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Abstract 

Understanding sedimentary transport mechanisms in shale-prone 

basins can be dif f icult, but anisotropy of magnetic susceptibi l ity (AMS) 

has the sensit ivity and ease of use to be widely applicable. Three 

dist inct shale basins were selected, the turbidite Ainsa Basin, the shelf-

edge of the Welsh Borderlands and the hemiplegic Marcellus Shales 

within the Appalachian Basin. These were chosen to assess the 

strengths and l imitation of AMS as a palaeoflow indicator, focusing 

mainly on the Ainsa Basin as it has a well characterised palaeoflow and 

geographically confined deposit ional model that spans a very short 

period. This project explored the viabi l ity of using Baas et al., (2007) 

description of the petrofabric’s AMS as a means to establish delivery 

mechanism. The Ainsa System showed two modes of AMS, one that 

was al igned with the f low direction and a transverse fabric normal to 

f low direction.  

Each site was examined for its minerology; hysteresis tests were 

performed to observe if  the source of magnetic susceptibil ity was from 

ferrimagnetic or paramagnetic minerals and to infer if  the AMS 

ref lected a grain or crystal l ine fabric. In the Ainsa case study, the 

samples had a greater percentage of ferrimagnetic contribution so 

isothermal remanent magnetism (IRM) and anhysteret ic remanent 

magnetisation (ARM) acquisit ion was used to determine the 

ferrimagnetic minerology. The sites were examined for the tectonic 

impact on the AMS which was largely minimal.  
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1. Sedimentary Basins   

Sedimentary basins are by def ined as low areas in the Earth’s crust, 

generated by tectonics, which al low the accumulation of sediments 

(Southard, 2007). Sedimentary basins occur in a diverse range of 

geological sett ing such as a within a well conf ined canyon setting or 

can be deposited as part of a large gentle uniform slope. The main 

implicit concept which links sedimentary basins is that they both share 

prolonged crustal subsidence and accumulation that allow their 

formation (Southard, 2007).  

 

Sedimentary basins are important for oil and gas exploration as they 

provide potential reservoirs; therefore it is important to reconstruct the 

history of the sedimentary basins in order to have a greater chance of 

successfully describing and predict ing reservoir development (Johnson 

& Stewart, 1985). Studies of basin palaeocurrents are also important 

they can be used to determine basin-f i l l  history, and to establish the 

sediment sources, types of facies, and deposit ional tracts (Johnson & 

Stewart,  1985). Palaeoflow systematics within marine basins vary 

depending on the deposit ional mechanism. 

 

An example of an oil-bearing basin is a hemipelagic basin which is 

dominated by regular suspension-related deposit ion of f ine sediments 

(Baas et al., 2007), which contrast with high energy, unidirectional 

currents of turbidite basins (So et al.,  2013). Three dif ferent types of 

deposit ional basins have been examined in detai l:  
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1.1  Epicontinental Marine Shale Basins   

Epicontinental shale basins are important as these are sometimes 

organic r ich (black shales) and potentially provide a source rock for oi l 

and gas (Fleet et al., 1987). Black shales can form at the centre of a 

bathymetric basin, where the greatest thickness of sediments typical ly 

accumulate (Wignall, 1991; Fig. 1.1). Organic r ich black shales are 

created by organic matter being deposited via suspension, fall ing 

through the water column, and deposit ing in the anoxic centre of the 

basin (Lash & Blood, 2014). The anoxic condit ions can be caused by 

thermal strat if ication of the water column and the oxygen demand 

outstr ipping the supply (Wignall, 1991). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. A schematic of the deposition of black shales in a bathymetric basin. In this model point D 
represents the critical depth at which the thermocline is developed. A) Lowstand conditions, this period 
sees the least deposition, with shales only occurring in the depocenter. B) Transgression conditions see 
an expansion in deposition of black shales owing to increasing sea levels, sediment starvation and 
subsidence. C) Highstand conditions, sea level has reached maximum extent and sediment influx 
causes shallowing of the water column leading to deposition of limestones near the edges of the basin 
(Wignall, 1991). 
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Fleet et al., (1986) describe similar models for deposit ion of the 

Jurassic Kimmeridge Clay:  

 

i) Coarse, organic detritus input from large amounts of vegetat ion into 

bathymetric basins or deltas. In humid climates these produce a gas-

prone source rock. An example of this is the Jurassic clastic 

successions along the coast of Norway and Greenland (Fleet et al., 

1987). 

 

i i ) A salinity-strat if ied basin model, where the basin is divided into 

oxygenated layers depending on sal inity. For example, when fresh 

water runoff  f lows into a restricted basin and forms a low salinity cap 

as a result of density discrepancy. The mixing of oxygenated water is 

then kept near the top of the water column and in the base of the water 

column the supply of oxygen is outstripped, creat ing anoxic condit ions 

(Wignall, 1991). Result ing source rocks are derived from aquatic 

organic matter sinking past the photic zone in hypersaline condit ions to 

oxygen deficient bottom-water condit ions (Fleet et al., 1987). A modern 

example is Lake Maracaibo in Venezuela (Fleet et al., 1987). 

 

i i i) Oxygen minimal sett ings model, this model is characterised by 

oxygen minimal zones (OMZ). OMZs are where the greatest rate of 

sinking biological detritus occurs owing to the l imited oxygen content 

(Fleet et al., 1987). They are typical ly created in warmer climates 

where the warm saline, epicontinental seas evaporate and are then fed 
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by low oxygenated intermediate and deep oceans from a lower lat itude 

(Fleet et al., 1987). These basins are heavily inf luenced by relative sea 

level changes where transgressions often lead to intensif ication of the 

OMZ causing their expansion. The Marcellus Shale in the Appalachian 

Basin is most similar to this model and is examined in Section 7 (Brown 

& Kenig, 2004).  

 

1.2  Contourites  

Contourites form well below the storm wave base in relat ively deep 

water (>300 m) around the continental rise or in the lower continental 

slope (Rasmussen & Surlyk, 2012; Stow et al. , 2002). Contourite 

currents are formed by deep sea thermohaline f lows (the cooling and 

sinking of surface water), or are sometimes driven by major wind-driven 

circulat ion (Stow et al., 2002). These bottom currents tend to travel 

slowly at velocit ies 1-2 cm s -1, but in more confined settings can 

deposit sediments from muddy to gravel facies (Stow et al., 2002). The 

accumulation rate of contourite depends upon on sediment supply and 

this in turn is dependent on several factors such as source area 

geology, climate and tectonics.  Biogenic material supply is controlled 

by cl imate, water product ivity, deep sea dissolution of shell and the 

impact of volcanic sources (Faugères et al., 1993).  
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An example of an ancient contourite deposit can be found on the Welsh 

borderlands. Mudrock facies were deposited in the Silurian by bottom 

currents, which were dominated by local topography on the upper 

continental slope (Soper & Woodcock, 1990). These wil l form the focus 

of one of my later studies. 

 

Stow et al. (2002) described several dif ferent types of contourite drif t 

deposits depending on the nature of the adjacent continental r ise (Fig. 

1.2 and Table 1.1).  

 

i)  Contourite sheet drif ts 

Sheet drif ts form in very low-rel ief environments and are composed of 

layers of constant thickness that occur on a scale of 100 m’s to 1000 

km’s (Stow et al., 2002). They represent basin plain f i l ls and decrease 

in thickness around the margins. These abyssal sheet dri f ts are 

typically comprised of f ine-grain sediments of silts and muds, biogenic-

rich pelagic material or red clay. An example is the Gloria drif t in the 

Argentine Basin in the south Atlant ic (Stow et al., 2002).   

 

i i )  Elongated mounded drif ts 

They occur on the outer shelf  or upper continental slope and are 

dominated by f lows showing local topographic interact ions, producing 

mounded and elongated deposits with length to width ratios of 2:1 to 

10:1. They vary from 10 to 1000 km’s in length and are up to 2 km in 

thickness with an average sedimentation rate of Ca.2-10 cm ka -1.  Their 
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size is determined by local topography, current width, current intensity 

and the Coriol is Force. The Coriolis Effect constrains water masses 

against continental slopes on the western margin of basins, thus 

causing the currents to become more restr icted and intense, increasing 

their velocit ies to 10-20 cm s -1 (Stow et al., 2002). An example of an 

elongated mounded drif ts are found east of New Zealand, where they 

occur on the outer shelf  or upper slope. These types of deposit also 

appear on the abyssal plains, and are common throughout the North 

Atlantic (Stow et al., 2002).  

 

i i i)  Channel-related drif ts 

These deposits are controlled by deep channels that constrain the 

bottom circulat ion. This increases the current velocit ies which leads to 

the erosion of the substrate and the deposit ion of sand and gravel. 

Examples include the Kane gap, in the Faroe-Shetland Channel (Stow 

et al., 2002)  

 

iv) Others 

Confined drif ts are tectonically confined deposits that have rarely been 

recorded. Inf i l l  drif ts are caused by inf i l ls of topographic depressions.  
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Figure 1.2 Schematic showing the four 
different types and setting of contourites  

Type I Contourite sheet that form in low 
relief environments associated with 
basin fills. 

Type II Elongate drifts of which 
deposition is dominated by locally 
topography, creating elongated 
mounded deposits. 

Type III Channel-related sheet drifts, 
these are controlled by deep sea 
channels which tend to deposit sand-
gravelly sediments owing to greater 
current velocity. 

Type IV Confined drift, these are rare 
tectonically confined deposits. 

 (Stow et al., 2002). 

 

Table 1.1. The different types of contourite describing their subdivisions, where they form, the sizes of 
that subdivision and examples of each (Stow et al., 2002). 
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1.3  Turbidite Dominated Basins  

Turbidites are well-studied ancient deposit ional systems, although they 

are dif f icult to observe in modern deposits owing to their transient 

nature (Hughes et al., 1995). Turbidite sequences can be on a huge 

scale, ranging from large turbidite systems such as the Moroccan 

turbidite system, which is up to 1500 km in width, to smaller individual 

turbidites that can be on a centimetre scale (Wynn & Stow, 2002).  

 

Turbidite systems are typical ly created by sediments being transported 

off  the continental shelf  by density f lows; these density f lows travel via 

feeder channels and then deposit sediments as individual lobe or lobe 

system deposits in deeper basins. Deep-water turbidite systems can be 

classif ied into four categories, with A) being the most proximal to D) 

the most distal:  

 

A) Canyon or feeder channels that are composed of a mix of poorly 

sorted coarse and f ine clasts (Mulder, 2011); B) An upper fan, with an 

erosional channel and thick levees; C) A middle fan with smaller 

deposit ional channels and thin levees; and D) a lower fan with distal 

lobes (So et al. , 2013). These turbidite deposits are often interbedded 

with hemipelagic mudstones, which have been deposited by suspension 

rather than density-f lows and represent the background deposit ion 

during periods of non-turbidite f low (Bouma, 2000).  
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Sedimentologists have observed several recurring facies within 

turbidite deposits, termed Bouma cycles; each facies tend to overlie the 

one before it and general ly f ine-up from the base to the top of the cycle 

(Shanmugan, 1997). Bouma cycles have been divided into f ive 

general ised facies from Ta (the base) to Tb, Tc, Td and Te (the top of 

the cycle; Shanmugan, 1997; Table 1.2, Fig. 1.3).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1.2. Describes the five main facies in a Bouma cycle, with an inferred interpretation of how they 
formed. Tc has been subdivided owing to differences in sedimentary structures.  Modified from So et al., 
(2013) 
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Bouma cycles are typically incomplete either because of the erosive 

nature of overlying high-density turbidites (Hughes et al., 1995), or the 

local absence of high f low condit ions at the base. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An example of classic turbidite divisions is examined by So et al. 

(1997), they observed lateral changes of a late Paleozoic turbidite 

complex, Taean Formation, located in western Korea. They examined 

the facies and architecture of a lobe complex which they further divided 

into lobe systems and then further hierarchical subdivisions as lobe 

elements and beds (Fig. 1.4).  

 

 

Figure 1.3. An ideal Bouma sequence, displaying a graphical log of the divisions of Ta, Tb, Tc, Td and 
Te and providing interpretation of how these sedimentary structures were formed. Modified from 
Shanmugan (1997). 
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They established that the axes of the lobes were composed mainly of 

thick bedded Ta facies with thin Te beds (So et al., 2013). The lobe 

axis has been interpreted as the centre of the turbidity currents with 

the Ta facies representing the high f low-rate turbulent deposits, and 

the Te facies representing the background sedimentation from 

suspension (So et al., 2013). The lobe off-axis deposits overl ie the lobe 

axis which are dominated by medium-grained sandstones (Tb facies) 

with some Ta and Te facies. The lobe off-axis is interpreted as forming 

near the main turbidity currents, but distant enough to al low parallel 

laminations within the sandstone to form (So et al.,  2013). The lobe off  

axis is overlain by the lobe fringe or lobe distal fringe (Fig. 1.5).  

 

The lobe fringe comprises the Ta, Tc, Td and Te facies and is 

dominated by mudstones with silty-sandstone beds. The lobe fringe is 

more lateral ly extensive, showing greater lateral cont inuity than the 

lobe axis and off-axis. The lobe distal fringe overlies the lobe fringe 

and is composed of facies Tc, Td and Te, and is therefore dominated 

by medium to thick mudstone successions with thin si lty-sandstone 

beds. The lobe distal fringe is interpreted as low-energy, turbidit ic 

deposits that represent the furthest reaches of turbidite sedimentation 

(Fig. 1.5).   
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Figure 1.4. a) Shows 4 orders of turbidites within a turbidite complex (TC), 1st-order: turbidite 
system (TS), 2nd-order: turbidite stage (TSG), 3rd-order: turbidite facies association and 
component sub-stage (TSSG), 4th-order: turbidite bed, which show Bouma Cycles (So et al., 
2013).   

b) Displays how orders fit into the architectural hierarchy of each of the lobe deposits, showing 
the Feeder channels supplying sediment into the large lobe systems which are then divided 
into different lobe beds. The erosive nature of the turbidite is shown by previous lobes being 
truncated by younger deposits (So et al., 2013). 
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The sedimentation in the supplying canyon system is dif ferent from the 

rest of the turbidite basin and is typically represented by rock-fall  or 

debris f low deposits (So et al., 2013). These are created by the mass 

movement of sediments caused by slope-failure at the base of the 

canyon cl if fs (Mulder, 2011). The sediments are transported for short 

periods, leading to the deposit ion of poorly sorted clasts of various 

sizes (ranging from mill imetres to hectometres) which are typically 

weakly cemented in a f iner-grained matrix (Mulder, 2011). Short travel 

t imes cause li t t le internal deformation and sometimes pre-existing 

bedding is preserved (Mulder, 2011). Example of debris f lows are 

common in the Ainsa Basin (see Section 5).  

 

Figure 1.5. A plan view schematic of a lobe deposit. It shows the relations of the facies of the Lobe axis, 
off axis, fringe and distal fringe (So et al., 2013). 
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1.4  Grain Fabrics 

Non-spherical clasts deposited in sediments, orientate themselves 

dif ferently depending on their method of transportation (Baas et al., 

2007). There are three main fabric patterns:  

 

1) The horizontal fabric: this is when the long axes of the grains are 

orientated paral lel to the bedding plane, but the long axes do not show 

a preferred orientat ion within the bedding plane (Fig. 1.6; Baas et al., 

2007). Grains showing this fabric are typical of sett l ing from 

suspension in st i l l  water or in a very weak f low where the drag is 

insignif icant to orientate the grains (Baas et al., 2007). This fabric 

could be common in sheltered shale basins such as the Jurassic 

Kimmeridge Shale basin and may be important in the hemipelagic 

deposits between turbidite beds (Wignall l & Newton, 2001; Shanmugan, 

1997).   

 

2) Flow-aligned fabrics: grain long axes are orientated paral lel to the 

main f low direct ion (Fig. 1.6; Baas et al., 2007). The long axis of the 

grains may be imbricated and if  this is the case, then the grains 

normally dip upstream (Baas et al., 2007). Extended f lows, such as 

laminar contourite currents or some turbidite f lows, have larger shear 

velocit ies and are able to l if t  and transport sediment part icles. After 

such transportat ion the grains are then deposited so their long axis is 

aligned approximately paral lel with the f low direction, so that they have 

minimal drag (Mulder, 2011) and are so imbricated. Grains are 
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orientated owing to their interact ions with other grains, as shear forces 

keep them in stable, imbricated posit ions (Baas et al., 2007). This 

fabric is the most common and is normally seen in turbidites in the Tb, 

Tc, Td facies and also in contourites and epicontinental shale basins, 

which show dominant unidirect ional current f lows (Shanmugan, 1997; 

Stow et al., 2002).  

3) Flow-transverse fabrics: grain long-axes are aligned perpendicular to 

the f low direct ion (in the bedding plane) and the intermediate grain axis 

dips upstream (Fig. 1.6; Baas et al., 2007). Flow-transverse fabrics are 

produced in high velocity f lows such as the Ta facies in turbidites, as 

the grains experience a greater rate of rotation owing to more grain 

interaction (Hughes et al.,  1995). The greater shear forces cause the 

grains to roll  along the bed, causing some grains to orientate so that 

they are perpendicular to the main f low direct ion (Hughes et al.,  1995). 

Debris f lows can show weakly f low-aligned fabrics or they are isotropic 

owing to the higher rate of granular coll is ions and short travel t ime of 

the grains, not al lowing them to fully re-orientate or imbricate (Baas et 

al., 2007).  

 

Oblique fabrics are produced when the grain long-axes are parallel to 

both the imbricat ion and to oblique orientation of the framework grains 

(Baas et al., 2007). These fabrics are believed to be caused by several 

factors including spatial changes in current direct ion, incomplete 

reorientation of the f low-transverse fabric, changes in bed roughness or 

post-deposit ional modif ication such as bioturbation and soft-sediment 
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deformation (Baas et al., 2007). The latter works by partiality re-

orientat ing the deposited grains’ long axes, therefore these fabrics 

cannot be trusted to accurately establish f low direct ion (Baas et al., 

2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. The main grain fabric types, as schematic drawings of the orientation of elongated grains 
(middle) and by the orientation of the three principal orthogonal axes in upper hemisphere 
stereograms (left shows non-imbricated samples, right shows imbricated samples). Where a=long 
grain axis; b=grain axis of intermediate length; c=short grain axis; p=parallel; t=transverse; o=oblique; 
i=imbricated. Black arrows in drawings and stereograms denote flow direction. Horizontal fabrics 
cannot be imbricated by definition (Baas et al., 2007). 
 



28 
 

1.5  Establishing Palaeoflow 

Understanding and determining the orientation of palaeoflow is 

important for oi l and gas exploration. Examining palaeoflow al lows the 

reconstruct ion of sediment geometries in ancient basins which is 

important for establishing and describing potent ial reservoirs for oil  and 

gas (Johnson & Stewart,  1985). Several methods have been used to 

establish palaeoflow, ranging from: i) macroscopic methods such cross-

strat if ication directions and fossil orientations (Schieber & Ellwood, 

1988; Duke et al., 1992); i i)  f low reconstruct ion using sediment tracing 

methods such as examining dispersal of zircon grains (Cawood & 

Nemchin, 2001); i i i ) establishing f low from grain fabrics using 

laboratory methods such as petrographic examination, X-ray 

goniometry (Table 1.3; Baas et al. , 2007; Van der Plui jm et al., 1994) 

and magnetic methods. 

 

i)  Macroscopic 

Macroscopic f ield-based methods have been most widely used to 

determine paleof low direct ion in marine basins. Primary sedimentary 

structures such as cross-lamination or current r ipple trends can be 

used to indicate the paleogeography of the basin (Schieber & Ellwood, 

1988). Structures such as hummocky cross-strat if icat ion in sandstone 

beds commonly ref lect storm-generated f lows; the modal crest is often 

orientated paral lel to the shoreline and the direction of palaeoflow is 

normal to this (Duke et al., 1992). The cross-bedding angle and size of 
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the ripples can also be used to determine the speed of the current or 

osci l latory motion produced by waves (Fig. 1.7; Duke et al., 1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The orientation of sole marks (mainly tool marks) has been widely used 

in turbidite basins to establish palaeoflow (Duke, 1990). These are 

created as the unidirectional current drags and bounces detritus 

material along the seabed, with the detritus producing drag and tool-

marks on the underlying bed (Duke, 1990). Oriented erosional f lute 

marks are also commonly produced. 

 

Figure 1.7. Stability fields for different types of ripples that are stable in certain environments. 
Current ripples are only stable when there is a dominant unidirectional current, whereas the 
hummocky ripples indicate more oscillatory conditions suggesting tides and storm events (Duke et 
al., 1991) 
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Fossil orientation and elongated larger clasts can also be used to 

determine palaeoflow direct ion, elongated fossils,  such as belemnites 

or graptoli tes, wil l be aligned to l ie paral lel to unidirectional currents 

(Schieber & Ellwood, 1988; Underwood, 1994).  

 

i i )  Sediment tracing 

Tracing sediment transport geographically across a basin can be used 

to establish palaeoflows (Fedo et al. , 2003). Cawood & Nemchin (2001) 

used detrital zircon crystals to map the basin-wide distr ibution of 

sediments, as the U-Pb isotopes of the zircons are used to date the 

source grains and so f ind the zircon’s init ial source region. Similar 

basin-wide tracing methods can be applied to other detrital materials 

such as heavy mineral assemblages. Their composit ions are 

determined by the composit ion of the parent rock, hydraulic and 

diagenetic condit ions (Morton & Hallsworth, 1999). Thus, if  these 

assemblages share similar hydraulic and diagenetic condit ions then 

their composit ion can be used to establish the location of the source 

(Morton & Hallsworth, 1999). Fossil ised microfauna or microf lora can 

also restrict the provenance of sediments to a certain source, from 

which transport pathways can be established. This method has been 

used to establish pathways from the Old World Realm into the 

Appalachian Basin (DeSantis & Brett, 2011). 
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i i i)  Grain fabric methods 

Grain based techniques involve examining the grain fabric to establish 

f low direction (Borradaile, 2001). These fabrics can be observed by 

petrographic examination which requires manually examining grain 

preferred orientat ion through suitably oriented thin sections (Baas et 

al., 2007). This is performed using a microscope and is a relat ively 

simple method of measuring grain orientation, where post-deposit ional 

alterat ions to the sample such as fracturing can also be assessed 

immediately (Baas et al., 2007). However thin sect ion methods are only 

2D and are often l imited to sand sized grains only (Baas et al., 2007), 

although image analysis methods can work with f iner-grained materials.  

 

In shale basins, concret ion orientation can be used to est imate f low 

direction, this method assumes the concret ion orientation is a response 

to the grain-fabric anisotropy in the host sediment. This method also 

assumes the fabric anisotropy represents deposit ing currents rather 

than fractures within the shale (Schieber & Ellwood, 1988).  Anisotropy 

of magnetic susceptibi l ity (AMS), and similar magnetic methods, can be 

also be used to establish the fabric of the sediment grains and is 

covered in more detail in Sect ion 3 (Borradaile, 2001). 

 

X-ray texture goniometry can be used to determine rock textures and 

the preferred crystallographic orientat ion of specif ic minerals (Van der 

Plui jm et al., 1994). This can be performed on sediments, using grains 

up to 10’s of microns in size (Van der Plui jm et al., 1994). X-rays are 
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emitted onto the sample which are then dif fracted, the goniometer 

records both the direct ion and intensity of dif fracted X-rays (using a 

specif ic dif fraction latt ice) and posit ion of the sample as it is rotated by 

the goniometer (Fig. 1.8; Battey & Pring, 1997). The result ing data can 

measure the preferred orientation of fabric-forming phyllosil icates, 

chlorite and mica which can represent the deposit ing current (Lüneburg 

et al., 1999).  

 

 

 

 

 

 

 

 

 

 

 

High-resolut ion X-ray computed tomography can also be used to 

produce a 3-dimensional grain-shape (Ketcham, 2005). An X-ray fan 

beam is directed at a hand sample through al l orientat ions in a plane; 

the decrease in X-ray intensity caused by going through the rock is 

then measured by a l inear array of detectors (Fig. 1.9; Ketcham, 2005). 

The result ing data is reconstructed to create a cross sect ional image 

across the plane, this process can be done several t imes to produce a 

Figure 1.8. Schematic showing the typical setup for X-ray goniometry (from Battey & Pring, 1997). 
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3-dimensional ‘texture and absorption’ ell ipsoid (Ketcham, 2005). This 

3-dimensional ell ipsoid can be used to determine grain-shape and 

anisotropy of dif ferent minerals within the sample. These minerals can 

separated in the init ial stages using software. 

 

 

 

 

 

 

 

 

 

 

 

 

Sonic methods use the principle that the preferred orientation of the 

grains wil l affect the shape parameter of the seismic waves (Ti lmann & 

Bennett, 1973), and it is the degree of elastic anisotropy which is 

recorded (Hirt et al., 1995). Thus the quickest sonic transmission wil l 

be paral lel to the preferred long axis grain fabric in sedimentary rocks 

and overal l wi l l ref lect the grain shape anisotropy (Hirt  et al., 1995).  

Engelder (1979) used X-ray dif fraction goniometry and sonic methods 

to analyse residual strain within Grimsby sandstone in the Appalachian 

foreland fold and thrust belt.  

Figure 1.9. A schematic of an X-ray CT. A collimated planar X-ray fan beam is directed at a rotating 
sample and is recorded by the linear array detector. The data collected can be used to construct a 
tomographic sample cross-section along a slice plane (Ketcham, 2005). 
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Types of 
methods 

methods Description 

Macroscopic 
Methods 

Sedimentary 
structures 

Using the orientation of current ripples, hummocky cross-
stratification and flat-laminated beds in siltstone or sandstone 
facies to establish flow direction, a method widely used by 
sedimentologists (Schieber & Ellwood, 1988; Duke et al., 
1992). 

Tool marks Created by turbidity flows, as large detrital material scours the 
sea bed as it is dragged along the substrate. The imprint left 
by scouring and the tools is parallel to flow direction. This is 
found in turbidite basins (Duke, 1990).   

Fossil 
orientation 

Using fossil orientation of elongated fossils which align 
parallel to flow direction. These are found in shale and 
sandstones. Rarely used for basin-wide flow mechanisms 
owing to sparse fossil occurrence (Schieber & Ellwood, 1988; 
Underwood, 1994).  

Sediment 
Tracing 
Methods 

Heavy mineral 
distributions 

Examines the distribution of heavy mineral grains through a 
basin, e.g. using radiogenic isotopes to establish the zircon 
age and so infer their source and transfer directions (Fedo et 
al., 2003; Cawood & Nemchin, 2001).  

Fossil 
distribution 

Examines the distribution of fossils that are restricted to 
certain source and establish the pathways throughout the 
basin (DeSantis & Brett, 2011) 

Grain fabric 
Methods 

Petrographic 
methods 

Thin sections to examine the anisotropy of the grain long-
axes of siltstones and sandstones facies (Baas et al., 2007).  

X-ray texture 
goniometry 

Diffracted X-rays from a specific lattice plane within a specific 
mineral are recorded as a function of goniometer direction 
and sample rotation. Crystallographic preferred orientation is 
determined with the method (Battey & Pring, 1997). 

High-resolution 
X-rays 
computed 
tomography 

An X-ray beam is directed at a hand sample through all 
orientations in a sample rotation plane. The relative changes 
in X-ray intensity reconstructs a 3-dimenisional model of the 
grain absorption fabric (Ketcham, 2005). 

Sonic 
anisotropy  

Sonic waves record the degree of elastic anisotropy. Grain 
fabrics with preferred orientations will have fastest 
anisotropies in that preferred direction (Hirt et al., 1995). 

Anisotropy of 
magnetic 
susceptibility 
(AMS) 

AMS measures the directional variations of magnetic 
susceptibility which can be expressed as a magnetic ellipsoid. 
This ellipsoid represents the magnetic grain and can be used 
to determine the grain’s anisotropy (Baas et al., 2007) 

Table 1.3. Summary table describing each macroscopic, sediment tracing and grain fabric method for 

determining palaeoflow in sediments. Anisotropy of magnetic susceptibility will be described in greater 

detail in Section 3.  
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2. The Earth’s Geomagnetic Field and Magnetostratigraphy  

The Earth’s geomagnetic f ield is caused by the motion of the outer 

core, which generates electr ical currents to form a self-excit ing dynamo 

(Butler, 1992).   

2.1 Basic Magnetic Concepts and the Earth’s Geomagnetic Field 

A magnetic moment (M) is generated by magnetic f ield (H). When 

examining the Earth’s geomagnetic f ield, a scalar magnetic potent ial 

(V) of magnetic dipole is examined (Tauxe, 2005):  

ܸ =
ߠݏ݋ܿ ܯ

ଶݎ  

 

Using this equation, the magnetic f ield vector on the surface of the 

earth can be broken down into several trigonomic components (Fig. 

2.1). The total magnetic f ield vector (H) is composed into a vert ical 

component of Hv = H sin I and horizontal component Hh = H cos I. 

Incl ination (I) is the angle (dip) between the horizontal and H. The 

incl inat ion, I, wi l l increase with lat itude which ranges from 0o at the 

magnetic equator and peaking at the magnetic poles (+90 at the 

magnetic North Pole, -90 at the magnetic South Pole).  Declinat ion (D) 

is the angle between the horizontal component of H and geographic 

north (Fig. 2.1; Butler, 2004).  

The Earth’s magnetic f ield can be modelled using two components 1) a 

Geocentric Axial Dipole (GAD) and 2) secular variat ion (Butler, 1992). 

