
A Programmable SDN+NFV-based Architecture
for UAV Telemetry Monitoring

Kyle J. S. White∗, Ewen Denney†, Matt D. Knudson‡ Angelos K. Marnerides§, Dimitrios P. Pezaros∗
∗ School of Computing Science, University of Glasgow, G12 8QQ, Scotland

mail@kylewhite.com, dimitrios.pezaros@glasgow.ac.uk
SGT/NASA†, NASA‡ Ames Research Center, Moffett Field, CA 94035, USA

ewen.denney, matt.knudson@nasa.gov
§InfoLab21, School of Computing & Communications, Lancaster University, LA1 4WA, UK

a.marnerides2@lancaster.ac.uk

Abstract—The explosive growth in the worldwide use of
Unmanned Aerial Vehicles (UAVs) has raised a critical concern
with respect to the adequate management of their ad hoc network
configuration as required by their mobility management process.
As UAVs migrate among ground control stations, associated
network services, routing and operational control must also
rapidly migrate to ensure a seamless transition. In this paper,
we present a novel, lightweight and modular architecture which
supports high mobility and situational-awareness through the
application of Software Defined Networking (SDN) and Network
Function Virtualization (NFV) principles on top of the UAV
infrastructure. By combining SDN+NFV programmability we
can achieve a robust migration of UAV-related network services,
such as network monitoring and anomaly detection as well as
smooth UAV migration that confronts high mobility requirements.
The proposed container-based monitoring and anomaly detection
Network Functions (NFs) as employed within our architecture
can be tuned to specific UAV types providing operators better
insight during live, high-mobility deployments. We evaluate our
architecture against telemetry from over 80 flights from a
scientific research UAV infrastructure showing our ability to tune
and detect emerging challenges.

Keywords—SDN, NFV, Unmanned Aerial Vehicles, Air Traffic
Management, Situational Awareness

I. INTRODUCTION

The Federal Aviation Administration (FAA) forecasts that
there will be 2.7 million [8] non-hobbyist (>55lbs) commercial
UAVs in the U.S. National Airspace System by 2020. On
the anticipated introduction of further policy and regulatory
frameworks which allow for Beyond Visual Line of Sight
(BVLOS) flight, expected numbers look set to increase signif-
icantly. This predicted explosion and integration of Unmanned
Aerial Systems (UAS) in which UAVs are part of has numerous
consequences for the infrastructure of Air Traffic Manage-
ment (ATM) systems worldwide. Among wider challenges
including spectrum allocation, and data security and safety,
a core concern is the ad hoc network configuration required
for mobility management for UAS. With integrated UAS,
the network infrastructure will require the ability to migrate
network configuration, including network functions associated
with specific UAVs, to ensure resilient, uninterrupted service.
Numerous UAS offer migration functionality including the
Viking 400. With the FAA transitioning to an IP-based in-

frastructure through NextGen1, and a similar modernisation
program taking place in Europe through SESAR2, the op-
portunities to embed state-of-the-art networking infrastructure
support for the emerging UAS needs are currently ideal.
Present safety regulation ensures early UAV activities take
place in areas above low population density outwith controlled
airspace. Perhaps consequently, existing core applications for
UAVs of this size have used such regions for tasks including
agricultural work, environmental monitoring, oil exploration,
wildlife and land management. These distributed areas of
operation often suffer from poor networking infrastructure
(in terms of both bandwidth and connectivity) even for low
levels of demand. To achieve reliable and safe UAS integration
into the wider controlled airspace worldwide, resilient, reli-
able, recoverable, and low-latency network infrastructures and
systems are vital. Most currently deployed UAV systems are
isolated, operating independently, and often employing their
own bespoke protocols, hardware infrastructures and software
systems. As standardisation improves, systems which allow for
multiple UAV operations management will become the norm.
Existing UAS have begun simplifying, easing the process of
integration and compatibility. Early military UAV systems
required three large rugged server racks for their Ground
Control Systems (GCS) comprising radio, pilot-in-command
and mission payload racks. Much of this equipment can now
be run from a laptop with control software, e.g., the Piccolo
controller3.

