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Abstract: Gene therapy may be capable of treating a variety of diseases, a prerequisite of which is the successful delivery of 

polynucleic acids (e.g., DNA, RNA) to a patient’s cells. Delivery can be achieved technologically (e.g., using 

electroporation), using viruses (natural gene delivery vectors) or non-viral vectors (e.g., lipids, nanoparticles, polymers). This 

article aims to give the reader an overview of the use of organic electronic materials (i.e., fullerenes, graphenes and 

conjugated polymers) as non-viral gene delivery vectors. 
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1. INTRODUCTION 

 Gene delivery has become a well-established field of 
science [1-4]. While viruses are Nature’s protein-based gene 
delivery vectors, various other vectors have been 
investigated for their ability to deliver deoxyribonucleic 
acids (DNA) or ribonucleic acids (RNA), including lipids, 
nanoparticles, polymers (e.g. polyethyleneimine (PEI) or 
polyamidoamine (PAMAM) dendrimers, depicted in Fig. 1), 
and the bountiful literature is discussed in some interesting 
reviews [1-4]. Gene therapy was first approved for use by the 
European Commission (a viral gene vector, Glybera®, to 
treat lipoprotein lipase deficiency that can cause pancreatitis) 
[5-8], and recent clinical trials for the use of gene therapy to 
treat a variety of conditions including leukemia, myeloma 
and Parkinson’s disease have been promising [9-13].  

 Organic electronic materials (OEMs) are of interest for 
technical and biomedical applications [14-20]. OEMs are 
typically comprised of fullerenes (bucky balls or nanotubes), 
graphene/graphene oxide, or conjugated polymers (e.g. 
polyaniline, polypyrrole or polythiophene), examples of 
which are depicted in Fig. 2. Importantly, derivatives of 
these are commercially available allowing researchers to 
tailor the properties of the OEMs either through chemical 
modification or the generation of composites, with a view to 
their use for technical applications (e.g. diodes, solar cells, 
transistors) and medical applications (e.g., drug delivery, 
electrodes for the nervous system, theranostics) [14-20]. The 
optical properties (e.g., high fluorescence yield, high 
photostability) of organic electronic nanoparticles allows 
them to be imaged, and chemical modification of the 
nanoparticles facilitates complex formation with their 
therapeutic payload and targeting to specific cells, 
potentially yielding particles capable of simultaneous 
diagnostic, imaging and therapeutic activity [21].  
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 The focus of this article is gene delivery systems that are 
based on nanoscale OEMs, highlighting examples of each 
class of nanoscale OEMs in a systematic fashion to give the 
reader an overview of the topic. 

2. FULLERENE-BASED NON-VIRAL VECTORS FOR 
GENE DELIVERY 

 Fullerenes are carbon-based nanomaterials, that are either 
spherical (bucky balls) or ellipsoids/tubes (commonly known 
as carbon nanotubes) depicted in Fig. 2, and for which the 
Nobel Prize in Chemistry was awarded to Curl, Kroto and 
Smalley in 1996. 

2.1. Bucky balls 

Unmodified bucky balls are hydrophobic rendering them 

poorly soluble in aqueous media, and interesting 

fundamental studies show that they interact with amphiphilic 

cell membranes prior to uptake [22-25], they are relatively 

quickly cleared from blood (accumulating in the liver and 

spleen [25]), and they exhibit dose-dependent toxicity in vivo 

(low toxicity at low concentrations in mice, and high toxicity 

at high concentrations with potential for 

mutagenic/teratogenic activity) [25]. 

Bucky balls functionalized with hydrophilic 

anionic/cationic species (Fig. 3) improves their solubility in 

water and renders them capable of forming complexes with 

calf thymus DNA as demonstrated by Nakamura and 

coworkers [26]. Bucky balls displaying four amines transfect 

vector plasmids (pGreen LANTERN-1) into fibroblast-like 

monkey kidney tissue cells, COS-1 cells [26]; and 

interestingly, the presence of serum plasma may assist 

dispersion of bucky ball-DNA/RNA complexes and their 

effective uptake [27]. Various derivatives of bucky balls 

have been described [28-32], including bucky ball 

derivatives displaying polymers such as PAMAM 

dendrimers that were capable of delivering DNA to the 
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MCF-7 human-derived breast cancer cell line or human-

derived cervical cancer HeLa cells [33], and bucky ball 

derivatives displaying polyethyleneimine (PEI) and 

poly(ethylene glycol) (PEG) that were capable of delivering 

DNA to human embryonic kidney (HEK293) cells [34]. An 

elegant diversity-oriented study showed that 

tetra(piperazino)fullerene epoxide (Fig. 3) was more 

effective and less toxic than the commercially available 

lipid-based transfection reagent Lipofectin® [35], and this 

was also demonstrated to effectively deliver the plasmids 

(encoding GFP) in vivo in the ICR strain of mice [36], and 

siRNA to EGFP-overexpressing C57BL/6 mice [37]. 

