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Abstract. Measurements with variable system-detector interaction strength, ranging

from weak to strong, have been recently reported in a number of electronic

nanosystems. In several such instances many-body effects play a significant role. Here

we consider the weak-to-strong crossover for a setup consisting of an electronic Mach–

Zehnder interferometer, where a second interferometer is employed as a detector. In

the context of a conditional which-path protocol, we define a generalized conditional

value (GCV), and determine its full crossover between the regimes of weak and strong

(projective) measurement. We find that the GCV has an oscillatory dependence on

the system-detector interaction strength. These oscillations are a genuine many-body

effect, and can be experimentally observed through the voltage dependence of cross

current correlations.
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1. Introduction

Measurement in quantum mechanics is inseparable from the dynamics of the system

involved. The formal framework to describe quantum measurement, introduced by

von Neumann [1], allows to consider two limits: in the limit of strong system (S) -

detector (D) coupling, the detector’s final states are orthogonal. This is associated with

the evasive notion of quantum collapse. In the other limit, that of weak (continuous)
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measurement of an observable (reflecting weak coupling between S and D [2]), the system

is disturbed in a minimal way, and only partial information on the state of the latter

is provided [3]. We note that this hindrance can be overcome, by resorting to a large

number of repeated measurement (or a large ensemble of replica on which the same

weak measurement is carried out).

Weak measurements, due to their vanishing back-action, can be exploited for

quantum feedback schemes [4, 5] and conditional measurements. The latter is especially

interesting for a two-step measurement protocol (whose outcome is called weak value

(WV) [6]), which consists of a weak measurement (of the observable Â), followed by

a strong one (of B̂), [Â, B̂] 6= 0. The outcome of the first is conditional on the

result of the second (postselection). WVs have been observed in experiments [7–

12]. Their unusual expectation values [6, 13–15] may be utilized for various purposes,

including weak signal amplification [16–23], quantum state discrimination [24–26], and

non-collapsing observation of virtual states [27]. The particular features of WVs rely on

weak measurement, and are washed out in projective measurements. Understanding the

relation and the crossover between these two tenets of quantum mechanics is therefore

an important issue on the conceptual level.

The WV protocol perfectly highlights the difference between weak and strong

(projective) measurements, thus providing a platform to study the crossover between

the two. Indeed, within the two-step measurement protocol, it is possible to control the

strength of the first measurement. This allows to define a generalized conditional value

(GCV), interpolating between WV and SV (strong value). The latter, in similitude to

WV, refers to a 2-step measurement protocol. Unlike WV, in a SV protocol both steps

consist of a strong measurement. The mathematical expression for GCV is depicted

below in equation (1). It amounts to the average of the first measurement’s reading

(whatever its strength is), conditional on the outcome of the second measurement. This

has been studied in the context of single-degree-of-freedom systems [28–31], where the

WV-to-SV crossover is quite straightforward and is a smooth function of the interaction

strength. We note that in experiments with electron nanostructures, interactions

between electrons play a crucial role. A many-body theory of variable strength quantum

measurement is called for. In many cases, the interaction strength can be controlled

experimentally [10, 32].

In this letter, we demonstrate theoretically that interactions can modify this weak–

to–strong crossover in a qualitative way, in particular, making it an oscillating function

of the interaction strength. Conversely, these oscillations serve as a smoking gun

manifestation of the many-body nature of the system at hand, and present guidelines for

observing them as function of experimentally more accessible variables (e.g. the voltage

bias). Our analysis sheds light on the relation between two seemingly very different

descriptions of quantum measurement, with emphasis on the context of many-body

physics.

Motivated by the two step WV protocol, we define the generalized conditional value
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Figure 1. Two MZIs, the “system” and the “detector”, coupled through an

electrostatic interaction (wiggly lines). The sources S1 and S4 are biased by voltage V

and the sources S2 and S3 are grounded. ΦS and ΦD are the magnetic fluxes through

the respective MZIs. The lengths of the arms 1 and 2 between SQPC1 and SQPC2

are αL and L respectively, and similarly for the detector’s arms 3 and 4, as is shown

in the figure. In the present analysis α = 1.