 

Equation 2.1. A gradient of scalar magnetic potential (V) is a 
function of the radial distance (r) and the angle away from 
the pole (θ) (Tauxe, 2005). 
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2.1.2  The GAD Model 

The GAD model uses the concept that the Earth’s geomagnetic f ield is 

a single dipole at the centre of the Earth, similar to a bar magnet (Figs. 

2.2, 2.3; Butler, 2004; Langereis et al. , 2010). This model uses the 

equation 2.1 and can be used to derive H and its horizontal and vertical 

components. Thus the geographic lat itude,  can be determined by 

“the dipole equation”: 

tan I = 2 tan λ 

 

 

 

Figure 2.1. Schematic of the different 
components that compose of the Earth’s 
total magnetic field. Total magnetic field 
vector (H), Declination (D), Inclination (I) 
(Butler, 1992). 

Equation 2.2. λ is the geographic latitude. The magnetic field 
strength increase by a factor of two from the equator to the 
magnetic poles (Butler, 1992). 
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Figure 2.3. The GAD model and the Earth’s geomagnetic field during normal and reversed 
polarity. During normal polarity (when in the northern hemisphere), the inclination is positive 
(downward directed). The reverse is the case during reversed polarity with the inclination being 
negative when in the northern hemisphere (Langereis et al., 2010).  

Figure 2.2. Schematic of the different components of the geocentric axial dipole. The 
components are Magnetic dipole (M), angle from the positive magnetic pole (θ),  magnetic 
colatitude (ρ), geographic latitude (λ), radial distance from the dipole (r), total magnetic field 
vector (H),  unit vector (rˆ) in the direction r, Inclination (I). The magnetic field vector H can be 
broken into a vertical component (Hv = –Hr) and horizontal component (Hh = Hθ) (Butler, 1992). 
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However, this model does not fully f it  the current magnetic f ield. 

Instead, the f ield deviates from the GAD model, with the current 

magnetic poles offset from the geographic poles (Fig 2.4; Butler,  2004). 

Even with an incl ined geocentric axial dipole, ~90% of the surface f ield 

can be accounted for (Butler, 1992). The best-f it t ing dipole is the 

eccentric dipole, in which the f ield is described marginally better 

(Butler, 1992).  

This dipole varies largely across regions as the best-f it t ing eccentric 

dipole can accurately describe the geomagnetic f ield when applied to 

most locat ions, although some areas i t  cannot explain Ca.20% of the 

geomagnetic f ield suggesting a non-dipole f ield is also present. 

However, over long time scales (>3000 years) these variations will 

average to zero, thus the average magnetic f ield can be represented 

using the GAD model and the historical posit ions of geomagnetic poles 

can be located (Butler, 1992).  

 

 

 

 

 

 

 Figure 2.4. A more realistic inclined dipole model for the Earth’s current magnetic field, showing the 
relationship between the geographic, magnetic and geomagnetic poles. The key point is that the 
geomagnetic poles for the best-fitting dipole are distinct from the magnetic poles (Butler, 1992). 

 



40 
 

2.1.3  Secular Variation 

Geomagnetic secular variat ion is the change in direct ion and magnitude 

of the Earth’s magnetic f ield on a 1-100,000 year scale (Butler, 1992). 

These changes have been witnessed over the last 400 years in London 

(lat itude 51.5o N), where inclinat ion has varied between 66-75o and 

declinat ion has varied from -25o to +10o (Butler, 2004; Jacobs, 1989). 

These f indings dif fer signif icant ly from data acquired at Holbart, 

Tasmania (lat itude 42.9o S), which showed less variat ion with 

declinat ion varying from 0o to 14o (Fig. 2.5; Jacobs, 1989). Secular 

variation is probably the result of local disturbances in f luid f low near 

the core-mantle boundary (McElhinny & Merril l,  1975).  

 

 

 

 

 

 

 

 

 
Figure 2.5. Variations in declination of London (51.5o N) and Hobart, Tasmania (42.9o S). (Jacobs, 

1989). 
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2.2 Continental Motion and Apparent Polar Wandering 

During deposit ion magnetic grains wil l orientate themselves to the 

geomagnetic f ield at that t ime (Coll inson, 1965). This palaeomagnetic 

direction is recorded for each site and can be plotted onto a 

stereograph as a virtual geomagnetic pole (VGP), assuming a dipole 

f ield (Jacobs, 1989).  

When the plates move, the previously recorded palaeomagnetic 

directions wil l be carried along with the moving plate. Consequently, 

when plott ing palaeomagnetic data with a f ixed continent,  this change 

in continental posit ion appears as if  the poles are ‘wandering’ (Fig. 2.6; 

Jacobs, 1989). Plates which travel in dif ferent direct ions will therefore 

have dissimilar polar wander paths (Torsvik et al., 2012). These paths 

can be compared to establish where plates have been and how they 

have moved relat ive to each other.  

 

 

 

 

 

 

 

 

Figure 2.6. The Indian continent movements over the last 60 Ma. a) Is using the declinations and 
inclinations recorded by rocks during India’s movement. Using a fixed pole location during this period 
allows the movement to be shown. b) In this diagram the continent remains fixed throughout the 
period and the apparent polar axis is allowed to wander, creating an apparent polar wander path. 
This is significant as apparent polar wander paths can be compared with other continent apparent 
paths (Torsvik et al., 2012). 
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2.3 Polarity Reversals  

Magnetostratigraphy uses magnetic f ield reversals to correlate rocks on 

a global scale (Langereis et al.,  2010). The direct ion of magnetism in 

sediment and igneous strata can be measured to determine intervals 

when the rocks were deposited in the Earth’s present f ield 

configuration (normal polarity) or in a f ield 180o  f rom the present f ield 

(reverse polarity) (Fig. 2. 7; Langereis et al., 2010; Opdyke & Channell, 

1996). Reversals of the Earth’s magnetic f ield are aperiodic, with 

reversals occurring on average every 0.5 Ma years during the 

Palaeocene, and becoming more frequent in the Miocene occurring 

every c. 0.15 Ma (Barton, 1989).  

These aperiodic changes in polarity (magnetochrons) have been 

labelled to help provide a systematic convention for identifying 

individual polarity events as chrons (Opdyke & Channell , 1996). To 

establish the absolute age of each magnetochron, biostratigraphy or 

radiometric dat ing can be used. Pre-Cambrian reversals can be more 

dif f icult to constrain in age as there is no biostratigraphic evidence of 

age (Pavlov & Gallet, 2005). Other stratigraphic methods such as 

stable-isotopes of δ1 3C  and  δ1 8O are used to provide more accurate 

dates and to correlate geomagnetic polarity reversals (Pavlov & Gallet, 

2005; Ripperdan et al. 1993). In a few cases polarity magnetochrons 

can last ~10 mil l ion years. These intervals are called superchrons, an 

example of this is the interval between the mid Carboniferous and the 

mid Permian. The Earth’s magnetic f ield kept a constant reverse 

polarity over a ~50 Ma interval, known as the Kiaman Superchron. 



43 
 

Owing to the long t ime scale between reversals, there is l imited scope 

for strat igraphic correlation and dat ing in superchrons (Pavlov & Gallet, 

2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. A) The creation of magnetic anomalies during sea floor spreading and the changes in 
polarity as crust is created. As new crust is created magnetic minerals acquire geomagnetic 
directions as align to the ambient field. Black represent magnetic minerals that have a positive 
inclination (normal polarity), white represent negative inclination (reverse polarity). Owing to the 
symmetrical nature of sea floor spreading this creates a symmetrical barcode pattern with each 
interval representing long periods of the same polarity. B) The barcode pattern can be used to 
correlate different successions using magnetostratigraphy (Langereis et al., 2010). 

B 
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2.4 Magnetic Minerals 

All matter has a magnetic susceptibi l ity and shares diamagnetic 

propert ies where an applied magnetic f ield wil l alter the orbit of 

electrons to produce a small magnetisation antiparal lel to the applied 

f ield (Butler, 1992; Maher & Thompson, 2010). Paramagnetic and 

ferrimagnetic sol ids behave dif ferently to an applied magnetic f ield. 

They contain atoms with atomic magnetic moments on account of their 

unpaired electrons which produces a magnetisation which aligns 

paral lel to the applied f ield.  

Paramagnetic minerals have no interaction between adjacent atoms, an 

example is shown by Fe atoms of paramagnetic minerals such as 

fayali te (Butler, 1992). These Fe atoms wil l have strong magnetic 

moments when a f ield is applied but when the f ield is removed, atoms 

will react independently from one another and net magnetisat ion wil l be 

reduced to zero again (Butler, 1992).  

Ferromagnetic minerals have an unf il led 3d electron orbital that causes 

the atoms to strongly interact with each other. This characterist ic 

allows a magnetisation several magnitudes greater than paramagnetic 

minerals. They are able to maintain this magnetisat ion after a magnetic 

f ield is removed, making such minerals remanence-carriers (Butler, 

1992). The Fe-Ti oxides, Ti-magnetite, Ti-haematite and sulphides are 

the main carriers of remanence propert ies within rocks (Jacobs, 1989). 
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The properties that dominate magnetic mineral behaviour are their 

grain size and coercivity. Magnetic grains build up a surface magnetic 

charge, so in order to reduce this charge the grain subdivides into 

magnetic domains, this will occur once grains reach a certain size. The 

size of the grain will def ine how many domains a ferromagnetic 

magnetic grain has. Single-domain (SD) grains are when the grain size 

is so small that the energy required to make a domain wall is larger 

than the decrease in magnetostat ic energy (Butler, 1992).  Dif ferences 

in number of domains have dramatic changes on their properties 

(Maher & Thompson, 2010). Néel (1955) studied relaxat ion t imes of 

(SD) grains and was able to characterise relaxation t ime (τ) as: 

 

2.3)  ߬ =
ଵ

஼
 ݌ݔ݁

௩ ு௖ ெ௦

ଶ௞்
  

 

Néel’s (1955) studies found that relaxation t ime was control led by a 

ratio of blocking energy (vHcMs) to thermal energy (kT). Magnetic 

grains have a blocking temperature which is threshold of energy 

required to move the magnetic moments. For example magnetite 

ultraf ine crystals (<0.03 μm) are dominated by thermal energy rather 

than magnetic energy, therefore carry no remanence at room 

temperatures (Maher & Thompson, 2010). These are cal led 

superparamagnetic (SP) as they behave similarly to paramagnetic 

minerals but with greater magnetisation (Maher & Thompson, 2010).  

Equation 2.3. Where C is the frequency factor, v is volume of 
SD grain, Hc is the microscopic coercive force of SD grain, 
Ms is the saturation magnetization of the ferromagnetic 
material and kT is thermal energy (Néel, 1955). 
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Magnetite SD grains are typically 0.1 μm in size and very eff icient 

carriers of remanent magnetism; as they have higher intensity 

remanences and have greater resistance to resetting by later events 

(Butler, 1992; Maher & Thompson, 2010). As the size of the magnetic 

grain increases magnetic stabil ity decreases, but grains are st i l l  able to 

maintain a stable remanence and referred to as pseudo-single domain 

grains (Maher & Thompson, 2010). Multi-Domain (MD) grains are larger 

grains and are subdivided into several domains owing to energetically 

favourable circumstances (Butler, 1992). MD grains carry lower 

intensity and stabil i ty remanences compared to SD grains.  

Coercivity is a measure of the f ield necessary to reset a grain’s 

direction of remanent magnetism (without rotating the grain), and is 

controlled by grain size in Ti-magnetites. Coercivity can be established 

by a hysteresis loop by determining a magnetising f ield versus 

magnetisation (Butler, 1992). Where the coercivity (Hc), the remanence 

coercivity (Hcr), magnetic saturat ion (Ms) and magnetic saturation 

remanence (Mrs) are obtained is shown in Fig. 2.8 (Maher & 

Thompson, 2010; Leonhardt, 2005). The magnetic rat io Mr/Ms and 

remanence Hcr/Hc ratio can be used in a domain state plot, 

establishing the domain state (grain size) of the ferromagnetic 

magnetic minerals (Fig. 2.9; Dunlop, 2002). 
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Figure 2.8. An example of hysteresis plot. Shows ferromagnetic and paramagnetic components of a 
sandstone sample. Hc is the coercivity, the remanence coercivity (Hcr), Ms is the magnetic saturation 
and Mrs is the magnetic saturation remanence. The green and purple dotted lines are the 
ferrimagnetic and paramagnetic contribution, respectively (Maher & Thompson, 2010; Leonhardt, 
2005). 
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All magnetic remanences decay over t ime, this is called magnetic 

relaxation. The magnetic relaxat ion is largely controlled by thermal 

energy (Butler, 1992). More thermal energy leads to greater osci l lat ion 

of the magnetic grains and can, in turn, overcome the blocking 

temperature in shorter periods of t ime (Butler, 1992). When examining 

ancient magnetic f ields recorded in rocks, magnetic minerals with the 

longer relaxation t imes (therefore greater blocking energy), such as SD 

grains, are more useful as these wil l retain their remanences longer.  

 

 

 

SD 

PSD and SD + MD  

MD 

Hcr/Hc  

Mrs/Ms  

Figure 2.9. A generalised Day plot that uses the ratio of the remanence coercivity (Hcr) and the 
coercivity (Hc) against the ratio of magnetic saturation remanence (Mrs) and magnetic saturation 
(Ms). The positions of single-domain (SD), pseudo-domain (PSD) and multi-domain (MD) are 
shown (not to scale) (Day, 1977).  
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Types of remanences  

 

Magnetic 
Minerals  

Composition Origin Curie 
Temperature 

Magnetic 
characteristics 

Magnetite/ 
Titanomagnetite 

(Fe3O4)/ 
(xFe2TiO4.[1-
x]Fe3O4) 

Common in 
igneous, 
metamorphic 
rocks and a 
detrital 
component in 
sedimentary rocks 

580ºC/ 
-150ºC to 580ºC 

Ferrimagnetic, High 
saturation 
magnetism. 
Coercivity varies on 
size of grains but 
generally low. 

Haematite/ 
Titanohaematite 

(α-Fe2O3)/ 
(xFeTiO3.[1-
x]Fe2O3) 

Common mainly 
in igneous and  
metamorphic 
rocks but also 
detrital and 
diagenetic 
component in 
sedimentary rocks 

675ºC/-218ºC to 
675ºC 

Variable 
characteristics 
depending on 
composition but 
mainly 
antiferromagnetic. 
Lower saturation 
than magnetite but 
has a moderate to 
high coercivity 

Maghematite (ϫ-Fe2O3) Low temperature 
Oxidation product 
of magnetite in 
sedimentary, 
igneous and 
metamorphic 
rocks 

~640ºC/ but 
hard to establish 
as it will invert to 
magnetite or 
haematite above 
250ºC 

Similar to magnetite 
but lower saturation 
magnetisation and 
comparable 
remanence 
coercivity to 
magnetite 

Goethite 
 
Magnetisation 

(α-FeOOH) Low temperature 
oxidation of iron 
sulphides & Fe- 
silicates 

~120ºC 
(Converts to 
haematite 
c.350ºC) 

Antiferromagnetic/ 
weak saturation 
magnetism and 
very high coercivity 

Pyrrhotite 
 
Magnetisation 
c.0.10<x<0.14 

(FeS1+x) 
Where x =0-
0.14 

In basic igneous, 
sedimentary 
(reducing 
environment) and 
metamorphic 
rocks  

~325ºC  Monoclinic and 
ferrimagnetic.  
Saturation 10 times 
haematite and ½ of 
magnetite 
Coercivity is similar 
to magnetite. 
Sensitive to 
oxidation and heat. 

Greigite (Fe3S4) Diagenesis of 
lake sediments 
and some rapidly 
deposited clastic 
marine sediments 

~320ºC Ferrimagnetic, 
stable 
magnetisation. 
Coercivity is similar 
to magnetite. 
Very sensitive to 
oxidation and heat. 

 

 

 

Table 2.1. The major remanence carrying minerals (Collinson, 1983; Opdyke & Channell, 1996). 
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Natural Remanent Magnetisation (NRM) is the remanent magnetism in 

the rock sample before it has been altered by laboratory treatment 

(Jacobs, 1989). The NRM is determined by exposure to the 

geomagnetic f ield and the geological processes that have occurred 

during its formation and subsequent history. There are often at least 

two or more components of NRM in a sample. The primary component 

known as Characteristic Remanent Magnetism (ChRM), and secondary 

NRM which may result from various changes such as long-term 

exposures to the geomagnetic f ield since formation (Butler, 1992). The 

three basic forms of primary NRM are Thermo- Remanent 

Magnetisation (TRM), Chemical Remanent Magnetisation (CRM) and 

Detrital Remanent Magnetisation (DRM) (Butler,  1992). 

TRM is the remanent magnetism, usually gained during igneous rock 

formation by the grain during cooling through its blocking, or Curie 

temperature (Opdyke & Channell, 1996). Blocking temperatures are 

determined by the size and composit ion of the grains (Opdyke & 

Channell , 1996). 

CRMs are produced below the blocking temperature during chemical 

growth. Magnetic minerals can grow authigenically during diagenesis, 

or by processes of weathering. These addit ional magnetic minerals may 

have formed and al igned in the ambient magnetic f ield and so can add 

to the NRM (Opdyke & Channell, 1996). 
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DRM is found in sediments and is the remanence of detrital or biogenic 

magnetic mineral grains as they were deposited in an ambient f ield 

during deposit ion (Opdyke & Channell , 1996). DRM is complex and can 

be modif ied by many processes such as bioturbation and compaction 

(Butler, 1992). Magnetites, haematites and maghaematites are the 

common carriers of DRM. DRM has a lock-in depth of 10-20 cm below 

the sediment/water interface, however this is strongly dependent on the 

rate of sedimentation, grain size and bioturbat ion depth (Opdyke & 

Channell , 1996).  

Secondary magnetisations in natural samples often derive from Viscous 

Remanent Magnetisation (VRM) (Opdyke & Channell,  1996). This is 

acquired in grains with small relaxat ion t imes, as the magnetic grains 

will become remagnetised in the ambient f ield (Opdyke & Channell, 

1996). The magnetic viscosity can also be increased by higher 

temperatures, such as those found during burial. This is the reason why 

VRM in sediments is common in modern NRMs and is referred to as 

Thermo-Viscous Remanent Viscosity (tVRM) (Opdyke & Channell , 

1996). 
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There are two more remanences of note that are produced artif ic ial ly.   

These are Isothermal Remanent Magnetisat ion (IRM) and Anhysteretic 

Remanent Magnetisation (ARM). IRM is produced by exposing the 

sample to a strong magnetic f ield and occurs naturally in circumstances 

such as lightning strikes. IRM is mostly generated in a laboratory using 

pulse magnetisers or electromagnet (Opdyke & Channell , 1996). This is 

a high-f ield magnetisat ion process that is used to measure magnetic 

mineralogy and grain size. The IRM will increase in strength as the 

magnetising f ield increases unti l i t  reaches saturation IRM (SIRM) 

(Opdyke & Channell, 1996).  

ARM is produced when placing a specimen in an alternating high f ield 

that ramps down to zero in the present of a small direct current f ield 

(Opdyke & Channell, 1996). ARM shares similar characteristics with 

TRM in that it results from a small bias f ield (the dc f ield in an ARM 

experiment or the Earth's magnetic f ield in a natural TRM) in the 

presence of a randomising factor (the AF f ield in the ARM experiments; 

the thermal agitation in the natural TRM) (Opdyke & Channell, 1996). 
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3. Anisotropy of Magnetic Susceptibility 

Anisotropy of Magnetic Susceptibil ity (AMS) measures the distribut ion 

of susceptibi l ity within a sample, and has been used since the 1940’s in 

studies such as Borradaile & Henry (1997); Cifell i et al. (2009); 

Hailwood & Dowling (1987); Rees et al. (1982) Rochette et al. (1992) 

and Schieber & Ellwood (1993). AMS determines the susceptibi l ity 

distribut ion which can be used as a non-destruct ive method to 

determine paleof low (and grain orientation) within un-deformed 

sediments and as a useful strain indicator in deformed sediments. AMS 

measures the directional variations of magnetic susceptibil ity and is 

expressed as a symmetric second rank tensor. This, in turn, can be 

expressed as a magnitude el l ipsoid that will  represent the magnetic 

grain preferred orientation in the sample and the strength of the 

preferred al ignment (Park et al., 2013). The AMS tensor is represented 

by the maximum (Kmax, K1), intermediate (Kint, K2) and minimum 

(Kmin, K3) principal susceptibil ity values and these can be expressed 

graphically as a tr iaxial el l ipsoid (Fig. 3.1; Baas et al., 2007).  

 

 

 

 

 

Figure 3.1. The relationship between anisotropy of grains and their magnetic susceptibility 
anisotropy, showing the Kmax, Kint and Kmin susceptibilities of, A) a single elongate grain and B) 
an assemblage of elongated grains (Baas et al., 2007).  
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3.1 AMS Parameters 

AMS is dependent on intr insic magnetic susceptibi l ity and degree of 

preferred orientat ion of the individual magnetic minerals (Chadima et 

al., 2006). Therefore dif ferences in AMS ref lect changes in the rock 

fabric and magnetic mineralogical dif ferences. Anisotropy parameters 

are used to characterise AMS results; structural geologists use 

magnetic l ineation (L), magnetic foliat ion (F) and degree of anisotropy 

(P) which are def ined as (Borradaile, 1994): 

3.1) L = K1/K2  3.2) F = K2/K3  3.3) P = K1/K3 

Equation 3.1, 3.2, 3.3 (Jelinek, 1981) 

These are used to determine the AMS ell ipsoid shape, however Jel inek 

(1981) and Hrouda (1982) recommended using the corrected degree of 

anisotropy (Pj) and shape parameter (T) to best def ine the anisotropy 

ell ipsoid.   

3.4)  ݆ܲ = ଶ(݊−ଵ݊)]2}√݌ݔ݁ + (݊ଶ−݊)ଶ +  (݊ଷ−݊)ଶሿ}   

Where n1, n2 and n3 are the natural logarithms of K1, K2, and K3, 

respect ively and n = (n1 + n2 + n3)/3 (Jelinek, 1981).  

3.5)  ܶ =  
୪୬ ிି௟௡௅

௟௡ிା௟௡௅
  

When T <0 the sample has a prolate shaped AMS ell ipsoid and when 

T>0 the sample has an oblate shaped AMS ell ipsoid (Jelinek, 1981).  
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The different shape fabrics can be categorised as normal, inverse, 

intermediate or anomalous fabrics (Chadima et al., 2006; Hrouda et al., 

2002). Normal fabrics wil l have a magnetic fabric whose K1 (Kmax) 

direction is paral lel to structural l ineat ion such as f low or current 

directions and the K3 (Kmin) direct ion is normal to a structural foliation 

such as a bedding plane or plane of compaction (Borradaile & Henry, 

1996; Chadima et al., 2006).  

Inverse fabrics are caused when the maximum and minimum axes are 

inverted (Chadina et al., 2006). Therefore the magnetic l ineation is 

perpendicular to bedding and the fabric is dist inct ly prolate (Hrouda et 

al., 2002). These inverse magnetic fabrics can be caused by i) post-

deposit ion deformation; i i ) when the fabric is carried by single domain 

(SD) magnetite and ii i)  when the fabric is carried by iron-bearing 

carbonates including siderite (Rochette 1988, 1992).  

3.2 AMS Contributors 

The magnitude of the fabric is dependent on two factors: the anisotropy 

of the particles and their degree of alignment (Tarling & Hrouda, 1993). 

The individual particle anisotropy can relate to either crystal l ine 

anisotropy or shape anisotropy (Hrouda, 1992). Shape anisotropy is 

primarily generated by ferrimagnetic particles with high susceptibil ity 

(Borradaile & Werner, 1994; Tarl ing & Hrouda, 1993). Crystal l ine 

anisotropy is intr insic to the latt ice structure and dominant in 

antiferromagnetic, paramagnetic and diamagnetic minerals (Tarl ing & 

Hrouda, 1993).   
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Shape anisotropy is dominant in magnetite which has a weak 

crystal l ine anisotropy, whereas in haematite, other ant iferromagnetic 

iron oxides and paramagnetic minerals crystal l ine anisotropy dominates 

(Baas et al., 2007; Tarling & Hrouda, 1993). With shape anisotropy the 

sizes of the magnetic grains wil l have an effect on the anisotropy 

ell ipsoid shape; single-domain and multi-domain contribut ions have 

strong inf luences on the AMS and can show radical ly dif ferent 

anisotropies (Baas et al., 2007; Tarling & Hrouda, 1993). Therefore it is 

important to establish the mineralogy of samples when analysing AMS, 

as part icle size has lit t le impact on preferred crystall ine anisotropy 

(Baas et al., 2007). 

At higher induced f ields, paramagnetic as well as ferrimagnetic mineral 

anisotropies can be measured (Tarling & Hrouda, 1993). Hounslow 

(1985) looked at the magnetic fabric of paramagnetic phyllosi l icate 

minerals in mudstones. With samples lacking in ferrimagnetic minerals, 

he hypothesised that the K1 axis of the phyllosi l icates was control led 

by the al ignment of the quartz grains and showed an oblate shape, 

paral lel to the bedding. This was caused by the clay particles being 

‘draped’ around the quartz grains by compaction (Hounslow, 1985). 

There was more variat ion in AMS shape in coarser sediments which 

showed decreases in the magnitude of susceptibi l ity and T. These 

variations were explained as belonging to less organic-rich and coarser 

sediments that had correspondingly less well  developed clay 

orientat ion.  
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3.3 Applicat ions of AMS 

Kissel et al. (1998) found depth-variat ions in AMS in their core through 

sediments in the North Atlantic abyssal plain. During warm periods 

there was a greater Pj and susceptibil i ty was very oblate in shape, 

whereas colder periods were marked by lower Pj and T values. Kissel 

et al. (1998) hypothesised that it was changes in sedimentation rate 

rather than chemical or biological changes that caused these 

signif icant variat ions during dif ferent climate condit ions.  

AMS of older sediments can be more dif f icult to interpret as magnetic 

fabrics are susceptible to alteration by deformation. Deformation events 

such as compaction and tectonic shortening often increase the degree 

of anisotropy and change the init ial AMS fabric (Hirt et al., 1995), 

whereas other post-deposit ional events such as bioturbat ion and 

liquefaction can destroy fabrics. Schieber & Ellwood (1993) looked at 

the K1 directions of the Mid-Proterozoic Newland Formation in 

Montana, United States. They found divergence in the AMS between 

dif ferent l ithologies and concluded that this was because of the 

dif ferent inf luences on deposit ion. The shales ref lected basin-wide 

paleof low direct ions whereas the sandstones showed two main K1 

directions. The coarsest sandstones were deposited by large storms 

that produced rip-up clasts and f lute marks and the K1 direction was 

orientated seaward. The f iner-grained sandstones were located further 

offshore and represented deposit ion by smaller storms and the K1 

directions showed two main direct ions caused by the changing direct ion 

associated with wave-orbital motion (Schieber & Ellwood 1993).  
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Tectonic deformation and metamorphism can produce AMS fabrics 

within meta-sediments; they can show strong strain gradients on small 

spatial scales caused by ducti le shear zones or refracted-cleavage 

change (Borradaile & Henry, 1997). In meta-sediments AMS wil l 

emphasise dif ferent micro-fabrics produced by the associated 

deformation and may respond to the growth of addit ional minerals. An 

example of a deformation fabric can be found in the Canadian Shield in 

North America, where the AMS of iron rich formations and slates were 

studied by Borradaile & Henry (1997). Both lithologies had experienced 

similar levels of deformation but the AMS of the micas in slate was 

dif ferent from the iron rich formations dominated by magnetite. The 

AMS of micas not iceably ref lects a deformation fabric highlighted by 

the AMS having the same orientat ion of schistosity in the slates 

(Borradaile & Henry, 1997).  

3.4 Alternat ive Methods of AMS 

A dif ferent technique to enhance AMS measurements is to coat the 

grains in a thin f i lm of ultra-f ine magnetite part icles. This is done by 

saturat ing the sample with a pressurised ferrof luid which will dry in the 

pores and on the surface of accessible grains to leave a thin f i lm (Baas 

et al., 2007). Enhanced AMS can be used on samples that are 

magnetical ly dominated by diamagnetic minerals such as a quartz 

dominated sandstone (Baas et al., 2007). 
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Criterion Petrographic 
method 

Natural AMS method Enhanced AMS method 

Measurement 
principle 

Particulate method Bulk grain method Bulk grain method 

Ease of 
application 

Laborious and time 
consuming 

Quickest method Quick method 

Grain types Sand to silt sized 
grains only 

Yields fabrics of magnetite, 
(often finer-grained than 
framework grains) and/or 
paramagnetic minerals 

Yields fabric of all grains 

Sensitivity to 
user bias 

Method is sensitive to 
user bias 

Method is largely 
independent of user input 

Method is largely independent 
of user input 

Type of fabric Used predominantly 
for measuring grain 
fabric but may also be 
used for measuring 
pore orientation  

Used for measuring grain 
fabric 

Used for measuring grain fabric 

Fabric 
dimensionality  

Yields apparent grain 
long axes in two-
dimensional sections 

Yields three-dimensional 
fabric  

Yields three-dimensional fabric 

Number of 
grains 

Measures 
orientations 10-100’s 
of grains 

Measures orientations of 
1000’s of magnetite particles  

Ideally measures the orientation 
of all grains 

Heterogeneity Susceptible to mm- 
and micro-scale 
heterogeneity caused 
by grain clusters 

Susceptible to mm- and cm- 
scale heterogeneity, often 
discernible in the sample 
with the naked eye 

Susceptible to mm- and cm- 
scale heterogeneity, often 
discernible in the sample with 
the naked eye 

Statistics Statistical analysis 
based on grain 
population 

Limited statistical analysis 
based on bulk properties 

Limited statistical analysis 
based on bulk properties 

Sensitivity to the 
earth’s magnetic 
field 

Not applicable Very small possibility of the 
SD magnetite being 
orientated by earth’s 
magnetic field at time of 
deposition 

Magnetic properties of ultrafine 
magnetite particles camouflage 
those of natural particles 

Magnetite 
particle size 

Not applicable Samples must contain MD 
magnetite or paramagnetic 
particles 

Injection with ultrafine magnetic 
particles guarantees magnetic 
signal 

Significance of 
other magnetic 
particles 

Not applicable Possible additional fabrics 
from paramagnetic particles 

Magnetic properties of ultrafine 
magnetite particles camouflage 
those of natural particles 

Interaction of 
magnetite 
particles 

Not applicable Possible interaction between 
magnetite particles, 
producing magnetic 
lineations 

Concentrations of magnetite are 
low enough to prevent particle 
interaction; surfactant-coated 
particles to prevent 
agglomeration  

Table 3.1. Comparison of the petrographic, natural AMS and ‘Enhanced AMS’ techniques (Baas et 
al 2007). 
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4. Methodology 

The methodology section is divided into four parts: 1) sample col lect ion 

and preparat ion, 2) palaeomagnetic data, 3) anisotropy of magnetic 

susceptibi l ity (AMS) and 4) magnetic mineralogy and analysis. 