2.2. Carbon nanotubes 

Studies of the biological fates of carbon nanotubes with 

different dimensions (i.e. diameter and length) are important, 

particularly for uncovering differences between single-

walled nanotubes (SWNTs) and multi-walled nanotubes 

(MWNTs). The fates of intact MWNTs (with diameters of 

20-30 nm and lengths of up to 1000 nM) were compared to 

shorter oxidized nanotubes [38]; both intact and oxidised 

nanotubes were taken up by a combination of endocytosis 

and phagocytosis; and the intact nanotubes were present in 

both intracellular and extracellular domains whereas the 

oxidised versions were detected preferentially in intracellular 

vesicles with limited amounts in extravesicular cytoplasm or 

brain parenchymal areas. The surface chemistry appeared to 

play a role in the inflammatory response to the nanotubes 

implanted in the brain of mice; with astrocyte and microglia 

activation in the vicinity of the injections, with slightly 

greater inflammatory response to the oxidized than the intact 

nanotubes after 30 days [38]. MWNTs (with diameters of ≥ 

20 nm) were shown to induce p53-dependent responses in 

fetal development, moving across the blood-placenta barrier, 

restricting the development of foetuses and inducing brain 

deformity (i.e. teratogenicity), whereas smaller MWNTs 

(with diameters of 8 nm) showed markedly less fetotoxicity 

and SWNTs showed no fetotoxicity relative to controls, 

suggesting that MWNTs damaged the DNA, thereby 

inducing  cell cycle arrest and apoptosis [39]. MWNTs (with 

diameters of 20-50 nm) used to transfect DNA into 

Escherichia coli were shown to damage the DNA (i.e. they 

were genotoxic), which resulted in mutation of the bacteria 

[40], and the results of these studies have given useful 

insight that will hopefully inform future research [41]. 

Akin to unmodified bucky balls, unmodified carbon 

nanotubes are hydrophobic which makes surface 

functionalization with hydrophilic moieties capable of 

forming electrostatic complexes with DNA/RNA 

commonplace [42, 43]. Nanotube functionalization via 

covalent and non-covalent methodologies [43, 44] is 

straightforward, and cell-specific targeting of nanotubes can 

be achieved with cell-specific ligands [43-45], or the 

application of external stimuli such as magnetic fields to 

magnetic derivatives of carbon nanotubes [46]. Interestingly, 

amine [47] or carboxylate [48] functionalized nanotubes can 

be degraded enzymatically with horseradish peroxidase or 

fluids that mimic the phagolysosomal fluid of macrophages 

has encouraged the development of carbon nanotube-based 

gene delivery vectors, and is discussed in excellent reviews 

[49-52]. 

Molecular modeling and experimental data indicates that 

complex mixture of supramolecular interactions, including 

electrostatic, hydrogen bonding, π-stacking and van der 

Waals interactions play a role in the binding of nanotubes to 

DNA [53-61], and RNA [57, 62-65]. An elegant study 

including computational simulations and in vitro cell culture 

studies with keratinocytes highlighted the role of the 

electronic structure of nanotubes on RNA binding and 

delivery, with metallic SWNTs delivering siRNA into the 

nucleus of keratinocytes, whereas semiconducting SWNTs 

transported siRNA only to the cytoplasm [66]. Interestingly, 

hydrophobic interactions that facilitate DNA binding to 

anionic carboxy-functionalized MWNTs yield complexes 

that were shown to transfect the DNA more effectively into 

Nile Tilapia (Oreochromis niloticus) spermatogonial stem 

cells than either electroporation or Lipofectamine® 2000 

[67]. It is noteworthy that while cationic lipids can be 

effective non-viral vectors for gene delivery [68, 69], their 

formulation with nanotubes may increase the amount of 

DNA carried in otherwise equivalent formulations, improve 

their stability in the presence of serum (in analogy to the 

effect observed for bucky balls [27]) and improve their 

transfection efficiencies relative to commercially available 

Lipofectamine® 2000 [70]. Complexes of SWNTs, 

PEGylated phospholipids, poly(allyamine hydrochloride) 

