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Abstract

A subalgebra B of a Lie algebra L is c-supplemented in L if there
is a subalgebra C of L with L = B + C and B ∩ C ≤ BL, where BL

is the core of B in L. This is analogous to the corresponding concept
of a c-supplemented subgroup in a finite group. We say that L is c-
supplemented if every subalgebra of L is c-supplemented in L. We give
here a complete characterisation of c-supplemented Lie algebras over
a general field.
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1 Introduction

The concept of a c-supplemented subgroup of a finite group was introduced
by Ballester-Bolinches, Wang and Xiuyun in [2] and has since been studied
by a number of authors. The purpose of this paper is study the correspond-
ing idea for Lie algebras. As we shall see, stronger results can be obtained
in this context.

Throughout L will denote a finite-dimensional Lie algebra over a field F .
If B is a subalgebra of L we define BL, the core (with respect to L) of B to
be the largest ideal of L contained in B. We say that B is core-free in L if
BL = 0. A subalgebra B of L is c-supplemented in L if there is a subalgebra
C of L with L = B + C and B ∩C ≤ BL. We say that L is c-supplemented
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if every subalgebra of L is c-supplemented in L. We shall give a complete
characterisation of c-supplemented Lie algebras over a general field.

Following [4] we will say that L is completely factorisable if for every
subalgebra B of L there is a subalgebra C such that L = B+C and B∩C =
0. It turns out that c-supplemented Lie algebras are intimately related to
the completely factorisable ones, and our results generalise some of those
obtained in [4]. Incidentally, it is claimed in [4] that if F has characteristic
zero then L is completely factorisable if and only if the Frattini subalgebra
of every subalgebra of L is trivial. We shall see that this is false.

If A and B are subalgebras of L for which L = A + B and A ∩ B = 0
we will write L = A+̇B; if, furthermore, A,B are ideals of L we write
L = A⊕B. The notation A ≤ B will indicate that A is a subalgebra of B,
and A < B will mean that A is a proper subalgebra of B.

2 Preliminary results

First we give some basic properties of c-supplemented subalgebras

Lemma 2.1 (i) If B is c-supplemented in L and B ≤ K ≤ L then B is
c-supplemented in K.

(ii) If I is an ideal of L and I ≤ B then B is c-supplemented in L if and
only if B/I is c-supplemented in L/I.

(iii) If X is the class of all c-supplemented Lie algebras then X is subalgebra
and factor algebra closed.

Proof.

(i) Suppose that B is c-supplemented in L and B ≤ K ≤ L. Then there
is a subalgebra C of L with L = B + C and B ∩ C ≤ BL. It follows
that K = (B + C)∩K = B + C ∩K and B ∩C ∩K ≤ BL ∩K ≤ BK ,
and so B is c-supplemented in K.

(ii) Suppose first that B/I is c-supplemented in L/I. Then there is a
subalgebra C/I of L/I such that L/I = B/I + C/I and (B/I) ∩
(C/I) ≤ (B/I)L/I = BL/I. It follows that L = B+C and B∩C ≤ BL,
whence B is c-supplemented in L.
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Suppose conversely that I is an ideal of L with I ≤ B such that B
is c-supplemented in L. Then there is a subalgebra C of L such that
L = B + C and B ∩ C ≤ BL. Now L/I = B/I + (C + I)/I and
(B/I) ∩ (C + I)/I = (B ∩ (C + I))/I = (I + B ∩ C)/I ≤ BL/I =
(B/I)L/I , and so B/I is c-supplemented in L/I.

(iii) This follows immediately from (i) and (ii).

The Frattini ideal of L, φ(L), is the largest ideal of L contained in all
maximal subalgebras of L. We say that L is φ-free if φ(L) = 0. The next
result shows that subalgebras of the Frattini ideal of a c-supplemented Lie
algebra L are necessarily ideals of L.

Proposition 2.2 Let B,D be subalgebras of L with B ≤ φ(D). If B is
c-supplemented in L then B is an ideal of L and B ≤ φ(L).

Proof. Suppose that L = B + C and B ∩ C ≤ BL. Then D = D ∩ L =
D ∩ (B + C) = B + D ∩ C = D ∩ C since B ≤ φ(D). Hence B ≤ D ≤ C,
giving B = B ∩ C ≤ BL and B is an ideal of L. It then follows from [6,
Lemma 4.1] that B ≤ φ(L).