4.1 Field Sample Collection and Preparat ion 

Hand samples were orientated in the f ield by f inding f lat surfaces of 

areas ~20cm2 or greater. The spirit  level of the orientation staff  was 

used to establish the str ike direction (f iducial, x-azimuth) and the 

orientat ion was determined using a compass. The dip (maximum angle 

normal to str ike) was recorded using a cl inometer in the orientat ion 

staff . The strike and footprint of the orientation staff  were marked on 

the surface using a pencil . The str ike and dip of the bedding was also 

measured so that data could be corrected to palaeohorizontal 

(Coll inson, 1983). Each sample’s posit ion in the sect ion was then 

drawn on a sedimentary log.  

Most of the Ainsa samples used in this study were col lected during 

f ieldwork for this project. The Silurian samples had been collected 

previously by Mark Hounslow and Sam Harris. For the sandstone 

samples, the corner or the top/base of a bed was removed using 

hammer and chisel.  Shale samples were removed by digging around 

the shale monolith and then removing the block with care to avoid 

breaking it. Samples were then wrapped to avoid breakage during 

transit.  The Marcellus Shale samples were acquired by plugging from 

borehole cores and therefore were not azimuthally orientated. 
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Figure 4.1. A) Example of a cylindrical specimen, with the fiducial mark representing the 
orientation plane measured in the field. B) Shows the orientating staff being used to mark the 
fiducial on a flat surface of a sample when in situ. 
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Once the hand samples had been collected, they were prepared by 

mounting the samples in dental plaster (chosen for its purity; Thellier, 

1967) so that the f lat surface marked with the orientation staff-footprint 

was horizontal. Each sample was then cut (sometimes dry-cut if  the 

samples were fragi le) into ‘rods’ using a diamond-edged saw, each 

str ip was cut to a width 22 mm and parallel to the f iducial str ike. These 

str ips were then cut again into 22 mm cubic specimens with up to f ive 

specimens for each sample. Each specimen was marked by f iducial 

arrows showing the samples’ X-axis (the str ike or XAZ) and labelled 

appropriately using a waterproof marker (Coll inson, 1983). An example 

of this labell ing is AQ17.4 where (AQ = Anisa Quarry, 17=sample 

number and .4=specimen number 4).   

Occasionally during the preparat ion some of the f issile-shale samples 

had to be glued using a PVA adhesive and in rare cases a thick 

solution of sodium sil icate was used to strengthen the sample, prior to 

cutt ing. The borehole specimens provided to the project were pre-cut to 

dif ferent specif ications; therefore these were ground using a f lat lap 

machine and sandpaper to the 22 mm dimensions needed for laboratory 

use. 
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4.2 Palaeomagnetic Laboratory Methods 

One or two specimens from each sample were chosen to be measured 

for their natural remanent magnetism (NRM) and were subjected to 

demagnetisat ion experiments. Demagnetisat ion was used to 

progressively subtract magnetisat ions with the lowest relaxat ion t imes 

from a specimen (Jacobs, 1989). When this is applied in a stepwise 

fashion, demagnetisation can be used to extract 1) later, less stable 

overprints such as the Thermo-viscous remanent magnetism (TVRM) 

(Coll inson, 1983), which is useful for orientat ing samples and 2) the 

characteristic remanent magnetism (ChRM) that the specimen acquired 

during deposit ion (Jacobs, 1989). 

4.2.1 Thermal Demagnetisation 

Specimens were progressively heated in several steps using the 

Magnetic Measurements Thermal Demagnetiser (MMTD1) at Lancaster 

University,  where specimens and the oven are surrounded by a mu-

metal shell (Magnetic Measurements, 2016). The MMTD1 is further 

protected from the Earth’s geomagnetic f ield by a set of Helmholtz 

coils, al l of which null ify the Earth’s geomagnetic f ield to residual f ield 

of <10nT.  
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The MMTD1 heated as many as 13 specimens in one batch and each 

specimen was held at each heating stage for 20 minutes to allow the 

specimens to equil ibrate at set peak temperatures (Collinson, 1983). 

Specimens were rapidly air-cooled in the near zero magnetic f ield to 

remove the remanence at the set blocking temperature (Collinson, 

1983).  

The maximum temperature step used was dependent on the specimen’s 

l ithology, as some specimens were more susceptible to heat-alteration. 

This alteration is typical ly associated with oxidat ion of other Fe-bearing 

minerals, such as clays and pyrite (Jacobs, 1989). The alteration was 

monitored by measuring the magnetic susceptibi l ity between each 

heating stage, any signif icant increase was noted and demagnetisation 

steps that showed that showed signif icant heat-alterat ion were not 

used. Large increases in magnetic susceptibil ity in the Marcellus 

samples meant that heating above 200oC was not possible, whereas 

the Ainsa samples were able to be demagnetised to temperatures of 

350oC without signif icant heat-alterat ion. 

4.2.2 Alternating Field (AF) Demagnetisation 

Following the thermal demagnetisation stages, the specimens were 

further demagnetised using AF. AF demagnetisation places a specimen 

in a two axis tumbler and subjects it to an alternat ing magnetic f ield 

within a mu-metal shield (to cancel the Earth’s geomagnetic f ield. While 

the sample is tumbling, the alternat ing f ield ramps up to a peak 

intensity and then smoothly reduces to zero (Coll inson, 1983).  
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This process removes the remanent magnetisation of the ferrimagnetic 

grains with a coercive force less than the alternat ing f ield (Jacobs, 

1989). As the f ield is reduced, the specimen is cycled through 

demagnetisat ion increments of decreasing amplitude. This leads to the 

grains remanence being progressively re-set in random orientat ions 

and therefore does not contribute to the NRM (Jacobs, 1989). 

Repeating this process with progressively higher magnetic f ields 

successfully removes magnetisat ion of the grains with coercivity up to 

the peak f ield (Jacobs, 1989). The demagnetising f ield started at 10 mT 

then increased by 10 mT per step up to 90 mT or until a point when the 

directional data becomes too scattered (Jacobs, 1989). 

4.2.3 Measuring Palaeomagnetic Data 

At each stage of demagnetisation the remanent magnetisation was 

measured using the Cryogenic Consultants Ltd GM400, a highly 

sensit ive, tr iple axis magnetometer. The GM400 uses three 

superconducting quantum interference devices (SQUID); these are 

attached to pick up coi ls within the GM400 which work as sensit ive 

magnetic f ield sensors. The GM400 SQUIDS operate at temperature of 

l iquid helium (-269oC) which al lows the SQUID to measure magnetic 

intensity of a specimen along their X, Y and Z axes (Fig. 4.2). The 

GM400 sensit ivi ty is around 1x10 -11  Am2 and outputs the declinat ion, 

incl inat ion and a gamma distribut ion within 95% confidence limits (95) 

for each specimen (Table 4.1).  
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Figure 4.2. A schematic of the GM400 showing the main components (Collinson, 1983). 

 

 

 

AQP2.4  

Step          Intensity     Dec       Inc      95  

(oC)   (mA/m) 

 20   0.264     315.8     18.9      1.3 

100   0.105    281.5      6.2       1.6 

150           0.103   266.5    -19.3    1.7 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Format of the data measured using the GM400 (in bedding corrected coordinates). 
Four main values are measured with each step, they are (from left to right) the magnetic intensity 
which is the magnetic moment divided by the volume of the specimen, the declination (the angle 
between the horizontal component of the specimen and geographic north), the inclination (down-

ward dipping angle between palaeohorizontal and the magnetisation) and 95, an angular 
measure of the magnetisation variance (Briden & Arthur, 1981).  
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4.2.4 Presenting Palaeomagnetic Data 

The palaeomagnetic data is transformed using the DEMAG program 

and then plotted into A) Zijderveld diagrams; B) stereographic 

projections; and C) M/Mo plot (Fig. 4.3).   

 

 

 

 

 

 

 

 

 

 

The Zijderveld diagram displays both intensity and direct ional changes 

on to a single plot by plott ing them on to orthogonal planes, where the 

open circles are the vert ical project ion (on a north-south, Up-Down 

axes in Fig. 4.3). The f i l led circles are the horizontal projection (on 

east-west-north-south axes in Fig. 4.3). Each axis is on an equal 

intensity scale which is shown at the top right, with the treatment range 

being indicated beneath this (Coll inson, 1983).  

A 
B 

C 

Figure 4.3. A) Zijderveld diagram (Zijderveld, 1967), B) stereograph and C) M/Mo plot. This specimen 
has been bedding corrected. It has been classed as T2 and the ChRM shows reverse polarity. The 
green and orange arrows represents the thermal and AF steps respectively. 

AF 
steps 

Thermal steps 

M/Mo M/Mo 
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As specimens undergo demagnetisat ion, each step is plotted on the 

graph according to Dec, Inc and intensity (Coll inson, 1983). The 

distance of each data point from the origin is proportional to the 

intensity of the remanent magnetism vector plotted onto the plane 

(Butler, 1992). This means that the init ial NRM vector (marked as the 

crossed circle) wil l general ly plot furthest away from the last 

demagnetisat ion point which in turn wil l plot near the origin. Straight 

l ine segments that pass through the origin are normally considered to 

be the ChRM direct ion.  

The stereographic projection is the 3-dimensional project ion of the 

declinat ion and incl ination onto an equal area stereograph. Data with 

posit ive and negative inclinat ion is represented as black and white 

circles, respect ively. In the northern hemisphere (in Europe since 

Carboniferous), normal polarity is usually presented by northerly, 

posit ive incl ination and reverse polarity is usually presented by 

southerly, negative inclinat ion.  

M/Mo plots show the normalised decay in remanence intensity 

throughout the demagnetisation process, were M represents the 

remanence intensity at that current stage and Mo is the init ial 

remanence intensity. Fig. 4.3 shows the decay over the thermal and AF 

demagnetisat ions steps.   
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4.2.5 Palaeomagnetic Data Analysis  

Each specimen’s demagnetised data was analysed, using the 

LINEFIND program (Kent et al., 1983) in order to extract the magnetic 

components for each specimen. When examining demagnetisat ion data, 

the specimens have been subdivided into dif ferent types to ref lect their 

behaviour:  

1) S-type specimens show demagnetisation points that move along 

straight l ines (on Zi jderveld plots) corresponding with the components 

of the primary NRM vector (the ChRM). These are often well def ined 

making them easier to visually interpret (Coll inson, 1983). 2) T-type 

specimens represent results that did not show a linear component, as 

normal overprints could not be easily removed to isolate the ChRM 

vectors. Instead, each demagnetising step of these specimens occurs 

along a great circle path; the ChRM vector is def ined as the pole to a 

great circle (Coll inson, 1983). 3) X-type specimens where no 

directional components are interpreted owing to too much directional 

scatter or results which show only clear contamination (Table 4.2).  

 

 

 

 

 

 



72 
 

 

 

4.2.6 Statist ics 

Init ially the palaeomagnetic plots were examined to determine S-type 

ChRM direct ions and def ine these using LINEFIND to provide the 

declinat ion (D), inclinat ion (I) and 95 for each specimen. Once the S-

type data was recorded per specimen wherever possible, the S-type 

components were then averaged using PMAGTOOL (Hounslow, 2006) 

(which uses Fisher statistics) to produce an average ChRM direct ion.  

Group Description 

S1 Zijderveld diagram show well defined linear component directions that trend towards 

the origin.  

S2 Zijderveld diagram shows less defined linear component directions that trend towards 

the origin.  

 

S3 Zijderveld diagram shows a vague trend indicating linear ChRM directions, trend 

towards origin may not be convincing.  

T1 Stereographs show well defined demagnetisation path towards the expected ChRM. 

LINEFIND is used to define great circles (and their respective poles) for the 

demagnetisation paths.  

T2 Similar to T1 but has a less-well defined demagnetisation path.  

T3 Similar to T2 but greater directional scatter.  

X No consistent directional components seen in the Zijderveld diagram or stereograph. 

Table 4.2. Description of the different demagnetisation behaviours shown by each group. 
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Fisher statistics (Fisher, 1953) were used to provide an α95 value. α95 

is a 95% confidence interval about the mean as an angular radius of 

the cone of confidence (Fisher, 1953). As an example, if  the calculated 

mean ChRM direct ion is 093,-23; 95= 11o, then there is a 95% 

probability that the true ChRM direct ion is within an 11o angular radius 

about 093,-23.  

Specimens that did not show S-type behaviour were analysed using 

LINEFIND to determine the great circle planes that express their 

‘unseen’ ChRM component. Only T1 class specimens were used. The T1 

class poles and f ixed point S-type ChRM components were then 

combined using the method of McFadden and McElhinny (1988) using 

PMAGTOOL (Hounslow, 2006) to provide a direct ional average of the 

‘combined’ data set. This was converted to a mean virtual geomagnetic 

pole (VGP) posit ion for the site. 

4.2.7 Polarity  

To establish the polarity of the samples, the S-type and T1-class 

specimens were used to determine the virtual geomagnetic pole (VGP) 

latitude for each specimen. For S-type data the VGP lat itude was 

calculated using PMAGTOOL (Hounslow, 2006) which uti l ised the mean 

VGP pole and site location to calculate the specimen VGP latitude.  
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Similar for the T-type data the D and I  of the point on the great circle 

nearest to the combined mean was used to determine the specimen 

VGP lati tude.  Here a good normal polarity has specimen VGP lati tude 

>60° or reverse polarity <-60°, thus using the VGP latitude to group 

specimen polarity into classes as in Table 4.3. 

 

 

Polarity Group Description 

Normal N ChRM values are with in the north east  quadrant 

h igh VGP la t i tude >60° .  

Normal N? Poorer  qua li t y ChRM va lues which are  st i l l  

wi thin the nor th east quadrant  h igh VGP lat i tude 

~60° .  

Normal N?? Very poor  data, indicat ion f rom the s terograph 

suggests  normal  po lar i ty but low VGP lat i tude 

va lues <60° .  

Reversed R ChRM values are with in the south west  

quadrant low VGP lat i tude <-60° .  

Reversed R? Poorer  qua li t y ChRM va lues which are  st i l l  

wi thin the south west quadrant  low VGP lat i tude 

~-60° .  

Reversed R?? Very poor  data, indicat ion f rom the s tereograph 

suggests  reverse polar it y but low VGP lat i tude 

va lues >-60° .  

Unknown U No c lear ind icat ion of  normal or  reverse 

component . Sample may not  have a preserved 

ChRM component.  

 

Table 4.3. – Description of the different groups which demonstrates different levels of quality 
shown by the polarity interpretation for Ainsa specimens. 
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4.3 Anisotropy of Magnetic Susceptibil ity (AMS) Measuring and 

Analysis 

AMS was measured at room temperature using an AGICO MFK1-FA 

Kappabridge (Fig. 4.4). The specimen was placed in a holder in three 

posit ions in order to measure the AMS in each plane perpendicular to 

axis of the specimen (Hrouda, 1992). The deviatoric susceptibi l ity 

tensor was measured while rotat ing the specimen in the susceptibil ity 

bridge. This combined with bulk susceptibi l ity is then recorded to obtain 

the complete susceptibi l ity tensor (AGICO, 2016; Table 4.4).  

Five specimens per sample were chosen in order to average out 

between-specimen variance and to highlight any anomalous specimen 

data. The AMS directions and parameters obtained were averaged 

using Anisoft42 (Chadima & Jel inek, 2009). The directional data was 

then plotted using PMAGTOOL to produce stereoplots (Fig. 4.5).  

 

 

 

 

 

 

 

 

Figure 4.4. A) The Agico MFK1-FA Kappabridge setup. From left to right, the 
self-contained MFK1-FA Kappabridge with the rotating holder attached; the 
laptop used to operate, adjust the field and record the data and the power 
supply (AGICO, 2016).  B) Is the three positions that the specimen is placed 
in the holder (AGICO, 2016).   
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Table 4.4. Shows the output MFK1-FA Kappabridge. Some key figures are a) Azi is the strike of the 
fiducial mark recorded in the field. b) Dip is the orientation angle normal to the fiducial mark. c) O.P. is 
the orientation parameters. d) Nom. Vol. is showing that the volume has been normalised to 10 cm3. 
E) Act.vol. is the volume of the specimen measured in cm3 .  

The results are listed below which provide: F) the mean susceptibility. G) The normed principal 
susceptibilities. H) Eight anisotropy factors calculated from the normed principal susceptibilities. I) 
The principal directions for the specimen’s azimuth given as declination and inclination for the Kmax, 
Kint and Kmin axes. J) Declinations and inclination that has been corrected accounting for the 
bedding orientation for the Kmax, Kint and Kmin axes. K) Was the date the sample were measured. 

A

B 
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E 
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Figure 4.5. An example of a normal AMS data set. A) Is an equal area stereoplot of 
showing the Kmax (red squares), Kint (blue triangles) and Kmin (green circles) directions 
for each sample. An eigenvector mean has been given for each of the axes. B) Is a plot 
comparing the anisotropy parameters of different samples where P is the degree of 
anisotropy and T is the shape parameter.  
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4.4 Magnetic Mineralogy Measurements and Analysis 

A subgroup of 10 specimens from Ainsa were chosen to identify the 

magnetic mineralogy (Maher et al., 2010). They were selected from 

representative l ithologies and locat ions within the sect ion. Specimens 

were measured for their low frequency mass specif ic magnetic 

susceptibi l ity ( l f), anhysteret ic remanent magnetism (ARM) and 

isothermal remanent magnetism (IRM) acquisit ion at room temperature 

(Robertson & France, 1994). 

 l f  is calculated by dividing a specimen’s low frequency susceptibil ity 

by its mass. The specimen’s magnetic susceptibi l ity was measured 

using a Bartington susceptibi l ity meter (MS2B) and the mass was 

measured using a scientif ic balance to three decimal places 

(Fisherbrand PF-203).  

ARM was acquired by subjecting specimens to a DC f ield of 0.1mT in 

an alternat ing magnetic f ield of 80 mT produced by a Molspin AF 

demagnetiser. Specimen remanence was measured using a Minispin 

magnetometer. IRM was acquired by subject ing the specimens to an 

init ial 1T magnetic f ield to produce the saturat ion isothermal remanent 

magnetism (SIRM).  After the SIRM measurement, the magnetisation 

was decreased by applying progressively stronger f ields in the reverse 

direction, each step was measured on the Minispin immediately after 

the f ield was applied to prevent the viscous loss of remanence. 

Remanence rat ios are used to test the magnetic stabil ity (e.g, ‘S’-rat ios 

(IRM100mT/SIRM)) were used to determine the relat ive contribut ion of 
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hard magnetic minerals such as haematite (Maher et al., 2010). High 

f ield remanent magnetism (HIRM) is the isothermal remanence growth 

caused by these f ields (e.g. HIRM = SIRM - IRM100mT;  Maher et al.  

2010). Data acquired can be compared graphically by using biplots of 

remanent coercivity versus χSIRM. The results of the mineralogical 

study is then compared with known magnetic parameters of magnetite, 

t itanomagnetite, maghaemite, hematite, goethite, pyrrhot ite and 

greigite which had been established by Hunt et al. (1995), Peters 

(1995) and Peters & Thomson (1998) (Peters & Dekkers, 2003). 

4.4.1 Hysteresis and Thermomagnetic analysis 

IRM data can only establish the ferrimagnetic minerology of the 

specimens, thus hysteresis experiments were used to determine 

paramagnetic contribution to the susceptibi l ity. Seven representat ive 

specimens were chosen from all the case studies. Each specimen was 

ground into a f ine powder and placed into a glass holder that was 

inserted into the Magnetic Measurements Variable Field Translation 

Balance (MMVFTB) where a series of hysteresis and thermomagnetic 

treatments were performed on them.  
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The data was then analysed using the RockMag Analyzer program 

(Leonhardt, 2006) which provided the parameters such as values of 

remanent magnetism/saturation magnetisat ion (Mrs/Ms) ratio or the 

remanence coercivity/coercivity (Hcr/Hc) ratio. These rat ios can used 

to graphical ly show if  the magnetite particles are SD or MD (Day et al., 

1977). The program also calculates the paramagnetic/diamagnetic 

gradient which can be converted into a paramagnetic contribut ion to the 

induced magnetisat ion.   
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Figure 5.1. A simplified geological overview of the Ainsa Basin and where it is in relation to 
Spain’s geography (lower panel). Modified from Dakin et al., (2013) to highlight the areas 
of study and show key locations. Palaeoflow directions change from westerly in the 
proximal erosional channels to northwesterly towards the basin floor where the Ainsa I and 
II fans are located. 

5.  Case Study: Ainsa Basin 

The Ainsa Basin is located in northern Spain, south of the Pyrenees, 

(Fig. 5.1; Dakin et al., 2013) and forms part of the Graus/Tremp-Ainsa-

Jaca complex that developed as a consequence of the thrust activity 

associated with the Pyrenean mountain building in the Lower Eocene 

(Pohl & McCann, 2014). 
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Figure 5.2. Map of the South Pyrenean thrust zone. The white box in the centre of the map 
represents the study area. It shows the geography of the Graus/Tremp-Ainsa-Jaca basin 
complex, while also showing the major thrust faults and folds (Pohl & McCann, 2014). 

5.1  Development of the Ainsa Basin 

The Pyrenees are an asymmetric double wedge alpine fold and thrust 

belt that trends west-east across northern Spain (Cantalejo & 

Pickering, 2014). This was generated by the part ial subduction of Iberia 

beneath the European plate, which occurred from the Lower 

Cretaceous to Upper Palaeogene (Pohl & McCann, 2014), with the 

shortening occurring between ~58-28 Ma (Pickering & Corregidor, 

2005). The structural geology of the orogeny is very complex and can 

be divided into several sect ions. Going from north to south, they are 

the Aquitaine Basin, the northern Pyrenean Thrust System, the Axial 

Zone, the South Pyrenean Thrust System, and the Ebro Basin. The 

South Pyrenean Thrust System is characterised by an imbricate system 

of cover thrust sheets associated with south-verging folds (Mochales et 

al., 2012); this was the zone that would have inf luenced the 

development of the Ainsa Basin (Pohl & McCann, 2014). 
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There are three major south facing thrusts: the Sierras Marginales, 

Montsec, and Bóixols thrusts (Pohl & McCann, 2014). The Ainsa Basin 

is located on the minor Gavarnie thrust sheet and formed during 

movement along the thrust sheets in the Palaeocene and Eocene, 

which produced the Mediano and Boltaña anticl ines (Pohl & McCann, 

2014). This led to the formation of the Ainsa Basin as an interlinked 

east-west orientated, deep-marine ‘piggy back’ basin  (Pohl & McCann, 

2014). The Ainsa Basin was locked between the shallow marine basins 

of Graus/Tremp to the east and the Jaca deep marine basin to the 

west. The basin is 40 km wide and is dominated by turbidit ic deposits 

and is composed of various sand bodies that are separated by thick 

shales (Pohl & McCann, 2014). The basin is bounded to the east and 

west by the Mediano and Boltaña anticlines respectively, with the Buil 

Syncline between these (Fig. 5.2; Pohl & McCann, 2014). This folding 

occurred between the Ypresian to late Lutetian owing to movement 

along the Gavarnie thrust sheet (Pohl & McCann, 2014). The Ainsa 

Basin is also bound to the north by fault ing relat ing to the South Thrust 

System and to the south anticline of Sierras Marginales (Fig. 5.2; Pohl 

& McCann, 2014).  
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5.2  Factors Controll ing Deposit ion 

The Ainsa Basin is divided into four unconformity-bounded units, with 

the turbidites stratigraphically in the third unit (Falivene et al., 2006). 

Deposit ion was inf luenced by the tectonics of the act ive basin. The 

basin shape and posit ion were dominated by the synchronous 

development of the anticlines and thrust- induced f lexure (Falivene et 

al., 2006). The other major control on sedimentation was glacio-

eustatic sea level change and Milankovitch cycl ici ty. Cantalejo & 

Pickering (2014) show evidence of 4 recurrent frequencies of 

eccentricity (c.110 kyr), obliquity (c.40kyr) and precession couplets 

(c.23 kyr and c.19kyr) on bedding rhythms. These control l ing orbital 

factors would either have increased rates of chemical weathering 

leading to greater r iver runoff  (and more associated deep-sea 

turbidites), or Milankovitch cycl icity led to greater r iver progradiation 

during low stand tracts in cooler climates, leading to greater amounts 

of detrital delivery to the shelf  edge (Cantalejo & Pickering, 2014).    

 

5.3  The Ainsa Basin 

During the Lutet ian stage of the Eocene the Ainsa Basin developed 

from f luvio-deltaic to a deeper continental shelf  clast ic system 

(Pickering & Corregidor, 2005). The turbidites were fed from the 

southeast by a f luvio-deltaic complex, with the mean palaeocurrent 

direction travell ing towards the northwest across the present day Buil 

syncline (Pickering & Corregidor, 2005) which is supported by gouge-

like striat ions, orientation of residual l imestone pebbles and elongated 
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Figure 5.3. General stratigraphy of the Ainsa Basin. Numbers 1-4 represent the four unconformable 
units. Ainsa (a), Morrilo (m), O Grao (og) turbidite systems occur in the third unit (Falivene et al., 2006).  

 

holes (where pebbles have been eroded out) (Dakin et al., 2013). 

Therefore most sediments that outcrop on the south east l imb represent 

more proximal deposits. These can be correlated with sediments on the 

north western-eastern l imbs which represent more distal sediments 

(Dakin et al., 2013).  

 

Each of the four unconformably bounded units is geographical ly 

extensive being 20 km in length and up to 9 km wide with strata 

thicknesses between 80-800 m. These units are composed of a coarse-

grained basal unit, capped by f ine grained mudstones (Falivene et al., 

2006). The Ainsa fans are located above the Banaston and below the 

Moril lo members (Fig. 5.3; Scotchman et al., 2015).   
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Table 5.1. A table summarising features of the main sedimentary facies in the Ainsa Basin 
(Falivene et al., 2006).  

The base of the turbidites are general ly erosional with some showing 

mixed erosional-deposit ional channel f i l ls that are related to overbank 

deposits and muddy slump deposits (Falivene et al., 2006). There are 

large amounts of carbonate clastics within the sediments; the supply of 

carbonate is associated with the col lapse of the adjacent unstable 

carbonate platform (Pohl & McCann, 2014). Carbonate clastics are 

particularly prominent during the deposit ion of the Moril lo turbidite 

system (Pohl & McCann, 2014).  

 

The major facies of the Ainsa Basin are listed and described in Table 

5.1 (Falivene et al. , 2006).  
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Figure 5.4. Palaeogeography 
of Ainsa fan I, II and III which 
are laterally stacked towards 
the foreland basin (to 
northeast), highlighted by the 
progression west of the 
hashed lines in later fans. 
The fans have been left 
unrestored from folding. The 
palaeocurrent indicators are 
shown generally orientated 
northwest in the rose 
diagrams (from Pickering & 
Corregidor, 2005). 

 

The Ainsa system turbidites are characterised by three fan deposits, 

Ainsa Fan I, II and III (Pickering & Corregidor, 2005). The 

palaeogeography of these fans indicates lateral ly stacked systems 

towards the foreland in the northeast (Fig. 5.4; Pickering & Corregidor, 

2005). The fans tend to have a chaotic basal unit of debrites, sediment 

slides and/or slump deposits; these basal units are known as mass 

transport complexes (MTC’s) or mass transport deposits (MTD’s) for 

individual deposit ion events (Scotchman et al., 2015). The fan 

complexes typical ly contain 2-3 individual sand bodies which vary in 

thickness between 30-100 m, separated by mainly thin bedded 

sandstones and shales (Fig. 5.5; Pickering & Corregidor, 2005).  
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Figure 5.5. Sedimentary logs taken from the Ainsa Quarry site and cores around the area. They 
have been correlated to provide accurate interpretation of Ainsa fan I (from Pickering & 
Corregidor, 2005). The location of the Ainsa Quarry is shown in Figure 5.1. 
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The other deposits within the Ainsa Basin are mass transport 

complexes (MTC’s).  MTC’s are characterised by debris f lows of 

variable muddy debrites that may contain a large sand content. These 

deposits have heterogeneous to heterolithic textures (Dakin et al., 

2013). Debrites tend to be matrix-supported, disorganised and poorly-

sorted (Dakin et al. , 2014), commonly with pebbly mudstone facies that 

are composed of large clasts that vary between >4 mm to 1 m in length. 