and siRNA were capable of targeting the mutant K-Ras gene 

in human pancreatic carcinoma epithelial-like PANC-1 cells, 

and diminishing gene expression levels of mutant K-Ras 

mRNA by ca. 30% in vitro [71]. Complexes of amine 

functionalized SWNTs with cationic liposomes and siRNA 

(capable of targeting the luciferase gene in human lung 

cancer A549-Luc cells) were effective in silencing the 

luciferase gene, and a synergistic pro-apoptotic effect was 

obtained when delivering siRNA (siPLK1) and doxorubicin 

from the complexes in A549 cells in vitro [72], and 

moreover in Calu6 tumor xenografts [73]. Furthermore, 

complexes of nanotubes with cationic lipids and 

glyceraldehyde 3-phosphate dehydrogenase siRNA function 

in vivo in CD-1 mice, effectively mediating gene silencing 

[74]. 

Functionalization of nanotubes with naturally occurring 

amines (e.g. spermidine, spermine) yields bottle brush-like 

structures that are analogous to dendrimers with high binding 

affinities due to multivalency effects [75-80]. If 

nanoparticle-DNA or nanoparticle-RNA complexes are stuck 

in endocytic vesicles (which fuse with early endosomes, 

mature into lysozomes, and then degrade biomolecules 

trapped inside), treatment with chloroquine assists their 

escape from the vesicles [57, 76]. However, the generation 

of stimuli-responsive nanotubes potentially offers additional 

control of the location/time of payload delivery, and as such 

attaching cationic moieties via bioreducible disulphide bonds 

[81-83] facilitates the delivery of their therapeutic payload 
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siRNA (that suppresses tumor activity through interfering 

with MDM2 protein binding to p53 protein [84]), to breast 

carcinoma B-CAP-37 cells [85]. Complexes of amine-

functionalized SWNTs and DNA effectively delivered the 

oncogene suppressor p53 gene to human breast cancer MCF-

7 cells [85]; complexes of other amine-functionalized 

SWNTs have successfully transfected plasmid DNA 

(encoding the vp7 gene) to fish (grass carp) in vivo [86-89]. 

Interesting studies directed towards diminishing brain 

damage after stroke and traumatic brain injury by silencing 

caspase-3 expression (activation of which results in cell 

death) via carbon nanotube-mediated delivery of caspase-3 

siRNA was shown to reduce neurodegeneration and promote 

functional preservation before and after focal ischemic 

damage in vivo in rats [47]. 

Functionalization of nanotubes with synthetic polyamines 

(e.g. PEI [90, 91] or polyamidoamine (PAMAM) dendrimers 

[92, 93]) is popular as the synthetic polyamines are effective 

non-viral gene delivery vectors, and conjugated to nanotubes 

they enable gene transfection both in vitro and in vivo, 

enabling transfection of microRNA regulating angiogenesis 

[94]. 

PEI-functionalized SWNTs delivered anti-luciferase 

siRNA into human lung cancer cell line H1299 (which 

expresses firefly luciferase), and were found to less effective 

than either PEI or Lipofectamine® 2000 and more cytotoxic 

than either PEI or Lipofectamine® 2000 [95]. Interestingly, 

analogously functionalized SWNTs [96] or MWNTs [97] 

effectively transfect DNA plasmids encoding luciferase into 

mouse neuroblastoma Neuro-2a cells in vitro, and for the 

SWNTs in vivo studies delivering the nanotube-DNA 

complexes via intravenous injection into the tail vein of rats 

showed the highest levels of transfection to the lungs [96]. 

First generation (G1) PAMAM-functionalized MWNTs 

were shown to transfect the pGL3 vector (encoding 

luciferase) into HeLa cervical cancer cells and the monkey 

kidney fibroblast-like COS-7 cell line, with greater 

efficiency and lower toxicity than the nanotubes, G1 

PAMAM (1.4 kDa) or 25 kDa PEI alone [98]; by 

comparison, fourth generation (G4) PAMAM-functionalized 

MWNTs were more effective at transfection of DNA 

(encoding GFP) into the HeLa cells than the nanotubes or 

PAMAM alone yet somewhat less effective than 

Lipofectamine® 2000, and importantly, G4 PAMAM-

functionalized nanotubes were less cytotoxic than either G4 

PAMAM or Lipofectamine® 2000 [99]. An analogous study 

using first to third generation (G1-G3) PAMAMs showed 

that G2 was the optimal for transfection (nanotube-G2: 6.8 

% vs nanotube-G1 2.2% or nanotube-G3 4.1%), albeit 

slightly more toxic than the G1 derivative [100]. 