(GCV) of the operator Â as an average shift of the detector, δq̂ = q̂−〈q̂〉
∣∣∣
g=0

, during the

measurement process, projected onto a postselected subspace by the projection operator,

Πf , and normalized by the bare S-D interaction strength, g. The GCV is given by

〈
Â
〉
GCV

=
Tr
{
δq̂Û †ρ0ÛΠf

}
gTr

{
Û †ρ0ÛΠf

} , (1)

where ρ0 is the total density matrix which describes the initial state of S and D, and the

time ordered operator Û = T e−
i
~
∫∞
−∞H

SDdt describes the evolution in time of the whole

setup during the measurement. Here, the system–detector coupling, HSD = −gw(t)p̂Â,

with w(t) – the time window of the measurement; q̂ and p̂ are the “position” and

“momentum” operators of the detector ([q̂, p̂] = i~). We note that equation (1) provides

the correct WV [6] and SV [33] in the respective limits (g � 1, g � 1). Our approach

here is in full agreement with earlier analyses of quantum measurement in the context

of single particle systems [28–31].

Our specific setup is depicted in figure 1. It consists of two Mach-Zehnder

interferometers (MZIs), the “system” and the “detector” respectively, that are

electrostatically coupled [32, 34]. It is possible to tune the respective Aharonov-Bohm

fluxes, ΦS and ΦD independently [32].

2. A two-particle analysis

As a prelude to our analysis of a truly interacting many-body system, we briefly present

an analysis of the same system on the level of a single particle in the system, interacting

with a single particle in the detector. According to this (over)simplified picture,

particles going simultaneously through the interacting arms 2 and 3 (cf. figure 1),
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gain an extra phase eiγ [35, 36], where γ takes values in the range [0, π]. First, we

consider the intra-MZI operators, defined in a two-state single particle space, {|m〉},
with m=1,2 for the “system” (an electron propagating in arm 1 or 2) and similarly

m=3,4 for the “detector”. The dimensionless charge operator (measuring the charge

between the corresponding quantum point contacts (QPCs)), in this basis has a form

Qm = |m〉 〈m|. The transition through the p-th QPC is described by the scattering

matrix Sp =

(
rp tp
−t∗p rp

)
, p = 1s, 2s, 1d, 2d [37]. The entries rp and tp encompass

information about the respective Aharonov-Bohm flux and for p = 2s, 2d, about the

orbital phase gained between the two QPCs. The dimensionless current operators at

the source (S1, S2) and the drain (D1, D2) terminals of the system-MZI are given by

ISm = S1sQmS†1s and IDm = S†2sQmS2s respectively, with m = 1, 2, and similarly for the

detector with m = 3, 4 and employing the matrices S1d and S2d .

In view of equation (1), the initial state of the setup, which is described by the

injection of two particles into terminals S1 and S4 respectively, can be written as the

density matrix ρ0 = IS1 ⊗ IS4 operating in the two-particle product space, |m〉 ⊗ |n〉
(m = 1, 2, n = 3, 4). The corresponding dynamics is that of two particles propagating

simultaneously through arms m and n. The interaction between the particles is described

by the operator Û = eiγQ2⊗Q3 . A positive reading of the projective measurement

consists of the detection of a particle at D2, and is described by the projection operator

Πf = ID2 ⊗ 1. The detector reads the current at D3 (δq of equation (1) corresponds

to 1 ⊗ δID3). Plugging these quantities into equation (1) yields an expression for the

two-particle GCV (cf. Appendix A),

〈Q2〉TPGCV =
〈ID2δID3〉
γ 〈ID2〉

=
1

γ

(
〈δID3〉+

〈〈ID2ID3〉〉
〈ID2〉

)
. (2)

The averages are calculated with respect to the total density matrix after the

measurement, 〈Ô〉 = Tr
{
ÔÛ †ρ0Û

}
. We have defined δID3,ID3 − 〈ID3〉

∣∣∣
γ=0

, and

〈〈ID2ID3〉〉, 〈ID2ID3〉 − 〈ID2〉 〈ID3〉 is the irreducible current-current correlator. A

straightforward calculation (cf. Appendix B) yields

〈Q2〉TPGCV =
4 sin

(
γ
2

)
γ

Re
{
ie

iγ
2 〈ID2Q2〉0 〈δID3Q3〉

}
+ sin

(
γ
2

)
〈Q2ID2Q2〉0 〈δQ3ID3Q3〉

〈ID2〉0 + 4 sin
(
γ
2

)
Re
{
ie

iγ
2 〈ID2Q2〉0 〈Q3〉0

}
+ 4 sin2

(
γ
2

)
〈Q2ID2Q2〉0 〈Q3〉0

(3)