For safe and secure operations, UAV operators require real-
time telemetry monitoring, alert systems, and mission payload
processing as part of the GCS. This information is especially
critical for BVLOS operations. Increasingly, there is demand
for tailored functionality [10] which can assist the operator
with the current task, particular environment and payloads e.g.,
visual surveillance equipment, heat mapping or crop dusting
tools. Since long complex operations can involve multiple
tasks, environments and strains, flexibility and both reactive
and pro-active adaptability of this functionality over time
are also highly desirable attributes. Significant replication of
standard telemetry-based monitoring functionality is prevalent,
yet with isolated, independent implementations spread across
different vendor-specific ground control systems, this scale

1https://www.faa.gov/nextgen; Accessed: June 2016
2http://www.sesarju.eu; Accessed: June 2016
3http://www.cloudcaptech.com; Accessed: June 2016



cannot be beneficially exploited. In this paper, we propose a
modular programmable network architecture which, through
exploiting the latest paradigms of SDN and NFV, aims to:

• Increased situational-awareness available to pilots and
payload operators during UAV missions through dy-
namic deployment and migration of modular context-
specific processing functionality;

• Increased continuity of service in deployments with
potentially weak backbone networks, such as on ships
and moving vehicles;

• Reduce the latency of telemetry monitoring and ap-
plications related to situational-awareness such as
anomaly detection through a distributed approach em-
bodied in our architecture;

• Reduce backbone utilisation volumes required for
UAS operations in the face of outages or traffic spikes.

Applying our new architecture which places Virtual Net-
work Functions (VNF) at edge switches allows for pro-
grammable NFs to be deployed on-demand on the more reliant
and greater bandwidth backbone links to GCS, while different
types of UAV can remain more lightweight hosts, specialising
in their sensor capabilities. Middlebox functionality for UAVs
is a vital next step to increase the overall resilience of the
wider UAS. This need is emphasised by Tvaryanas’ [13]
findings that the U.S. military UAV accident rate was as high
as 1 per 1,000 flight hours, on aggregate. In comparison, the
accident rate for general aviation (manned) flight in the U.S.
is 1 per 100,000 flight hours. With greater insight available
on demand through tailored NFs which migrate with UAVs,
more information will be available to operators to detect and
diagnose emerging issues. As Pastor et al. [16] state, in the
brief history of UAS accidents, many are directly attributable to
errors by pilots attempting to manage unexpected challenging
incidents without an adequate situational awareness. Another
high-profile UAV accident study found that for most of the
aircraft systems, electromechanical failure was more of a
causal factor than human error [12]. One critical finding from
an analysis of the data is that each of the existing systems is
very different, leading to varying kinds of accidents and human
factors issues, which strengthens the need for integration and
standardisation through a common network architecture and
the ability to deploy programmable detection modules which
can operate in high mobility environments.

In Section II, we examine a detailed Concept of Operations
(ConOps) before presenting our new architecture with design,
implementation and routing details in Section III. An evalua-
tion of our architecture is presented as a UAS incident case
study in Section IV. We review related work in Section V and
Section VI explores future work before concluding the paper.

II. CURRENT CONCEPT OF OPERATIONS

Figure 1 details the ConOps where our network architecture
contributions can be evaluated. The figure represents a typical
reconnaissance set up with multiple UAVs of diverse types,
operating in various regions with different payload capabilities,
e.g., visual or IR cameras. Mobile GCS are on land and
at sea, connecting and communicating control information to
UAVs within range using radio antennas. Satellite links (and