Functionalization of the surface of MWNTs with G1 or G2 

PAMAMs facilitated the transfection of a fluorescently 

labelled siRNA [101, 102], whereas functionalization with 

G1 to G5 PAMAMs facilitated the transfection of antisense 

c-myc oligonucleotides into human breast cancer cells 

(MCF-7 and MDA-MB-435 cells) and human liver cancer 

HepG2 cells down regulating the expression of the C-Myc 

gene and protein, and in this case the G5-functionalized 

nanotubes were most effective [103]. Carbon nanohorns 

functionalized with G4 or G6 PAMAM were shown to be 

effective at delivering siRNA that diminished levels of 

house-keeping GAPDH mRNA or p42-MAPK mRNA in 

vitro [104]. 

Functionalization of nanotubes with ligands that target 

specific receptors displayed on cells is one method of 

targeting vectors to specific cell populations, for example 

folate-functionalization to target cancer cells that 

overexpress folate receptors [105]. Indeed, folate-

functionalized chitosan conjugated to MWNTs effectively 

transfected pEGFP DNA into the HeLa cervical cancer cells 

in vitro. Importantly, the nanotubes displayed dimension-

dependent transfection efficiency and toxicity, with shorter 

nanotubes (100-400 nm in length and external diameters of 

10-20 nm) being the most effective at transfection yet also 

the most toxic, whereas longer nanotubes (800 nm to 3 µm in 

length and external diameters of 10-20 nm) were somewhat 

less efficient but markedly less toxic. Furthermore, the 

surface functionalization of MWNTs (with folate-

functionalized chitosan) improves the transfection efficiency 

(of pEGFP DNA) to 1.5 times that of unfunctionalized 

MWNTs, and decreases their cytotoxicity relative to 

unfunctionalized MWNTs [106]. 

Aptamer-functionalized SWNTs enable targeted delivery 

of DNA/RNA to various cell lines. For example, SWNTs 

functionalized with 5 TR1 aptamers (targeting MUC1) 

enabled the delivery of Bcl-xL-specific short hairpin shRNA 

to MUC1 positive breast cancer cells in vitro [107]; likewise, 

SWNTs functionalized with AS1411 aptamers (targeting 

nucleolin receptors) enable the delivery of Bcl-xL-specific 

short hairpin shRNA to human gastric cancer AGS 

(+nucleolin) cells and achieve shRNA-mediated gene-

silencing strategy [108]. 

Peptide-functionalization of nanotubes can markedly 

improve their solubility in aqueous media, which may in 

certain cases (e.g. (-Lys-Trp-Lys-Gly-)7) also improve 

transfection ability [109,110]. Alternatively, 

functionalization of SWNTs with the tumor targeting NGR 

peptide (Cys-Asn-Gly-Arg-Cys) enabled the effective 

transfection of siRNA to human prostate cancer (PC-3) cells 

that induced severe apoptosis and suppressed proliferation of 

the cells in vitro, and moreover, in vivo in tumor-bearing 

mice [111]. Interestingly, complexes of plasmid DNA 

(encoding GFP) with estradiol functionalized MWNTs 

enhances their transfection efficacy towards cells that 

overexpress estrogen receptors over Lipofectamine® 2000, 

both in vitro (to estrogen positive MCF-7 cells) and in vivo 

in rats [112].  

The use of external stimuli such as light or magnetic 

fields may enable relatively high levels of spatiotemporal 

control of gene delivery. Indeed, complexes of SWNTs with 

cholesterol-functionalized PEI and pTP53 plasmid DNA 

enhanced apoptosis and necrosis of HeLa cells in vitro, and 

achieved a higher tumor-growth inhibition in vivo, when 

enhanced by near infrared (NIR) laser-mediated 
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photothermal transfection (Fig. 4) [113]. This was 

demonstrated by a variety of studies. The pTP53 containing 

the p53 gene (a cancer suppressor gene that may induce 

tumor cell apoptosis and arrest the cell cycle at the G1/S 

phase) was used as the therapeutic plasmid DNA, optionally 

in combination with SWNTs with cholesterol-functionalized 

PEI attached. The population of HeLa cells treated with 

naked pTP53 increased in the G0/G1 (Quiescence/Growth) 

phase, and a slight decrease in the G2/M (Growth/Mitotic) 