These clasts are well-rounded and composed of l imestone, sandstone, 

chert, quartzite, minor amounts of granite, and angular to sub-angular 

mud clasts (Dakin et al., 2013). In some cases debrites are composed 

of angular bioclast ic material of reworked corals or fragmented shells 

(Dakin et al., 2013).  

5.4 Biostratigraphy and Age 

Pickering & Corregidor (2005) have used foraminiferal assemblages in 

cores and outcrops to establish that Ainsa Basin sediments were 

deposited during the mid-Lutet ian. They placed the deposits around 

planktonic foraminiferal zones of P11-12 and calcareous nanofossil 

zone of NP14-15, suggesting that the Ainsa basin was deposited 

rapidly in a relat ively short t ime between c.47-46 Ma (Scotchman et al., 

2015).  
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(Pickering & Corregidor, 2005) distinguished 3 major palaeontological 

events within the Ainsa I fan.  The oldest event, A, suggests an upper 

to mid bathyal environment with normal sal inity and aerobic bottom 

water (Pickering & Corregidor, 2005). 

 

The next event, B, is a period of low diversity among microfauna, with 

no planktonic foraminifera (Pickering & Corregidor, 2005), suggesting a 

slight ly deeper bathyal environment with dysaerobic condit ions 

(Pickering & Corregidor, 2005). Event C is an acme for planktonic 

foraminifera and is thought to be caused by increased sea level, 

making it a contender for a maximum f looding interval. Echinoid, 

bivalve, gastropod, mili l iol ids, and nummulit ic fossils are found 

frequently and would have been init ial ly from shelf  deposits.  

 

Heard et al. (2014) examined the ichnofabrics of the Ainsa System. 

Ichnofabrics are by controlled several factors such as substrate 

consistency, nutrient supply, oxygenation levels, sal inity, 

hydrodynamics, rate of sedimentation, and chemical toxicity (Heard et 

al., 2014). Ichnofacies are used as proxies for diversity and can be 

used to interpret different sections of a turbidite (Table 5.2).  The 

channel axis and off-axis facies can be identif ied from the limited 

biodiversity when compared to the heavily bioturbulated levée-overbank 

facies (Heard et al. , 2014).  
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Table 5.2. A summary of the environments associated with the Ainsa Turbidite System, describing 
the lithological differences of the key facies, showing an ichnological summary, highlighting levels 
of bioturbation and key trace fossils found in these environments (Heard et al., 2014).  
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Figure 5.6. There is a slight evidence of synfolding-magnetisation in the fold tests (A-B), likely caused 
by incomplete component separation. C) Stereograph showing the ChRM data obtained by Mochales 
et al., (2012) (corrected for the bedding dip). 

 

5.5  Previous Palaeomagnetism Studies 

Amorós (2014), Mochales et al. (2012) and Muñoz et al. (2013) have 

examined the magnetostrat igraphy of the Ainsa Basin sediments. They 

found the main magnetisation carrier was magnetite with variable 

amounts of iron sulphide. The high-quality ChRM data was mainly 

carried by magnetite. The Ainsa Basin samples these authors studied 

were magnetical ly noisy owing to a sulphide content created during 

diagenesis.     

 

Mochales et al. (2012) found apparent synform magnetisation (at 80% 

unfolding which was non-signif icant wi th respect to total restorat ion 

(Fig 5.6).  They observed a signif icant prefolding ChRM component 

which was primary in origin (Fig.5.6). The ChRM showed two groups, a 

northeast posit ive inclinat ion group representing normal polarity and a 

southwest negative inclinat ion group representing reverse polarity.  
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Figure 5.7. Summative chronostratigraphy which compare the Jaca, Ainsa and Tremp-Graus Basins 
using magnetostratigraphy, palaeontology and micropaleontology (Scotchman et al., 2015). Dating of 
the Jaca Basin is based upon the dating of megaturbidites (MT) and tectonostratigraphic unit (TSU) 
divisions taken from Remacha et al., (2003). The dashed and dotted lines represent low confidence in 
the chronostratigraphic boundaries. 

 

Micropalaeontology, l itho- and magnetostrat igraphy have been used to 

provide a general stratigraphy of the Hecho Group (Fig. 5.7; Scotchman 

et al., 2015).  
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5.6  Ainsa System Study Area 

The study focuses on the turbidit ic deposits of the Ainsa System, which 

was chosen because of its well described and well exposed nature. 

Samples were collected in two stages, the init ial set of samples was 

collected by Luke Morgan and Emma Davies from Chemostrat Limited 

and the second set was collected during f ieldwork 12/10/2015-

20/10/2015. Two sites near the town of Ainsa were chosen in the study, 

the Ainsa Quarry (site A) and the Barranco Forcaz (site B) (Fig. 5.8). 

Site A is the oldest part of the Ainsa system examined in this study and 

is a complete outcrop of the Ainsa Fan I (Fig. 5.9).   

 

 

 

  

 

 

 

 

 

 

 

A-138 

N 

Rio 
Cinca 

Ainsa 

Figure 5.8. Sketch map of Ainsa showing the geographical relationship between the two sites which 
are labelled A and B. A, the Ainsa Quarry site I located ~1.3 km south west of Ainsa and B: 
Barranco Forcaz site which is located ~2.4 km NNW of Ainsa. Several other features such as the 
main roads (in red) and river systems (in blue) are marked on the map. 



96 
 

5.6.1 Ainsa Quarry Site 

The lithology of the Ainsa I fan is dominated by highly channelised 

turbidit ic deposits, overlain by an inter-fan shale. A sedimentary log of 

the Ainsa site is shown in Fig. 5.10 and the relat ionship of the beds are 

shown in Fig. 5.11. The lithologies show great amounts of bioturbation 

(Fig. 5.12), making it dif f icult to gain palaeoflow data. However, seven 

tool marks were measured indicat ing a vector mean towards 342o.  

5.6.2 Barranco Forcaz Site 

The lithology at this site is part of the Ainsa II fan which succeeds the 

Ainsa I facies (Fig. 5.9). The l ithologies represents more distal turbidite 

deposit ion with a greater contribut ion of mud, highlighted in Fig. 5.13. 

The bedding demonstrates less variabil ity in thickness than in the 

Ainsa Quarry owing to a lesser degree of channelisation. The site 

starts at the top of the Ainsa I interfan-shale and ends at the end of the 

Ainsa II fan. 

 

  

 

 

 

 

 Figure 5.9. Stratigraphy of the Ainsa Basin, showing the size and extent of the Ainsa system. The 
positions of the Ainsa Quarry (AQ) and Barranco Forcaz (BF) sites have been marked (Pickering 
& Corregidor, 2005) 

AQ 

BF 
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Small localised 
Pebble 
transverse bed 

Pebbles 

Figure 5.10. Log of the Ainsa Quarry site which has been divided into the Ainsa Quarry composed of 
the turbiditic Ainsa I Fan and the succeeding Ainsa I Interfan-shales found directly above Ainsa 
Quarry. Sample mean Kmax directions are shown throughout the sequence by the arrows which have 
been divided into flow-parallel (black) and transverse (red) Kmax directions. Yellow line is where the 
individual turbidite was sampled. Some of the shales at the top of the Ainsa Quarry show a transverse 
direction which would indicate reworking of these shales. 
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Figure 5.13. Log of the Barranco Forcaz site, the site has been divided into the Ainsa I interfan-shale (blue) and Ainsa II fan (orange). Older parts 
of the Ainsa I interfan-shale were too deformed to log. Sample mean Kmax directions are shown throughout the sequence by the arrows which 
have been divided into flow-parallel (black) and transverse (red) Kmax directions. The majority of the samples reflect flow parallel Kmax directions. 

Reworked 
shale 

High energy 
turbidite bed 
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5.7 Palaeomagnetism of the Ainsa System  

Palaeomagnetic data was obtained from 71 specimens, 29 from the 

Ainsa Quarry and 42 from Barranco Forcaz. Twenty specimens were 

init ial ly subjected to full thermal demagnetisation. However, later 

specimens were only thermally demagnetised to 350-400oC, due to 

major heat-induced alterat ion. Data from the init ial 20 specimens was 

too impacted by large increases in intensity and scattered directions to 

be useful.  

Most of the specimens were treated by thermal demagnetisat ion in 

regular steps to 350oC, and then using AF demagnetisat ion in regular 

steps of 10 mT up to about 90 mT. Specimens were demagnetised unti l 

the destruction of magnetic remanence was achieved, destruction was 

assessed by either increases in magnetic intensity of the specimen or 

incoherent/random directions. 
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5.7.1 Palaeomagnetism Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

Figure 5.14. A stereonet showing the 
showing the directions of the ChRM 
data obtained from the Ainsa Quarry 
site, these have been corrected for the 
bedding. These have been subdivided 
into visually interpreted ChRM 
directions (S) and the estimated 
ChRM for the samples was obtained 
using a combination of the 
demagnetisating great circle trajectory 
(T) and (S) values. They show only a 
reverse polarity with a south westerly 
directions. 

B) A sedimentary log of the measured 
section and declination, inclination, 
VGP latitude, and magnetic 
susceptibility (Kmean) (x10-6 SI), against 
stratigraphic height (metres).  

A

B

Fisher Mean for S class ChRM: 
Declination= 236.8°,   Inclination= -48.4°,   
Alpha(95)=  14.3°, k= 18.7,   n= 7  

S  

Great circle 
analysis of (T) and 
S components. 

 

Great circle analysis of 
T and S values: 
Declination= 230.1°,    
Inclination= -53.9°, R= 
33.0, It = 9, Alpha(95)=  
8.0°,    k= 9.9, 
n(poles)= 28,  
n(points)=7 
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Declination= 221.6°,   
Inclination= -53.0°,   
R=  38.5,  Iterations=5 
Alpha(95%)=  6.3°, 
k=12.2,  
N(poles)= 19,  
N(points)=22 

Fisher mean for s values: Declination= 
225.7°,   Inclination= -53.7°,   
Alpha(95)=   6.3°,    
k=    26.5,   n= 22 

A

B

Figure 5.15. A) A stereonet 
showing the showing the directions 
of the ChRM data obtained from 
the Barranco Forcaz site, these 
have been corrected for the 
bedding. These have been 
subdivided into visually interpreted 
ChRM directions (S) and the 
estimated ChRM for the sample 
was obtained using a combination 
of the demagnetisating great circle 
trajectory (T) and (S) values. They 
show only a reverse polarity with a 
south westerly directions.  

B) Declination, inclination, VGP 
latitude, and magnetic 
susceptibility (Kmean) (x10-6 SI), 
against stratigraphic height 
(metres). The section-log is shown 
in Figure 5.13. 

Great circle analysis 
of (T) and S 
components. 

S  
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Figure 5.16. Examples of Zijderveld plots of the demagnetisation pattern for each site. AQP 18.5 
and BFP 12.1 are taken from the Ainsa Quarry and Barranco Forcaz sites, respectively. Both 
specimens show a defined reverse, south western ChRM component. The declination of ChRM is 
slightly different between the two examples with the Ainsa Quarry sample having shallower, more 
western direction.  
 

M/Mo 

M/Mo 
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 Ainsa Quarry Barranco Forcaz 

NRM Intensity (mA/m) From 0.08 to 1.3; 

average of 0.42 

From 0.11 to 1.0; 

average of 0.44 

Average Magnetic 

Susceptibil ity (Km) 

91.8 x10 -6  SI 89.0 x10 -6  SI 

Init ial Component Declinat ion= 317.7°,   

Incl ination=  72.2°,   

Alpha(95)=  10.8°,   

k=6.1, n= 29 

Declinat ion= 288.9°,   

Incl ination=  73.3°,   

Alpha(95)=  10.1°,   

k= 7.1, n= 31 

S class ChRM Declinat ion= 236.8°,   

Incl ination= -48.4°,   

Alpha(95)=  14.3°,    

k= 18.7,   n= 7  

Declinat ion= 225.3°,   

Incl ination= -53.3°,   

Alpha(95)=   6.0°,   

k=27.3, n= 22 

Combined GC-Fixed 

Point 

Declinat ion= 230.1°,   

Incl ination= -53.9°,   

R= 33.0, It = 9 

Alpha(95)=  8.0°,    

k= 9.9, n(poles)= 28,  

n(points)=7 

Declinat ion= 221.6°,   

Incl ination= -53°, 

R=38.5,  It = 5, 

Alpha(95)=  6.3°,   

k=12.2, n(poles)= 19 

n(points) = 22 

 

Table 5.3. The mean demagnetisation characteristics between the two sites. Fisher (1953) means 
were used to average the directions from two components: an initial component assumed to be 
TVRM (thermo-viscous remanent magnetisation, acquired during the Bruhnes); S and T class 
ChRM data. R is a measure of dispersion and It is the number of iterations. 
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5.7.2 Palaeomagnetism Analysis  

When comparing both data sets from each site, they show similar 

demagnetisat ion characteristics (Table 5.3). Both sets show similar 

NRM intensity and susceptibi l it ies and the ChRM directions show only 

south-westerly means. The presence of only reverse polarity, similar 

VGP lati tudes and the similar demagnetisat ion behaviour indicates 

these sediments were deposited over a short t imescale. Mochales et al. 

(2012) f indings suggest the two sites l ie in the long reversal chron of 

C20r and t ime duration of deposit ion could be a maximum of c.1 Ma. 

Muñoz et al. (2013) and Mochales et al. (2012) also found clockwise 

rotation up to 52° about a vert ical axis in the sediments which is similar 

to values obtained in this study, which would place the t ime of 

deposit ion between 43-45 MA. The similar average NRM intensity and 

magnetic susceptibil ity would suggest that the two sites have had 

similar sources for magnetic minerals.  

Samples from the Barranco Forcaz site show greater within-section 

variation in magnetic susceptibi l ity varying from 35 to 110 (x10 -6 SI) 

suggesting that the concentrat ion of these magnetic minerals varies 

three-fold. This may be attr ibuted to a larger sample size which has a 

greater mixture of clast ic grain size. The specimens with lower 

susceptibi l ity samples tended to show more scattered ChRM directions, 

Mochales et al. (2012) suggested that the presence of magnetic 

sulphides were the cause of this noise, although if  these sulphides 

were prominent in the sediments, there should be a dist inct unblocking 

temperature of ~325oC which is not present in most samples. 
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5.8   Magnetic Minerology of the Ainsa Basin 

Several samples from both Ainsa sites were tested for their magnetic 

mineralogy in order to examine possible mineralogical inf luences on the 

AMS data from dif ferent l ithologies. Isothermal remanent magnetism 

(IRM) and anhysteretic remanent magnetisat ion (ARM) acquisit ion was 

used to determine the ferrimagnetic minerology using the room 

temperature data (Peters & Dekkers, 2003). The back f ield curve for 

each of the specimens saturated below 700 mT, suggesting 

insignif icant haematite and goethite contribut ions to their composit ion 

(Maher et al., 2010). ARM ratios such as ARM/SIRM were used to rule 

out other ferrimagnetic minerals as the main magnetic mineral (Maher 

et al., 2010).  

  

 

 

 

 

  

 

 

 

 

Figure 5.17. Biplot of remanent acquisition coercivity (Hcr) versus saturation 
remanent magnetism SIRM/.The red circle is the typical values for magnetite and 
Ti-magnetite, orange circle=pyrrhotite, black circle=greigite, blue circles=haematite 
and grey circle=goethite. All the results lie within the magnetite and Ti-magnetite 
range (Peters & Dekkers, 2003).   
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5.8.1 Hysteresis  

Three specimens were investigated for their hysteresis properties to 

evaluate the contribution of paramagnetic minerals to the AMS. If  the 

AMS has a strong contribut ion from paramagnetic minerals, it  should 

have a linear high-f ield induced magnetisat ion, whereas magnetite 

contributions wil l be seen as a saturat ion component at f ields less than 

300 mT. The low f ield used (<700 mT) cannot dist inguish haematite 

contributions from paramagnetic contributions, but the IRM/ARM data 

and AF demagnetisation suggests no signif icant haematite components. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.18. Hysteresis plot of coarse sandstone unit from the Ainsa Quarry site. 
The plot also shows interpreted paramagnetic mineral contribution, above a 
saturating ferrimagnetic component, which is saturated by c. 200 mT. 

Saturated part, 
representing the 
paramagnetic 
contribution. 

Near Saturated  
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Figure 5.19. Two mud dominated specimens from the Barranco Forcaz site, the upper-
data is from a siltstone and shows a mixture of paramagnetic and ferromagnetic 
minerals. This specimen shows a flow-transverse AMS fabric. The lower plot shows a 
hysteresis curve dominated by its high paramagnetic mineral content. 



110 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8

M
rs

/M
s

Hcr/Hc

Day Plot

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spec Type Ferrimagnetic 
content (%) 

Para/diamagnetic 
content (%) 

Ms 
(Am2/kg) 

Mrs 
(Am2/kg) 

Hc 
(mT) 

Hcr 
(mT) 

Aq 17.5 Med-
coarse 
SST 

81.9 18.1 7.63x10-3 1.99x10-3 31.29 57.11 

Bf 23.1 SLST 48.7 51.3 3.52 x10-3 6.51 x10-4 11.45 62.37 

Bf 61.4 Fine 
MDST 

8.9 91.1 2.53x10-3 1.29x10-3 20.5 46.11 

MD  

SD  

PSD  

Aq 17.5 

Bf23.1 

Bf 61.4 

Table 5.4. Hysteresis parameters for each of the sediment samples, SST=sandstone, 
SLST=siltstone and MDST=mudstone. The percentage of ferrimagnetic paramagnetic/diamagnetic 
content. Ms=Saturation induced magnetisation, Mrs=Saturation remanent magnetisation. Hc/Hcr 
are coercivity and remanent coercivity. 

Figure 5.20. Day et al., (1997) plot showing the magnetic grain size of the magnetite for the three 
samples tested. Where SD=single domain, PSD=pseudo domain and MD=multi-domain. The 
shales are found in the PSD field and sandstone specimen is in the MD field. 
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5.8.2 Magnetic Minerology Analysis  

The magnetic mineralogy data (Fig. 5.17, 5.19, 5.20) suggests the 

carrier of the remanence is a pseudo single domain to multi-domain 

magnetite, which was also found in studies by Mochales et al. (2012) 

and Muñoz et al. (2013). Paramagnetic minerals appear to contribute 

between 18% to 91% of the susceptibi l ity, depending on the lithology.  

The mudstone samples have coercivit ies (Hc) less than the sandstone 

samples, although the coercivity of remanence (Hcr) is similar.  The 

sandstone sample is clearly higher in ferrimagnetic content than the 

shale samples. This could be due to it  being richer in locally eroded 

intrusive igneous rock (higher concentrations of ferrimagnetic minerals) 

(Mochales et al., 2012), whereas the mudstone units are probably 

higher in Fe-rich paramagnetic minerals such as micas and clays.  

IRM and ARM acquisit ion, and Day plots indicate that the magnetite is 

pseudo-single domain to mult i-domain. Overall,  the magnetic 

mineralogy responsible for the magnetic susceptibil ity appears to be a 

mix of paramagnetic minerals and magnetite. Mochales et al. (2012) 

described the presence of sulphides in the underlying sediments but no 

evidence of this was found during this study. 

These differences in contribution could suggest a possible dif ference in 

source, thus the AMS may be partly dependent on the source and 

mineralogy.  
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5.9 Anisotropy of Magnetic Susceptibil ity of the Ainsa System 

The anisotropy of magnetic susceptibil ity (AMS) data was measured 

from 153 samples, 81 from Ainsa Quarry (277 specimens) and 72 from 

Barranco Forcaz (270). Up to f ive or more specimens were measured 

from each sample and averaged using the Anisoft 42 program (Chadima 

& Jel inek, 2009) which uses Jel inek statist ics to average the AMS 

tensors. Each specimen’s AMS was corrected for the bedding 

orientat ion, so all  directions are with respect to palaeohorizontal and 

geographic north. 
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5.9.1 Ainsa Quarry Site 

 

   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21. Stereoplots of the AMS for each sample that was produced from an average of their 
specimens from Ainsa Quarry and has been divided into, A) specimens with Kmax direction is parallel 
to the flow direction orientated southeast-northwest and B) specimens with Kmax direction normal 
(orientated Northeast-southwest) to the inferred flow. The majority of the AMS directions are orientated 
parallel to the flow direction c.63%.  
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Figure 5.22.  The shape and degree of anisotropy of different specimens from the Ainsa 
Quarry Site. The mudstone has a greater range of the degree of anisotropy and has a 
significantly more oblate shape shown by large T.  Sandstone specimens have a 
weakly anisotropic fabric and are well constrained as the p values are mostly less than 
those from mudstones. 
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The AMS data from the site shows two dominant Kmax trends in the 

section. The oldest and lower part of the sequence shows Kmax 

direction trends northeast – southwest,  whereas most of the section 

has Kmax direct ions trending northwest – southeast.   Kmin values have 

a small imbricat ion to the southwest with some specimens imbricated to 

the North West, but in one turbidite bed only.  

The magnetic parameters for this sect ion are fairly consistent. The T 

parameters are mostly between 0.3 - 0.95 for most of the specimens. 

The degree of AMS shows more variat ion with P values around 

throughout the sequence around 1.00 - 1.06. 

 

 

 

 

 

 

 

  

 

 

 Figure 5.23.  The shape (T) and degree of anisotropy (P) of the two Kmax groups of the 
Ainsa Quarry Site. The flow-parallel groups have an average with higher P and T values 
than the transverse group of specimens. The flow parallel group also have a greater 
percentage of mudstone specimens.    



116 
 

0

10

20

30

40

50

60

70

80

0 100 200

St
ra

tig
ra

ph
ic

 H
ei

gh
t (

m
et

re
s)

Kmean (x10-6 SI)

Kmean

Figure 5.24.  The bulk magnetic susceptibility (Kmean), shape (T) and degree of anisotropy  (P) 
through the section at the Ainsa Quarry. The magnetic susceptibility, and P increases sharply 
above the dashed line, this reflects the change in lithology from Ainsa I fan sandstones (below) to 
the Ainsa I interfan shale above.  
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Figure 5.25.  The bulk magnetic susceptibility (Kmean), shape (T) and degree of anisotropy (P) of different samples through a single turbidite deposit at the 
base of the Ainsa Quarry, marked on Fig. 5.10. P slightly increases towards the top of turbidite reflecting change in the flow velocity.  Km and T show little 
change and mainly reflect compositional differences. Stereoplots 1-5 each represent 4-5 specimens from each sample, 1 is at the base and 5 is at the 
top of bed.  1 & 2) Are at the base of the turbidite and reflect Ta or Tb Bouma facies (So et al., 2013), implying high velocity, low-density flows which is in 
agreement with smaller degree of anisotropy and displays transverse fabric. 2 shows a less defined transverse mode which indicates a reduced velocity. 
3) Is the middle of turbidite and also shows a transverse fabric. 4) Is near the top of the turbidite and has greater P values and would reflect Tc or Td 
fabrics as it shows flow-aligned fabric (So et al., 2013). 5) Is the start of another turbidite that has eroded the top of this bed, indicated by the transverse 
fabric. 
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5.9.2 Barranco Forcaz Site  

 

 

 

 

 

 

 

Figure 5.26. Stereoplots of AMS directions from the Barranco Forcaz site. A) Specimens 
with Kmax directions parallel to the inferred flow direction orientated southeast to 
northwest and B) specimens with Kmax directions normal to inferred flow. The majority 
of the specimens examined are orientated parallel to the flow direction c.83%. 
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Figure 5.27. Mean bulk magnetic susceptibility (Kmean), shape (T) and degree of anisotropy (P) of 
samples at the Barranco Forcaz site. 
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5.9.3 AMS Analysis of Ainsa System 

The two sites share a few similarit ies; they both show two dist inct 

groups for Kmax direct ions, one that is parallel to f low (as measured by 

macroscopic indicators; Pickering & Corregidor, 2005) and one that is 

normal to f low directions. They share similar average magnetic 

susceptibi l ity and f low-aligned and transverse fabrics can be found 

within the same bed (Fig. 5.25). The transverse fabrics can be 

explained using the turbidity models of Baas et al. (2007) which 

suggest that under low-f low condit ions Kmax directions are orientated 

paral lel with f low, but may form normal to f low-aligned fabrics when the 

f luid velocity is large enough to rotate the grains into a roll ing-type 

fabrics. This high velocity f low does not rotate all the grains and some 

will be deposited in a stable posit ion paral lel to f low, explaining why 

some beds have both fabric orientat ions. 

In large turbidite beds, there will  be several Bouma facies indicating 

dif ferent modes of transport. In the examined bed (Fig. 5.25.), there 

were at least two different modes of transport indicated by the change 

from transverse fabrics, with low P values, to a f low-al igned fabric, with 

greater P values. This change in fabric ref lected a transit ion from low-

density f lows to weaker turbulent f lows and/or deposit ion from 

suspension. The top part of the large turbidite bed appears to have 

been removed by the overlying turbidite, which skews the AMS fabric to 

ref lect transverse f low fabrics. This is consistent with the data in Fig. 

5.10 as the Ainsa I Fan has a greater percentage of transverse (grain-
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rol l ing type) Kmax directions compared to Barranco Forcaz, ref lect ing 

the high energy channel deposits in the Ainsa Quarry section.  

According to the Baas et al. (2007) study, the transverse fabrics should 

have a smaller degree of anisotropy (P) and be more isotropic (T closer 

to zero). In the Ainsa Basin, there is a dif ference between AMS fabrics 

with normal and transverse Kmax trends, with transverse mode showing 

smaller average P values but no not iceable dif ference in T, (Fig. 5.23). 

In the Ainsa Quarry section the majority of the f low-parallel fabrics 

show a greater range in the P and T values, whereas the transverse-

fabrics P values are more confined with most samples having values 

between 1.01-1.03. The T values were expected to be more isotropic 

(closer to 0) than the normal fabrics but this is not the case.  

In the interfan- shales above the Ainsa Quarry turbidites there were 

some shales that had transverse orientations rather than the expected 

f low-al igned AMS fabrics. There was an expectation that the shales 

would be f low-al igned as these were assumed to be deposited in low 

velocity turbidity currents or a hemiplegic sett ing which would not have 

rotated the grains. These transverse results can be explained as debris 

f lows within the shales; these are mentioned in Falivene et al. (2006) 

and would have large enough current velocit ies to produce these 

fabrics. The presence of debris f lows is further supported by the 

presence of pebbles or sl ightly coarser composit ions noticed in the 

f ield.  
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There is an association between low P and T values (particularly 

prolate fabrics with T>0) and low bulk susceptibi l it ies. This is shown in 

Fig. 5.24.,  where P and T values increase sharply with the bulk 

susceptibi l ity, this corresponds to a change in l ithology from 

channelised sandstone and mudstone to hemipelagic shales and 

debrites. Although the dif ference in mode of deposit ion could explain 

changes in AMS fabric, it  does not explain the drop in magnetic 

susceptibi l ity. Instead the lithological composit ion may be an overriding 

factor that decides the shape and degree of anisotropy, as the 

sandstones’ magnetic susceptibi l ity is composed of ferrimagnetic 

minerals and whereas the mudstones’ are dominantly composed of 

paramagnetic minerals, Table 5.4.  

Fig. 5.22 shows a clear grouping for the sandstone samples which have 

smaller P values ref lecting the magnetite composit ion. Paramagnetic-

dominated samples produce a greater scatter with a much higher 

degree of anisotropy associated with the phyllosi l icate minerals (e.g. 

clays).  

The AMS does not appear to show Kmax direct ions greater than 10o 

incl inat ion or a Kmin distribut ion forming a girdle parallel to tectonic 

shortening which would be expected of tectonic shortening or folding. 

Therefore the effects of tectonism on the AMS are minimal; the AMS of 

the phyllosi l icate (or magnetite) ref lects planar orientat ion associated 

with compaction. This is supported by Travé et al. (1998)’s  stront ium 

isotopes studies that found an absence of in situ mineral transformation 

and a study by Parés et al. (1999) of AMS tectonic fabrics.  
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A limitation of this study is that the samples were mainly taken from the 

top and base of large beds, while thinner beds were sampled in full.  

This should not be a problem for the thinner beds as the f ive specimens 

from each sample should cancel out the variations from the top and 

base of the bed. This method was adopted for logist ical reasons owing 

to the dif f iculty in breaking the well cemented lithology and this 

sampling may have affected the data, skewing it  to ref lect erosive 

condit ions at the bases of turbidites and closer to hemiplegic 

deposit ion at the top. Baas et al. ’s (2007) model suggests there should 

be more f low-aligned fabrics at the bottom of the Ainsa Quarry. These 

f low-al igned fabrics would be associated with the top of individual 

turbidites, instead the base of Ainsa Quarry is nearly ent irely composed 

of transverse fabrics.  

Several samples were taken from a large turbidite bed to invest igate 

how AMS may change throughout. The Kmax and Kmin directions are 

consistent throughout the bed and show a general upwards trend to 

increased Km, P and T values, ref lecting the change in grain size and a 

greater mud content (Fig. 5.25.). However, these fabrics remain 

transverse throughout, suggesting that erosion from the overlying 

turbidite may be removing the top-part of the f low-aligned turbidite 

fabric. 
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5.10 Conclusion 

Magnetostratigraphy has shown that the Ainsa system between Ainsa 

fans I and II was deposited within a short t ime period in chron C20r (<1 

Ma; Mochales et al. 2012) which was suggested by the presence of a 

single magnetic polarity in the ChRM data at the two sites (Fig. 5.14 or 

5.15). The magnetic mineralogy data suggests the main carrier of the 

ChRM is a pseudo-single domain with a small mult i domain magnetite 

inf luence.   