The Lie algebra L is called elementary if φ(B) = 0 for every subalgebra
B of L; it is an E-algebra if φ(B) ≤ φ(L) for all subalgebras B of L. Then
we have the following useful corollary.

Corollary 2.3 If L is c-supplemented then L is an E-algebra.

Proof. Simply put B = φ(D) in Proposition 2.2.

It is clear that if L is completely factorisable then it is c-supplemented.
However, the converse is false. Every completely factorisable Lie algebra
must be φ-free, whereas the same is not true for c-supplemented algebras.
For example, the three-dimensional Heisenberg algebra is c-supplemented,
as will be clear from the next result which gives the true relationship between
these two classes of algebras.

Proposition 2.4 Let L be a Lie algebra. Then the following are equivalent:
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(i) L is c-supplemented.

(ii) L/φ(L) is completely factorisable and every subalgebra of φ(L) is an
ideal of L.

Proof. (i) ⇒ (ii): Suppose first that L is φ-free and c-supplemented, and
let B be a subalgebra of L. Then there is a subalgebra C of L such that
L = B + C. Choose D to be a subalgebra of L minimal with respect to
L = B + D. Then B ∩ D ≤ φ(D), by [6, Lemma 7.1], whence B ∩ D = 0
since L is elementary, by Corollary 2.3. Hence L is completely factorisable,
and (ii) follows from Lemma 2.1(iii) and Proposition 2.2.

(ii) ⇒ (i): Suppose that (ii) holds and let B be a subalgebra of L.
Then there is a subalgebra C/φ(L) of L/φ(L) such that L/φ(L) = ((B +
φ(L))/φ(L))+ (C/φ(L)) and 0 = ((B +φ(L))/φ(L))∩ (C/φ(L)) = (B∩C +
φ(L))/φ(L). Hence L = B + C and B ∩ C ≤ φ(L), so B ∩ C is an ideal of
L and B ∩ C ≤ BL; that is, L is c-supplemented.

Note that if L is the three-dimensional Heisenberg algebra, then condi-
tion (ii) in the above result holds, since φ(L) = L2 is one dimensional and
L/φ(L) is abelian. Finally we shall need the following result concerning
direct sums of of completely factorisable Lie algebras.

Lemma 2.5 If A and B are completely factorisable, then so is L = A⊕B.

Proof. Suppose that A,B are completely factorisable and put L = A ⊕ B.
Let U be a subalgebra of L. If A ≤ U , then U = A ⊕ (B ∩ U). Since B is
completely factorisable there is a subalgebra C of B such that B = B∩U +C
and U ∩ C = B ∩ U ∩ C = 0. Hence L = U+̇C.

Now A ≤ A + U so, by the above, there is a subalgebra C of B with
L = A + U + C and (A + U) ∩ C = 0. Moreover, since A is completely
factorisable, there is a subalgebra D of A such that A = A ∩ U + D and
U ∩D = A∩U ∩D = 0. It follows that L = U +(D⊕C) and U ∩ (D+C) ≤
U ∩ [(A + U) ∩ (D + C)] = U ∩ [D + (A + U) ∩ C] = U ∩D = 0. It follows
that L is completely factorisable.

Note that the corresponding result for c-supplemented Lie algebras is
false. For, let L1 = Fx + Fy + Fz with [x, y] = −[y, x] = y + z, [x, z] =
−[z, x] = z and all others products equal to zero. Then it is straightforward
to check that φ(L1) = Fz and that L1 is c-supplemented. Now take L to be
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a direct sum of two copies of L1: say, L = A⊕B where A = Fx + Fy + Fz,
B = Fa + Fb + Fc, [x, y] = −[y, x] = y + z, [x, z] = −[z, x] = z, [a, b] =
−[b, a] = b + c, [a, c] = −[c, a] = c and all others products equal to zero.
Suppose that F (z + c) is c-supplemented in L. Then there is a subalgebra
M of L with L = F (z + c) + M and F (z + c) ∩ M ≤ (F (z + c))L. If
z + c /∈ M then M is a maximal subalgebra of L, contradicting the fact
that z + c ∈ (φ(A) ⊕ φ(B)) = φ(L), by [6, Theorem 4.8]. It follows that
z + c ∈ M , whence F (z + c) is an ideal of L. But [x, z + c] = z /∈ F (z + c),
a contradiction. Thus L is not c-supplemented in L.

3 The structure theorems

We can now give the main structure theorems for c-supplemented Lie alge-
bras. First we determine the solvable ones.