phase. The cells treated with the complexes of DNA and 

functionalized SWNTs showed a small population increase 

in the G0/G1 phase, and a larger decrease in the G2/M phase 

which was pronounced when exposed to NIR laser 

irradiation (3 W cm−2, 3 min) to approximately the same as 

Lipofectamine® 2000 (see histograms and graph bars of cell 

cycle in Figure 4A and 4B, respectively). It was observed 

that the treatment with the complexes of DNA and 

functionalized SWNTs and NIR laser irradiation induced 

significantly more necrosis and apoptosis of the HeLa cells, 

when compared to treatment with pTP53, Lipofectamine® 

2000, or the functionalized SWNTs in the absence of NIR 

irradiation (see bar charts for apoptosis/necrosis in Figure 4C 

and the results of flow cytometry studies in 4D). These 

results were confirmed by observing the nucleus morphology 

with Hoechst 33342 staining of the cells after 72 h with 

various treatments, where the highest number of bright dots 

(which indicate nucleus damage) was observed for cells after 

the treatment with the complexes of DNA and functionalized 

SWNTs and NIR laser irradiation (Figure 4E). Suggesting 

that SWNTs have promise for photothermal transfection that 

functions by increasing membrane permeability, facilitating 

photoactive chemicals to escape from endosomes by 

generating reactive oxygen species, and thereby promoting 

the release of therapeutic genes [113]. 

MWNTs displaying both magnetic iron oxide and radio 

labels (99mTc) enabled simultaneous magnetic resonance 

imaging (MRI) and single photon emission computed 

tomography (SPECT) as demonstrated in vivo in mice [114]. 

MWNTs coated with magnetite nanoparticles and 

mesoporous silica were shown to facilitate efficient loading 

and delivery of gentamicin, cytochrome C and siRNA to 

MC3T3-E1 cells in vitro, and imaging in vivo in mice [115, 

116]. MWNTs in electric fields are known to amplify the 

electric field at their ends by a factor of 10-100 [117] which 

was used to permeabilize cell membranes in vitro in gram 

negative bacteria (Acidothiobacillus ferrooxidans) and 

NIH/3T3 cells [117, 118], and excitingly in vivo in mice via 

electromagnetic field-induced intracerebral delivery of 

plasmid DNA encoding the Bcl-2 gene using microwave 

radiation 8-12 GHz, 5 W, 20 seconds [117]. 

3. GRAPHENE-BASED NON-VIRAL VECTORS FOR 
GENE DELIVERY 

 Graphene derivatives (Fig. 2) have the thickness of a 
single layer of graphite, and display interesting electronic, 
magnetic and optical properties and for which the Nobel 
Prize in Physics was awarded to Geim and Novoselov in 

2010. Their properties are attractive for a number of 
applications [18, 119], and their degradability in vivo [120] 
makes them of particular interest for biomedical 
applications, as discussed in a number of recent reviews 
[121-126]. 

 Akin to unmodified bucky balls, nanohorns and 
nanotubes, unmodified graphene is hydrophobic and 
insoluble in aqueous media, and it is frequently converted to 
the more hydrophilic graphene oxide (which is moderately 
soluble in aqueous media), and the hydrophobicity of 
graphene and graphene oxide enable interactions with the 
hydrophobic parts of DNA and RNA [53, 127]. Indeed, 
complexes of graphene oxide with either plasmid DNA 
(encoding GFP) or siRNA (targeting glyceraldehyde-3-
phosphate dehydrogenase, GAPDH) are capable of 
transfection of human-derived cervical cancer HeLa cells 
and human umbilical vein endothelial cells (HUVECs) in 
vitro [128]. 

 Strategies for their functionalization are analogous to 
nanotubes, typically covalent/non-covalent functionalization 
with cationic moieties, and the functionalization of graphene 
derivatives with various low and high molecular weight 
cations has been reported in the literature. Complexes of 
graphene oxide functionalized with octaarginine with DNA 
plasmid (encoding GFP) capable of transfection of human 
embryonic kidney (HEK293) cells in vitro [129]; or indeed 
transfection of Cell death siRNA to MCF-7 breast cancer 
cells transfection in vitro [130]. Complexes of ethidium 
bromide functionalized graphene oxide with plasmid DNA 
(encoding GFP) were markedly less toxic than ethidium 
bromide, and more effective at transfection to human gastric 
adenocarcinoma AGS cells than complexes with 
Lipofectamine® 2000 in vitro [131]. 

