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Abstract

While seasonal outlooks have been operational for many years, until recently the extended-range
timescale - referred to as ‘subseasonal-to-seasonal’ (S2S) - has received little attention. S2S
prediction fills the gap between short-range weather prediction and long-range seasonal outlooks.
Decisions in a range of sectors are made in this extended-range lead time, therefore there is a
strong demand for this new generation of forecasts. International efforts are underway to identify
key sources of predictability, improve forecast skill and operationalise aspects of S2S forecasts,
however challenges remain in advancing this new frontier. If S2S predictions are to be utilised
effectively, it is important that along with science advances, we learn how to develop,
communicate and apply these forecasts appropriately. In this study, we present the emerging
operational S2S forecasts to the wider weather and climate applications community by
undertaking the first comprehensive review of sectoral applications of S28S predictions, including
public health, disaster preparedness, water management, energy and agriculture. We explore the
value of applications-relevant S2S predictions, and highlight the opportunities and challenges
facing their uptake. We show how social sciences can be integrated with S2S development -
from communication to decision-making and valuation of forecasts - to enhance the benefits of
‘climate services’ approaches for extended-range forecasting. While S2S forecasting is at a
relatively early stage of development, we conclude that it presents a significant new window of
opportunity that can be explored for application-ready capabilities that could allow many sectors

the opportunity to systematically plan on a new time horizon.
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1 Introduction

There is growing interest across the applications community in understanding and using a new
generation of extended-range weather predictions that are currently in development by
meteorological centres around the world. While long-range monthly and seasonal outlooks have
been operational in some regions for many years (and are the subject of increasing research
initiatives to explore and advance their application) the extended-range timescale, which sits
between the medium- to long-range forecasting timescales (i.e. beyond 10 days and up to 30
days), has received minimal attention until recently. This extended-range timescale has in recent
years become referred to as the ‘subseasonal-to-seasonal’ (or ‘S2S’) forecasting range, and is
generally regarded as bridging the gap between weather forecasts and monthly or seasonal
outlooks (Figure 1a) (Vitart, 2014a; Robertson et al., 2014; Kirtman ef al., 2014)1. This timescale
has long been seen as a ‘predictability desert’ (Vitart et al., 2012) as it is notoriously difficult to
provide skilful predictions on subseasonal or monthly timescales (Hudson ef al., 2011), however
recent advances have spurred an increasing interest in S2S prediction (Shapiro et al., 2010;
Brunet et al., 2010). At least ten international weather centres now have some capability for
issuing experimental or operational S2S forecasts, including the European Centre for Medium-
Range Weather Forecasting (ECMWF), the National Oceanic and Atmospheric Administration
(NOAA), the China Meteorological Administration (CMA) and the UK Met Office (UKMO)

(Vitart, 2014a). While S2S forecasting is still in development, the potential availability of these

! Medium-, extended- and long-range definitions based on WMO meteorological forecasting

ranges: http://www.wmo.int/pages/prog/www/DPS/GDPS-Supplement5-Appl-4.html.
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forecasts provides a significant ‘window of opportunity’ whereby S2S predictions can start to be
explored for both operational forecasting and application-focused capabilities to complement

existing forecast services.

The ongoing World Meteorological Organization (WMO) World Weather Research Programme
(WWRP)-World Climate Research Programme (WCRP) Sub-seasonal to Seasonal Prediction

Project (Vitart et al., 2012; Vitart, 2014a; Robertson et al., 2014) (http://s2sprediction.net/) is

aimed at improving forecast skill and understanding of the S2S timescale and promoting its
uptake. This is the first collaboration between the WWRP and the WCRP, and contributes to the
WMO Global Framework for Climate Services (GFCS) which aims to help society cope with
extreme events through better forecast accuracy on longer lead times. A key output of this
collaborative project is a data repository of near real-time S2S forecasts and hindcasts (Vitart et
al., 2016) produced by several operational meteorological institutions

(http://apps.ecmwf.int/datasets/data/s2s and http://s2s.cma.cn), providing valuable repositories

against which the potential skill of multiple model predictions on the S2S timescale can be
evaluated, and their usability for societal applications assessed for the first time. This effort
closely aligns with other WMO initiatives, such as the THORPEX Interactive Grand Global
Ensemble (TIGGE) project, the HIWeather project that has identified connections to S2S
timescales through the forecasting of weather-related hazards, and ongoing efforts through the
WMO Lead Center for Long-Range Forecast Multi-Model Ensemble (LC-LRFMME) project to

extend into the S2S timescale.

The expansion into S28S forecasting has been triggered by a combination of growing demand

from the applications community and progress in identifying and simulating key sources of S2S

http://mc.manuscriptcentral.com/metapps
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predictability (Vitart, 2014a). Although there are efforts underway to operationalise aspects of
S2S forecasts (Robertson et al., 2014), the S2S timescale is a developing frontier for forecasting
science. S28S forecasting represents a potential opportunity for a range of applications, potentially
enabling many sectors to systematically react and plan. However, to date there has not been a
coordinated effort to examine the potential of application-relevant forecasts on the S2S timescale

and a demonstration of how these forecasts can be employed to maximise societal benefit.