Fig. 1. UAS ConOps for high-mobility communications infrastructure

others, e.g., WiFi, microwave) are used to connect mobile
GCS with each other in an abstracted ad hoc mesh network
topology. There is also a remote, centralised command and
control centre. Some of these links are very costly, such as,
e.g., satellite communications. Currently, telemetry analysis,
such as any anomaly detection, takes place on data streamed
to the centralised control centre via such expensive links or
not at all. Many of the UAV GCS uplinks are unreliable,
leading to loss of streamed data, where packet latency and
out-of-order delivery is equivalent to data loss. Interference
from particles or being out of range are some of the common
causes of lost link failures. As a result, deploying code to run
on UAVs over such links is a poor design choice. Figure 1 also
shows UAVs transitioning from sea to land and from higher to
lower altitudes. During such transitions, different UAV-specific
monitoring and detection modules can assist operators, e.g.,
calculations for icing alerts at higher, colder altitudes or the
rate of increased fuel burn at lower altitudes. The ConOps
also shows the lowest UAV transitioning from control on the
leftmost GCS to the rightmost GCS. There is a hand-over
phase when a UAV migrates to the command and control of
another GCS, e.g., due to a change in range or a primary
GCS becoming unavailable. Autopilot systems are available to
fly during the transition. For the purposes of our networking
architecture and when comparing against related work, we can
consider the UAVs to be (migrating) hosts, the local GCS to
be switches and the command and control centre to be the
network controller.

III. ARCHITECTURE

Traditional function-specific middleboxes and in-network
devices such as, e.g., firewalls, are placed on the traffic path
between the source and destination. In our approach, we extend
and configure the GCS to become a UAS VNF server. Our
UAS VNF architecture, developed and adapted from our early
design [11], meets the following objectives:

a) High-mobility lightweight deployments: Deployment
of NFs is simple, transparent, and fast for the subscribing hosts,
taking <250ms to start a NF and redirect the traffic through it.
Simplicity arises from the lack of a provisioning cycle either



in the lead time to acquire the appliance or to setup a new
server and associated routing rules.

b) Distributed processing for lower utilisation and la-
tency: Moving programmable, adaptable, modular processing
from the command centres to the GCS reduces the traffic on
the more expensive and often strained backbone links from the
remote GCS to the command centres. Streamed telemetry no
longer needs to traverse these links, and processing NFs are
lightweight to move and more infrequent. Latency of anomaly
detection is also reduced. By placing detection nearer the UAV,
anomalies are detected ‘locally’, without the need to route
traffic over high latency links.

c) Increased situation-awareness: Operators can de-
ploy context-specific NFs on-demand to better understand op-
erational challenges and to inform their decision-making, e.g.,
deploying a granular connectivity monitoring NF to observe
more detail on an intermittent loss link fault.

d) Infrastructure independence: Traffic routing is han-
dled independently from default routing policies, allowing
forwarding of traffic from hosts to ephemeral NFs in OpenFlow
(OF) enabled environments. Decoupling default routing from
policy enforcement routing reduces the risk of misconfigura-
tion of the individual network elements.

e) Open Innovation: By using Linux-based containers,
NFs can utilise the existing wealth of tools and programs avail-
able for native Linux, without having to adapt these to work in
a bespoke environment. Containers are more lightweight than
VMs, ensuring migration is quick and highly mobile.

Fig. 2. UAS VNF architecture designed for high-mobility UAV-specific NFV

Figure 2 shows our UAS VNF architecture as deployed in
the field. The UAVs are Hosts with Open vSwitch instances
located at the mobile GCS vehicles. These switches route
traffic from the host UAV to the Pilot in Command (PIC)
and Mission Payload Operator (MPO) displays. The switches
have OF rules to route traffic based on particular rules to the
configured NF. With no NFs configured, telemetry from the
UAV goes via the GCS switch to the PIC and MPO directly. If
multiple UAVs of different types are operating from a single
GCS, the OF tables can be configured to route traffic from
each UAV to a different set of NFs designed for the operating
parameters of that UAV type. Similarly, if NFs exist which are

common to both types of UAV, traffic can be routed to the same
NFs. The chained containers hosting the VNFs are situated
at the GCS with the SDN controller located at the central
command centre where it can be logically centralised and
physically distributed for resilient oversight of the architecture.
Considering the PIC and MPO are also Hosts, the architecture
can be configured to route traffic from the GCS to the UAV via
a set of NFs. For example, access control or further security
measures for sensitive environments for protection against,
e.g., replay or (D)DoS attacks via firewalls and rate limiters.