The Baas et al. (2007) model for turbidite grain fabrics can be applied 

to the Ainsa Basin, meaning that the Kmax directions can be proven to 

show the direction of palaeoflow in a hemipelagic sett ing or low velocity 

turbidity f lows. However, in more turbulent and greater f low condit ions 

such as the Ainsa I  fan or debris f lows, Kmax directions re-orientate 

normal to the palaeoflow owing to greater rates of grain rotation, which 

cause grain fabrics to become more isotropic, corresponding to lower T 

values (Fig.21).  

AMS can be used to infer deposit ional models such as debris f lows 

within the shale facies but the effects of l ithological composit ion on the 

AMS also needs to be taken into account. Variations in composit ion 

have a greater impact on the magnetic fabrics, as the paramagnetic 

minerology wil l produce fabrics with much greater degrees of 

anisotropy and larger magnetic susceptibi l it ies. Tectonism has no 

apparent impact on the AMS apart from init ial vert ical compaction 

associated with burial.  



125 
 

For the AMS the magnetic susceptibi l i ty appears to have a contribution 

between 9 to 82% from paramagnetic minerals, depending on the 

lithology. These changes in contribut ion would suggest a change in 

source as the ferrimagnetic minerals have a detrital origin and the 

paramagnetic minerals would have been deposited from suspension. 

Therefore these dif ferent deposit ional mechanisms associated with 

ferrimagnetic or paramagnetic will  affect the AMS fabric. The other 

observat ion is that both ferrimagnetic and paramagnetic fabrics were 

successfully measured using AMS to establish palaeoflow.  
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6. Case Study: The Welsh Borderlands 

One of the main object ives of this project was to examine anisotropy of 

magnetic susceptibil ity (AMS) fabrics in dif ferent sedimentary 

environments at varying scales. The Welsh Borderlands was chosen to 

test the effectiveness of AMS as a palaeocurrent indicator for 

sediments owing to its geographical ly larger shallow shelf  environment 

and to examine how local tectonics can affect the AMS fabric. Three 

study areas were chosen that range in age from the Llandovery of the 

early Si lurian (Hil l End Farm & Quarry, Buttington Quarry sections) to 

the mid Silurian, Wenlock age Eaton Trackway sect ion (Burgess & 

Richardson 1991; Crossley & Clark 2015).  

6.1 Geological History 

The early Palaeozoic rocks around the Welsh Borderlands overlie 

Precambrian basement where the Neoproterozoic ( late Precambrian) 

Uriconian Volcanics are overlain by the thick Longmyndian Supergroup 

(Brenchley & Rawson, 2006; Woodcock & Strachan, 2000). West of the 

Wrekin there is evidence of metamorphism of the basement, visible in 

the Ruston Schists and the Primrose Hil l Gniess (Brenchley & Rawson, 

2006). These outcrops lie between and along the Church Stretton and 

Pontesford-Linley faults, the latter displacing units in the Ordovician, 

while the Church Stretton Fault inf luenced sedimentation throughout 

the Lower Palaeozoic (Toghil l & Chell , 1984). This Precambrian 

volcanism and fault ing was generated by a subduction zone located 

near Anglesey; as the crust subducted below the Welsh Basin, this 

produced the Uricornian Volcanics. Fault ing paral lel to the subduction 
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zone formed a rif t-basin where the Longmyndian Supergroup was 

deposited (Toghill  & Chell, 1984). 

As the Iapetus Ocean began to close in the late Ordovician, southern 

Britain went through a tectonic episode as eastern Avalonia and Balt ica 

coll ided (Woodcock & Strachan, 2000). This Shelveian Event, named by 

Toghil l (1992), was the deformation and uplif t associated with this 

coll is ion, which occurred in the early Ashgil l,  creat ing an unconformity 

in the Welsh Borders successions (Cherns et al., 2006; Toghil l,  1992). 

These tectonics created large-scale open folding, during the Upper 

Ordovician (Toghill ,  1992). The subduction led to the creation of 

basalt ic/gabbroic intrusions, while folding led to upl if t of the landmass 

of the Midland Platform. At the end of the Ashgil l with global sea-level 

regression and the glaciat ion of Gondwana, sea level was at a low 

although this is not recorded in the Welsh Borderlands (Toghil l,  1992; 

Woodcock & Strachan, 2000).    

During the Silurian the closure of the Iapetus Ocean saw the Avalonian 

sub-continent converge with Laurentia as the former was drif t ing 

northwards into lower lat itudes (Fig. 6.1, Soper & Woodcock 1990; 

Cocks, 1989). This is ref lected in the deposit ion of reefal-tropical 

l imestones during the Wenlock (Cocks, 1989). Sedimentation within the 

Welsh Borderlands was control led by active fault ing that separated the 

main basin to the NW from the marginal shelf  to the SE (Woodcock & 

Gibbons, 1988). 

 



129 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1. Simplified reconstruction of the merging of Eastern Avalonia and Laurentia from 
435 to 400 Ma. The figure uses palaeomagnetic and sediment supply data, the latter which is 
shown by arrows indicating the type of sedimentary supply (Soper & Woodcock, 1990).   
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6.2 Structure of the Basin 

Weaknesses and discontinuit ies in the crust associated with dif ferent 

terranes inf luenced and controlled sedimentation (Dewey & Rosenbaum 

2008).  The Welsh Borderlands are dominated by four fault zones that 

are orientated northeast - southwest, with the two main ones being the 

Church Stretton and Pontesford-Linley fault complexes (Cocks, 1989; 

Dewey & Rosenbaum, 2008; Fig. 6.2). The faults dip steeply and cut 

deep into the Precambrian basement showing dip-sl ip and str ike-slip 

displacement (Woodcock & Gibbons, 1998). These faults were then 

react ivated during the Ashgil l Shelveian transpression event that 

dextrally displaced the rock (Cocks, 1989); extensional faults were also 

produced at this t ime by the formation of the Welsh Borderlands, which 

are orientated north-west.  

The Church Stretton fault was the main fault system act ive during the 

Silurian (Toghil l and Chell 1984). The outcrops to the east of the fault 

(Fig 6.5) gently dip south-east representing a shallow water shelf  

facies. However, in mid Wales west of the fault, the formations are 

much thicker ref lecting greater water depth and deposit ion rates. The 

dip of the beds west of the Church Stretton fault is much greater, 

dipping steeply south to south-east; caused by rotation and 

displacement of the strata associated with the Caledonian folding (Fig. 

6.3, Toghill and Chell 1984).  
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Later Acadian (i.e. mid-Devonian age) deformation had a l imited effect 

in Shropshire showing sinistral transpression (Toghil l and Chell 1984). 

These pre-exist ing faults were then reactivated again during the 

Variscan Orogeny (Cocks, 1989).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. A structural map showing the key folds and faults in the Welsh Borderlands. The 
major fault is the Church Stretton Fault which was most active during Silurian deposition 
(Dewey & Rosenbaum 2008). 
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6.3  Paleocl imate and Palaeobiology  

Eustatic sea-level was at a low at the end of the Ordovician owing to 

the glaciation of Gondwana (Sopher & Woodcock 1990). The sea 

transgressed at the start of the Silurian and shallow shelf  marine facies 

were deposited in the Wenlock Edge area following the Shelvian 

unconformity. Sea levels f luctuated during the Llandovery caused by 

rising global sea-levels and local tectonism associated with the Welsh 

Borderland Fault System and areas to the west of the Church Stretton 

Fault (Davis et al. , 2011). These f luctuating sea-levels lead to f luvial 

conglomerates, sandstone and mudstones being deposited locally at 

the start of the Llandovery. 

During the Aeronian, shelf  deposit ion was of sandstone, sil tstone and 

shales which were associated with the Bog Quartzite, Venusbank 

Formation, Kenley Grit , and Pentamerus Beds (Davis et al., 2011). In 

the late Aeronian the sea transgressed further leading to 

geographically extensive shallow marine shales throughout the 

Telychian, such as the Tarannon ‘purple’ shales which overl ie the Cefn 

Formation sandstones (Mullins & Loydell, 2002). Sea-level reached an 

acme at the end of the Llandovery and then regressed at the start of 

the Wenlock (Fig 6.4; Woodcock & Strachan, 2000). In the Wenlock, 

thick shales of the Coalbrookdale Formation (>200 m thick) formed 

across the shelf , with deposit ion of l imestone units of the Farley 

Member above.  
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Throughout the later Si lurian, the Welsh Borderlands represented an 

interval of deposit ion in shallow seas. Ziegler et al. (1968) were able to 

establish f ive communities of brachiopod: Lingula, Eocoelia, 

Pentamerus, Stricklandia , and Clorinda , each of these communities 

l ived in dif ferent environmental water depths, Fig 6.5. 

Figure 6.4. A global sea-level curve from the Late Ordovician to the Early Devonian. The 
Ashgill (Hirnantian) ice age has been highlighted. Modified from Woodcock & Strachan 
(2000) 
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Figure 6.5. The distribution of brachiopod colonies across the Wenlock Edge area and Welsh 
Basin in the Llandovery. The Pentamerus brachiopods are found at c.60 m. These colonies 
are associated with a series of shale sequences with occasional sandy conglomerates 
(Ziegler, Cocks & Bambach, 1968; Dewey & Rosenbaum 2008).  
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6.4 Palaeocurrents and Sediment Transport 

Sedimentation in the Welsh Borderlands from the Mid- Llandovery to 

the Ludlovian is dominated by thinly-bedded, mudstones and 

sandstones (Basset et al., 1992; Cherns et al., 2006). These 

mudstones are hemipelagic or turbidit ic in origin and are viewed as the 

lower part of the slope-apron facies (Cherns et al.,  2006). 

Sedimentation was inf luenced by the formation and uplif t of the 

Pretannia landmass to the south, a result of the convergence of 

Eastern Avalonia and the Laurentia margin which drove the northerly 

directed currents (Soper & Woodcock, 1990; Woodcock & Strachan, 

2000). Conditions were occasionally anoxic during the Telychian and 

inter-turbidite and hemipelagic muds are common and are often 

carbonaceous, containing graptol ites (Basset et al., 1992). The area 

during the Wenlock became dominated by carbonate deposit ion related 

to the deepening of the shelf  (Basset et al., 1992). 

Underwood (1994) used fossil assemblages of benthic fossi ls e.g. 

brachiopods and pelagic fossils graptolites in the mudstones to 

establish the palaeoflow direction (Fig. 6.8). The palaeocurrents 

indicated by Underwood’s (1994) study were orientated paral lel to the 

shorel ine. Basset et al. (1992) and Underwood (1994) suggest the 

dominant palaeoflow mechanism was storm or longshore-directed 

bottom currents instead of turbidit ic.  
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Figure 6.6. Palaeogeographic map showing the shorelines of Wales and the Welsh Borderlands 
in the late Middle Llandovery (Aeronian) based on different biozones (Basset et al., 1992). 
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6.5  Welsh Borderlands Study Area 

The geographical locations of the three study sites are shown in Fig. 

6.7., Fig. 6.8., is a summative Silurian correlat ion chart showing the 

main lithological members and the age of each site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.7. Sketch map showing the three sampled sites and the Church Stretton Fault. The 
location of the Buttington Quarry is west of the Church Stretton fault zone which is shown in 
the steepness of bedding when compared to other sites.  
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Figure 6.8. Correlation chart in which columns represent (left to right) the series, stage, sub-stage, 
graptolite biostratigraphy zone, conodont biostratigraphy zone, members of the Welsh Basin and 
Wenlock Edge/West Midlands which both have been divided into three different  columns 
depending on geographic areas and the last column is a generalised 13C curve. The study sites 
are shown on the far right (Davis et al. 2011). 
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6.6  Hil lend Farm 

The Hil lend Farm outcrops (located, Fig. 6.7) are composed of three 

sub-sections (Fig. 6.10). At the top are interbedded chocolate-brown to 

purple si lty mudstones with shelly l imestones at the base in the Quarry 

and roadside sect ions, which are part of the Pentamerus Beds (Fig. 

6.10). The Pentamerus Beds thicken basinwards, and are up to 91 m 

thick (Crossley & Clark 2015). At Hil l End the Pentamerus Beds l ie 

metres above the Precambrian unconformity and are Aeronian in age 

(440.3-438.5 Ma) dated by the presence of graptolite and brachiopod 

species Clinocl imacograptus retroversus and Eocoelia hemisphaerica  

at the base of the outcrop (Crossley & Clark 2015). These f indings 

suggest that these three outcrops only span less than c.1Ma from the 

Late Aeronian to the earl iest Telychian. 

 

 

 

  

 

 

 

 
Figure 6.9. The outcrop where the Farm yard log was taken on the Hillend Farm site (Fig 6.10). 
The red line shows the base of the section which dips gently to the right. Sampled outcrop extends 
for 10 m to the right. 
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Figure 6.10. Log of the Hillend Farm site, divided into farm, quarry and roadside sections. The 
sample numbers are shown.  
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6.6.1 Hillend Farm AMS Results 
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Figure 6.12. Stereoplots of the AMS axes for Hillend Farm and summary Kmax orientation trends. 
A) The AMS fabric shown in in situ coordinates. B) Corrected for bedding orientation. All the 
specimens had a NE strike (c.050°) and gentle dip (c.20°) which align with the Kmax direction. 
Hillend farm next to the barn (Lower Hughley Shales) was the only subsection measured in this 
AMS study.  
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Figure 6.13. Mean magnetic susceptibility (Kmean), shape (T) and degree of anisotropy (P) of 
Hillend Farm specimens. Apart from the single anomalous result, the Kmean, T and P values are 
quite consistent at this site.  
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The contribut ions of tectonic act ivity were examined using a direction-

correct ion (DC) fold test (Enkin J., 2003) in Fig. 6.14. The DC fold test 

indicates that the Kmin is part of a sedimentary fabric that formed prior 

to t i l t ing or folding but has been affected to some extent by local 

tectonism.  

  

Figure 6.14. Direction-correction (DC) fold test using the declination and inclination of the bedding 
and the geographically corrected Kmin directions (Enkin J. 2003). The optimal clustering is at 

155.8% slope with a α95 ± 51.5% which the high value of the α95 suggest the test is limited in 
providing a clear-cut result. The DC slope value is 55.8% greater than values expected form 
undeformed sediments. The results indicate the magnetic fabric of sediments was created prior to 
the tilting or folding but also suggests the magnetic fabric has been significantly affected by 
folding. 

Best fitting Slope (Unfolding): 155.8%; 

α95% Confidence interval: ± 51.5%,  

The DC fold test is positive, indicating the 
Kmin was probably acquired prior to 
tilting or folding. 
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6.6.2 Hillend Farm Analysis 

Low conodont alteration indices (CAI) of 1 to 1.5 in the area east of the 

Church Stretton faults would seem rule out major heating or 

deformation of these successions (Aldridge, 1986). The DC fold test 

was inconclusive suggesting some tectonic inf luence on the fabric. 

However, the uniformity of the Kmax axes and bedding-vertical Kmin 

directions also suggests that the fabric was produced by deposit ion. 

Therefore tectonism modifying this fabric seems unlikely as the AMS 

seems to ref lect sedimentary textures associated with deposit ion and 

compaction according to Baas et al.  (2007) and Borradaile (2001).  

There is one dominant Kmax trend orientated northeast-southwest 

which is al igned paral lel to the proposed palaeoshoreline (Fig. 6.6). If  

this was part of a turbidite deposit, i t  would have to be low velocity so 

as not to generate any f low-transverse fabrics that where seen in the 

Ainsa Quarry. Instead, the AMS fabric is similar to that reported by 

Shor et al. (1984) from contourites, indicating the AMS is more l ikely 

ref lective of a shelf  current.  

The samples have a high T and P values (Fig. 6.13) that could be 

associated with this hemipelagic/contourite laminar deposit ion. The 

high MS values may be ref lect ive of a greater paramagnetic content 

within the mudstones, suggesting the AMS is caused by preferred 

crystal l ine anisotropy of the clay minerals. 
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6.7 Buttington Quarry 

The section in the quarry shows the early Si lurian rest ing 

unconformably on late Ordovician shales and dolerites. The sediment 

samples in the quarry are the upper part of the Cefn Formation and all 

of the Tarannon ‘Purple Shales’ Formation, (Fig. 6.15; Fig. 6.17; 

Loydell et al., 2014). The biostrat igraphy of the succession in this 

quarry has been studied by Mullins & Loydell (2001); they used 

graptol ite and chit inozoan biozones to constrain the age from late 

Aeronian through the entire Telychian c.438-433.5 Ma (Fig 6.16).   

 

 

 

 

 

  

 

  

 

 

 

 

Figure 6.15. The 
relationships between the 
red- brown and grey 
mudstones. The bedding 
is dipping steeply >75°. 
Shovel is c.70 cm in 
length.  

Red-brown 
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Grey-green 
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Figure 6.17. Log of the Buttington Quarry site, divided into the Cefn Formation and the Tarannon Shales. The sample numbers are shown.  
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6.7.1 Buttington Quarry AMS Results 
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Figure 6.19. Stereoplots of AMS for Buttington Quarry. A) Is the in situ AMS fabric (before bedding 
correction). B) Corrected for bedding. There is a small minority of anomalous data which are 
indicated by their shallow Kmin directions (highlighted in the orange circle), these are found 
throughout the quarry. The bedding varied in strike and dip throughout the quarry, the bottom of 
the quarry had an average 051/86°, the middle was shallower with an average of 067/75° and the 
top of the quarry had an average of 080/72°.  
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Figure 6.20. Stereoplots of AMS for Buttington Quarry that has been corrected for bedding. A) 
Cefn Formation B) Tarannon Shales. The Cefn Formation is very scattered and Tarannon 
shales also show scatter. 
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Figure 6.21. Mean magnetic susceptibility (Kmean), shape (T) and degree of anisotropy (P) of 
Buttington Quarry specimens. These have been separated into specimens from the Cefn 
Formation which have weaker magnetic susceptibility and P values then the Tarannon Shales. 
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The tectonic act ivity and presence of girdling of the geographic 

corrected K-axes at this site (Fig. 6.19) quest ions if  the AMS fabric 

represents a sedimentary fabric or has it been altered by local tectonic 

activity.  This was tested using a direction-correct ion (DC) fold test 

(Enkin J., 2003) in Fig. 6.22. 

  

Figure 6.22. Direction-correction (DC) fold test using the declination and inclination of the bedding 
and the geographically corrected Kmin directions (Enkin J. 2003). The optimal clustering is at 

143% slope with a α95 ± 72.3% which the high value of the α95 suggest the test is limited in 
providing a clear-cut result. The DC slope value is 43% greater than values expected form 
undeformed sediments. The results indicate the magnetic fabric of sediments was created prior to 
the tilting or folding but also suggests the magnetic fabric has been significantly affected by 
folding. 
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Best fitting Slope (Unfolding): 142.9%; 

α95% Confidence interval: ± 72.3%,  

The DC fold test is positive, indicating the 
Kmin was probably acquired prior to 
tilting or folding. 
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6.7.2 Buttington Quarry Analysis 

Tectonism has had a greater impact on the sediments on this site. The 

beds experienced folding (beds were dipping >75o Fig. 6.19) and 

fault ing but no incipient cleavage has developed. When examining the 

parameters the P values are high, with some specimens lying within the 

maximum l imits of 1.13 for an underformed shale (Tarl ing & Hrouda, 

1993). These high P values indicate potential for the AMS ref lect a 

tectonic fabric. Evidence of a tectonic inf luence is also shown in Fig. 

6.22 which suggests the AMS fabric of sediments developed before 

folding but later may have been inf luenced by tectonics. Thus, when 

bedding correct ions are applied, the AMS axes appear to ref lect 

deposit ional textures for most of the samples.  

 There is one dominant Kmax direction orientated northeast-southwest 

which is al igned paral lel to the palaeoshorel ine (Fig. 6.19), suggesting 

a similar deposit ional mechanism to the succession at Hil lend Farm. As 

both the Cefn Formation and Tarannon Shales share similar AMS fabric 

it suggests they were deposited within a similar deposit ional same 

system. This implies that it  is the method of deposit ion that is 

controll ing the AMS fabric rather than composit ional dif ferences.  
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There was greater scatter in the AMS results at this site compared to 

others, these anomalous steep Kmax directions tend to have the weak 

Km , P values and more isotropic T values. The scatter is mainly found 

in the Cefn Formation which has a lower magnetically susceptibi l ity 

than those from the Tarannon Shales (Fig. 6.20.), thus the AMS fabric 

is not as well def ined for each specimen. However, the scatter is 

present throughout the quarry, this has been attr ibuted to increased 

deformation shown by its larger CAI value of 2.5 (Aldridge, 1986), that 

may have diagenetically altered crystall ine anisotropy.  
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6.8 Eaton Trackway 

The Eaton Trackway sect ion is located at the base of Wenlock Edge 

(Burgess & Richardson 1991). This is the youngest study site in the 

Welsh Borderlands, with the sediments deposited in the Homerian 

stage of the Wenlock. The units samples are from the Coalbrookdale 

Formation (Apedale Member) and the overlying carbonate rich Farley 

Member (Burgess & Richardson 1991). The samples col lected were 

mostly calcareous mudstones (Fig. 6.24).  

 

 

 

 

   

 

  

 

  

 

 

 

 

Figure 6.23. Geological map of the area around the Eaton Trackway site, showing key lithologies 
and minor local faulting. A key of the main geological units is shown in the top right. (EDINA. 2016) 
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Figure 6.24. Log of the Eaton Trackway site, divided into the shale dominated 
Apedale Member which is overlain by the calcareous Farley Member. The sample 
numbers are marked.  
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6.8.1 Eaton Trackway AMS Results 
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Figure 6.25. Stereoplots of AMS for Eaton Trackway. A) The In situ AMS fabric. B) Corrected for 
bedding orientation. The bedding dips gently with a maximum dip of 20°. 
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Figure 6.26. Stereoplots of AMS for Eaton Trackway that has been corrected for bedding. A) 
Apedale Member B) Farely Member. There is little variations in Kmax directions between the two 
lithologies. 
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Figure 6.27. The mean magnetic susceptibility (Kmean), shape (T) and degree of anisotropy (P) 
of Eaton Trackway samples. The group circled is the Farley member which has lower magnetic 
susceptibility and P values then the Apedale Member. 
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6.8.2 Eaton Trackway Hysteresis Results 

A sample from the Apedale Member was selected for hysteresis 

experiments to examine the paramagnetic contribution to the induced 

magnetisation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spec Type Ferromagnetic 
content (%) 

Para/diamagnetic 
content (%) 

Ms 
(Am2/kg) 

Mrs 
(Am2/kg) 

Hc 
(mt) 

Hcr 
(mt) 

Et 51.5 Pale-
brown 
MDST 

8.8 91.2 8.01x10-4 5.73x10-4 14.37 58.77 

Figure 6.28. Hysteresis plot of a mudstone sample from the Apedale Member in the Eaton 
Trackway site. The loop shows a paramagnetic dominated mineral contribution, owing to its 
straight nature with only a small saturating part before c. 100 mT. 

 

Table 6.1. Hysteresis parameters for the Apedale Member sample, MDST=mudstone. The 
percentage of ferrimagnetic paramagnetic/diamagnetic content. Ms=Saturation induced 
magnetisation, Mrs=Saturation remanent magnetisation. Hc/Hrh are coercivity and remanent 
coercivity. 
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6.8.3 Eaton Trackway Analysis 

The effects of folding and tectonism are insignif icant at the Eaton 

Trackway succession (Fig. 6.25). The very low CAI index (~1.5) would 

also suggest similar levels of heating as found in the Hillend Farm 

section (Aldridge, 1986). The Kmax directions only show one dominant 

trend northeast-southwest which is sl ight ly dif ferent from the other 

sites which may ref lect changes in palaeo-topography rather than a 

dif ferent deposit ional mechanism.  

Both the Apedale Member and Farley Member share the same AMS 

fabric, with similar Kmax directions (Fig.6.26), implying the deposit ional 

model has the greatest impact on the AMS fabric. This supports the 

interpretat ion of Buttington Quarry where the change in l i thology did 

not change direction of the AMS.  

The hysteresis data indicates that the mudstone sample was dominated 

(c.91%) by a paramagnetic mineralogy suggesting that the magnetic 

susceptibi l ity is control led by crystal l ine anisotropy from clay minerals 

with a preferred orientation. These clay minerals are probably the 

dominant source of  the AMS fabric in the other Silurian sites in the 

Welsh Borders, suggested by the similarly high T and P values.    
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6.9 Conclusion 

The effects of tectonism and thermal alterat ion on the AMS fabric are 

minimal for most of sites with the exception of the Buttington Quarry 

site, where it is inconclusive. A fold test and the AMS parameters of the 

Buttington Quarry potential ly ref lect a tectonic fabric with the high P 

values being on the threshold for a ‘typical’ underformed shale (Tarl ing 

& Hrouda, 1993) and the scatter throughout the quarry would suggest 

the deformation lead to the creat ion of diagenetically altered crystall ine 

anisotropy. The other sites unaffected by deformation have similar AMS 

fabrics to the Buttington Quarry site when the bedding correction has 

been applied, which suggests a sedimentary fabric for the sites. Hence, 

it is more probable that the AMS fabric for all the sites can be used to 

infer palaeoflow and a deposit ional model for the sites (Fig. 6.29). 

Cherns et al. (2006); Basset et al. (1992); Soper & Woodcock (1990) 

and Underwood (1994) have suggested that the deposit ional model was 

driven from the upli f t ing Pretannia landmass leading to northerly 

currents, where currents were either turbidit ic or part of a coast-paral lel 

current system. The AMS data ref lects a coast-following contourite 

system rather than basin-directed low intensity turbidity currents. High 

velocity turbidity currents would have more than one Kmax direct ion, 

showing transverse fabrics associated with grain interact ions. Also 

none of the sites have any signif icant Kmin imbricat ion that would be 

expected in a turbulent f low (Baas et al., 2007). The turbidity transport 

would be normal to the shoreline, but all the AMS Kmax directions are 

paral lel to the proposed palaeoshore-l ine (Basset et al., 1992). The 
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AMS fabrics are similar to those of Shor et al.  (1984) contourite study, 

which found planar AMS representing the bedding of muddy contourites 

that formed parallel to the shoreline whereas the Kmax direct ions for 

the turbidity currents were normal to the shorel ine. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.29. Palaeogeographic map showing the shore of Wales and the Welsh Borderlands in the 
late Middle Llandovery (Basset et al., 1992) with the added rose diagrams of the Kmax directions 
for each site. The inferred flow from the Kmax direction is aligned with shoreline suggesting a 
contourite system.  
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The effects that major l ithological dif ferences had on the AMS fabric 

were examined at the Buttington Quarry and Eaton Trackway sites. The 

Kmax directions were mostly similar between members and dif ferent 

l ithologies. The Cefn Member in the Buttington Quarry has a much 

weaker susceptibil i ty owing to greater quartz content which probably 

caused the occasional direct ional scatter.  However, despite changes in 

composit ion the AMS fabric was sti l l  be successful in indicating 

palaeoflow.  

Hysteresis data on a mudstone sample indicates the dominance of the 

paramagnetic contribution to the AMS. The crystall ine anisotropy could 

explain the high KM, P and T values when compared to the shape 

anisotropy of detrital magnetite found in Ainsa. Thus, AMS sourced 

from crystall ine anisotropy can be used to evaluate palaeoflow in these 

Silurian sediments. 
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7. Case Study: Marcellus Shale  

This sect ion examines AMS as a palaeocurrent indicator in the 

hemipelagic foreland basin sett ing of the Appalachian Basin. Samples 

were taken from two boreholes, borehole A and B located in Western 

Pennsylvania and north-western West Virginia. The aim of this is to 

examine the effectiveness of the AMS technique in a deep, organic-rich 

basin sett ing where conventional sandstone-based palaeocurrent 

directions cannot be obtained.  

7.1  Appalachian Basin  

The Marcellus Shale extensively sub-crops in the Appalachian Basin 

which is the foreland basin of Appalachian Orogeny (Bret et al., 2011). 

The fold-axes due to the Appalachian Orogeny are orientated northeast 

– southwest and folded rocks from the Orogeny cover several states 

from Northern Alabama to Newfoundland on the east side of North 

America (Ver Straeten et al., 2011; Fig 7.1).  

 

 

 

 

 

 

 

Figure 7.1. A palaeogeographic 
map of eastern Laurentia during 
the Middle Devonian. The non-
deposition areas are marked in 
grey and show the Appalachian 
orogenic relief in the east and 
the Findlay-Algonquin Arch 
which separates foreland 
Appalachian Basin from the 
Michigan and Illinois basins (Bret 
et al. 2011). Borehole A and B 
have been marked on as a blue 
and orange star, respectively. 

 

Findlay arch  

Appalachian 
orogeny 
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7.2 Geological Sett ing 

The Appalachian Basin init ial ly formed during the Lower Devonian and 

is strongly l inked with the coll ision of the eastern North America and 

Avalonia landmasses (Ver Straeten et al., 2011). The Appalachian 

Basin was created by the f lexure of l i thosphere related to the loading 

produced by eastward thrusting of the successive Taconic, Acadian and 

Alleghanian orogenic piles (Manning & Elmore, 2012). The Acadian 

Orogeny was caused by the oblique convergence of the Avalon terrane 

and the North American Craton from the mid-Devonian to the early 

Mississippian (Manning & Elmore, 2012). The Acadian Orogeny has 

been split  into three to four tectonic-phases representing individual 

pulses of Acadian deformation (Ver Straeten et al., 2011). 