This paper reviews the advances since Brunet et al. (2010) first promoted the WWRP-WCRP
weather-climate collaboration to jointly tackle the development of S2S prediction science.
Focusing on potential user applications, we draw on recent advancements to demonstrate the
status and prospects of S2S prediction, highlighting how they can be utilised and where the key

challenges remain.

2 Forecasting on the S2S timescale

Accurate climate prediction requires a good representation of weather phenomena as well as the
underlying physical laws that apply to all prediction timescales (Bauer et al., 2015). While short-
to medium-range weather forecasting is based on initial atmospheric conditions, for seasonal
prediction the initial conditions of the coupled land-ocean system are more important, with the
rapidly varying components of the atmosphere often less well predicted and initialised. The S2S
timescale falls in between these time ranges and is influenced by both initial conditions of the
atmosphere and the more slowly evolving boundary conditions such as sea surface temperatures

(SST), soil moisture and sea-ice components. It is these different time and space scales of the

http://mc.manuscriptcentral.com/metapps
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atmosphere, land and ocean - and the ability to predict them - which makes S28S forecasting a

major challenge (e.g. Chen ef al., 2010; Doblas-Reyes et al., 2013; Vitart, 2014a).

As with seasonal forecasting, S2S predictive skill relies on more than just realistic initialisation
conditions and SST, but also large-scale circulation modes in the climate system, such as El
Nifio-Southern Oscillation (ENSO), Madden-Julian Oscillation (MJO), Indian Ocean Dipole
(IOD) and North Atlantic Oscillation (NAO), and their known influence on specific weather
phenomena including extreme events. For example, White et al. (2013), using the POAMA
model, showed that increased skill in predicting extreme heat during the winter months over
northern Australia comes mainly from La Nifia periods, whereas skill over eastern and south-
eastern Australia comes from El Nifio periods, highlighting the importance of the state of ENSO
for regional S2S prediction. S2S forecasts are, however, more generally limited geographically,
working best in the tropics due to higher-frequency climate modes such as the Madden-Julian
Oscillation (MJO), which is the dominant mode of convective activity in the mid to high
latitudes and offers an enhanced source of predictability (e.g. Vitart, 2014a). MJO predictability,
in particular, has improved significantly over the last decade, with MJO teleconnections over the
Northern and Southern Extratropics improving dramatically through better representation of the
MIJO in the ECMWF model (Vitart, 2014b). The vertical resolution of the ocean component of
forecasting systems, particularly in the top ocean layer, has also been documented to have a
significant impact on the prediction of MJO on S2S timescales through a stronger diurnal cycle
of SST (Woolnough et al., 2007). Increased model resolution is expected to improve the forecast
skill by allowing more physical processes to be resolved (Vitart, 2014a). Initial soil moisture
conditions have also been shown to particularly increase the accuracy of both precipitation and

temperature predictions on the S2S timescale, especially for summer extreme temperatures,

http://mc.manuscriptcentral.com/metapps
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however the utilisation of sea-ice conditions is a largely untapped and unknown source of

potential predictability (Doblas-Reyes et al., 2013).

A number of persistent biases and errors, however, still exist in most climate simulations, such as
tropical precipitation and low cloud cover (e.g. Randall et al., 2007). Some of these biases arise
solely from the errors in the models and some may arise from the systematic misrepresentation
of the coupled atmosphere-ocean feedbacks, which may compound existing errors or generate
new biases (Brunet et al., 2010; Vitart, 2014a). The lack of vegetation components and
stratospheric disturbances in current forecast models are other impediments to improving

forecasts on S2S timescales (Brunet et al., 2010; Doblas-Reyes ef al., 2013).

3 The information gap

3.1 Unlocking the potential of S2S forecasting

Operational forecasting centres routinely issue weather and climate information products, but
there remains a gap between what various industries and sectors of society need and what
forecasters can produce. While weather forecasts have been proven to be useful for short-term
decision-making (Brunet et al., 2010), short-range weather forecasting - where predictability
mainly comes from initial atmospheric conditions - has fundamental physical limits (i.e. up to
about 10 days) (e.g. Slingo and Palmer, 2011). In contrast, instead of forecasting the weather for
a given day, longer lead time forecasts provide information about the likelihood of averaged
weather, such as rainfall totals, typically over periods up to a season in length. Seasonal forecasts
do not predict the weather at a set location or time, instead they tell us about the likelihood of

shifts from the normal climatic conditions - or put another way, a shift in the underlying

http://mc.manuscriptcentral.com/metapps
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probability distribution - where predictability is driven primarily by slowly varying components

of the Earth System, such SST.

Society is used to short- to medium-term weather forecasts, but is still less familiar with longer
lead time forecasts. Providing a forecast for increased/decreased likelihoods is not adequate for
the need for reliable, actionable information on the timing, location and scale of weather events.
For example, seasonal forecasts of oncoming ‘colder than average’ winters or ‘hotter than
average’ summers - often delivered through mainstream media outlets - are the first stage of
communication that can lead to a misinterpretation of what longer lead time forecasts are. Users
are often exposed to someone’s interpretation of forecasts, and the terminology typically used,
such as ‘increased or decreased likelihood’ and ‘normal conditions’, are relative to past climate

and therefore implicitly require additional knowledge to understand.