 The functionalization of graphene quantum dots with 
poly(L-lactide)-PEG diminished the cytotoxicity of the 
graphene and enhanced the photoluminescence of the 
graphene over a broad pH (useful for imaging) and the 
conjugation of both miRNA-21-targeting and survivin-
targeting agents improved the inhibition of cancer cell 
growth and apoptosis of cancer cells in vitro in HeLa cells 
[132]. Functionalization of graphene with poly(2-
dimethylamino)ethylmethacrylate (PDMAEMA) by 
bioreducible disulphide bonds enabled successful 
transfection of plasmid DNA (encoding luciferase) into 
monkey kidney fibroblast-like COS-7 cells and human liver 
cancer HepG2 cells in vitro [133]. Likewise, complexes of 
graphene oxide functionalized with PEG and PEI by 
bioreducible disulphide bonds enabled successful 
transfection of plasmid DNA (encoding GFP) into human 
prostate cancer PC3 cells in vitro, which could be further 
enhanced by photothermal excitation upon exposure to NIR 
laser irradiation [134]. 

 A comparison of complexes of graphene oxide 
functionalized with PAMAMs, PEI or polypropyleneimine 
(PPI) with plasmid DNA (encoding GFP) showed the PEI 
conjugates to be the most effective at transfection to mouse 
neuroblastoma Neuro-2a cells than complexes with either 
PAMAM or PPI in vitro [135]. Consequently, 
functionalization of graphene with PEI derivatives is 
popular, with complexes of linear PEI, anionic carboxy-
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functionalized graphene oxide and plasmid DNA enables 
transfection to HeLa cells [119], although the complexes 
were prone to aggregation in the presence of serum. 
Replacement of the linear PEI with branched PEI enhanced 
the stability of their complexes with DNA in serum 
containing media, thereby enabling light-controlled delivery 
of DNA plasmids into the NIH3T3 fibroblast line and human 
prostate cancer PC-3 cells [136], and siRNA delivery to 
human mammary MDA-MB-435S melanocytes upon 
exposure to NIR laser irradiation [137]. 

 Complexes of graphene oxide and PEI were capable of 
delivering siRNA (targeting the C-X-C chemokine receptor 
type 4 (CXCR4), siCXCR4) and suppressing gene 
expression and the metastatic potential of MDA-MB-231 
cells in vitro [138]. Complexes of graphene oxide 
functionalized with PEI and PEG with plasmid-based Stat3 
siRNA were effective at transfection and gene silencing of 
malignant melanoma B16 cells in vitro [139]. Interestingly, 
complexes of graphene oxide functionalized with PEI, PEG 
and chitosan with short hairpin shRNA were shown to be pH 
responsive (releasing their payload of doxorubicin and RNA 
at pH <6.5) and to successfully deliver their payload to 
human liver cancer HepG2 cells in vitro efficiently silencing 
ABCG2 expression and making the tumor cells more 
sensitive to the anticancer drug doxorubicin [140]. 

 Excitingly, complexes of PEI-functionalized graphene 
oxide with mRNA (for reprogramming transcription factors) 
successfully generated rat and human induced pluripotent 
stem cells (iPSCs) from adult adipose tissue-derived 
fibroblasts (ADFs) in vitro in a gene integration-free fashion 
(Fig. 5) [141]. The upper panel of Fig. 5A depicts a 
schematic diagram of the procedure for the preparation of 
human iPSCs by means of PEI-functionalized graphene 
oxide-mediated mRNA delivery into human ADFs, whereas 
the lower panel of Fig. 5 depicts bright-field images of the 
human iPSCs derived from the human ADFs; the former 
formed early iPSC-like colonies (day 18), and mature iPSC 
clones appeared after mechanical picking (day 24). The 
pluripotent properties of the iPSC clones generated from 
human ADFs were confirmed by immunocytochemical 
analysis with the iPSCs being positive for Oct4 expression 
(Fig. 5B). Furthermore, the expression of the endogenous 
pluripotency marker genes in iPSC clones (stemness marker 
genes: SSEA-4, Lin28A, Rex1, Nanog, and TRA 1-60), were 
well expressed in the iPSCs (Fig. 5C) but not in control 
hADFs. Reprogramming into iPSCs is accompanied with 
demethylation of promoters of critical pluripotency genes. 
The degree of epigenetic reprogramming was analyzed by 
studying the methylation patterns of the promoter region of a 
key pluripotency gene, Nanog. Bisulfite genomic sequencing 
of a 299-bp large region of the Nanog promoter which 
contains eight CpG sites was carried out. Although CpG sites 
of ADFs were methylated, none or only one CpG site was 
methylated in the PEI-functionalized graphene oxide-mRNA 
treated iPSCs (Fig. 7D), demonstrating that the pluripotent 
potential of the PEI-functionalized graphene oxide-mRNA 
treated iPSCs was similar to that of ES cell lines [141]. 