7.2.1 Marcellus Subgroup 

The Marcellus Subgroup was deposited during the second tectonic-

phase of the Acadian deformation and formed the distal part of the 

Catskil l Delta system (Manning & Elmore, 2012). The deposit ional area 

of the Marcellus in the Appalachian Basin was dominated by hemi-

pelagic deposit ion which was strongly controlled by tectono-eustat ic 

inf luences (Lash & Blood, 2014). The tectonic controls happened on 

longer t ime scales associated with second to fourth order sedimentary 

cycles, whereas the eustatic controls ref lect the shorter f if th to sixth 

order sedimentary cycles (Manning & Elmore, 2012). 
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A 

Figure 7.2. Two palaeogeographic maps 
representing time around the Eifelan-Givetian 
boundary. A: A global palaeogeographic, where 1= 
Northern Africa; 2= Spain; 3= Czech Republic; 4= 
Central Germany, 5= Western Canada and 6= 
Appalachian Basin (DeSantis & Brett, 2011). 

B: A palaeogeographic map of Laurentia, where 
AA= Algonquin Arch; AB= Appalachian Basin; FA= 
Findlay Arch; A= Acadian highlands. Borehole A 
and B have been marked on as a blue and orange 
star, respectively (Blakey, 2013). 
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The Marcellus Subgroup is the basal subgroup of the Hamilton Group. 

The Hamilton Group was deposited in the mid-Devonian, specif ically in 

the Eifelian-Givetian (Manning & Elmore, 2012). The subgroup is 

succeeded by the Skaneateles Formation, but the underlying unit  

beneath the subgroup varies across the Appalachian Basin; in 

Pennsylvania the underlying unit is the Onondaga Limestone Formation 

(Lash & Blood, 2014; Brett et al., 2011; DeSantis & Brett, 2011; Fig 

7.3).  The Marcellus Subgroup is divided into two main formations, the 

Union Springs and Oatka Creek formations which represent two 

separate transgression events (Brett et al., 2011). Owing to the lack of 

a l ithostrat igraphic framework of boreholes A & B, this case study 

focuses less on the AMS of individual l ithologies. Instead, the AMS is 

used to establish basin-wide patterns, thus the use of a general 

strat igraphy of Pennsylvania can be justif ied. 

 

 

 

 

 

  

 

 

Figure 7.3. Stratigraphic chart of 
Pennsylvanian stratigraphy in the 
Eifelan-Givetian stages, columns left to 
right, stage, Ammonite and Conodont 
zones, transgression and regression 
cycles, biostratigraphy events (Carter 
et al. 2011; DeSantis & Brett, 2011).  
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7.3 Palaeoclimate & Biostrat igraphy 

During the mid-Devonian the Appalachian Basin would have been 

situated in the subtropics, c.25-30° southern lat itude (Werne et al. , 

2002; Ver Straeten et al., 2011). Regional sedimentat ion patterns were 

dominated by surrounding archs and highlands (Fig 7.1), but eustatic 

sea-level changes were connected to the global Rheic Ocean (Lash & 

Blood, 2014).  The Marcellus Shales are the distal part of the Catski l l 

delta and represent a hemipelagic/t idal estuary environment 

(Sl ingerland et al., 2009). The dominant f low direct ion is indicated by 

fossil orientat ions of graptol ites, brachiopods and ostracods which 

indicate f low to the SE (Jones & Dennison, 1970). 

Throughout the Eifelian-Givetian there is a general rise in global sea-

level (Fig. 7.4), a consequence of this being a global ‘greenhouse’ 

interval (Brett et al. , 2011). Brett et al.  (2011) claims there may have 

been unrecognised glacial periods of low sea-level to explain sea-level 

f luctuations, although there is no direct evidence of glacial sediments 

during this period (Brett et al., 2011). The transgressive and regressive 

cycles in the mid-Devonian have been recorded by Ver Straeten et al. 

(2011) and Brett et al. (2011) who were able to establish associated 

biogenic event such as the Kačák event. 
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The Eifelian-Givetian strat igraphy is well constrained owing to the 

presence of conodont zones and sparsely distributed pelagic goniat ite 

fossils. Bentonit ic marker beds have been used to correlate the 

strat igraphy (Brett et al., 2011). Carbon isotope signatures and other 

proxies have been used to support and confirm biogenic events; e.g. 

Fig 7.4 (Desantis & Brett, 2011). There were three dist inct biogenic 

events in the late Eifelian.  

First, the Bakoven event ref lected the abrupt deepening of the basin, 

with widespread anoxic condit ions that led to severe reduction of the 

Onondaga/Columbus faunas in the Appalachian Basin (Desantis & 

Brett, 2011). The following, Stony Hallow event, is characterised by the 

expansion and then contraction of the tropical Cordil leran Province 

which saw a regression in sea-level and a brief return of certain fauna 

Figure 7.4. Conodont zones, stable oxygen and carbon isotopes and the inferred temperature 
between the Eifelian-Givetian. On the far right is eustatic sea-level with biogenic events labelled 
(Desantis & Brett, 2011). 

 

Deeper sea-level 
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particularly Variatypa (Desantis & Brett, 2011). These fauna then began 

to disappear as sea-level deepened, producing anoxic deposit ion of 

shales once more (Desantis & Brett 2011). The third event, the Kačák 

event, is recorded by the deposit ion of dysoxic to anoxic sediments 

during the late Eifelian which resulted in a strong reduction in diversity 

in pelagic organisms (Desantis & Brett , 2011).  

Brown & Kenig (2004) used molecular fossils,  ‘biomarkers’, to support 

the interpretat ion of the palaeoenvironments. An example biomarker, 

related to the algal ‘Chlorobiaceae’ requires l ight, anoxic, and sulphuric 

condit ions to survive (Brown & Kenig, 2004). The extensive presence of 

Chlorobiaceae in the black shales would suggest geographical ly 

widespread euxinia within the water column during the mid-late 

Devonian (Brown & Kenig, 2004). 

The green/grey shales of the Marcellus Subgroup also contain 

Chlorobiaceae bacteria, but these are probably due to synsedimentary 

re-deposit ion from nearby black shales or because there were intervals 

of poor oxygenation (Brown & Kenig, 2004). This increase in algae in 

black shales can be explained by enhanced phytoplankton product ivity, 

with a stratif ied sea-water column where the upper column productivity 

controls the oxygen content and thus organic respiration on the sea 

f loor (Brown & Kenig, 2004).  
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7.4 Structure of Appalachian Basin 

The folding of the plunging Appalachian synform basin was 

synchronous with the deposit ion of the Marcellus Subgroup. 

Sedimentation within the basin was dominated by relative sea-level 

change which affected biogenic sedimentation and subsidence (Ver 

Straeten et al., 2011; Manning & Elmore, 2012).  

Hirt et al. (1995) examined the P-wave anisotropy of the Appalachian 

Basin (Fig. 7.5). They concluded that the P-wave anisotropy is 

dominated by stress relief micro-cracks, these micro-cracks do not 

ref lect in situ stress anisotropy, since during deposit ion the maximum 

stress would have been orthogonal to P-wave anisotropy observed. 

Instead, the anisotropy ref lects the crystal l ine fabric of the chlorite 

minerals.  

 

 

 

 

 

 

 

 

Figure 7.5. Magnitude and anisotropy of P-wave velocity of Devonian sediments (Hamilton Group 
to Candaway Group) within the Appalachian Basin taken from orientated borehole data gathered 
by Evans et al. (1989). The general orientation of P-wave is trending east northeast, except the 
anomalous NY4 borehole which may have been caused by an orientation error. The blue line is 
the axis of the anticlinal synform which plunges towards the southeast (Stamatakos et al., 1996). 
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The Marcellus ‘basin’ can be divided into three separate zones that 

show dif ferent deposit ional mechanisms: the carbonate dominated 

distal margin ( in the west), the basin axis and the proximal margin, in 

the east (Fig 7.6; Ver Straeten et al.,  2011). The Basinal Axis Zone was 

where the Marcellus shales were deposited, these deposits were mainly 

composed of dark shales and siltstones. The latter are thought to 

represent the distal ‘f luvial’ inf lux of sediment produced from the 

Acadian Orogenic high to the east (Menning et al., 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6. Schematic cross section of the Appalachian Basin (Ver Straeten et al. 2011). Mudrock 
deposition during high-stand and low-stands has been highlighted by different shading. The 
Marcellus Shale would have been supplied from suspension and biogenic contributions. The 
carbonates were deposited on the western distal margin and would have been deposited during 
periods of clastic starvation (Brett et al., 2011). 
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7.5 Post-Deformation and Thermal Maturity 

The Marcellus Subgroup was deformed during the Alleghanian Orogeny 

(during early Pennsylvanian to late Permian). This deformation of the 

Appalachians led to the formation of three structural provinces: the 

Plateau, the Blue Ridge and the Valley and Ridge, the latter is 

represented by numerous thrusts and folds (Manning & Elmore, 2012). 

The Alleghanian episode led to basin-wide f luid f low which altered the 

Onondaga Formation, producing authigenic i l l i te, authigenic K-feldspar, 

authigenic quartz, and Fe-rich chlorites (Lu et al., 1991).  

The Devonian strata was buried by younger sediments, causing the 

Devonian Shales e.g. Marcellus Shale to be subjected to variable 

temperatures and pressures (East et al., 2012). In northwest 

Pennsylvania the shale experienced low maximum temperatures and 

pressures, whereas the other site in this case study in West Virginia 

experienced enough burial to potent ial ly produce oi l (East et al., 2012)  

East et al.  (2012) mapped the thermal maturity of the Appalachian 

Basin (Fig 7.9),  using vitrinite ref lection (VR) as the main indicator of 

maturation. However this method has limited usefulness in some shales 

due to the lack of organic matter, therefore the Conodont Alterat ion 

Index (CAI) was also used by East et al., (2012) and Repetski et al., 

(2008).   
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CAI is an index of thermal maturity that is used in marine rocks from 

Ordovician to Triassic (Fig. 7.8; East et al., 2012; Repetski et al., 

2008). Marcellus shale CAI score of the samples described here varies 

from 0.5 to 1.5 and f its into the thermally immature to prolithic oil 

generation window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.8. Relationship between the different methods used for determining maturity, and their 
relationship to hydrocarbon generation zones (East et al., 2012). 
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Figure 7.9. Different zones of hydrocarbon maturity in northeast USA. Dots shows CAI and VR 
sample locations (East et al., 2012). Borehole A and B have been marked on as a blue and orange 
star, respectively. 
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7.6 Previous Magnetic work on the Marcellus 

Manning & Elmore (2012) performed rock magnetic characterisat ion, 

and determined magnetisation components on the Marcellus Shale in 

eastern Pennsylvania. Their study area was southeast of borehole A’s 

location and their data will therefore ref lect increased thermal maturity 

shown in its greater CAI score.  They found: a viscous component that 

had a maximum unblocking temperature up to 275°C; an intermediate-

temperature component that was removed by 250-290°C and was 

interpreted as a CRM in magnetite and a ChRM component with a  

higher unblocking temperature (480°C) that was interpreted as a late 

Carboniferous re-magnetisation produced during the Kiaman 

superchron (Lu et al., 1990).  

 

 

 

 

 

 

 

 

 

Figure 7.10. Vector 
orthogonal plots (Zijderveld 
1967). There are three 
components highlighted, 
the black viscous 
component which is 
removed at 290°C, a blue 
south easterly intermediate 
temperature component 
and a red, shallow 
southern characteristic 
remanent component 
which represents the 
Kiaman overprint (Manning 
& Elmore, 2012). 
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Manning & Elmore (2012) found dif ferent groups of ChRM’s which they 

concluded was the result of dif ferences in the remanence carriers. The 

f irst showed southerly decl inat ions and shallow up inclinat ions, 

interpreted as pyrrhotite as the remanence carrier. The second ChRM 

has more southerly declinat ions and shallow down inclinations, 

interpreted as magnetite being the main carrier of remanence.  

Hirt et al. (1995) studied the AMS of Devonian shales on the 

Appalachian plateau. Their study area was in southwest New York 

State and included the Hamilton Group and younger groups such as the 

West Falls Group. The shales in this study would have experienced 

greater thermal maturity than those in borehole A but wil l have a similar 

thermal maturity and CAI values as found in borehole B.  They 

concluded that the AMS fabrics ref lect a well-def ined bedding fabric 

associated with vertical compaction, as the degree of f lattening 

(Kint/Kmin) was between 1-7% and the fabric had a lesser def ined 

magnetic l ineation (Kmax/Kint) >1%.  

Hirt et al. (1995) measured the AMS at dif ferent temperatures to 

establish the AMS of ferrimagnetic and paramagnetic minerals. Room 

temperature measurements provided the AMS of the ferrimagnetic and 

paramagnetic minerals and those at l iquid nitrogen temperatures 

measured the chlorite fabric. Anhysteretic remanent magnetisat ion 

(AARM) was also measured for the magnetic anisotropy of 

ferrimagnetic minerals. They found the best relationship between 

compaction and degree of anisotropy was in the low-temperature AMS 

which was predominantly inf luenced by the crystall ine anisotropy of 
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chlorite or other platy minerals; these had P values of c.1.1. The 

chlorite is thought to have been recrystall ised from an i l l i te precursor 

that formed before the deformation and the Kmax direction of the 

chlorite (Fig. 7.11) corresponds directly to the fast direct ion of the 

seismic anisotropy (Fig 7.5; Hirt et al.,  1995); the low-temperature AMS 

ref lects a sedimentary fabric rather than a structural foliation of the 

Alleghanian orogeny (Hirt et al., 1995).  

The presence of a small ferrimagnetic component is indicated in the 

dif ference between low and room temperature AMS (Fig 7.11) which is 

thought to be caused by the presence of pyrrhoti te and magnetite which 

AARM has more northerly Kmax direct ions and has P values of c.1.16. 

In Western Pennsylvania (near borehole A) Kmax directions are 

orientated 270-290o ref lect ing the str ike of coal joints. In Pennsylvania 

and West Virginia (similar to study area) Kmax direct ions are orientated 

270-295o, ref lecting tension joints that post-date the anticlines of the 

Appalachian Plateau (Hirt et al., 1995).  

 

 

 

 

 

 
Figure 7.11. Equal-area, lower hemisphere stereoplots showing A) AMS magnitude ellipsoid 
measured at room temperature. B) AMS magnitude ellipsoid measured at liquid nitrogen 
temperature C) AARM magnitude ellipsoid. The Kmax direction for A and B are orientated to 
southwest-northeast, whereas C is orientated north-south (Hirt et al., 1995). 

A B C 
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7.7 AMS Study 

Samples used in the study were acquired from unoriented borehole 

cores. The bedding dip was zero in the cores and all  the AMS 

measurements were taken at room temperature with f ield correct ion 

str ike and dip of 0, 90° respectively.  

To azimuthally re-orientate the samples, they were treated to 

conventional palaeomagnetic techniques to determine their recent 

remagnetisat ion components (TVRM), the Kiaman part ial 

remagnetisat ion, and in some cases some remaining Devonian 

components. This was achieved by thermal demagnetisation up to 

200°c and then demagnetising the samples using an alternating f ield up 

to 90 mT (Fig. 7.12). The dif ference between the samples’ component 

declinat ions and in situ est imated component directions is used to 

establish the degree of rotation required to orientate the core 

specimens to true north. The reference TVRM component used was 

current magnetic north (0° declinat ion) and the reference Kiaman 

component declinat ion was 165° with a shallow southerly negative 

incl inat ion, taken from the average calculated by Manning & Elmore 

(2012). The degree of rotation determined from the TVRM and Kiaman 

where averaged (if  both present) to provide the overal l estimated 

degree of rotation. All the sample AMS data was then rotated (about a 

vert ical axis) using this angle to correct it  back to geographic North. 

The re-orientation was only partially effective as the TVRM and ChRM’s 

did not show a good clustering in borehole A which would be expected 

in the re-orientated stereoplots. 
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Figure 7.12. A) vector orthogonal plots (Zijderveld 1967). The red line shows the Kiaman component. 
B) Standardised demagnetisation plot and C) a stereoplot. The blue arrow highlights the thermo-
viscous component  

 

Figure 7.13. Stereoplots showing borehole A unorientated A) TVRM and B) Kiaman components. 
The samples show scatter which is expected if the samples were removed from unorientated cores. 
C) is the re-orientated TVRM which generally show steep northerly components and D) re-oriented 
Kiaman showing a shallow southeastly direction with some scatter. On the re-orientated stereoplots 
N is the current north. The re-orientated TVRM show a good clustering but the ChRM are more 
scattered indicating re-orientation was only partially effective.  
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7.7.1 Borehole A 

Borehole A is located in Pennsylvania, north east of Pittsburgh. Twenty 

four core plugs were taken from this core. The rotated AMS shows a 

clear Kmax grouping in a northeast-southwest trend (Fig 7.14), there is 

also a smaller northwest Kmax group.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.14. Two Kmax directional clusters are apparent, the dominat northeast-southwest and 
lesser north-westerly directed one. The Kmin imbrication is not present.  
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Figure 7.15. AMS parameters for borehole A. The top three graphs left to right are magnetic 
susceptibility, degree of anisotropy and shape and are plotted against depth (feet). The bottom 
graph is the degree of anisotropy against shape. A drop in mass susceptibility is marked by a red 
arrow. 
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The AMS results suggests that the Kmax ref lects the long-grain axis in 

mudstone, the Kmax is perpendicular to Kmin values and AMS has high 

T and P values throughout the borehole (Fig. 7.15). These results 

ref lect deposit ion from suspension showing well-def ined bedding fabric 

which later underwent (vertical) compaction with the samples with 

greater P values having experienced greater compaction. Therefore, 

the Kmax direction can be attr ibuted to the palaeoflow direction, 

therefore suggesting the currents were paral lel to the basin axis which 

is supported by the seismic anisotropy data in Fig. 7.5 (Hirt et al., 

1995).  

The second observation is the presence of a small northeastly Kmax 

group. These anomalies are not restr icted to a certain depth and there 

is no connection with a decrease in magnetic susceptibi l i ty or lesser 

degree of anisotropy. Hirt  et al. (1995) observed similar patterns in 

their AMS results.  They suggested that this could have been caused 

mineralogical dif ferences, such as a small ferr imagnetic contribution, or 

associated with coal tension joints in this area. However, these north-

westerly Kmax direction probably represent scatter associated with 

mineralogical changes rather than a structural fabric.  

The third observat ion is the sharp drop in magnetic susceptibi l ity at 

c.4490 feet, this has been attr ibuted to a higher content of carbonate 

i.e. greater calcite content. The greater calcite content would lower the 

sample magnetic susceptibil ity and would explain the drop in 

susceptibi l ity and degree of anisotropy. However, this cannot be 

confirmed owing to l imited samples below that depth. 
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7.7.2 Borehole B 

Borehole B is located in West Virginia, south of Wheeling. Ten samples 

were taken from this site. The TVRM data acquired from this site is 

similar to that of borehole A (Fig. 7.16) with rotated AMS results 

showing a clear Kmax trend in a northeast-southwest direction (Fig 

7.17). The Kmin results are sl ightly more scattered in these samples, 

this may be the result of mineralogical dif ferences associated with the 

sample’s thermal maturity indicated by the CAI scores which increased 

from 0.5-1 in borehole A to 1.0-1.5 in borehole B. 

Mineralogical dif ferences between the two sites are also indicated by 

the mass susceptibil ity which is much smaller in borehole B samples 

when compared to borehole A. Mineralogical dif ferences in samples 

would have been caused by geographical changes in sedimentation 

such as a greater carbonate inf luence rather than clay which may 

explain the greater scatter in borehole B. The regional dif ferences in 

thermal maturity of the two sites (Fig. 7.9) imply that borehole B has 

experienced greater thermal maturity. This could have increased the Km  

and P values as more chlorite is produced; however, these values 

decreased in borehole B which suggests the original composit ion rather 

than thermal maturity of the clays dominates the AMS fabric in these 

sites. 
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Kmax mean 
direction 

Figure 7.17. There is one 
dominant Kmax trend 
northeast-southwest with 
some scatter present. Kmin 
imbrication is not present. 
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Figure 7.16. Stereoplots 
showing borehole A 
unorientated A) TVRM and 
B) Kiaman components. C) 
is the re-orientated TVRM 
which generally shows 
steep northerly 
components and D) largely 
shows a shallow 
southeastly direction with 
some scatter. On the re-
orientated stereoplots N is 
the current north. The re-
orientated TVRM are a bit 
scattered but the ChRM 
show a good grouping 
indicating re-orientation 
was effective except for 
three anomalous results. 
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Figure 7.18. AMS parameters for borehole B. The top three graphs left to right are magnetic 
susceptibility, degree of anisotropy and shape and are plotted against depth (feet). The bottom 
graph is the degree of anisotropy against shape. A drop in degree of anisotropy is marked by a 
red arrow.  
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7.8  Hysteresis Study 

A hysteresis study was performed to establish the paramagnetic 

mineral contribution to the induced magnetisation (Fig. 7.19).  A grey 

shale specimen (Br.7) and black shale specimen (Cn 9) were compared 

and the estimated paramagnetic content from each specimen was 

estimated to be 74 and 93% respectively. This would suggest that the 

AMS in these rocks, particularly the organic rich shales, were 

dominated by a paramagnetic contribution. Hirt et al. (1995) found 

similar conclusions suggesting the AMS is chlorite dominated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.19. A) Sample Br7b, a grey shale B) Sample Cn9, a black shale. Both samples near linear- 
shape indicates that they have a large paramagnetic contribution, particularly the black shale. 
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7.9 Conclusion 

The results are supportive of the room temperature AMS studies by Hirt 

et al. (1995), f inding that the AMS data ref lects a sedimentary fabric 

that has experienced compaction rather than one created by tectonism 

(Baas et al., 2007). This is supported by the strongly oblate shape of 

the AMS fabric, and the Kmax orientations similar to previous fossil 

orientat ions of Jones & Dennison (1970) and seismic anisotropy of 

Evans et al. (1989). These studies would suggest the main 

palaeocurrent is orientated northeast - southwest.  

 

 

 

 

 

Spec Type Ferromagnetic 
content (%) 

Para/diamag-
netic content 
(%) 

Ms 
(Am2/kg) 

Mrs 
(Am2/kg) 

Hc 
(mT) 

Hcr 
(mT) 

Br 7 Grey 
clay 

26.1 73.9 1.94x10-3 4.80x10-4 12.93 18.39 

Cn 9 Black 
shale 

7.1 92.9 1.82x10-3 3.69x10-4 8.63 249.11 

Table 7.1. Hysteresis parameters for each of the sediment samples, MDST=mudstone. The 
percentage of ferrimagnetic paramagnetic/diamagnetic content. Ms=Saturation induced 
magnetisation, Mrs=Saturation remanent magnetisation. Hc/Hrh are coercivity and remanent 
coercivity respectively. 
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It was important to establish if  tectonism has had an impact on the 

data, as the hysteresis results and Hirt et al. (1995) suggest the 

magnetic fabric is dominated by crystall ine anisotropy associated with 

paramagnetic minerals such as chlorite. This crystall ine fabric would 

have been susceptible to deformation, as the chlorite plates could be 

re-aligned to the fold axis rather than the bedding plane. The chlori te 

has recrystal l ised from an il l i te precursor that ’s formation predates the 

Alleghanian deformation event (Hirt et al., 1995) and therefore more 

likely represents a deposit ional fabric.   

Samples in borehole A have a large ferrimagnetic content (Table 7.1);  

the ferrimagnetic minerals formation postdate the chlorite and the 

deformation, Hirt et al. (1995) suggests the ferrimagnetic fabric was 

ref lective of a growth of new phases which these ferrimagnetic minerals 

are carrying a younger magnetizat ion. A greater ferrimagnetic 

contribution to the AMS would explain the anomalous northerly Kmax 

direction which was inf luenced by coal/tension joints (Hirt et al., 1995). 

The drop in magnetic susceptibi l ity in the two boreholes can be 

explained as an interval with carbonate deposit ion, thus the drop is 

explained by an increase in calcite content. 

The two boreholes show a similar AMS fabric, having similar Kmax 

directions, P and T values, although borehole B samples have a lower 

average magnetic susceptibil ity.  This would suggest that the mode of 

deposit ion was consistent throughout the axis of the Appalachian 

Basin. Mineralogical dif ferences would explain the decrease in 
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magnetic susceptibil ity between the two boreholes, as a higher 

carbonate content would explain the scatter in borehole B.  

The increased thermal alteration between the two sites indicated by the 

increase in CAI from 0.5-1 in borehole A to 1.0-1.5 in borehole B, 

would have affected the AMS fabric. The higher maturity would have 

produced more chlorite in Borehole B, thus increasing B’s Kmean and P 

values if  the carbonate content were the same. However, this is not 

possible to examine owing to the increased carbonate content which 

lowers the susceptibil ity. Thus, the original composit ion rather than 

thermal maturity of the clays dominates the AMS fabric in these sites. 

The AMS results were able to show direct ion of palaeoflow within an 

estuary-hemipelagic basin (Slingerland & Loule, 1988). The AMS 

indicates a dominant current orientated northeast to southwest, running 

paral lel to the Appalachian Basin axis. 
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8. Conclusion 

This study explored the applications of anisotropy of magnetic 

susceptibi l ity (AMS) to examine fabrics in a variety of shale basins. 

There were four key areas that AMS was used to develop the 

understanding of each basin: 1) its applicat ion as a palaeoflow 

indicator; 2) understanding the magnetic mineralogy; 3) understanding 

the likely impact of tectonism on the AMS; and 4) to assist tradit ional 

methods in examining and interpreting palaeo-environments.  

8.1 Implicat ions of Using AMS as a Palaeoflow Indicator 

The main aim of this project was to evaluate the petrofabric using AMS 

and examine how AMS could be applied to shale basin studies 

following the principles set out by the likes of Baas et al. (2007); 

Borradaile (2001); Hamilton & Rees (1970); Kissel et al.  (1998) and 

Schieber & Ellwood (1993).  

8.1.1 Ainsa System 

The Eocene Ainsa System, the main focus of this project, comprises a 

series of turbidit ic units between thick interfan-shales. The case study 

util ised the deposit ional models set out by Baas et al. (2007) of how 

dif ferent direct ional petrofabrics are produced in sand dominated 

turbidites. The results from Ainsa were in agreement with their 

observat ions, indicating two modes in the sandstone fabrics: 1) f low-

aligned fabrics, where the grains aligned in the most stable posit ion, 

paral lel to the current f low indicated by tool marks and scour marks on 

the turbidites (Pickering & Corregidor, 2005); 2) f low-transverse 
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fabrics, where the Kmax directions were al igned perpendicular to f low, 

caused by high velocity deposit ional currents roll ing the grains.  

When examining the distribut ion of f low-aligned and f low–transverse 

fabrics, there were fewer f low-paral lel fabrics at the base of the Anisa 

Quarry section than expected. These f low-al igned fabrics would have 

represented the facies associated with the upper parts of turbidite beds 

(e.g. Td, Te; So et al., 1997). This bias towards transverse fabrics in 

the Ainsa Quarry was explained when examining an individual turbidite 

(Fig. 2.24). The turbidite was mostly composed of the lower Bouma 

facies (Ta-Tc), with these facies representing rapid low-density 

turbidity f lows which favour transverse fabric. At the top of the bed 

specimens showed a f low-al igned fabric that represented a change in 

the mode of transport. The sediments were transported in slower 

currents associated with upper Bouma divisions (Td-Te) but most of 

these upper facies had been removed by the overlying turbidite.  

A key observat ion is that transverse f low direct ions are also seen in the 

interfan-shales. The shales are a mixture of hemipelagic mudstone 

deposits and debris f lows. The f indings in this project support previous 

studies by Parés & Dinarés-Turel l (1993) which looked ‘grey marls’ 

around the Ainsa Basin sharing similar f low-al igned AMS fabrics, with 

similar shape anisotropy (T = 0.822) and a high degree of anisotropy 

(P’ = 1.044). However, they did not f ind transverse direct ions, but this 

can be explained by the small sample size they used and the focus on 

conventional marls and shales that would not have possessed 

transverse fabrics owing to their low viscous currents. Instead, 
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transverse fabrics in the interfan-shales are associated with the debris 

f lows containing pebbles (Fig. 5.10). Baas et al. (2007) and Park et al. 

(2013) explain the deposit ional condit ions in debris f lows as high 

velocity shearing f lows that caused the grains to interact and so al ign 

grains normal to f low.  

Park et al. (2013) examined Miocene fan-deltas in South Korea, they 

found the mud dominated l ithologies had varying AMS fabrics. The 

f low-al igned muds were similar to those mentioned in Parés & Dinarés-

Turell (1993). There were transverse mud, sand and heterol ithic 

debrites units which had oblate T values =~0.8 and Pj values =1.27. 

They suggested these transverse fabrics were generated by shear-

induced rotation of the long axis of the grains. This would explain the 

two modes of fabric in Ainsa interfan-shales, a f low-aligned 

hemipelagic mode and transverse mode found in the coarser silts or 

debrites. The debrites are supported by the presence of pebble beds in 

the shales that show this transverse fabric. 
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8.1.2 Welsh Borderlands 

The Welsh Borderlands study was used to compare low energy 

mudstones (possibly distal turbidites) and shelf-edge deposits with the 

Ainsa system. A series of samples of Telychian and Wenlock age units 

were taken from dif ferent parts of the shelf  edge of the Midland 

Platform and the AMS of each site shared a common northeast-

southwest Kmax trend with l i t t le to no f low-transverse fabrics. This 

Kmax trend is similar to the palaeoflow direct ions obtained from 

Underwood’s (1994) fossi l orientat ion study and the palaeoflow 

directions obtained by Soper & Woodcock (1990), suggesting the Kmax 

is indicat ive of shelf-parallel palaeoflow direct ions. Comparison to the 

deposit ional models in Baas et al. (2007) indicates that samples were 

deposited in low velocity systems (compared to those at Ainsa), 

insuff icient to rotate and rol l grains on the seabed. This assessment is 

supported by the high degree of anisotropy, the oblate fabric of the 

mud units and lack of Kmax- transverse fabrics. 