Communications issues therefore surround S2S forecasts given their probabilistic nature, yet it is
recognised that to be of value S2S predictions must realistically represent day-to-day weather
fluctuations and statistics (Brunet ef al., 2010). S2S predictions have the potential to support
decision-makers through the ongoing development of skilful forecasts of high-impact weather
events (e.g. Vitart, 2014a). For example, this has been demonstrated by skilful predictions of
phenomena such as tropical cyclones on lead times of up to 28 days (Figure 2), but it is yet to be
determined if S2S forecasts can predict such events with sufficient skill and reliability for many
applications. Despite this, inroads have been made with forecast skill on the S2S timescale and

there lies a largely unexplored middle ground between what is required and what is possible.

Vitart (2014a) also notes that while many end-users have benefited by applying weather and

climate forecasts in their decision-making, there is evidence to suggest that such information is

10
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underutilised across a wide range of economic sectors (e.g. Rayner et al., 2005; O’Connor ef al.,
2005; Morss et al., 2008). Indeed, there needs to be a distinction between what is ‘useful” and
what is ‘usable’ information, reflecting the different ways that forecasters and users perceive
scientific information (Lemos et al., 2012). Forecasters may make the assumption that
knowledge is useful when they conduct research without fully understanding potential users’
decision-making processes and contexts; in contrast, users may not know how they might make
use of S28 forecasts (or may have unrealistic expectations) of how it fits within their decision-

making processes and thus choose to ignore it, despite its usefulness (Lemos et al., 2012).

It has been shown that an interactive, co-production approach to science and decision-making
between information producers and users positively affects the rate of information use (e.g.
Lemos and Morehouse, 2005; Feldman and Ingram, 2009; Lemos et al., 2012) as well as the
effective communication of decision-relevant science. Prioritising collaboration between
scientists and those who rely on climate and weather information to make policy and
management decisions through a ‘co-exploration’ approach supports this co-production of usable
information (Meadow et al., 2015; Steynor et al., 2015), especially when exploring decisions
where needs or sensitivities are yet to be identified. This iterative process explores the limits of
climate model data in a place-based context that recognises the complex nature of decision-
making and goes beyond the simplistic dichotomy of ‘climate services’ and ‘end-users’ by

incorporating multifocal learning across the decision-making space (e.g. Hurrell ez al., 2009).

At the same time as understanding the ‘information gap’, there is a need to better understand user

needs, including identify potential change agents and ‘champions’ who can communicate new

11
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information effectively, recognise competing stakeholder goals, and reception of user-centred

information in innovative ways.

In support of understanding user needs, there is an additional need to increase awareness of the
S2S timescale through better data visibility and accessibility. S2S data archives such as the North
American Multimodel Ensemble (NMME; Kirtman ef al., 2014) and the new WWRP-WCRP
S28 project repository are improving access to forecasts, as well as providing information about
forecast uncertainty and quality (e.g. Slingo and Palmer, 2011). A lack of information about the
accuracy of such forecasts precludes users from making effective use of them, whereas a more
thorough understanding of forecast performance may help decision-makers determine how much
and when to rely on them (Hartmann ef al., 2002). There may also be a lack of understanding
and appreciation of the complexity of weather and climate processes and the yet-to-be quantified
forecast skill on the S2S timescale (from the decision-makers’ perspective) and of the numerous

facets involved in decision-making (from the weather and climate scientists’ point of view).

3.2 Putting the user first

S2S prediction is ultimately applied research with potentially significant value to society, and is
an opportunity to create a scientific discipline characterised by co-design and co-production
between the scientific and the application communities. Traditional applied research can be
described by the linear (sequential) model of research and innovation where scientific discovery
precedes innovation (i.e. the process in which the scientific findings are transferred into
applications). A contrasting model is the ‘user-centred’ model of innovation (e.g. Lemos et al.,
2012), referred to as the ‘climate services’ concept, in order to meet the demand for customised

climate-related tools, products and information (EU COM, 2015). This model puts an emphasis

: 12
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on the role played by users in the development and improvement of products and services, which

can be used to illustrate the ‘top-down’ vs. ‘bottom-up’ debate?.

Recent efforts in Europe, such as the EUPORIAS project (http://www.euporias.eu/) (e.g. Taylor

et al., 2015; Bruno Soares and Dessai, 2016), developed semi-operational prototypes of climate
services to address the needs of specific users on seasonal to decadal timescales. By applying a
similar user-centred climate services approach, the S2S research community could similarly
increase the likelihood for successful development of S2S predictions. In doing so, the scientific
community should focus on working with users to understand their decisions, including which
ones are climate/weather-sensitive, and on what timescales; efforts to determine specifically
what information might be of interest to users is then the next step after understanding the
decisions (Ray and Webb, 2015). Decision-dependencies across a range of end-users could be
determined through user-centred studies, including assessing which information, spatial and

temporal scales and locations are most relevant to the seamless weather and climate services