where
〈
Ô
〉

0
,Tr

{
Ôρ0

}
is an average with respect to the non-interacting setup,

〈δID3Q3〉, 〈ID3Q3〉0 − 〈ID3〉0 〈Q3〉0 and 〈δQ3ID3Q3〉, 〈Q3ID3Q3〉0 − 〈ID3〉0 〈Q2
3〉0. This

result shows a smooth and trivial crossover between the weak (γ → 0) and strong

(γ → π) limits. The specific form depends on the parameters of S and D (the magnitude

of the inter-edge tunneling; the value of the Aharonov-Bohm flux). For some range of

values (e.g., t1s = t2s = t1d = t2d = 0.1, ΦS/Φ0 = 0.99π, ΦD = 0) the function is

non-monotonic (but non-oscillatory), while for other values it is monotonic.
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3. A full many-body analysis

The Hamiltonian H = HS + HD + HSD describes the system, the detector, and their

interaction. The system’s Hamiltonian consists of HS = HS
0 +HS

T +HS
int, with

HS
0 = −ivF

2∑
m=1

∫
dxm : Ψ†m(xm)∂xmΨm(xm) : (4a)

HS
T = Γ1sΨ

†
1(x1s

1 )Ψ2(x1s
2 ) + Γ2sΨ

†
1(x2s

1 )Ψ2(x2s
2 ) + h.c. (4b)

HS
int =

2∑
m=1

g‖

∫
dxm :

(
Ψ†m(xm)Ψm(xm)

)2
: . (4c)

Here Γp is the tunneling amplitude at QPC p and xpm is the coordinate at QPC p on

arm m. A similar expression holds for the “detector” MZI, S ⇔ D, with a summation

over the chiral arms m = 3, 4. We next assume that the lengths of the interacting arms

are equal, x2s
2 − x1s

2 = x2d
3 − x

1d
3 . The S-D interaction Hamiltonian is

HSD = g⊥

∫
dx2

∫
dx3δ(x2 − x3) : Ψ†2(x2)Ψ2(x2) :: Ψ†3(x3)Ψ3(x3) :, (5)

where the normal ordering with respect to the equilibrium (no voltage bias) state is

defined as : Ψ†Ψ : ,Ψ†Ψ−
〈
0
∣∣Ψ†Ψ∣∣ 0〉.

We are now at the position to construct the GCV for the actual many-body setup.

We employ equation (2) to define the many-body GCV of Q2,

〈Q2〉MB
GCV =

vF
g⊥

(
〈δID3〉+

1

τ

∫ τ/2

−τ/2
dt
〈〈ID2(t)ID3(0)〉〉

〈ID2〉

)
, (6)

where the current operator is given by, I(x, t) = evF : Ψ†(x, t)Ψ(x, t) :. We average

over time τ � L
vF

. The problem is now reduced to the calculation of average currents

and a current-current correlator. This is done perturbatively in the tunneling strength,

but at arbitrary interaction parameter, employing the Keldysh formalism. In this limit

expectation values are taken with respect to tunneling decoupled edge states. The

current is,

〈ID2(x)〉 = −ievF
2

∑
p,q={1s,2s}

ΓpΓq

∫
dω

2π
G1,αβ(x−xp1, ω)γ̂clβγG2,γδ(x

p
2−x

q
2, ω)γ̂clδεG1,εζ(x

q
1−x, ω)γ̂qζα,

(7)

and the irreducible current-current correlator (cf. Appendix C)

1

τ

∫ τ/2

−τ/2
dt 〈〈ID2(x′, t)ID3(x, 0)〉〉 =

{∑
pqrs

ΓpΓqΓrΓs
e2v2

F

2τ

∫
dω2dω3

(2π)2
×

×G1,αβ

(
x′ − xp1, ω2 −

ω̄

2

)
γ̂clβγG4,ηθ

(
x− xr4, ω3 +

ω̄

2

)
γ̂clθιM̃

′
ικγδ (xp2, x

q
2, x

r
3, x

s
3;ω3, ω2, ω̄)×

× γ̂clκλG4,λµ

(
xs4 − x′, ω3 −

ω̄

2

)
γ̂clδεG1,εζ

(
xq1 − x, ω2 +

ω̄

2

)
γ̂qζαγ̂

q
µη

}∣∣∣
ω̄→

√
2π
τ

+

{
...

}∣∣∣
ω̄→−

√
2π
τ

.