Chaining containers allows for smaller modular function-
ality to act independently. For example, a NF can run on a
relatively inexperienced pilot’s GCS to monitor the number
of commands sent. If this NF flagged a series of anoma-
lies, the wider GCS team or central command centre could
deploy another NF configured to watch for anomalous pilot
command sequences through, e.g., frequent repetition of a
set or individual commands. This could help diagnosis if
the UAV was being unresponsive or if human factors such
as anxiety were involved. The ability to monitor and detect
all issues simultaneously is infeasible due to the processing
and storage capabilities available, especially in mobile remote
environments. By chaining NFs and allowing for real-time
updates, the processing and hardware available can be utilised
to host a vast array of context and UAV-specific network
functions which can inform and alert operators.

Figure 2 shows ‘SDN-traps’ which, similar to SNMP-traps,
act as monitoring notifications for traditional data network
operators. Our UAS VNF architecture allows NFs to be
configured to send SDN-traps to both the PIC and SDN-
Controller. For example, if a fuel monitoring NF with a SDN-
trap configured for when fuel < 15%, the mission-control team
for a multi-UAV-GCS operation can see where coverage will
be lost and move UAV capability as required to ensure mission
objectives are met.

A. Routing

Fig. 3. UAS VNF OpenFlow routing architecture

Switch Match Action
GCS in port: 2, src ip: UAV1 out port: 4
Local in port: 1, src ip: GCS out port: 2
Local in port: 3, src ip: NF1 out port: 4
GCS in port: 4, src ip: local switch out port: 2,3

TABLE I. OPENFLOW TABLE ENTRIES FOR UAS VNF MANAGEMENT

Figure 3 details the routing design in the GCS Open
vSwitch. The GCS switch is connected to the UAV host on
port 1. Other UAVs can connect to new ports. PIC and MPO
are connected on ports 2 and 3 respectively, a single laptop



environment would require only one port for both roles. The
UAS VNF server connects on port 4, with another local switch
routing traffic through the containerised VNFs. In this case,
GCS source traffic is forwarded from port 1 to 3, and traffic
egressing the NF is sent back to local switch port 3 and
on to GCS port 4. Incoming traffic on port 4 is mirrored
and sent to both the PIC or MPO displays, if applicable.
This routing design allows for additional NFs to be deployed
without interfering with the GCS switch routing for the UAVs.
Table I shows the OF routing table entries for this setup.

B. Implementation

In a multi-display GCS set up, the current GCS switching
capabilities which route traffic to the PIC and MPO processors
would be replaced with an Open vSwitch. In a single laptop
controller GCS environment, the OF switching can take place
in situ with the laptop acting as both a switch and a host. Our
UAS VNF server comprises lightweight Linux-based chained
containers, each of which performs a virtual NF before routing
the traffic on to the next process, reporting any alerts to the PIC
or centralised controller as configured. The architecture is built
using the Python SDN-Controller, RYU [15]. This lightweight
controller is component-based with pre-defined components
which can be modified and extended to create a customised
controller application allowing for easy programmability of
both the north and southbound SDN interfaces.

Our UAS VNF architecture uses Linux containers that pro-
vide a lightweight equivalent to VMs, allowing each container
to use the host OS kernel to isolate processes, network routing
tables, and their associated resources. This approach does not
require each isolated function to run on a separate OS image,
hence allowing a much higher network function-to-host density
and smaller overall footprint. Using containers, commodity
compute devices, such as, e.g., laptops, are now able to host up
to hundreds of NFs. The minimal cost of starting and stopping
containers as well as the single package encapsulation allows
for NFs to roam alongside the UAV. As the UAV roams, the
associated NFs can be started on a different GCS and traffic
rerouted to it through modifying the corresponding OF rules.

C. Migration

When a UAV moves between GCSs, the operators at the
SDN-controller can manually migrate the required NFs by
clicking on the web app user interface, deploying the required
NFs on the new GCS UAS VNF server. Operators at the GCS
can also place requests for NFs. Automated migration is also
possible if the entire environment is defined with static IP-
addresses assigned to each of the UAVs in the operating envi-
ronment. To achieve this, NFs are associated with individual
UAVs. When the GCS OF switches receive packets from a new
IP address (a new UAV which has migrated to this GCS), the
initial packets are sent to the SDN-controller. The controller
then follows the standard SDN paradigm by receiving these
forwarded packets and replying with the OF rules and NFs to
install based on the allocation configurations for the particular
UAV. This network configuration and NF migration incurs no
delay to the overall current ConOps migration process. NFs
can migrate between GCSs (<250ms) well within the time it
takes for secure handshakes to establish control between the
UAV and new GCS (>1 second).