? There is an ongoing debate on the pros and cons of ‘top-down’ and ‘bottom-up’ approaches
(e.g. Dessai and Hulme, 2004; Ray and Webb, 2015). The ‘top-down’ approach follows the
sequence of first projecting future emissions of greenhouse gases, then developing climate
scenarios, and thirdly studying impacts and adaptation options; in contrast, a ‘bottom-up’
approach starts from a given system and then studies vulnerabilities (i.e. the degree to which the
system is susceptible to, and unable to cope with, adverse impacts of climate change). Most
likely, the most successful approach for forecasting on longer lead times such as S2S needs to
include a combination of both. For example, experience in the UK from a national ‘top-down’
probabilistic climate service demonstrated that although the probability-based climate
information provided greater credibility, there was still a requirement to tailor the climate
information generated so that stakeholders could use the information in decision-making (Tang

and Dessai, 2012).

13
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approach (e.g. Graham et al., 2011; Vaughan and Dessai, 2014). However, the weather and
climate community might engage with individual sectoral decision-makers in cases in which user
studies have already matched the decision-maker with the forecast product. Scientists and users
could co-develop tools and processes for fostering the joint development of S2S predictions, with
stakeholder-based modelling (Voinov and Bousquet, 2010) or co-exploration/co-production
processes (Lemos and Morehouse, 2005; Meadow et al., 2015; Steynor et al., 2015) involving
the user-community not only as consumers, but as co-producers of climate information. Climate
services need to move towards a demand-driven and science-informed approach and that
boundary organisations will need to focus on use-inspired research (Lourenco ef al., 2015).
Bringing partner boundary organisations into the process for co-production, co-exploration and
communication of information, including translation of scientific products into usable formats,
balances the trade-offs between salience, credibility and legitimacy and increases the potential

overall uptake of climate information (McNie, 2007).

Collaboration and co-production across sectors and disciplines is key to narrowing the gap
between S2S forecast information and application; a transformation is therefore needed in the
way both industry and the weather and climate community conceptualise and communicate S2S

predictions.

4 Potential sectoral applications of S2S predictions

The primary rationale for international efforts in pursuing a seamless weather-to-climate
prediction process - which by default includes the S2S timescale - is that the resulting

information influences decisions across predictive timescales, contributing to objectives such as

14
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protection of life and property, enhancement of socio-economic well-being, and sustainability of
the environment (Brunet ef al., 2010). There is a range of efforts underway to operationalise
aspects of S2S forecasts that may be used to demonstrate the potential value of applications-
relevant S2S products, such as the NOAA Climate Prediction Center’s operational outlooks and
the Tropics Hazards and Benefits Outlook. However, S2S predictions provide new opportunities
for ‘user-centred’ applications because many decisions fall into the interceding S2S timescale
between the well established and utilised short- to medium-range weather forecasts on one side,
and seasonal forecasts on the other. Where existing decision processes exist that already use
information on these other time scales, there may be readiness to more easily uptake this new
forecast information. S2S forecasts therefore provide a significant opportunity to provide

actionable information on this relatively unexplored applications time horizon.

In the following section, we review some of the potential sectoral uses of S2S forecasts,
highlighting key decisions that can be made on this timescale and their information requirements

(Figure 1b).

4.1 Humanitarian sector

There is strong demand in the humanitarian sector for reliable longer-range forecasts (Braman et
al., 2012) - particularly of extreme events such as floods and droughts - and it is the S2S
timescale where many risk reduction and disaster preparedness actions can be taken to mitigate
impacts. S2S forecasts offer the opportunity for disaster risk reduction (DRR) managers to track
the progress of the slowly evolving, large-scale climate modes that may have been predicted to

shift in a preceding seasonal outlook, therefore supporting the transition from seasonal outlooks

15
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to weather forecasts to inform both disaster planning and systematic response (Tadesse ef al.,

2016).

In this context, the Red Cross Climate Centre have adopted the ‘Ready-Set-Go!” approach to
decision-making for disaster management that utilises short- to long-range predictions (Goddard
et al., 2014). Seasonal forecasts can provide the ‘Ready’ monitoring information and early
contingency planning such as volunteer training; subseasonal forecasts provide the ‘Set’ early
warnings and alerting of volunteers; and short-range weather forecasts the ‘Go!’ activation stage,
including evacuation and distribution of aid (Vitart et al., 2014a). This concept highlights an
increased/decreased likelihood of a particular event occurring over the forecast period,
empowering DRR managers to adapt and react accordingly to instigate preparedness activities
during the ‘Set’ phase as well as supporting the crucial shift to short-term actions in the ‘Go!’

phase.

Many of the disaster preparedness actions that can be taken based on increased risk of an
extreme event require time to activate. Procurement of disaster response supplies can take
several weeks (e.g. Boston Consulting Group, 2015) and is often the reason that actual response
time to a disaster can lag well behind the event itself. While a short-term forecast allows for a
head-start, a S2S forecast would allow for such response materials to be pre-purchased and
prepositioned in the at-risk region in advance of the actual event, allowing for more immediate
responses. Similarly, supplies needed for risk reduction actions, such as pesticides for mosquito
fumigation, chlorine tablets for water purification, or sandbags to reinforce river banks, are

subject to the same time constraints as the response materials. The prepositioning of emergency
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supplies has been shown to yield a return on investment of between 1.6 and 2.0 (Boston

Consulting Group, 2015).