 Furthermore, embedding complexes of PEI-coated 
graphene particles and DNA (encoding VEGF165) inside 
injectable hydrogels enabled their delivery to the site of 
acute myocardial infarction in vivo in rats, resulting in a 

significant increase in myocardial capillary density and 
reduction in scarring in the injected infarct region, and 
thereby improved cardiac performance [142]. 

 Complexes of graphene oxide functionalized with 
PAMAMs and PEG with plasmid-based antisense 
oligonucleotides capable of antagonizing microRNA 
function were more effective at transfection to human lung 
cancer A549 cells than complexes with either 
Lipofectamine® 2000 or PAMAMs in vitro [143]. 
Complexes of graphene oxide functionalized with PAMAM 
with DNA plasmid (encoding GFP) capable of transfection 
of human-derived cervical cancer HeLa cells in vitro [144]. 
Complexes of carboxy-functionalized graphene, PAMAMs 
and plasmid DNA (encoding GFP) effectively transfected 
human cervical cancer HeLa cells or human osteosarcoma 
MG-63 cells, the efficiency of which could be markedly 
improved through the conjugation of oleate to the PAMAM 
[145], and folate-displaying graphene derivatives that target 
cancer cells were shown to be efficiently internalized 
through endocytosis and non-toxic towards human cervical 
cancer HeLa cells and human lung cancer A549 cells [146]. 
Complexes of carboxy-functionalized graphene, PAMAMs, 
epirubicin (an anticancer drug), amine-functionalized 
diethylene triamine pentaacetic acid loaded with Gd (a 
contrast agent), and either plasmid DNA (encoding GFP) or 
Let-7g targeting microRNA, were effective at the delivery of 
both the chemotherapeutic drug and therapeutic genetic 
material, and moreover simultaneous imaging, as 
demonstrated in vitro in human glioblastoma (U87) cells, 
and in vivo in the brains of mice, highlighting the potential of 
graphene-based theranostics [147]. 

4. CONJUGATED POLYMER-BASED NON-VIRAL 
VECTORS FOR GENE DELIVERY 

 The history of conjugated polymers is longer than for 
other classes of OEMs. The unintentional synthesis of 
polyaniline (Fig. 2) first reported by Letheby in 1862 [148], 
and Bolto and Weiss reported the first intentional syntheses 
of analogous polymers in a series of papers in 1963 and 1964 
[149-154], it was however the more widely publicized work 
of Heeger, MacDiarmid and Shirakawa in the late 1970s 
[155-158] that led to an explosion of academic and industrial 
interest in the synthesis and applications of electroactive 
polymers (EAPs) [159, 160] and ultimately their award of 
the Nobel Prize in Chemistry in 2000. However, the 
development of conjugated polymers for gene delivery is 
still at a relatively nascent stage by comparison with the 
other classes of OEMs [161]. 

 In common with fullerenes and graphenes [53], EAPs 
interact with DNA and RNA through non-covalent 
interactions, including van der Waals interactions, π-stacking 
interactions, hydrogen-bonding interactions and ionic 
interactions [162-166]. Their chemistry is well described in 
the literature, and similar to other OEMs used for gene 
therapy frequently involves functionalization with cationic 
species, for example, complexes of PEI-functionalized 
polythiophene (Fig. 6A) with siRNA (targeting luciferase) 
transfected human lung cancer A549-luc cells and 
successfully knocked down luciferase expression in vitro 
[167]. 
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 Complexes of cationic derivatives of poly(fluorenylene 
phenylene) displaying lipids (Fig. 6B)  with plasmid DNA 
(encoding GFP) were capable of transfecting human lung 
cancer A549 cells [168], human cervical cancer HeLa cells 
and human breast cancer MCF7/ADR cells with greater 
efficiency in vitro than both Lipofectamine® 2000 and PEI 
[169], and their high fluorescence facilitated real-time 
tracking of their location. Likewise, complexes of cationic 
oligofluorenes (Fig. 6C) with transrenal DNA (TR-T5) 
delivered their payload to human lung cancer A549 cells 
concomitant with visualization in vitro [170], and 
hyperbranched polyfluorene derivatives displaying cationic 
PEI transfected plasmid DNA (encoding luciferase) into 
monkey kidney fibroblast cell-like cells in vitro [171]. 