IV. EVALUATION: SIERRA CASE STUDY

Fig. 4. SIERRA flight classified by InFlight for metres Above Ground Level
(AGL) over time

To evaluate our UAS VNF architecture, we created a suite
of NFs to assist operators with issues commonly cited by
subject experts: NASA UAV pilots. Our initial efforts focused
on the issue of UAVs saturating operators with alerts of current
operating conditions. An example scenario would be a UAV
with fuel reserves for 10 hours of flight, and a warning
notification built into the aircraft hardware to notify the pilot
every minute when fuel levels are below a threshold, e.g., <
10%. Under planned or emergency circumstances where these
warnings would come into effect, it is likely this notification
frequency would be an unhelpful distraction to pilots. To
mitigate this, we generated Python templates which aggregate
such notifications ensuring that, when under special conditions
which may demand pushing the UAV beyond normal operating
thresholds, the pilot will not be adversely distracted. Our NF
scripts allow for the setting of new thresholds in software,
which are easily programmable and adaptable during live
deployment, unlike those set in the UAV hardware sensor sys-
tems. The next set of NFs we developed were more specifically
tailored to UAV types. The telemetry of all UAVs have multi-
variate inter-dependencies, with physics underlying the models
of many of these such as the relationship between altitude
and pressure, altitude and fuel burn rates, and outside air
temperature and internal temperature readings. These models
are an excellent definition of normal operating behaviour
which can be used to rapidly detect unexpected, anomalous
behaviour. While operators receive real-time readings of many
of these values, it is often in the subtle emerging trends
where problems can first be observed. To show the ease
of which our architecture can be tailored to different UAV
types, we used telemetry from the unmanned Sensor Integrated
Environmental Remote Research Aircraft’s (SIERRA) historic
flights (80+ flights worldwide over a number of years) to



Fig. 5. SIERRA aggregate classified flight history for Throttle vs RPM

tune the initial models in our NF suite based on the normal
operating parameters observed. Telemetry relationships vary
heavily across the different flight phases: takeoff, inflight and
landing. We began by developing a simplified classification
with input from our domain expert, to determine InFlight
status. We determined the simplified InFlight classification as:

• True Airspeed > 26 m/s

• Throttle Acceleration 6= 0

• Revolutions Per Minute (RPM) > 2000

Figure 4 shows the application of our classifier to a flight
recording from the dataset. The graph shows the flight profile
with points classified as InFlight (red) and other flight phases
(blue). The model is very successful with near-perfect accuracy
for this flight. This is seen through the flight profile, with
the vast majority of InFlight (red) points with AGL > 0 and
grounded, takeoff and landing phases coloured blue. Figure 5
shows this same classification applied to the aggregation of
all historic SIERRA flights, with the polynomial regression
model for throttle against RPM for all InFlight data in black.
The classification removes much of the noise seen from takeoff
and landing phases. There is a great deal of variance from the
model, which mitigates the successful detection of abnormal
behaviour. Figure 6 shows only the InFlight data with the
True Airspeed (TAS) coloured on a red to yellow spectrum
from 26-40+ m/s, respectively. Four polynomial models are
also shown, highlighting the variance in Throttle to RPM
relationship as TAS increases. This tightens our overall model,
allowing for a better understanding of any emerging deviance
among these three parameters behaviours against the norm.
Should one of these parameters cause data points to lie nearer
a different polynomial model than expected, this is likely the
beginning of an electromechanical or sensor failure. Along
with other dependencies, we took these pre-conditions for

Fig. 6. SIERRA aggregate InFlight data with polynomial regression models

SIERRA InFlight and our polynomial regression models with
the appropriate confidence intervals and tuned our detection
NF in Python for deviations from the norm.