Continuing the ‘Ready-Set-Go!’ concept, there are a number of quick and resource-independent
actions that can then be taken by vulnerable people a few days in advance of a potential disaster,
including evacuation and preparing food or water to last through the emergency period. Such
actions appear in heat wave early warning plans (e.g. Ebi et al., 2003; Knowlton et al., 2014) and
cyclone preparedness plans (e.g. Roy et al., 2015), which could be expanded to include ‘Ready’
actions within the S2S timescale. The Sendai Framework for Disaster Risk Reduction 2015-2030
(UNISDR, 2015) points to an opportunity to connect the joint weather and climate communities’
efforts surrounding S2S prediction to global DRR activities and planning, as well as utilising
seamless forecasting and climate services approaches. Priority 4 of the Framework recommends
investment in the development, maintenance and strengthening of people-centred, multi-hazard
and multi-sectoral forecasting and early warning systems, developed through a participatory

process and tailored to the needs of users.

Advances in S2S prediction - specifically if focused towards extreme events - could allow the
humanitarian sector to systematically react before potential disasters, saving lives and livelihoods

through a better informed early response.

4.2 Public health

Brunet et al. (2010) highlighted public health as one of the key potential domains of application
of seamless weather-to-climate forecasts, where decisions cover a wide range of temporal scales

that directly relate to positive health outcomes (e.g. expected disease outbreak patterns, available
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medical supplies, poverty indicators). Heat waves, for instance, are amongst the weather events
that have the strongest societal impact with severe disruption of activities and significant loss of
life. In the 2003 European heat wave, health authorities estimated that about 14,000 died in
France alone (Vitart, 2005; Murray et al., 2012). The prediction of the evolution of such an
extreme event (including onset, persistence and decay) a few weeks in advance would be
particularly useful (Vitart, 2014a). Case studies of subseasonal heat wave prediction are starting
to demonstrate significant promise (e.g. Vitart, 2005; Hudson et al., 2015), however, issues
around the accuracy of forecasts - especially for predicting the timing, duration, location and
severity of heat events (e.g. Perkins and Alexander, 2013) - as well as a lack of an internationally
recognised definition, makes heat wave forecasting complex and difficult to tailor to individual

users’ needs.

The potential benefits of S2S applications are perhaps greatest in developing nations, especially
in Africa where at least 30 climate-sensitive diseases pose a major threat to the lives and
livelihoods of millions of people. More than 500 million Africans live in regions endemic with
malaria that is highly correlated with the seasonal climate for example (Brunet et al., 2010).
Malaria forecasting on seasonal timescales has been well documented, including Morse et al.
(2005) that show skilful one-month lead seasonal predictions using a malaria transmission model
driven with output from seasonal predictions, and Thomson et al. (2006) and MacLeod ef al.
(2015) that demonstrate skilful malaria epidemic forecasts in Africa two months before the start

of the season.

It is likely, however, that one of the major challenges with integrating S2S predictions into

public health practices will be working with an initially less familiar (and perhaps less receptive)
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set of decision-makers than some other sectors. The necessary infrastructure (e.g. near real-time
hospital patient data) may be in place in some regions to develop an operational weather-related
hospital admissions forecast, but not in others. In developing country contexts, logistical access
to forecasts and data has its own additional challenges and may be reliant on humanitarian

disaster-related activities.

4.3 Energy

Weather-related risk is a primary driver for energy pricing, production and usage. Because
formal decision-making processes already exist within the energy generation sector, it may be
easier to develop successful relationships with this sector than many other sectors with less
formal practices (Brunet et al., 2010). For instance, it is routine practice for the wind energy
sector to utilise short-range weather forecasts (Barthelmie et al., 2008; Foley et al., 2012) and, to
a lesser degree, seasonal outlooks (Roulston ef al., 2003). Taylor and Buizza (2003), for
example, show that energy demand scenarios based on ensemble predictions are more accurate
than those produced using traditional weather forecasts up to 10 days in advance, therefore S2S
forecasts could be used to support these activities by hedging for anticipated energy peaks and

other weather-related energy trading opportunities and risks.

In recent years, wind power has experienced rapid growth, contributing close to 5% of global
electricity production (Pryor and Barthelmie, 2010). One of the biggest challenges facing the
wind power industry is intermittency, where energy grid operators must match production to
demand at all times, irrespective of whether wind energy is produced or not (Albadi and El-
Saadany, 2010). S2S wind speed forecasts could help address the challenge of intermittency by

enabling transmission service operators to plan operations further ahead and increase grid
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efficiency (Pinson, 2013), although at present only mean wind values (zonal and meridional) are
available on the S2S timescale. However, as S2S forecasts become more skilful and more
complete, grid operators may further optimise the pricing system by using forecasts relevant to
supply (e.g. wind speed for wind power, precipitation and temperature for hydropower
operations) as well as demand (especially temperature) to inform switching on and off longer-
start fuel sources like nuclear. This challenge of balancing a fluctuating wind energy resource

with more stable energy sources will only grow as more wind power capacity is installed.