Soper & Woodcock (1990) and Cherns et al. (2006) suggest possible 

sediment sources during the Silurian; they suggest the sediments were 

deposited by northerly (to north easterly) directed currents generated 

from turbidite and suspension deposit ion. This basin-wide direction 

would suggest either widespread distal turbidites or palaeoflow was 

inf luenced by topography. Ziegler et al. (1968) established the 

shorel ine which the AMS Kmax directions are largely aligned paral lel 

to; thus the Kmax directions ref lect a basin-wide shore drif t or perhaps 

contourite system. 
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Previous studies by Shor et al. (1984) and Taira & Scholle (1979) 

looked at the AMS of contourites with respect to turbidite deposits. 

Their AMS study used a range of mud and sand sediments from bottom 

current deposits. The AMS fabrics showed horizontal foliation planes 

and the Kmax directions were paral lel to the shelf . The turbidites’ AMS 

fabric was dif ferent from that of the bottom current deposits, as the T 

values were more isotropic and they had a smaller degree of 

anisotropy. The change in mode of deposit ion is further supported by 

the dif ference in their Kmax directions. Shor et al. (1984) study found 

the Kmax direction of the turbidite to be normal to the shorel ine which 

was attributed to a new source of deposit ion. These previous case 

studies support the argument that the AMS fabric in the Welsh 

Borderlands ref lects a contourite system rather than a turbidite 

dominated basin as this was not supported by the AMS fabric.  
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8.1.3 Marcellus Shale 

The Marcellus shale is in many ways similar to the Welsh Borderlands 

Silurian, occurring in a shale dominated mid Devonian succession, but 

in this case in a more hemipelagic basin representing distal sources 

from a tidal estuary system (Slingerland et al., 2009). The Kmax 

directions ref lect a northeast-southwest trend which is the expected 

palaeoflow direct ion from previous fossil  orientation studies by Jones & 

Dennison (1970) and seismic anisotropy data from Hirt et al. (1995). 

Kmax long-grain axes show a well-developed foliation perpendicular to 

the Kmin values. The high T (oblate fabrics) and P values throughout 

the borehole suggest the fabric ref lects deposit ion from suspension. 

The AMS fabric is therefore a well-def ined bedding fabric which later 

underwent (vertical) compaction, with l it t le apparent impact from 

folding, since the core material is far from the Appalachian deformation 

fronts.  
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Case Study Environment Observations Analysis 

Ainsa System Turbidite 
dominated system 
with inter-shales 
between 
sequences. 

Two dominant modes 
of Kmax direction 
shown, one aligned 
with flow and one 
normal to flow 
(Pickering & 
Corregidor, 2005). 
Flow aligned Kmax 
directions are 
orientated NW-SE 
and found throughout 
the sequence but 
mainly at the top of 
turbidite beds and in 
the shales. 
Transverse fabrics 
Kmax directions are 
orientated NE-SW 
found in interfan 
shales and the base 
of the Ainsa Quarry. 

Flow-aligned fabrics 
represent both high velocity 
turbulent flows and low 
velocity flows that are not 
able to rotate the grains. The 
transverse fabrics dominate 
the Ainsa turbidite facies as 
these are favourable 
conditions for transverse 
fabrics and the top Bouma 
facies are absent. The 
transverse fabrics in the 
interfan-shales, represent 
debris flows which cause the 
‘rolling’ fabric. 

Welsh 
Borderland 

Hemipelagic mud 
dominated 
turbidite/ 
contourite basin. 

One dominant Kmax 
direction across the 
three sites, which 
aligns with the 
palaeoflow, directed 
to NE. Dominantly 
high degree of 
anisotropy and oblate 
shape. Small sample 
sets responsible for 
some anomalous 
data Fig 6.18. 

The dominant direction 
indicates the sites shared a 
similar source, throught the 
Silurian, interrupted as 
shore-parallel 
currents/contourites. Lower 
MS samples belong to sites 
which are richer in 
carbonates, e.g. the Eaton 
Trackway, Farley Member. 
Some of the Buttington 
Quarry anomalous results 
may be attributed to 
tectonism. 

Marcellus shale Hemipelagic 
estuary. 

One Kmax trend 
across the two sites, 
orientated NE-SW. 
Dominantly high 
degree of anisotropy 
and oblate shape, 
with noticeable 
changes at certain 
depth. 

The Kmax direction aligns 
with palaeocurrents obtained 
from fossil orientation and 
seismic anisotropic fabric No 
imbrication, strong degree of 
anisotropy and oblate shape 
suggest deposition from 
suspension. Changes in MS 
attributed to variations in 
chlorite content related to 
more carbonate or a higher 
quartz contents. 

Table 8.1. A summative table of the AMS fabrics and their interpretations for each of the case studies. 
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8.2 Composit ional Factors Controll ing the AMS   

By examining the effects of ferrimagnetic or paramagnetic contributions 

to the AMS data, the study was able to dist inguish the l ikely 

mineralogical source and if  it  was dominated by shape or crystal l ine 

anisotropy. 

The Ainsa samples showed a mixture of ferrimagnetic and 

paramagnetic mineralogy within the sandstone units. A ferrimagnetic 

mineralogy was dominant in the coarser sediments and was identif ied 

as probable multi-domain magnetite agreeing with claims of a detrital 

ferrimagnetic source by Mochales et al. (2012). This would suggest that 

the shape anisotropy is current-carried by f low-transverse aligned 

magnetite in the coarser sediments.  

AMS in samples that have a greater contribut ion from paramagnetic 

rather than ferrimagnetic minerals, ref lect a preferred crystal l ine 

orientat ion of paramagnetic minerals. Studies by Rochete (1987) and 

Hounslow, (1985) have suggested that paramagnetic mineral-derived 

AMS (carried by phyllosi l icates such as Fe-rich clays) can correspond 

to f low and bedding plane foliations in the rock fabric. The 

paramagnetic dominated samples in al l three basins examined ref lected 

the palaeoflow data obtained from tool marks, fossi l orientation, 

seismic and X-ray data. The f indings would suggest that AMS derived 

from paramagnetic minerals can be used to determine palaeoflow, 

providing they did not form authigenically or were later re-altered by 

post-deposit ion deformation.  
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8.3 Tectonism 

It is important to examine the impact of tectonism as this can change 

the fabric of the rocks, so it is crucial to be able to distinguish between 

textures produced from init ial deposit ion/compaction and those that 

formed from folding. Sedimentary fabrics can be confused with tectonic 

fabrics since both ref lect block fault ing or inversion in the basins, an 

example would be f lows parallel to bounding faults (Cifel l i  et al., 2005). 

Thus palaeoflow indicators are essential to infer and determine if  the 

AMS fabric is related to palaeocurrents or tectonism. This is 

particularly important when examining fabrics carried by phyllosi l icates 

and clays which are more susceptible to crystall isat ion during burial or 

incipient deformation. AMS in highly deformed sediments can be useful 

as a strain indicator (Parés, 2015) but was not desired in this study 

when inferring palaeoflow. 

Cifell i et al. (2005); Parés et al. (1999) have used AMS to infer 

deformation within basins. When beds are folded and the grain fabric 

deformed, the magnetic l ineat ion within the sediments can re-

orientated. Under these condit ions the magnetic l ineation will switch to 

being parallel to the axis of stretching, the fold-hinge or the 

intersect ion of cleavage and bedding (Hounslow, 1990; Cifell i et al. 

2005; Pares, 2015).  
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Sedimentary rocks used in this study experienced l it t le post-

deformation (none showed cleavage development), with oblate AMS 

ell ipsoids and foliat ions sub-parallel to bedding, and hence the AMS 

fabric is attributed to deposit ion and compaction (Baas et al., 2007; 

Cifell i et al., 2005). The Buttington Quarry samples in the Welsh 

Borderlands experienced folding (beds were dipping >75o) and fault ing 

compared to the other sites, but no cleavage development, and have 

low conodont alteration indices (CAI) of about 2.5 (Aldridge, 1986). 

However, when bedding correct ions are applied, the AMS fabric is 

comparable to the other Welsh Borderland sites and so it  is possible to 

reasonably infer that the AMS ref lects the palaeoflow. Other Silurian 

sites sampled had lower degrees of heat alterat ion of 1 to 1.5 CAI. 

The two Marcellus sites experienced dif ferent levels of post 

deformation with borehole B experiencing slight ly greater maximum 

temperatures than borehole A, indicated by the CAI index increase from 

0.5-1 in borehole A to 1.0-1.5 in borehole B. However, the two sites 

both share similar AMS fabrics, suggesting that the effects of 

deformation on the AMS are minimal.  
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8.4 Anisotropy of Magnetic Susceptibil i ty in Determining Environments   

This study has been successful in showing that AMS can be used to 

establish paleof low and some types of grain deposit ion, which makes it  

a useful tool to establish palaeoenvironment (Joseph et al., 1998). This 

is particularly important in shale basins, where tradit ional methods may 

not be applicable.  

AMS could be used on a large scale to map f low in basins, such as the 

Marcellus Shale in the Appalachian Basin and the Welsh Borderlands, 

or to infer changes in sources directions or currents. On a smaller 

scale AMS could be used to evaluate individual beds (e.g. in the Ainsa 

System) to infer the type of grain-mode transport. An example would be 

the f low-transverse fabrics in the interfan shales which suggests that 

fabrics related to debrites are much more common than can be inferred 

in the f ield. Conversely, the f low al igned fabrics in similar looking 

mudstone facies indicate deposit ion from suspension and probably low-

velocity turbidity currents. The fabrics in the turbidite sequence can be 

used to determine which parts of the Bouma sequences are present 

and if  they are from the channel axis or levee/overbank units.  
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The main limitat ion of using AMS is that it can be inf luenced by 

tectonism which may distort the inferred palaeoflow direction. Veloso et 

al. (2007) was able to infer the extent of block rotat ion on the 

sediments within the Late Miocene Main Volcanic Unit of the Taitao 

ophioli te in Southern Chile. They were able to f ind an inferred 

northwest palaeoflow using un-orientated AMS data. However, the 

samples were re-orientated using palaeomagnetic correct ions and the 

inferred direct ion was northwest west which better ref lected the 

structure of the basin. Piper et al. 1996 used AMS fabric to determine 

the extent of Acadian tectonism on mudrocks in the Windermere Basin, 

northern England, establishing the impact of cleavage on the AMS 

fabric. Also sediments that show magnetical ly weak susceptibi l it ies 

tend to have inconsistent AMS data and cannot be relied on.  

Overall the project found AMS to be a rel iable indicator for the paleo-

schematics of basins. This project aimed to explore AMS as a potential 

technique to understand transport mechanisms in shale-prone basins 

where conventional methods were dif f icult to apply. AMS was 

successfully used to examine the petrofabric of shales but could not be 

used to def initely describe the transport mechanism without having an 

understanding of the structural geology of the basins. Therefore the 

future of AMS being used in these shale-prone basins is a support ive 

role and should be used when the structural geology is known. AMS 

studies of shales should be used in conjunction with sandstone fabrics 

in order to provide an accurate and rel iable palaeocurrent direction.  
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Appendix  

Palaeomagnetic data 

Ainsa Quarry  

 
Treatment Intensity TVRM TVRM TVRM TVRM Chrm Chrm Chrm Chrm 

 

AQP Bedding corrected Range dec inc a95 Range dec inc a95 Class 

11.1 0-350-80mt 0.13 nrm-200 297.2 63.6 10.4 250-
20mt 

238.8 -58.8 11.5 s2 

12.5 0-350-80mt 0.33 100-250  311.6 40.1 19.1 20-60mt 188.5 -60.2 26.7 s2 

13.1 0-350-80mt 0.15 nrm-200 357.5 74.1 9.2 350-phi 224.2 -37.6 12.6 s2 

12.3 0-350-80mt 0.22 nrm-250 326.9 70.9 10.7 250-
40mt 

243.1 -43.5 7.9 s1 

16.1 0-350-80mt 0.19 nrm-150 308 65.5 6.2 350-
10mt 

265.3 -45.9 32.4 s3 

18.5 0-600 0.29 nrm-150 254.4 67.1 13.2 150-400 237 -53.6 8.3 s2 

22.3 0-600 1.5 100-300 54.5 27.5 5.2 350-500 244.2 -27 13.6 s1 

 
 

Treatment Intensity TVRM TVRM TVRM TVRM planes planes planes planes 
 

AQP Bedding corrected Range dec inc a95 Range dec inc a95 class 

2.1 0-350-80mt 0.26 100-200 8.6 54 9.2 200-400 306.8 36 19.6 t2 

2.4 0-350-80mt 0.26 100-150 348.9 59 3.7 10-phi 333.1 13.2 21.4 t2 

3.2 0-600 0.13 100-200 8.6 54 18.4 0-400 303.3 8.2 18.4 t2 

3.3 0-600 0.26 100-200 2.5 60.8 12.3 200-450 128.6 -17.2 13.1 t1 

4.3 0-350-80mt 0.18 nrm-150 6 65.4 2.8 20mt-phi 234.7 35.7 13 t2 
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4.4 0-350-80mt 0.2 nrm-250 21.3 68 4.5 250-420 204.8 32.4 14.3 t1 

5.1 0-600 0.62 nrm-200 285.4 48.2 32.3 250-phi 149.2 10.6 7.9 t2 

5.2 0-600 0.71 nrm-150 225.4 14.1 5.2 450-phi 225.4 14.1 5.2 t2 

6.3 0-350-80mt ? 
   

420-PHI 354.9 -6.3 17.9 t3 

7.2 0-350-80mt 0.32 nrm-150 308.9 72.4 5.8 100-phi 177.2 16.1 15 t1 

7.3 0-350-80mt 0.26 nrm-200 305.7 67.3 5.2 0-phi 173.7 11.7 6.7 t1 

8.2 0-350-80mt 0.16 100-200 288.6 52.6 5.2 350-phi 329.5 -30 11.5 t2 

8.4 0-350-80mt 0.27 100-200 308.4 55.5 5.4 350-phi 28.5 -66.2 16.6 t2 

9.1 0-350-80mt 0.21 nrm-250 265.9 63.7 5.4 250-phi 146.5 -6.4 17.8 t2 

9.2 0-350-80mt 0.55 nrm-250 260.4 76.6 4.3 350-380 277.6 12.7 6.2 t2 

10.1 0-600 0.2 nrm-250 302.4 40.3 4.3 150-350 177.5 20.1 5.5 t2 

10.3 0-600 
 

nrm-300 224.9 21.6 8.4 360-420 98.1 -48.4 21.9 t3 

11.4 0-350-80mt 0.0877 nrm-250 311.3 59.4 4.1 300-390 322.8 -5.4 14.1 t1 

13.2 0-350-80mt 0.83 100-300 79.2 8.9 5.5 10-40mt 343.3 -42.1 24.8 t2 

14.2 0-350-80mt 0.14 100-150 334.6 61.5 7.6 360-phi 350.2 -6.8 12.3 t2 

16.2 0-350-80mt 0.11 nrm-150 323.9 63.2 3.6 300-380 228.6 56.3 19 t2 

17.4 0-350-80mt 0.19 nrm-250 105.3 65.5 5.1 250-360 252.1 13.6 6.8 t3 

18.3 0-600 0.23 100-250 5 78 12.9 300-phi 91.5 -31.2 18.3 t2 

19.4 0-350-80mt 0.17 
    

50-phi 55.6 18.4 23.3 t1 

19.5 0-350-80mt 0.21 NRM-200 195.1 72.6 11.4 200-350 34 -36 18.5 t2 

22.4 0-600 0.63 No TVRm 
   

0-phi 314.5 47.3 27.4 t1 

23.1 0-350-80mt 0.6 nrm-300 313.5 72.2 5.1 0-60mt 33.6 -3.1 10.1 t2 

23.3 0-350-80mt 1.3 100-300 207 53.3 3.1 370-phi 125.3 21.7 19.6 t1 
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Barranco Forcaz 
 

intensity Treatment TVRM TVRM TVRM TVRM Chrm Chrm Chrm Chrm 
 

BFP 
  

Range dec inc a95 Range dec inc a95 Class 

1.2 0.28 0-350-80mt 
    

10-40mt 265.5 -58.4 5 s1 

2.5 0.29 0-350-80mt nrm-200 272.3 74.2 5.2 250-450 234 -61.4 5.9 s1 

4.2 0.32 0-350-80mt 
    

250-30mt 251.8 -56.7 10 s1 

6.1 0.27 0-350-80mt 
    

350-500 226.6 -63.1 13.2 s1 

7.1 0.36 0-350-80mt 
    

250-70mt 233 -46.5 6.2 s1 

8.2 0.3 0-350-80mt NRM-300 260 68.9 5.1 30-50MT 212.9 -45.5 7.5 s2  

9.1 0.32 0-350-80mt NRM-250 281.4 75.6 11.9 350-70MT 199.1 -55.6 7 s2  

10.1 0.41 0-350-80mt NRM-200 266.7 55.8 8.8 20-40MT 217.8 -51.9 13.3 s2  

10.3 0.11 0-350-80mt NRM-250 350.3 69.4 2.6 40-50MT 200.8 -38 12.6 s2 

11.3 0.33 0-350-80mt nrm-250 285.7 35.6 18.5 350-50MT 230.4 -50.4 7 s1 

12.1 0.37 0-350-80mt NRM-200 263.6 62.8 7.2 10-50MT 213.5 -57.1 5.6 s1 

18.1 0.34 0-600 nrm-250 315.4 77.8 4.1 250-350 254.6 -37.4 9.1 s2 

22.1 0.48 0-350-80mt 
    

10mt-60mt 237.8 -56 9.4 s1 

22.2 0.67 0-350-80mt 
    

200-60mt 217.8 -45.2 2.7 s2 

24.4 0.8 0-350-80mt 
    

10-50mt 201.2 -39.4 6.4 s1 

25.4 0.49 0-350-80mt 100-250 287.6 86 6.1 300-350 212.1 -36.2 23.3 s3 

28.1 0.2 0-350-80mt nrm-200 311.9 74.6 15 200-20mt 261 -45.1 15.2 s2 

31.2 0.15 0-350-40mt 
    

350-40mt 203.9 -64.9 14.2 s1 

35.5 0.14 0-350-80mt nrm-200 262.6 68.9 8.2 350-40mt 216.5 -48.2 14.2 s3 

39.3 0.26 0-350-80mt 
    

10-40mt 220.4 -56.8 3.6 s1 

42.4 0.45 0-350-80mt nrm-200 212.5 68.1 4.6 300-10 248.6 -52.5 14 s2 
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46.2 0.22 0-350-80mt nrm-250 293.2 66.6 4.4 300-20mt 199.2 -67 22.8 s2 

 
 

intensity Treatment TVRM TVRM TVRM TVRM planes planes planes planes 
 

BFP 
  

Range dec inc a95 Range dec inc a95 Class 

2.3 0.34 0-350-80mt nrm-300 273.7 73.6 4.3 350-550 107.8 -14.6 12.9 t1 

5.3 0.33 0-350-80mt 
    

360-410 284.2 38.3 17.7 t2 

13.2 0.31 0-350-80mt NRM-200 14.1 69.8 4.3 200-PHI 267.1 -60.2 7.9 t3 

14.2 0.43 0-350-80mt 100-250 61.4 60.2 3.7 390-phi 113.8 -33 12.5 t2 

16.1 0.34 0-350-80mt nrm-250 220.8 67 12.6 370-410 180.8 7.9 5.9 t1 

17.1 0.45 0-350-80mt 
    

360-400 229.5 39.4 26.9 t2 

19.3 0.64 0-350-80mt nrm-250 256.5 66.3 6.2 360-390 326.1 -36.2 16 t3 

20.2 0.74 0-350-80mt nrm-250 36.8 60.4 6.5 350-400 126.6 1.9 7.6 t2 

21.2 0.17 0-350-80mt 100-250 100.4 54.6 8.9 250-390 46.3 -42.8 12.8 t3 

24.1 0.58 0-350-80mt 
    

350-400 102.5 -16.2 26 t1 

26.1 0.37 0-350-80mt 200-10 312.2 2.8 7.6 350-400 303.9 58.4 6.5 t2 

27.1 0.28 0-350-80mt nrm-150 320 71.6 5.2 390-phi 139.4 14.9 28.2 t1 

33.3 0.18 0-350-80mt nrm-200 81.9 68.2 9 350-400 201.7 52.3 17.5 t2 

33.5 0.64 0-350-80mt 100-300 260.1 8.9 5.6 350-410 45.2 67.7 11.2 t2 

38.4 0.46 0-350-80mt nrm-200 331.5 55.2 3.3 360-400 3.9 18 10.1 t2 

42.5 0.47 0-350-80mt 
    

350-400 285.5 -24.8 18.9 t2 

43.4 0.71 0-350-80mt nrm-250 241.3 32.3 8.9 370-400 57.2 -25.5 12.7 t2 

45.3 1 0-350-80mt nrm-250 227.4 61.5 6.8 250-390 122.6 26.3 14.1 t1 

47.2 0.24 0-600 
    

300-450 301.4 -4.3 27.2 t1 

47.5 0.23 0-600 
    

250-400 235.1 16.1 18.2 t1 
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48.1 0.15 0-350-80mt 150-250 285.8 41.8 24.6 250-phi 76.6 -36.7 18.5 t2 

48.5 0.21 0-350-80mt nrm-200 68.1 62.7 6 360-390 230.4 15.7 33.7 t2 

 

Marcellus Shale - Borehole A 
  

  TVRM TVRM TVRM   TVRM Kiaman Kiaman Kiaman Kiaman Kiaman Intermediates 
 

Polarity 

sample NRM 
Intensity 

Range dec inc a95 Range dec inc a95 Rho 
 

dec inc a95 
 

2 0.23 0-200 268 57 5.8 225-255 104 -25 30 0.6 205-225 75 76 19 N 

5 0.15 0-225 299.3 69.4 6.8 225-275 51.2 47.8 14.9 0.8           

6 0.553   250 30 
 

  40 -21 
 

  
 

287 19 
 

K 

7b 0.284 0-205 286 69 15   
   

1 
    

N 

8 0.11 0-220 241 74.8 7.3 220-280 66.6 7.6 10.3 0.75           

9 0.84 100-
225 

319 80 3 225-265 111 2 16 1 
    

N?? 

10 0.13 0-205 200 60.7 6.4 205-245 318 66.5 12.6 2           

11 0.056 0-225 245 62 
 

  
   

1.2 
    

weak and 
scattered 

12 0.1 0-200 178 39 40 235-@ 326 -4 27 1.1 205-225 50 75 27 K 

13 0.3889 0-210 43 81 4   
   

  210-265 96 -19 6 N  

14 0.092 0-205 175 74 11 235-295 281 19 24   215-235? 17 -41 27 N? 

16a 0.316   303 73 
 

  140 -12 
 

  
 

160 37 
 

R?? 

16b 0.08 0-205 24.3 49.6 4.7 215-280 197 10.4 6 1.3 205-215 187 74.6 26.9   

17 0.075 0-210 303 64 21 210-255 102 -37 20   
    

too scattered 

18 0.086 0-215 344 78 21   
   

0.8 
    

R?  

19a 0.104 210-
235 

42 55 19 275-@ 181 -45 23 0.8 
    

K 

19b 0.694   291 78 
 

  
   

  
 

111 58 
 

R 

20 0.072 0-200 314.5 43.9 6 215-@ 106.4 52 7.5 1.2   127.2 0.9 28.2   

21 
 

  
   

  
   

  
     

22a 0.076 0-215 126.6 74.3 12.2 235-@ 77.8 -2.4 17 0.5 215-235 346.6 -3.9 37.4   
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23 0.073 0-210 101.9 67.7 5.6 210-@ 252.5 19.8 8.2 1.4           

24 
 

  
   

  
   

  
     

26 0.11 0-205 49 57 6   
   

1.2 205-215 264 88 13 R 

27b 0.075 0-210 356.4 70 17.5 210-@ 15.1 11 9.6 0.5           

28 0.121 0-210 328.8 70.8 3.2 210-@ 121.5 -10.9 3.5 1           

29a 0.502 100-
210 

146.6 65.8 7.4 210-@ 309.2 -6.2 1.9 1.2           

B2h_30 0.406   330 66 
 

  
   

  
    

R 

B2h_31 0.343   332 60 
 

  104 -40 
 

  
    

K 

32 
 

  
   

  
   

  
     

b2h_33 0.313   175 67 
 

  326 -7 
 

  
 

334 25 
 

K 

b2h_38 0.1029 0-200 348 60 35 285-@ 258 -19 28 0.8 200-275 251 62 17 K 

 

Marcellus Shale – Borehole B 
  

TVRM TVRM TVRM TVRM Kiaman Kiaman Kiaman Kiaman Intermediates 

 
sample NRM 

Intensity 
Range dec inc a95 Range dec inc a95 

 
dec inc a95 

1 0.2 0-200 107.6 30.5 4.6 210-@ 284.6 57.9 4.4 200-210 78.9 55.3 17 

3 0.268 0-210 147.4 78.9 4.4 210-@ 0.9 28 4.2         

4 0.333 0-210 129 80.9 4.8 210-@ 24.1 21.2 4.6         

6 0.499 0-215 215.7 79.4 3.8 260-@ 348.8 11.2 23 215-235 351.8 22.4 27.7 

8 0.728 0-200 105.4 63.4 9.2 200-@ 350.1 7.4 2.7         

10 0.243 100-200 100 72.4 5.5 220-240 243.1 14.1 19.5 200-220 211.8 77.1 4.8 

11 0.241 0-210 190.5 78.9 3.3 250-@ 33.4 9.6 16 210-250 63 33.9 18.9 

13 0.442 0-200 33.7 77.3 4.6 210-@ 217.3 18.5 8.8 200-210 146.2 79 20.2 

14 0.316 0-210 256.9 75.2 4.1 210-@ 47.6 9.3 6.9         

16 0.389 0-210 153.2 79.8 5.1 210-@ 35.2 5.8 3         
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Bedding and AMS data 

Ainsa Quarry 

 

Sample Field 
Strike 

Field Dip Bedding 
strike 

Bedding 
dip 

Km  P T  B1-Dec B1-inc B2-Dec B2-Inc B3-Dec B3-inc 

Ainsa Roadside 

ar1 168 38 166 22 123 1.034 0.193 353.3 1.9 84 2.9 222.9 85 

ar2 158 45 166 22 132 1.024 0.473 345.7 3.2 82.4 42.9 252.4 44.3 

ar3 139 23 166 22 108 1.021 0.386 115.1 4.1 24.2 7.2 258.8 83.1 

ar4 136 13 159 23 65.3 1.027 0.884 43 11.2 133.8 3.9 242.7 78.1 

ar5 164 30 159 23 69.2 1.014 0.427 51.6 2.9 321.3 6.7 165.2 82.7 

ar6 149 10 159 23 64.6 1.011 -0.139 46.9 18.1 141.4 12.7 263.4 67.2 

ar7 336 74 159 23 104 1.004 -0.597 235.9 3.6 326.6 11.6 109.1 80.6 

ar8 
  

159 23 
         

ar9 162 29 159 23 101 1.016 0.748 58.1 3.4 327.7 6.4 175.5 82.8 

ar10 341 37 159 23 61.5 1.018 -0.71 58.8 52.2 244.6 38.1 152.3 2.4 

ar11 162 29 159 23 127 1.053 0.952 6.3 1.7 276.1 3.6 119.2 86.2 

ar12 212 15 159 23 118 1.039 0.927 314.9 5.7 45.5 8.6 192.1 79.8 

Ainsa Quarry 

2 220 32 160 20 46.1 1.03 0.288 331.4 14.1 243.3 2.9 144.5 78.7 

90 272 72 176 26 59.3 1.007 0.478 22.2 9.9 305 36.8 246.2 76.4 

91 332 53 176 26 92.3 1.004 0.703 73.6 11.5 287.9 31.5 267.9 78.1 

3 172 32 160 20 59.3 1.014 0.8 222.2 7.4 312.7 4.5 74.2 81.4 

92 330 54 176 26 75 1.016 0.603 78.6 16.6 344.9 19.3 266 73.2 
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93 76 11 176 26 53.8 1.032 0.784 270.5 6.1 88.6 31.1 180.7 -2.2 