On July 26, 2013 the SIERRA lost engine power 4.5 hours
into its 6 hour scheduled flight and crashed into the Beaufort
Sea, 65 nautical miles north of Oliktok Point, Alaska, where
the controlling GCS was located. The UAV was undertaking
a sea ice survey for the Marginal Ice Zone Observations and
Processes EXperiment (MIZOPEX) project. The MIZOPEX
reconnaissance mission involved multiple UAVs of different
types. The NASA mishap accident investigation report [14]
found that the only indications to the SIERRA team of the
impending crash were the A/C engine’s revolutions per minute
reading of zero RPM and the electrical bus voltage at 4V lower.
The lower voltage confirmed the engine had stopped turning.
At this time, the report states no pilot instructions could have
avoided the loss of the UAV. However, on further analysis
of the telemetry prior to the engine failure, investigators
discovered the throttle demand increased by over 40% and
continued to rise, while the engine struggled to maintain its
cruising RPM of 6,000 as much as one hour prior to the crash.
With 6,000 RPM, 0.15 throttle and consistent TAS, a 40%
increase in Throttle and steady RPM, would show telemetry
points transitioning over polynomial models 4 through 2 over
time. This information was not displayed to the pilot through
the real-time GCS information. The RPM also plummeted
at times to anomalous lows of 4,000, only seen on Model
1 without very few observed InFlight data points, and the
engine behaviour was described as sporadic. Had the team been
notified of these anomalies and returned SIERRA to base, the
report concludes the mishap could have been prevented.

This incident highlights the need for greater monitoring
and anomaly detection systems. Prior to the SIERRA crash
and following the 40% increase in throttle, there were eight



ice warning alerts in a 25 minute window, a significant increase
in frequency. In discussions with domain experts, it was clear
this sensor had a significant safety margin and for operations
in cold environments had to be ignored to some degree. To
evaluate our system, we replayed the SIERRA crash flight
data in our simulated architecture ConOps with our suite
of SIERRA calibrated NFs. On replaying the crash flight
telemetry in real-time, our UAS VNF architecture detected the
increased frequency in ice warning alerts, issuing an SDN-
trap notification to both the SDN-controller and PIC. The
deviation in throttle was also detected shortly after the >40%
increase without a corresponding increase in RPM, a transition
across models 4 through 2 in Figure 6, also throwing numerous
SDN-trap alerts to both the PIC and the SDN-controller. The
results of this case study show our UAS VNF architecture
empowers UAS operators to deploy and adapt the monitoring
and detection functionality in live operations, also helping to
adapt and rectify the sensor sensitivity of built-in alerting
systems of various UAV types. Using our modular suite of
NFs tuned to the SIERRA in our replay experiment, we
successfully detected real-world anomalous behaviour as the
transitioning across three of the UAV-tuned models in Figure 6
with consistent TAS. From this case study, we have a set of
models for use in a range of deployments which can be tailored
to specific contexts and distinct UAVs with historic flight data.

V. RELATED WORK

In recent years, the state-of-the-art in networking has
centred on two complementary, yet distinct, concepts: SDN
and NFV. SDN [3] is a network architecture which allows
for abstraction and virtualisation through the decoupling of
the network’s control and data planes. OpenFlow [4] is the
first and most widely used SDN implementation NFV [2] is a
transformation in the delivery of network functions from be-
spoke, specialised hardware, to network functions in software
which can run on a range of commodity hardware which can
be migrated to, or instantiated at, various locations within the
network topology, on demand. This paper builds on our prior
SDN+NFV work designed for efficient enterprise networks,
Glasgow Network Functions (GNF) [1], tailoring it to meet the
needs of UAS ConOps with a suite of specific NFs, modified
migration and routing configuration.

Khalastchi et al. present the case for anomaly detec-
tion in unmanned vehicles [5], arguing for computationally
lightweight systems to avoid additional computational load on
the vehicle, potentially introducing more faults. However, all
functionality is located on the UAV. Having NFs at GCSs al-
lows for more rapid NF migration and deployment. Increasing
the processing and complexity of different UAVs will increase
vendor lock-in and reduce the openness required for wide-scale
integration.