Related to this, S2S forecasts could be used to manage distribution and transmission
infrastructure and maintenance scheduling. For example, specialist maintenance vessels are
scheduled several weeks in advance for offshore wind farm maintenance and installation. Work
is halted and money lost when high wind and waves prevent operations. Currently the decision to
leave port is informed by current wave height and trend over previous hours, but a reliable S2S

forecast of an optimal operational window could potentially save money and minimise risks.

4.4 Water management

Most international operational forecast centres issue flood forecasting and warning services
based on short-range rainfall forecasts. At the other end of the forecasting timescale, many
meteorological/hydrological centres have been issuing probabilistic seasonal streamflow
forecasts as part of climate outlook services for many years; i.e. 3-month outlooks of total flow
volumes rather than flood forecasts (e.g. Wood and Lettenmaier (2006) in the U.S.; Robertson
and Wang (2012) in Australia) or have documented needs for S2S forecasts in short-term water
management decisions (e.g. Raff e al., 2013). Seasonal streamflow forecasts are contingent on

climate information for short-term planning (e.g. water allocation) and setting up contingency
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measures during extreme years. However, the water allocated based on seasonal forecasts issued
at the beginning of the season requires revision using updated (i.e. subseasonal) forecasts

throughout the season (Sankarasubramanian et al., 2009).

There have been some efforts to forecast streamflow on longer-range timescales, with Bennett et
al. (2014) finding positive forecast skill for higher streamflows in the 1-month lead time in
southeast Australia, Sankarasubramanian et al. (2009) modelling seasonal and subseasonal water
allocation in the Philippines, and Werner et al. (2005) for operational streamflow forecasting in
the U.S. Similarly, whilst specific flood predictions cannot be made on S28S lead times (i.e. they
reflect risks but are not intended for predicting the timing, frequency, severity or extent of flood),
S2S forecasts could be employed to highlight an increased chance of flooding where total
streamflow volume has already been predicted to be high for a given season (White et al., 2015).
African hydrological centres, for example, would benefit from S2S forecasts of the onset and
subseasonal evolution of the rainy season, whilst S2S forecasts of the frequency of daily rainfall
amount could be relevant to rain-dependent agricultural applications and flood prediction in the

tropics (Robertson ef al., 2014).

S2S forecasting therefore provides a significant opportunity to bring together the flood warning
and streamflow forecasting communities in a seamless hydrological forecasting service,
extending flood forecasting to longer lead times through the integration with rainfall-runoff
hydrological models (White et al., 2015), and improving water resource allocation and

management decision-making on timescales less than a season.
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4.5 Agriculture

The agriculture sector is one of the most advanced user groups in terms of using weather
forecasts and outlooks to support operational decisions on the timing of irrigation, spraying and
harvesting (e.g. Meinke and Stone, 2005; Harrison et al., 2007 and references therein). Clements
et al. (2013) show the S2S timeframe to be highly relevant in agriculture, noting studies that
evaluated the use of meteorological information in agriculture for crop management, irrigation
decisions, product marketing, input use (e.g. fertilizers), and commodity pricing. Using a similar
approach to the ‘Ready-Set-Go!’ concept, by extending downward from the seasonal scale, a
seasonal forecast of rainfall totals might inform strategic decisions regarding crop-planting
choices, whereas S2S forecasts of rainfall extremes or heat waves could help irrigation
scheduling and pesticide/fertilizer application (Vitart, 2014a). S2S forecasts could be used as
dynamic updates to an existing cropping calendar, such as for the estimation of crop yields
(Vitart, 2014a) to help alleviate global food security issues (CGIAR, 2009). Regional
mechanisms such as the strong intraseasonal oscillation, which is a major cause of monsoon
breaks within the Indian monsoon season, could add valuable information for irrigation

scheduling.

The experienced user-base within the agriculture sector is very familiar with the need to express
seasonal forecasts in terms of daily weather characteristics, such as dry spells during critical
growth periods (e.g. Verbist et al., 2010), and presents perhaps one of the best opportunities to
bridge the gap between the weather and climate forecasting timescales. As weather impacts are
just one of many stressors shaping users’ decisions in the agriculture sector, to successfully

integrate S2S forecasts into existing decision-making practices, highly participatory, context-
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specific dialogues, aided by modelling approaches bringing together producers and users of

knowledge across disciplines, are needed (Meinke et al., 2009).

4.6 Emerging sectors

There are many other sectors that could potentially benefit from skilful S2S forecasts but which
have not yet been explored in detail. For example, S2S forecasts could be used to augment the
existing use of seasonal environmental management forecasts, such as providing additional
decision support information for marine fisheries and aquaculture (e.g. Spillman and Hobday,
2014), and wildfire risk management (Owen et al., 2012). Similarly, S2S forecast applications
that target the retail sector could be used for advanced stock orders where the timing of seasonal
changes is important, or support preparedness ahead of extreme weather events such as heat
waves (e.g. Hudson et al., 2015), tropical cyclones/hurricanes (e.g. Vitart et al., 2010), and snow

(e.g. Cohen, 2003).