 Complexes of cationic poly(phenylene ethynylene) 
derivatives (Fig. 6D) with siRNA (targeting specific genes in 
the cellulose biosynthesis pathway, NtCesA-1a and NtCesA-
1b) successfully transfected tobacco BY-2 protoplasts in 
vitro [172], or siRNA (against actin B) to human cervical 
cancer HeLa cells in vitro successfully down regulating the 
target gene expression by 94% [173]. Interestingly, 
complexes of cationic poly(p-phenylene vinylene) 
derivatives (Fig. 6E) with siRNA (targeting luciferase) 
successfully transfected human cervical cancer HeLa-Luc 
cells and diminished luciferase expression in vitro and this 
effect was enhanced photothemally upon exposure to white 
light [174].  

 Importantly, cationic derivatives of conjugated polymers 
can bind DNA/RNA and release it in response to 
electrochemical triggers, for example a cationic derivative of 
polycyclopentadithiophene (Fig. 6F)  can release DNA using 
voltammetry scans of -0.3 to +0.5 V versus a saturated 
calomel electrode [175] or polythiophene (Fig. 6G) can 
release DNA using voltammetry scans of -0.5 to -2.4 V 
versus a saturated calomel electrode [176], suggesting the 
potential for electrochemically induced DNA/RNA delivery. 
We believe that biodegradable conjugated polymers [177, 
178] such as those depicted in (Fig. 6, H, I and J) may have 
an important role to play in their translation from the bench 
to the clinic.  

CONCLUSION 

 The delivery of DNA/RNA as a pharmaceutical means to 
treat various diseases (i.e., gene therapy) is now a well-
established field of science. While a variety of vectors have 
been investigated (including viruses, nanoparticles, etc.), the use 
of organic electronic material-based vectors was the focus of 
this review; touching on their chemical structures (Fig. 7), 
surface modification, interactions with DNA/RNA, and their 
efficacy as gene delivery vectors both in vitro and in vivo. Their 
greater efficacy relative to current commercially available non-
viral vectors and their beneficial theranostic properties make 
them incredibly attractive for further investigation, particularly 
in light of the evidence that they are biodegradable, and it is 
likely that the first clinical trials for such materials will be in the 
near future. 
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Fig. (1). Examples of the chemical structures of derivatives of polyethyleneimine (PEI) or polyamidoamine (PAMAM) dendrimer. 
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Fig. (2). Examples of the chemical structures of derivatives of fullerenes (bucky balls or nanotubes), graphene, or conjugated polymers (e.g. polyaniline, 

polypyrrole or polythiophene). 
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Fig. (3). Examples of the chemical structures of neutral, cationic, anionic and tetra(piperazino)fullerene epoxide derivatives of bucky balls. 
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Fig. (4). Cell cycle fraction and apoptosis assay after pTP53 transfection in HeLa cells. A) Histograms and B) graph bar of cell cycle in the G0/G1, S, 
and G2/M population. Annexin V-FITC/PI co-staining assay by D) FCM and C) graph bar for apoptosis and necrosis rates. E) Nuclei fragment by 

Hoechst 33342 staining in HeLa cells. This figure is reproduced from reference 113. Reprinted by permission of John Wiley & Sons, Inc. 

 



Short Running Title of the Article Journal Name, 2014,  0,  0    15 

 
Fig. (5). GO-PEI-RNA-mediated generation of iPSCs (G/RNA-iPSCs) from ADFs. (A) Upper panel; a schematic diagram of the procedure for the preparation 

of hiPSCs by means of GO-PEI-mediated RNA delivery into hADFs. Lower panel; bright-field images of G/RNA-hiPSCs derived from hADFs; the former 

formed early iPSC-like colonies (day 18 for hiPSCs), and mature iPSC clones appeared after mechanical picking (day 24 for hiPSCs). (B) 
Immunocytochemical analysis OCT4 expression in G/RNA-hiPSCs. The nuclei were stained with TOPRO-3. Scale bar: 50 μm. (C) Quantitative real-time RT-

PCR analysis of the expression of endogenous pluripotency markers. Expression of the stemness markers such as SSEA-4, Lin28A, Rex1, Nanog, or TRA 1-

60, was analyzed in hADFs. The housekeeping gene Gapdh was used as a loading control; *p < 0.05. (D) Bisulfite genomic sequencing of human Nanog 
promoter region. Open and closed circles indicate unmethylated and methylated CpG dinucleotides, respectively. Three representative sequenced subclones 

from hADFs and from the above-mentioned iPSC clones are shown. This figure is reproduced from reference 141. Reprinted by permission of Elsevier. 
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Fig. (6). Examples of the chemical structures of conjugated polymers. 
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Fig. (7). Examples of the chemical structures of organic electronic biomaterials and targeting units. 
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