Theorem 3.1 Let L be a solvable Lie algebra. Then the following are equiv-
alent:

(i) L is c-supplemented.

(ii) L is supersolvable and every subalgebra of φ(L) is an ideal of L.

Proof. (i) ⇒ (ii): We have that every subalgebra of φ(L) is an ideal of L
by Proposition 2.4, so we have only to show that L is supersolvable. Let
L be a minimal counter-example. Then all proper subalgebras and factor
algebras of L are supersolvable, by Lemma 2.1(iii). If we can show that all
maximal subalgebras have codimension one in L, we shall have the desired
contradiction, by [3, Theorem 7]; so let M be any maximal subalgebra of L.
Since the result is clear if ML 6= 0, we may assume that ML = 0.

Pick a minimal ideal A of L. Then L = A+̇M and A is the unique min-
imal ideal of L, by [7, Lemma 1.4]. Let a ∈ A. Then Fa is c-supplemented
in L, and so there is a subalgebra B of L such that L = Fa + B and
Fa∩B ≤ (Fa)L. If a ∈ B then Fa is an ideal of L, whence A = Fa and M
has codimension one in L.

So suppose that L = Fa+̇B. Since A 6≤ B we have BL = 0. But then
L = A+̇B by [7, Lemma 1.4] again. It follows that dim A = 1 and M has
codimension one in L.
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(ii)⇒ (i): By Proposition 2.4, it suffices to show that if L is supersolvable
and φ-free then it is completely factorisable. Let L be a minimal counter-
example. Then L is elementary, by [5, Theorem 1], and so every proper
subalgebra of L is completely factorisable. Also L = A+̇B where A =
Fa1 ⊕ . . .⊕ Fan is the abelian socle of L and B is abelian, by [7, Theorem
7.3]. Let U be a subalgebra of L. If A ≤ U it is clear that there is a
subalgebra C of L such that L = U + C and U ∩ C = 0. So suppose
that ai /∈ U for some 1 ≤ i ≤ n; we may as well assume that i = 1.
Then L/Fa1

∼= (Fa2 ⊕ . . . ⊕ Fan)+̇B, which is a proper subalgebra of L
and so is completely factorisable. Hence there is a subalgebra C of L such
that L/Fa1 = ((U + Fa1)/Fa1) + (C/Fa1) and Fa1 = (U + Fa1) ∩ C =
U ∩C + Fa1. It follows that L = U + C and U ∩C ≤ Fa1. But a1 /∈ U ∩C
so U ∩ C = 0 and L is completely factorisable, a contradiction.

We shall need the following classification of Lie algebras with core-free
subalgebras of codimension one which is given by Amayo in [1].

Theorem 3.2 ([1, Theorem 3.1]) Let L have a core-free subalgebra of codi-
mension one. Then either (i) dim L ≤ 2, or else (ii) L ∼= Lm(Γ) for some
m and Γ satisfying certain conditions (see [1] for details).

We shall also need the following properties of Lm(Γ) which are given by
Amayo in [1].

Theorem 3.3 ([1, Theorem 3.2])

(i) If m > 1 and m is odd, then Lm(Γ) is simple and has only one subal-
gebra of codimension one.

(ii) If m > 1 and m is even, then Lm(Γ) has a unique proper ideal of
codimension one, which is simple, and precisely one other subalgebra
of codimension one.

(iii) L1(Γ) has a basis {u−1, u0, u1} with multiplication [u−1, u0] = u−1 +
γ0u1 (γ0 ∈ F, γ0 = 0 if Γ = {0}), [u−1, u1] = u0, [u0, u1] = u1.

(iv) If F has characteristic different from two then L1(Γ) ∼= L1(0) ∼=
sl2(F ).
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(v) If F has characteristic two then L1(Γ) ∼= L1(0) if and only if γ0 is a
square in F .

The above properties enable us to determine which of the algebras Lm(Γ)
are c-supplemented.

Proposition 3.4 If L ∼= Lm(Γ) then L is c-supplemented if and only L ∼=
L1(0) and F has characteristic different from two.

Proof. Suppose that L ∼= Lm(Γ) and L is c-supplemented, and let x ∈ L.
Then there is a subalgebra M1 of L such that L = Fx+M1, and Fx∩M1 ≤
(Fx)L = 0, since Lm(Γ) has no one-dimensional ideals. Choose y ∈ M1.
Then, similarly, there is a subalgebra M2 of codimension one in L such that
L = Fy+M2 and M1 6= M2. Since L = M1+M2 we have that M1∩M2 6= 0.
Let z ∈ M1 ∩M2. Then there is a subalgebra M3 of codimension one in L
such that L = Fz + M3, so L has at least three subalgebras of codimension
one in L. It follows from Theorem 3.3 that m = 1.