In a broader sense, the value of weather forecasts needs to be better understood and quantified. It
has, however, proven difficult to isolate the benefits and assess the economic value of longer
lead time forecasts in applications (Kumar, 2010). The financial derivatives markets and
insurance industry understand the concept of weather-related risk and the application of forecasts
(e.g. through hedging strategies, weather-based decision rules, loss scenarios) perhaps better than
any sector (e.g. Zeng, 2000; Jewson and Caballero, 2003), which the weather and climate
community can benefit from. For the potential benefits of S2S predictions to be fully realised,
there needs to be a focus on economic impacts and benefits, understanding the asymmetry of the
cost loss and benefit matrix, a measure of sensitivity of the impact of particular weather

phenomena, and an understanding of how they could influence decision-making across sectors.
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437 5 Challenges and opportunities of the S2S timescale

438  After three decades of research into seasonal climate predictability and the development of
439  dynamical prediction systems (Kirtman et al., 2014), there is substantial evidence that dynamic
440  S2S prediction offers a significant opportunity to be useful to the applications community

441  (Pegion and Sardeshmukh, 2011; Kirtman et al., 2014). However, we find many challenges to

442  the successful application of S2S predictions summarised in Table 1).

443  The potential utility of longer lead time forecasts by the applications community - including both
444  S2S and seasonal - is based on end-user decision support (e.g. Morse et al., 2005). To achieve
445  this, an improved understanding of how perceptions, willingness and ability to use information
446  changes across predictive timescales including S2S, and understanding how a piece of

447  information goes from being useful to usable (Lemos et al., 2012) is required, such as Bruno

448  Soares and Dessai (2016) that provide examples of barriers and enablers to the uptake and use of
449  long-range seasonal forecasts in Europe. The current lack of ‘success stories’ of S2S predictions
450 (e.g. case studies that focus on a high-impact weather events or other successful uses) though
451  needs to be addressed to support promotion of S2S forecasts and their integration into

452  applications, which in turn would help raise awareness of the S2S prediction timescale and its

453  potential uses.

454  The fundamental limits to skill of longer lead time predictions need to be identified to manage
455  expectations of potential users. Brunet et al. (2010) suggests a practical first step is to determine
456  where the greatest potential for use of S2S forecasts exists, and where the largest social benefit
457  can be realised. Here, the social sciences (e.g. Demuth ef al., 2007) can contribute by identifying

458  effective mechanisms for generating and communicating decision-relevant information,
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assessing the integration, use and value of this information in decision-making, transferring
knowledge and experiences to other users (Brunet et al., 2010) and understanding the context
into which the information can be usable (Ray and Webb, 2015). A similar approach could
advance the understanding of potential stakeholders, uses and research needs in the S2S
timescale, potentially avoiding the applications community having unrealistic expectations of
about S28S predictions, as well as the forecasting community understanding end-users’ limitations

on what information can be useful.

Raising awareness of both the S2S predictive timescale and the availability of such data provides
a unique opportunity for a participatory approach across the weather and climate communities to
develop decision-relevant information for a range of sectoral applications. The WWRP-WCRP
S28 project’s database of S2S forecasts co-hosted by ECMWF and the CMA (delayed behind
real time by three weeks but including hindcasts), is a significant resource that will allow model
output to be more widely assessed to identify when and where there is skill, better understand the
underlying processes and model weaknesses, and develop applications that can support decision-

making.

To address the science challenges of understanding and improving the predictive skill of S2S
forecasts, identifying sources of predictability (including locations and times of skill),
teleconnections to known climate modes, and quantifying the limitations and uncertainties of
S2S forecasting are all areas of active research. Important modelling design issues remain,
including initialisation techniques, initial conditions (e.g. soil moisture, sea-ice), model
resolution and ensemble size, ocean-atmosphere coupling, post-processing and downscaling, and

coordination between forecast producers all need to be improved before the full potential of S2S
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501

prediction can be realised (Vitart, 2014a). To address these issues, improved quantitative
information regarding uncertainty in forecasts and probabilistic measures of forecast quality in
their verification (e.g. Palmer ef al., 2004; DeWitt, 2005; Doblas-Reyes et al., 2005; Slingo and
Palmer, 2011) needs to be included with S2S forecasts. There is also a growing recognition that a
multimodel ensemble strategy is a viable approach for resolving some of the forecast uncertainty
(e.g. Doblas-Reyes et al., 2005; Palmer et al., 2008; Kirtman et al., 2014), which will present

additional data management and communication issues.

6 Conclusions

Since Brunet et al. (2010) recommended that the weather and climate communities collaborate to
jointly tackle the challenge of providing skilful and useable S2S forecasts, many advancements
have been made. Through initiatives and data repositories such as the WWRP-WCRP S2S
project and the NMME, we are now in a position to explore some of the potential sectoral
applications of S28S forecasts in earnest. However, their integration into decision-making is
neither easy nor straightforward (Lemos et al., 2012). For instance, although the ability to
forecast the specific details of high-impact events within the S2S timescale is not yet possible
(and perhaps may not be for some time), there exists a growing repository of untapped predictive
information that presents tangible and realistic opportunities that can be explored by the

applications community for socio-economic benefits.

