill based on forecast range from short-range  
867 weather forecasts to long-range seasonal predictions, including potential sources of  
868 predictability. Relative skill is based on differing forecast averaging periods. (b) Schematic  
869 highlighting the relationship between the S2S ‘extended-range’ forecast range and other  
870 prediction timescales, with examples of actionable information that can enable decision-making  
871 across sectors. Actions are examples only and are not exclusive to a forecast range. Figure (a)  
872 adapted by Elisabeth Gawthrop from an original figure by Tony Barnston, both International  
873 Research Institute for Climate and Society; edited and reproduced with permission. Figure (b)  
874 based on Meehl *et al.* (2001), Hurrell *et al.* (2009) and Goddard *et al.* (2014). Definitions based  
875 on WMO meteorological forecasting ranges: <http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-AppI-4.html>.

877

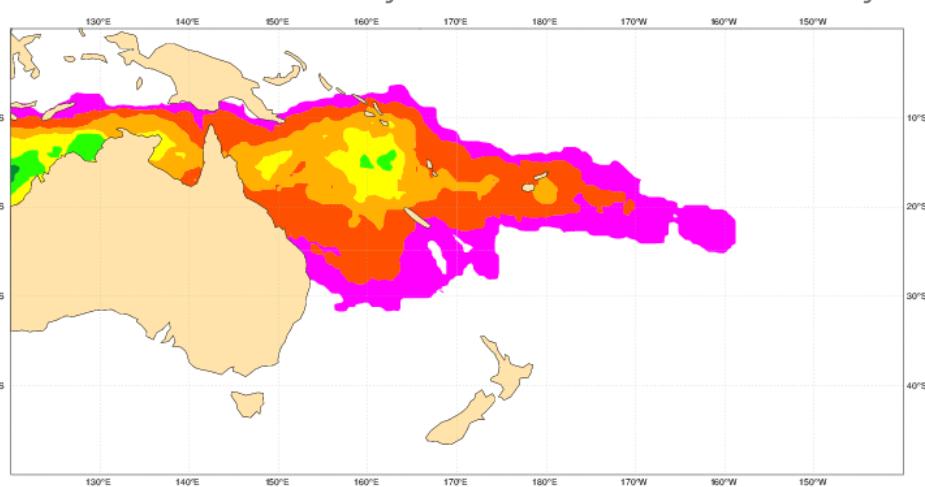

878 **Figure 2** Ensemble prediction of Tropical Cyclone Pam which made landfall in Vanuatu on 13  
879 March 2015. Panels show weekly-averaged probability of a tropical cyclone strike within 300  
880 km for (a) 22-28 days, (b) 15-21 days, (c) 8-14 days and (d) 1-7 days forecast lead time.  
881 Predictions made using the ECMWF Ensemble Prediction System (ENS).

882

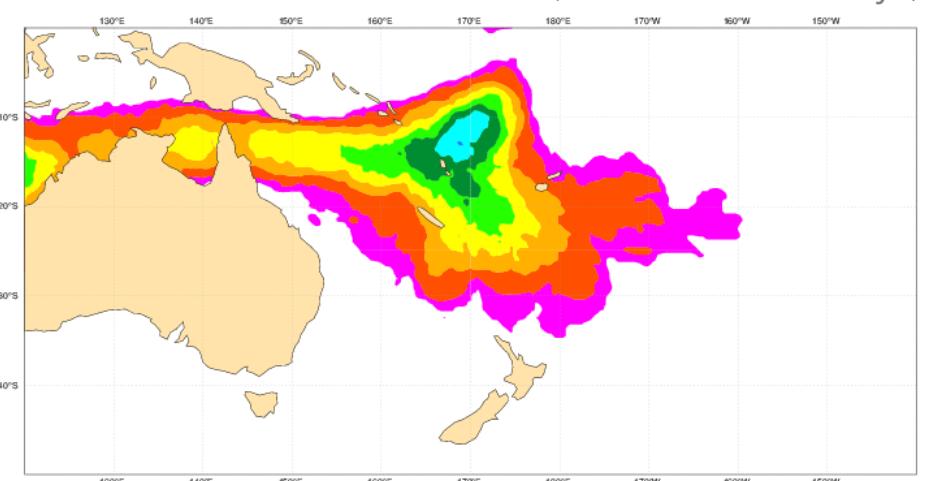

(a)



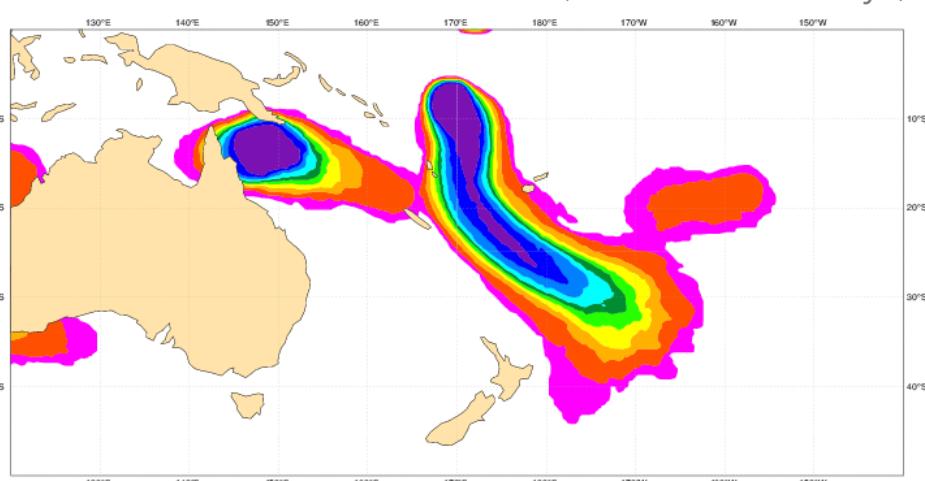
(b)




(a)




## Meteorological Applications


(b)



(c)



(d)