Other network edge services (e.g. OpenEdge [7]) and
NFV frameworks (e.g., ClickOS [6] or FlowOS [9]) rely on
bespoke platforms, hypervisors, or commodity x86 servers
with resource-hungry VMs preventing their use in wide-
area deployments where high NF density and mobility is
paramount. These bespoke architectures also prevent widely-
used applications and tools being deployed without modifi-
cation. In the UAS context, it is therefore preferable to use
a container-based Linux architecture where lightweight VNFs
can run native Linux tools and be migrated on demand.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we have presented a novel UAS VNF archi-
tecture which, through a suite of lightweight, container-based
monitoring and detection NFs statistically tuned to specific
UAV types, enhances the situation-awareness and the highly
demanding mobility requirements of the overall UAS envi-
ronment. Through exploiting state-of-the-art SDN and NFV
principles, our platform and UAV independent architecture
gives mission controllers the opportunity to adapt their live
telemetry monitoring and anomaly detection capabilities on
demand. Situation-awareness is increased with the ability to
program the network to provide a better understanding of
emerging challenges in times of need and further contribute
to the overall resilience domain. High mobility UAV and GCS
deployments are supported through rapid migration of modules
and a distributed approach placing demands on the strongest,
most resilient links in the wider network infrastructure. Linux-
based containers implemented within our architecture ensure
open innovation with reuse of existing libraries without modifi-
cation and reduced utilisation on traditionally strained network
infrastructures in low density regions. We have demonstrated
the applicability of our architecture through an evaluation and
case study where our generic detection models, tuned to the
SIERRA, detected the pre-conditions as much as 1 hour prior
to its crash under replay conditions. Future work will focus on
tuning our NF suite to further UAV types, such as the Viking
400, and developing as well as deploying a real-world test-bed.

ACKNOWLEDGMENTS

The work has been supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) projects
EP/L026015/1, EP/N033957/1, and EP/L005255/1.

REFERENCES

[1] R. Cziva, S. Jouet, K. J. S. White and D. P. Pezaros, Container-based
network function virtualization for software-defined networks, IEEE
Symposium on Computers and Communication, Larnaca, 2015.

[2] E. T. S. Institute. 2012 Network Functions Virtualisation, White Paper.
[3] Open Networking Foundation. SDN Architecture. Tech. rep. Feb. 2016.
[4] N. McKeown et al. OpenFlow: enabling innovation in campus networks.

In ACM SIGCOMM Computer Communication Review 2008.
[5] E. Khalastchi et al. Online anomaly detection in unmanned vehicles.

2011 Int. Conference on Autonomous Agents and Multiagent Systems.
[6] J. Martins et al. ClickOS and the art of NFV. In USENIX NSDI, 2014.
[7] J. Kunz et al. Openedge: A dynamic and secure open service edge

network. In IEEE/IFIP NOMS, 2016.
[8] FAA. Aerospace Forecast Fiscal Years 2016-2036.
[9] M. Bezahaf, A. Abdul, and M. Laurent. Flowos: A flow-based platform

for middleboxes. In Proceedings of Hot Topics in Middleboxes and
Network Function Virtualization, 2013, ACM.

[10] P. Royo, J. Lopez, E. Pastor, C. Barrado. Service abstraction layer for
UAV flexible application development. In 46th AIAA 2008.

[11] K. J. S. White, D. P. Pezaros, and C. W. Johnson. Principles for
increased resilience in critical networked infrastructures. ICRAT 2014.

[12] K. Williams, A summary of unmanned aircraft accident/incident data:
Human factors implications. FAA, 2004.

[13] A. Tvaryanas, W. Thompson. HFACS analysis of 221 mishaps over 10
years. Aviation, space, and environmental medicine, 2006.

[14] NASA, Ames Research Center. SIERRA Mishap Classification 2013.
[15] RYU SDN Controller. https://osrg.github.io/ryu/. Accessed: June 2016.
[16] E. Pastor et al. In-flight contingency management for unmanned aerial

vehicles. Journal of Aerospace Computing and Communication 9, 2012.