4 170 25 160 20 54.2 1.018 0.383 249.3 6.9 340.5 8.6 120.8 79 

95 244 76 176 26 65.5 1.016 0.847 34.4 10.1 309.1 24.1 273.8 70.8 

94 162 24 176 26 89 1.016 0.616 129.4 9.6 213.5 26.9 267.1 77.1 

5 138 22 160 20 65 1.016 0.845 52.9 11.3 144.7 8.7 271.1 75.6 

6 158 21 160 20 60.6 1.014 0.945 52.5 3.2 142.9 6.7 297.2 82.6 

7 150 19 160 20 61.9 1.015 0.625 123.6 4.1 34.1 1.1 280.3 85.4 

8 170 06 160 20 75.5 1.02 0.202 1.6 5.8 271.1 4.4 144.6 82.7 

9 190 20 160 20 79.3 1.014 0.59 342.8 2.4 73.1 6.1 234.4 83.6 

10 120 20 160 20 80.7 1.019 0.813 38.8 1 129.5 37.8 307.5 52.2 

11 122 24 160 20 53.3 1.022 0.864 60.9 11 151.1 0.5 243.5 79.1 

12 160 15 160 20 76.7 1.02 0.79 59.6 9.2 329.1 2.8 222.7 80.3 

13 168 20 156 21 84.1 1.017 0.715 201.9 6.4 111.8 1.4 8.5 83.5 

14 226 10 156 21 82.2 1.028 0.622 312.7 4.4 44.4 21.1 211.4 68.5 

15 160 21 156 21 67.2 1.013 0.655 172.9 3 82.9 0.8 339.6 86.9 

16 156 18 156 21 65.5 1.017 0.55 119.6 5.1 29.3 4.5 258 83.2 

17 136 21 156 21 85.5 1.02 0.6 144 13.8 238.4 17.6 17.8 67.3 

18 164 17 156 21 96.9 1.013 0.556 306.2 6.2 216.1 0.2 124.2 83.8 

19 200 21 156 21 80.3 
  

29.2 19.6 294.9 11.5 176 67 

20 172 15 156 21 39.1 1.012 -0.184 354.6 2.7 85.5 2 219.3 86.9 

21 182 25 156 21 49.4 1.019 0.4 312.7 8.6 43.4 4.4 160.7 80.3 

22 138 20 156 21 59.4 1.016 0.894 130.1 11 153.7 10.2 342.2 79.7 

23 130 26 156 21 50.6 1.005 -0.257 112.2 15.8 204.2 6.6 316.2 72.8 

Ainsa Interfan-shales I 
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50-52 n/a n/a 160 21 135 1.066 0.922 358.6 0.3 268.3 1.6 79.3 87.5 

53 294 56 160 21 105 1.029 0.597 99.2 19.9 6.7 7.6 258.4 68.8 

54 284 49 160 21 125 1.026 0.713 53.8 14.4 148.5 21.9 287 63.7 

56 164 16 160 21 112 1.041 0.823 110.2 20.5 200.3 1.3 294 69.3 

57 230 16 160 21 109 1.043 0.728 113.9 16.9 22.1 5.1 275.5 72.2 

58 216 22 160 21 119 1.026 0.924 73 12.1 341.8 13.5 220.2 77.8 

60 202 16 160 21 131 1.021 0.655 0.1 10.2 89.9 1.8 202.5 79.4 

62 141 19 141 19 126 1.037 0.702 353.5 14.9 84.6 6.2 200.8 75.8 

63 236 12 141 19 169 1.038 0.717 101.2 9.9 191.4 1.7 290.2 79.8 

64 268 18 141 19 109 1.035 0.572 25.3 25.8 300.3 4.1 201.8 64.4 

65 278 10 141 19 128 1.038 0.878 73.7 16.3 164.1 1.5 255.9 74.2 

80 340 27 176 20 128 1.052 0.699 118.2 19.5 23.3 13.5 261.3 65.9 

81 12 60 176 20 137 1.048 0.718 122.1 18.9 35.2 1.3 298.6 71.5 

82 228 28 176 20 93.9 1.024 -0.06 289.3 1.4 199.5 15 17.5 76.1 

83 53 72 176 20 112 1.023 0.303 98.7 9 6.2 14.9 219.6 72.3 

84 182 71 153 22 146 1.03 0.305 297 7.4 201.5 33.6 38.5 55 

85 206 26 153 22 145 1.045 0.708 129.3 7.4 37.2 10.5 254.9 77 

86 297 15 153 22 124 1.059 0.805 125 12.1 32.8 10.3 261.8 74.2 
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Barranco Forcaz 

Sample F ie ld  
str ike  

F ie ld  
d ip  

Bedding  
str ike  

Bedding  
d ip  

Km  P  T  B1-Dec  B1- in c  B2-Dec  B2- In c  B3-Dec  B3- in c  

1  109  20  134  30  76.6  1 .021  0 .505  357 .7  9 .7  88.6  5 .2  206 .4  78.9  

2 138  30  134  30  79.5  1 .009  0 .237  328 .5  9 .2  103 .2  10.3  234.5  79 .5  

4 148  32  134  30  74.5  1 .003  0 .006  319 .8  6 .3  59.6  57.1  225 .8  32.1  

5 156  30  134  30  85.2  1 .015  0 .409  10.5  17.7  102 .7  6 .8  213.1  70 .8  

6 136  33  134  30  61.6  1 .018  0 .676  324 .7  4 .3  55.3  7 .5  205 .2  81.4  

7 130  27  134  30  79.9  1 .01  -0 .101  311 .9  8 .8  44.3  15.7  193.6  71 .9  

8 136  31  134  30  74.9  1 .017  0 .621  141 .5  12.4  50.1  6 .4  292 .9  76  

9 098  28  134  30  88.9  1 .022  0 .301  97  39.1  196 .4  11.6  299.7  48 .6  

10  138  20  134  30  67.3  1 .012  0 .536  135  4 .9  41.2  37.6  231 .2  51.9  

11  119  30  134  30  57.8  1 .02  0 .38  144 .5  5 .8  53.8  8 .2  273.3  79 .6  

12  112  35  134  30  82.1  1 .018  0 .779  147 .7  24  239 .9  4 .3  339 .1  66.1  

13  142  25  134  30  61.6  1 .005  0 .066  59.8  1 .6  150 .3  15.6  324.4  74 .3  

14  140  35  134  30  68.6  1 .026  0 .687  290 .5  1 .6  20.6  1 .9  160 .2  87.6  

15  139  37  137  30  89.1  1 .015  0 .376  138  3 .3  228 .1  1 .5  342.9  86 .4  

16  149  30  137  30  47.3  1 .014  0 .455  302 .4  1 .2  32.7  13.2  207  76.8  

17  090  26  137  30  74.1  1 .006  0 .492  124 .1  25.9  29  10.3  278.9  61 .8  

18  120  24  137  30  80  1 .006  0 .552  141 .2  1 .9  50.7  16.6  237 .5  73.2  

19  119  26  137  30  83.3  1 .013  0 .222  121 .3  31.6  30.3  1 .4  297.9  58 .4  

20  148  26  137  30  59.2  1 .019  0 .563  320  9  229 .8  3 .1  121 .1  80.4  

21  150  26  137  30  51.6  1 .011  -0 .189  100 .5  11.7  192 .9  12.1  327.7  72 .3  

22  134  30  137  30  100  1 .004  0 .895  323 .4  2 .4  54.3  17.6  225 .6  72.2  
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23  148  28  137  30  93.5  1 .005  0 .885  143 .2  9 .5  52.6  3 .6  301.9  79 .9  

24  113  29  137  30  101  1 .034  0 .727  118 .6  10.3  208 .8  1 .2  305 .1  79.5  

25  189  27  137  30  93  1 .005  -0 .196  32.3  4 .2  122 .4  0 .7  218.2  85 .7  

26  126  27  137  30  102  1 .003  -0 .417  37.9  36.8  186 .2  49.7  294 .8  14.6  

27  152  40  137  30  98.9  1 .006  0 .149  38.1  13.9  143 .6  47.2  296.3  39 .6  

28  146  26  137  30  87  1 .008  0 .514  325 .5  9 .3  57.6  12.5  200  74.3  

30  158  27  141  32  89  1 .008  0 .74  150 .5  3  60.4  2 .6  288.7  85 .9  

31  160  36  141  32  44.2  1 .018  0 .408  310 .2  14.5  40.9  3 .9  143 .4  75.1  

32  168  32  141  32  102  1 .009  0 .433  310 .4  15.2  43.3  10.1  166  71 .6  

33  180  35  141  32  84.6  1 .006  -0 .316  341 .3  5 .3  250 .1  13.7  92  75.4  

34  340  24  141  32  102  1 .004  0 .111  265  58.4  7 .4  7 .7  101.9  30 .4  

35  184  20  141  32  105  1 .004  0 .006  127 .1  67.7  235 .3  7 .2  328 .1  20.8  

37  140  21  141  32  69.1  1 .002  -0 .612  131 .4  34.2  276 .6  50.3  28 .9  17 .5  

38  120  24  141  32  76.5  1 .012  0 .747  127  13.9  35.2  7 .3  278 .4  74.3  

39  120  25  141  32  60.4  1 .009  0 .748  60.5  11.2  152 .3  8 .8  279.6  75 .7  

41  154  30  141  32  95.7  1 .006  0 .789  293 .7  24.6  32.1  17.6  154  59.1  

42  138  40  141  32  76.1  1 .004  0 .835  75.5  14.1  341 .8  13.8  209.2  70 .1  

43  130  26  141  32  80  1 .011  0 .366  49.9  7 .4  142 .2  17.4  297 .6  71  

44  138  36  141  32  103  
  

146 .4  6 .9  236 .8  3 .5  353 .2  82 .3  

45  119  38  141  32  103  1 .007  0 .086  129 .9  10.4  225 .8  31.2  21.6  56.4  

46  142  30  141  32  70.3  1 .004  -0 .097  337 .4  20.7  82.7  54.4  245.3  33  

47  100  22  141  32  95.2  1 .007  0 .622  170 .8  26.9  68.4  22.8  304 .1  53.4  

48  152  40  141  32  74.5  1 .005  -0 .437  130 .3  3 .6  38.5  25.5  227.8  64 .2  

60  264  11  140  29  112  1 .049  0 .476  45.8  2 .2  312 .1  65.1  137  24.9  
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61  272  36  148  25  119  1 .024  -0 .429  34.2  14.2  128 .1  20.1  270.2  65 .3  

62  136  41  148  25  115  1 .012  0 .197  354 .4  6 .7  263 .4  6 .7  130 .4  80.7  

63  98  23  148  25  122  1 .027  0 .602  38.5  6 .4  128 .9  7 .1  255.3  82  

64  104  10  146  26  143  1 .039  0 .6  202 .4  3 .2  292 .7  2 .6  42.7  86.4  

68  138  32  146  26  116  1 .019  0 .49  0 .7  12.4  93.5  11.3  224.7  73 .1  

69  132  28  142  22  121  1 .017  0 .501  4 .2  12  98.1  17.3  241 .6  68.4  

70  136  31  142  22  93.9  1 .021  0 .459  350 .8  12.7  84.6  16.3  225.1  68 .8  

71  140  27  146  22  108  1 .026  0 .624  3 .3  10.6  95.5  13  234 .8  73  

72  148  31  148  29  106  1 .017  0 .391  356 .3  15.5  92.8  21  231.5  63 .4  

73  156  34  156  23  102  1 .005  -0 .478  36.6  25.2  127 .5  1 .3  219 .1  64.4  

88  142  29  132  22  124  1 .016  0 .336  359 .9  8  91.4  10.5  234.1  76 .8  

89  128  31  132  22  143  1 .029  0 .751  320 .4  10.6  54.1  18.5  201 .8  68.4  

90  146  22  132  22  88.2  1 .023  0 .464  0  12  92.3  9 .2  217.7  74 .3  

 

Welsh borderlands 

Hillend Farm 

Spec  Field strike  Field dip Bedding strike Bedding-dip  Km P T B1-Dec B1-Inc B2-Dec B2-Inc B3-Dec B3-Inc 

HEF1.2 40 14 53 20 240.1 1.009 -0.226 223.4 2.9 133.2 8.3 332.2 80.9 

HEF2.2 130 14 53 20 374.7 1.092 0.543 54.6 1.5 325 6 156.4 83.8 

HEF3.3 35 13 53 20 258.6 1.097 0.602 49 3.6 139.3 3 267.6 85.3 

HEF5.1 50 20 50 20 297.1 1.087 0.557 227.9 5.6 137.2 3 24 84.4 

HEF5.3 50 20 50 20 259.8 1.088 0.563 48 9 139 6 259 79 

HEF6.3 55 20 50 20 333.9 1.083 0.534 229.7 9.5 139.1 5 23.8 79.9 

HEF7.2 39 10 39 10 299.2 1.101 0.708 337 0.1 67 10 246.9 80 

HEF10.1 60 15 55 15 279.7 1.09 0.967 194.8 6.9 103.7 6.1 332 81 
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HEF10.2 60 15 55 15 342.3 1.119 0.675 59.2 4.1 328.9 2 213.9 85.4 

HEF10.3 60 15 55 15 431.3 1.12 0.668 56.5 1.7 146.9 1 264 88.1 

HEF11.1 90 55 55 21 295.9 1.086 0.351 228.2 32.5 126.5 17.7 12.9 51.9 

HEF12.2 70 25 55 21 255.1 1.092 0.42 221.8 1.8 131.8 1.6 1.4 87.6 

HEF12.3 70 25 55 21 298.9 1.096 0.35 225.8 1.7 135.9 0.2 51.7 88.8 

HEF13.2 55 21 55 21 263.4 1.086 0.568 47 2.9 317 4 177.3 85 

HEF14.3 75 13 55 21 314 1.101 0.62 246.9 2.4 157 1.5 33.4 87.6 

HEF15.2 67 21 67 21 320.3 1.097 0.598 62 3 152 7 310 83 

HEF15.3 67 21 67 21 312.9 1.099 0.6 56 2 146 2 294.1 87 

HEF16.2 71 20 71 20 314.9 1.091 0.629 42 4 132 1 234 86 

HEF17.2 89 21 69 21 307.5 1.096 0.518 227.7 3.1 317.8 2.6 97 86.5 

HEF19.2 95 76 69 21 328.6 1.096 0.59 262.3 15.7 152.2 49.3 4 35.4 

HEF42.2 90 45 90 45 98.51 1.012 0.767 85.8 2.8 176.1 17.2 345.1 72.5 

HEF43.2 54 34 54 34 112.5 1.002 0.801 346.5 41.1 81.4 6 178.1 48.3 

HEF43.3 54 34 54 34 126.5 1.005 0.042 42 12.8 134.7 11.6 264.9 72.8 

 

Buttington Quarry 

Spec   Field strike Field dip Bedding strike Bedding dip  Km P T B1-Dec B1-Inc B2-Dec B2-Inc B3-Dec B3-Inc 

BQ2A 2 17 51 86 135 1.003 0.44 175 7.8 75 51.2 271.4 37.7 

BQ2B 2 17 51 86 145.3 1.009 0.152 298.1 58.4 103.6 30.3 197.2 6.4 

BQ2C 2 17 51 86 124 1.005 -0.692 155.9 20.5 42.4 46.5 261 36.7 

BQ4A 0 0 51 86 193.2 1.007 -0.177 134.8 80.9 320.8 9 231 1 

BQ4B 0 0 51 86 190.2 1.016 0.543 132 17.3 224.4 6.4 336.3 71.3 

BQ10A 102 10 51 86 385.8 1.024 0.419 233.1 0.9 143.3 8.5 327.3 80.9 

BQ10B 102 10 51 86 420.3 1.029 0.411 45.6 5.6 315.4 1.8 208.9 84.6 

BQ10C 102 10 51 86 386.3 1.024 0.074 222.4 6.5 132.1 5.7 356.6 81.4 

Minor Fault 
            

BQ13C 40 5 50 85 114.8 1.016 0.429 179 10.2 86.8 12.6 306 73.5 
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BQ14A 85 10 50 85 172.4 1.018 0.729 197.9 18.7 105.9 5.3 0.8 70.2 

BQ14B 85 10 50 85 165.5 1.016 0.68 200.4 24.2 108.9 3.8 11.1 64.5 

BQ15B 338 34 50 85 209.2 1.005 0.329 194.1 22.5 286.9 6.6 33.6 66 

BQ15C 338 34 50 85 266.8 1.007 0.107 178 2.7 269.2 14.5 77.7 74.5 

BQ16B 58 90 50 85 489.8 1.034 0.592 219.5 6.8 128 10.1 340 78.3 

BQ17A 50 90 50 85 219.4 1.089 0.755 213.2 3.4 122.3 9.1 320 80 

BQ17C 50 90 50 85 224.6 1.095 0.767 205.2 3.9 115.1 8.7 320 80 

BQ18A 50 78 50 85 314.2 1.009 -0.295 195.2 13.5 287.1 7.1 46.8 75 

BQ18B 50 78 50 85 381 1.009 0.202 186.9 0.5 76.8 87.8 276.6 2.6 

Minor Fault 
            

BQ19.2 69 69 63 83 196.1 1.031 0.826 267.9 10 358.8 6.4 119.3 77.9 

BQ21.2 64 80 64 80 366.4 1.104 0.931 221 2.1 130.6 3.9 334 86 

BQ26.1 346 27 67 75 312.7 1.082 0.854 8.1 49.4 174.2 39.8 270.1 7.5 

BQ26.3 346 27 67 75 308.6 1.082 0.884 14.9 53.7 174.1 34.7 271.1 10.2 

BQ27B 325 41 67 75 406 1.088 0.894 55.8 3.1 146.6 8.6 310.4 81.1 

BQ28.2 22 17 67 75 352.6 1.096 0.92 250.2 11.6 160.1 2.4 58.7 78.2 

BQ28.3 22 17 67 75 354 1.094 0.968 250.8 6.2 340.8 0.5 76.4 83.2 

BQ30A 80 68 67 75 307.8 1.063 0.862 205.5 7.8 295.9 4.2 55.2 81 

BQ30B 80 68 67 75 353.3 1.064 0.942 213.9 8.3 304.6 5.4 68.3 80.3 

BQ30C 80 68 67 75 329.8 1.064 0.898 208.6 7.9 299.8 10.9 81.5 76.2 

BQ31B 82 75 67 75 339.1 1.061 0.877 220.7 16.7 312.9 6.3 62.7 72.4 

BQ31C 82 75 67 75 359.2 1.061 0.9 235.6 17 326.7 3.3 69.3 72.6 

BQ32.1 173 71 67 75 327.8 1.082 0.792 207.7 64.1 106.1 4.8 14.4 24.8 

BQ33.2 320 41 67 75 342.8 1.072 0.895 359.9 1.4 89.7 4 246.5 86.1 

BQ34A 74 78 67 75 369.3 1.107 0.93 233.7 4.5 143.4 6.2 0.1 82.4 

BQ34B 74 78 67 75 358.2 1.1 0.924 226.3 8.3 135.8 5.2 14 80.1 

BQ34C 74 78 67 75 385.1 1.088 0.944 217.2 9.3 126.3 4.5 10.8 79.2 

BQ36.1 70 76 67 75 295.4 1.087 0.861 87.3 1.4 177.6 9.1 349.5 80.8 

BQ44.2 327 85 69 81 316.5 1.092 0.756 251.9 11.7 345.1 17.3 130.4 69.2 
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BQ46.1 69 81 69 81 309.4 1.11 0.955 43.5 0.7 313.6 0.4 23.6 90 

BQ47.2 70 87 69 81 246.6 1.1 0.898 192.8 3.6 102.3 0.7 357.4 86.8 

BQ50.1 188 37 69 81 355 1.064 0.127 305.1 18 204.3 29.3 61.4 54.7 

BQ63.3 72 84 64 85 367.9 1.06 0.741 191.6 13.1 283 5.5 34 76.1 

BQ65.2 72 12 64 85 237.9 1.098 0.949 257.1 38.7 36.4 43.4 148.7 22.3 

BQ72.3 80 72 80 72 278.4 1.066 0.757 63 12 153 0.8 248.7 77.6 

BQ74.3 170 -27 80 72 234.8 1.087 0.938 168.2 21.6 258.7 2.5 355.3 67.9 

BQ75.3 80 90 80 72 374.3 1.08 0.809 257.1 0.9 167.2 19.4 350 70 

BQ76.1 160 75 80 72 284.5 1.086 0.963 337.4 57.3 176.3 31.9 80.4 8.5 

BQ77.3 90 85 80 72 316.5 1.126 0.957 264.4 7 171.6 19.4 13.3 69.4 

BQ78.3 70 60 80 72 293.9 1.084 0.968 100.5 8.4 9.8 2.1 265.3 81.4 

BQ80.2 64 88 80 72 262.1 1.069 0.812 225.1 2.8 134.1 24.3 320.6 65 

BQ85.1 308 41 80 72 355.9 1.112 0.957 86.8 15.6 177.7 3.9 283.7 73.9 

BQ85.2 308 41 80 72 327.5 1.112 0.949 47.5 9.4 139.9 14.7 285.1 72.6 

BQ90.3 85 48 85 48 313.5 1.129 0.966 289.5 1.4 199.2 3.7 52.8 86.4 

 

Eaton Trackway 

Spec Field strike  Field dip Bedding strike Bedding Dip  Km P T B1-Dec B1-Inc B2-Dec B2-Inc B3-Dec B3-Inc 

ET1.1 226 15 12 11 241.6 1.059 0.849 265.1 3.5 175.2 8 18.6 81.6 

ET1.3 226 15 12 11 243.1 1.058 0.872 264 5.5 173.1 8.6 27 79.6 

ET7.3 298 11 65 8 240.9 1.05 0.827 275.1 1 5 3.9 177.2 86.6 

ET8.2 63 8 65 8 187.1 1.048 0.849 252.8 2.1 161.8 6.1 3.9 83.5 

ET15.1 291 9 306 12 181.2 1.047 0.733 76.3 0.9 166.2 2.7 334.5 87.4 

ET19.3 118 36 38 11 227.4 1.063 0.947 121.8 26.1 317.5 62.9 214.7 6.5 

ET21.2 36 11 38 11 211.2 1.044 0.802 263.4 0.8 353.7 1.7 149 87.8 

ET23.1 33 15 42 13 191.1 1.049 0.859 268.2 3.4 359.1 4.9 142.2 83.8 

ET27.1 58 20 60 20 156.2 1.054 0.876 71.1 1.3 340.9 7.6 170.3 82.2 

ET27.4 58 20 60 20 148 1.053 0.846 71.8 3.2 341.8 6.6 187.7 82.9 
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ET27.5 58 20 60 20 170.9 1.053 0.849 67.7 3.6 338 9.8 178.5 79.8 

ET29.1 45 18 45 18 170.6 1.053 0.834 55.1 2 325 8.7 162 81.4 

ET29.1 45 18 45 18 150.5 1.056 0.883 255.9 1.2 345.8 0.4 81 88.2 

ET29.2 45 18 45 18 147.1 1.053 0.866 255.9 1.2 346.1 2.4 135 88 

ET29.4 45 18 45 18 153.1 1.056 0.887 245.3 2.2 155 0.1 71.4 87.4 

ET29.5 45 18 45 18 166.3 1.057 0.888 257.1 4.6 348 2 103 85 

ET3.2 328 13 12 11 198.3 1.03 -0.644 26.7 17.5 295 5.7 187.9 72.4 

ET31.2 150 6 40 8 100.6 1.007 0.72 111.3 2.4 201.6 1.5 327.9 86.9 

ET33.2 40 8 40 8 101.2 1.012 0.574 67.6 3.3 158.2 9 317.1 80 

ET33.4 40 8 40 8 105.2 1.019 0.619 75.3 0.4 165.1 7.5 344.4 82.3 

ET35.1 235 10 60 10 97.76 1.018 0.559 85.8 2.7 355.7 1 233.1 87.6 

ET35.2 235 10 60 10 94.7 1.023 0.91 68.8 9.6 338 4.9 222.2 79.6 

ET37.2 62 6 60 10 99.18 1.023 0.605 256.9 1.9 167.3 8.5 358.2 80.4 

ET37.3 62 6 60 10 99.34 1.024 0.652 257.9 2.1 167.2 9.5 358.2 80.4 

ET37.4 62 6 60 10 109.3 1.023 0.689 237.5 2.6 148.1 6 353.1 83.7 

ET39.2 72 14 52 7 112.1 1.019 0.733 257.1 1 166.9 16.7 349.9 73.4 

ET39.4 72 14 52 7 102.4 1.028 0.813 69.2 9 339 2.7 231.7 80.2 

ET39.4 72 14 52 7 97.69 1.029 0.784 75.7 13.3 345.1 4.4 235.7 76 

ET41.3 314 7 52 7 97.53 1.023 0.597 86.9 7 177.7 1.3 273.3 82.7 

ET41.4 314 7 52 7 101.9 1.026 0.759 101.8 6.7 191.5 3.5 312.1 82.9 

ET43.1 176 7 52 7 108.7 1.031 0.721 273 2.6 3.1 4.3 151.9 84.7 

ET43.3 176 7 52 7 110.3 1.03 0.625 254.1 0.6 163.8 0.5 54 89.5 

ET43.4 176 7 52 7 101.6 1.031 0.853 250 1.2 159.9 0.3 56 89 

ET45.3 90 3 37 6 92.55 1.021 0.872 274.1 1 184.6 2.8 13.3 86.6 

ET45.4 90 3 37 6 91.17 1.018 0.635 235 0.9 144.8 4.3 333.5 85.7 

ET47.3 40 8 40 8 185.5 1.051 0.873 79.5 1.9 169.5 2.8 318.9 86 

ET51.3 50 13 70 7 88.18 1.029 0.726 66.9 7.4 159 14 308.8 74.3 

ET51.4 50 13 70 7 89.81 1.03 0.741 63.9 7.8 156.2 16 307.8 71.2 

ET51.5 50 13 70 7 88.84 1.031 0.668 79.2 17 173.5 13.2 301.6 67.8 



xvii 
Appendix 

Marcellus Shale – Borehole A 

Spec Depth 
(feet) 

 strike  dip  Km P T Rotation angle k1-Dec k1-Inc k2-Dec k2-Inc k3-Dec k3-Inc 

4 4909.75 0 90 168.2 1.065 0.902 76.5 77.5 1 167.5 1 290.5 89 

5 4913.25 0 90 117.1 1.073 0.786 87.25 237.25 8 147.25 3 35.25 81 

6 4915.75 0 90 187.7 1.134 0.878 117.5 265.5 13 170.5 18 30.5 68 

7A 4918.65 0 90 59.99 1.015 0.695 
       

7B 4918.65 0 90 134.9 1.054 0.814 354 328 3 237 7 84 82 

8 4921.55 0 90 83.38 1.12 0.911 109 48 2 318 7 150 82 

9 4925.3 0 90 113.1 1.009 0.51 47.5 261.5 6 353.5 17 154.5 72 

10 4928.5 0 90 90.46 1.1 0.844 156.5 51.5 3 141.5 1 253.5 87 

11 4931.25 0 90 125 1.146 0.897 171.5 253.5 7 343.5 2 86.5 83 

12 4934.15 0 90 135.5 1.147 0.903 171.5 29.5 5 119.5 2 231.5 84 

13 4938.65 0 90 128.5 1.123 0.861 317 179 13 272 12 41 72 

14 4939.85 0 90 140.7 1.16 0.896 185 86 1 356 2 217 88 

16A 4948.3 0 90 111.8 1.096 0.842 41 63 2 154 1 269 88 

16B 4948.3 0 90 117.5 1.147 0.898 183.9 82.9 4 352.9 0 257.9 86 

18 4954.95 0 90 164.2 1.142 0.917 16 42 3 132 1 244 87 

19A 4957.65 0 90 171.6 1.162 0.921 318 356 2 87 5 243 84 

20 4960.6 0 90 137 1.175 0.935 52 83 0 353 1 173 89 

21 4963.6 0 90 162.4 1.128 0.958 
       

22A 4966.7 0 90 158.1 1.182 0.931 160 94 4 4 0 272 86 

22B 4966.7 0 90 100.9 1.022 0.573 
       

23 4970.15 0 90 118.9 1.173 0.939 173 305 2 35 1 165 88 

24 4972.75 0 90 130.6 1.145 0.925 
       

26 4979.65 0 90 138.1 1.127 0.879 311 57 4 147 2 259 86 

27A 4980.6 0 90 91 1.132 0.888 
       

27B 4980.6 0 90 154.4 1.163 0.917 77 286 5 17 12 174 77 

28 4982.1 0 90 140.8 1.143 0.908 37 24 6 294 1 194 84 
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29a 4989.1 0 90 37.47 1.107 0.875 179 31 1 121 2 264 88 

29B 4989.1 0 90 106.9 1.173 0.934 
       

30 4992.05 0 90 73.1 1.043 0.889 30 229 2 319 4 116 85 

31 4994.95 0 90 42.8 1.028 0.205 
       

31rpt 4994.95 0 90 42.37 1.03 0.146 44.5 49.5 3 140.5 6 296.5 83 

32 4998.6 0 90 40.32 1.005 -0.281 
       

38 #N/A 0 90 128.5 1.125 0.902 93 207 2 297 2 77 87 

 

Marcellus Shale – Borehole B 

Spec depth (feet)  strike  dip  Km P T Rotation angle k1-Dec k1-Inc k2-Dec k2-Inc k3-Dec k3-Inc 

1 6324.3 0 90 104.9 1.138 0.896 119.6 108.6 12 8.6 39 211.6 48 

3 6330.65 0 90 102 1.105 0.907 164.1 24.1 9 116.1 9 250.1 77 

4 6333.05 0 90 120.6 1.126 0.975 140.9 34.9 3 124.9 7 283.9 82 

6 6339.9 0 90 92.87 1.09 0.941 183.8 347.8 4 256.8 11 100.8 79 

8 6346.55 0 90 77.71 1.025 0.642 185.1 51.1 20 149.1 21 282.1 60 

10 6352.2 0 90 79.81 1.114 0.943 78.1 172.1 2 262.1 5 58.1 85 

11 6355.5 0 90 59.39 1.082 0.829 131.6 43.6 10 134.6 3 238.6 80 

13 6360.85 0 90 50.23 1.046 0.482 52.3 279.3 5 9.3 0 105.3 85 

14 6363.95 0 90 38.5 1.072 0.611 117.4 349.4 1 79.4 1 218.4 88 

16 6369.85 0 90 49.23 1.08 0.845 129.8 31.8 20 122.8 4 222.8 70 

 