Forecasts on the S2S timescale need to be tailored to specific users’ needs and communicated in
a way that allows the applications community to be able to make informed decisions. To achieve

this, decision-makers and forecasters need to collaborate to determine essential S2S forecast
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attributes, including determining appropriate thresholds and their usefulness in decision-making,
as well as their economic value (Hartmann et al., 2002). Part of this involves the inclusion of
realistic and unbiased messages on forecast skill (or lack thereof), potential usefulness and
quantified uncertainties to manage expectations, as well as the continued integration of S2S as a

key component in the concepts of seamless prediction and co-production.

There are three broad categories that require attention, each of which present their own set of
challenges and opportunities: 1) identifying where and when the skill of the S2S forecasts lie and
how they could be improved, 2) quantifying and addressing systematic model deficiencies, errors
and uncertainties, and 3) communicating and delivering forecasts in collaboration with the
applications community such that they have value in a societal decision-making context. A great
return on investment in both science and model development may be expected if S2S forecasts
can be successfully connected to societal applications (Vitart, 2014a); the goal over the next 5-10
years is therefore to generate useful, usable and actionable S2S forecast information and services
for (and with) the applications community that can be integrated with existing risk management

and decision-making practices across sectors and timescales.
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Table 1 Categorised challenges and opportunities related to applications of S2S forecasts.

Category Challenges Opportunities
Systematic Systematic misrepresentation of Continued investment in
model coupled atmosphere-ocean supercomputers, data collection
deficiencies feedbacks, which may compound | (including long-term observations)
existing errors or generate new and initiatives that support both the
biases, and a number of persistent | further development and uptake of
biases and errors remain in the S2S forecasts, such as the WMO
climate models, as well as limited | WWRP-WCRP S2S project (Vitart et
understanding of some aspects of | al., 2012; Robertson ef al., 2014;
the physical world Vitart et al., 2016) and the WMO
GFCS
Quantifying Inherent errors and uncertainties in | Utilise the multimodel S2S datasets,
uncertainty probabilistic prediction systems such as the NMME
due to predictability limits and (http://www.cpc.ncep.noaa.gov/produ
deficiencies in models and cts/NMME/data.html) and the S2S
initialisation (e.g. Slingo and Project
Palmer, 2011) (http://apps.ecmwf.int/datasets/data/s
2s) repositories, to quantifying
forecast uncertainty in a practical and
relatively simple way
Forecast Verification is critical in the Develop new seamless verification
verification context of making S2S forecasts methods, such as time averaging

useful (and usable) for applications

windows that are equal to the forecast

lead time (e.g. 1-week means used to
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verify forecasts at day 7; 2-week
means for forecasts at day 14, and so

forth) (Robertson et al., 2014)

Awareness of

S2S

Raising awareness of the ‘new’
S2S timescale, data availability,

and its potential uses

Promote the NMME and S2S Project
repositories, and possible integration
of S28S forecasts into the Regional
Climate Outlook Forums (RCOFs),
which provide real-time regional
seasonal outlook products in several
parts of the world

(https://www.wmo.int/pages/prog/wc

p/wcasp/clips/outlooks/climate_forec

asts.html)

Case studies

Few ‘success stories’ of S2S
predictions to support promotion of
S2S forecasts and their integration

into applications

Increase the number of case studies
using S2S hindcast repositories,

demonstrating retrospective forecast

skill

Integration with
social sciences to
ensure forecasts
are useful and

usable

Little current understanding and
characterising of decision-making
frameworks and processes at
relevant spatial, temporal, and end-

user scales

Collaborate with the social science
communities to leverage existing
knowledge on information creation,
communication, use, and valuation of

S2S predictions
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Figure captions

Figure 1 (a) Qualitative estimate of forecast skill based on forecast range from short-range
weather forecasts to long-range seasonal predictions, including potential sources of
predictability. Relative skill is based on differing forecast averaging periods. (b) Schematic
highlighting the relationship between the S2S ‘extended-range’ forecast range and other
prediction timescales, with examples of actionable information that can enable decision-making
across sectors. Actions are examples only and are not exclusive to a forecast range. Figure (a)
adapted by Elisabeth Gawthrop from an original figure by Tony Barnston, both International
Research Institute for Climate and Society; edited and reproduced with permission. Figure (b)
based on Meehl et al. (2001), Hurrell et al. (2009) and Goddard et al. (2014). Definitions based

on WMO meteorological forecasting ranges: http://www.wmo.int/pages/prog/www/DPS/GDPS-

Supplement5-Appl-4.html.

Figure 2 Ensemble prediction of Tropical Cyclone Pam which made landfall in Vanuatu on 13
March 2015. Panels show weekly-averaged probability of a tropical cyclone strike within 300
km for (a) 22-28 days, (b) 15-21 days, (c) 8-14 days and (d) 1-7 days forecast lead time.

Predictions made using the ECMWF Ensemble Prediction System (ENS).
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