Suppose that L 6∼= L1(0). Then F has characteristic two and γ0 is not a
square in F . Since L is completely factorisable there is a two-dimensional
subalgebra M of L such that L = Fu1 + M . It follows that M = F (u−1 +
αu1) + F (u0 + βu1) for some α, β ∈ F . But then [u−1 + αu1, u0 + βu1] ∈ M
shows that γ0 = β2, a contradiction. A further straightforward calculation
shows that if L ∼= L1(0) and F has characteristic two, then Fu1 is contained
in every maximal subalgebra of L, and so has no c-supplement in L.

Conversely, suppose that L ∼= L1(0) and F has characteristic different
from two. Then L ∼= sl2(F ), by Theorem 3.3 (iv) and it is easy to check
that L is c-supplemented.

We can now determine the simple and semisimple c-supplemented Lie
algebras.

Corollary 3.5 If L is simple then L is c-supplemented if and only L ∼=
L1(0) and F has characteristic different from two.

Proof. Let L be simple and c-supplemented. Then L has a core-free maximal
subalgebra of codimension one in L and so L ∼= Lm(Γ), by Theorem 3.2. The
result now follows from Proposition 3.4.
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Notice, in particular, that sl2(F ) is the only simple completely factoris-
able Lie algebra over any field. However, this is not the only simple ele-
mentary Lie algebra, even over a field of characteristic zero: over the real
field every compact simple Lie algebra, and so(n, 1) for n > 3, for example,
are elementary, as is shown in [8, Theorem 5.1]. This justifies the assertion
made at the end of the third paragraph of the introduction.

Proposition 3.6 Let L be a semisimple Lie algebra over a field F . Then
the following are equivalent:

(i) L is c-supplemented.

(ii) L = S1 ⊕ . . . ⊕ Sn where Si
∼= sl2(F ) for 1 ≤ i ≤ n and F has

characteristic different from two.

Proof. (i) ⇒ (ii): Let L be semisimple and c-supplemented and suppose
the result holds for all such algebras of dimension less than dim L. Then
φ(L) = 0, since φ(L) is nilpotent, and so L is completely factorisable. Let
A be a minimal ideal of L and pick a ∈ A. Let M be a subalgebra of L such
that L = Fa+̇M and put B = A + ML. Then ML < B and A ∩ML = 0,
since a /∈ ML. If dim L/ML ≤ 2 then A is abelian, contradicting the fact
that L is semisimple. It follows from Theorem 3.2 and Proposition 3.4 that
L/ML

∼= L1(0), whence B = L and L = A⊕ML. Since A,ML are semisimple
and c-supplemented the result follows.

(ii) ⇒ (i):The converse follows from Corollary 3.5 and Lemma 2.5.

Finally we have the main classification theorem.

Theorem 3.7 Let L be Lie algebra. Then the following are equivalent:

(i) L is c-supplemented.

(ii) L/φ(L) = R ⊕ S where R is supersolvable and φ-free, S is given by
Proposition 3.6, and every subalgebra of φ(L) is an ideal of L.

Proof. (i)⇒ (ii): Factor out φ(L) so that L is φ-free and c-supplemented and
hence completely factorisable, by Proposition 2.4. Then L = R+̇S where R
is the radical of L and S is semisimple. It suffices to show that SR = 0;
the rest follows from Lemma 2.1, Corollary 2.3, Proposition 2.4, Theorem
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3.1 and Proposition 3.6. Suppose there is 0 6= x ∈ L(3) ∩R. Then there is a
subalgebra M of L such that L = Fx+̇M and L/ML is given by Theorem
3.2. If L/ML

∼= Lm(Γ) then L/ML is simple, by Proposition 3.4, and ML <
R + ML, so L = R + ML. But then L/ML is solvable, a contradiction. It
follows that dim L/ML ≤ 2, whence x ∈ L(3) ∩ R ≤ L(3) ≤ ML ≤ M , a
contradiction. Hence L(3) ∩ R = 0. But SR = S2R ≤ S(SR) = S2(SR) ≤
L(3) ∩R = 0, as required.

(ii) ⇒ (i): This follows from Proposition 2.4, Lemma 2.5, Theorem 3.1
and Proposition 3.6.
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