(8)
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Figure 2. The relevant Feynman-Keldysh diagrams for the quantities in equations (7)

and (8) to leading order in tunneling matrix elements. “Semi-classical” paths of the

particles are marked by solid lines (red) and dashed lines (blue), corresponding to

forward and backward propagation in time (cf. equation (10)). (a) The average current

(equation (7)), O(Γ2). Only the system part of the setup (cf. figure 1), while all degrees

of freedom of the detector part have been integrated out. (b) The reducible current-

current correlator (equation (8)), O(Γ4). Only the 2 most contributing diagrams out

of 16 are shown (4 were included in calculations).

Here {...} reproduces the first part of the r.h.s, with ω̄ →
√

2π
τ

replaced by ω̄ → −
√

2π
τ

, the

summation is over p, q = (1s, 2s), r, s = (1d, 2d) and repeating indices; γ̂cl =

(
1 0

0 −1

)

and γ̂q =

(
1 0

0 1

)
are the Keldysh γ̂ matrices. Gm is the fermionic propagator on the

m-th arm (cf. equation (10)), and

M̃ ′(ω2, ω3),M̃(ω2, ω3)−G2(ω2)G3(ω3). (9)

Here M̃δγβα(r4, r3, r2, r1),−
〈
T Ψ3,δ(r4)Ψ̄3,γ(r3)Ψ2,β(r2)Ψ̄2,α(r1)

〉
is the collision matrix

of two electrons in arms 2 and 3 (cf. Appendix D).

The expressions for the expectation values of equations (7) and (8) can be

represented diagrammatically in terms of the contributing processes. In these Feynman-

Keldysh diagrams, each line corresponds to a propagator G (cf. equation (10)), and

the vertices represent tunneling. The diagrams (to leading order in tunneling matrix

elements) are depicted in figure G1. There are 16 diagrams contributing to the

irreducible current-current correlator. The leading diagrams (figure G1 (b)) correspond

to an electron in the system (going through arm 2) that maximally interacts with an

electron in the detector (going through arm 3). †

† For these diagrams the time of the two particles being inside the interaction region is maximal; the

other diagrams are almost reducible (i.e., decoupled from each other), and are thus neglected.
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Explicit evaluation of GCV requires the calculation of the single electron Gm and

the collision matrix M̃ ‡. We first compute the propagators on arms 2 (G2) and 3 (G3),

where both the inter- and the intra-channel interaction is present. This yields

Gm,βα(x, ω) = − i

2vF
[F (ω) + αΘ(x)− βΘ(−x)] ×

×eiω
x
u
ξ(λ)

∫ 1

−1

ς

(
T
|x|
u
λ, s

)
eisω

|x|
u
λds , (10)

where α, β = ±1 are the Keldysh indices (in forward/backward basis), x and ω are the

distance traveled by and the energy of the particle, and T is the temperature. We define

the renormalized interaction λ =
[

1
u

2g⊥
π
−
(

1
u

2g⊥
π

)−1
]−1

, F (ω) = tanh( ω
2T

), Θ(x) is the

Heaviside function, ξ(λ) = 2λ2
√

4λ2+1−1
, and ς(A, s) = A√

sinh[πA(1−s)] sin[πA(1+s)]
.

The propagators in channels 1 (G1) and 4 (G4) are obtained by substituting g⊥ = 0

in equation (10). This result recovers the simple non-interacting Green function with

a renormalized velocity u = vF +
2g‖
π

due to intra-channel interaction. The maximal

interaction between channel 2 and 3 is at g⊥ = π
2
u (instability point). Similarly to the

two-particle analysis, here too the SV limit is reached at a finite value of the inter-

channel interaction.

4. Results

Plugging equations (10) and equation (S37) to equations (7) and (8), we obtain the

final expression for the GCV in equation (6). The result is depicted in figure 3. We

identify a high temperature regime, τFLkBT � ~ (τFL is the time of flight through

the interacting arm of MZI, τFL = L
u

), where the GCV is exponentially suppressed

by the factor e−
τFLkBT

~ due to averaging over an energy window ∼T . In the opposite,

low temperature limit, the phase diagram shows novel oscillatory behaviour. We plot

the phase diagram of GCV in a parameter space spanned by the applied voltage

normalized by the temperature (eV/kBT ) and the renormalized interaction strength

(λ) (cf. figure 3). In the low voltage limit (eV � kBT ) the size of the injected

wave function is large compared with L. In this limit interaction effects should be

less significant. The weak-to-strong crossover is smooth in similitude to the two particle

result (cf. equation (3)). For eV > kBT , multiple particle interaction effects become

important, and three different regimes are obtained as function of λ. Here, as function

of increasing λ, oscillatory behaviour (∼ J0

(
λeV τFL

~

)
, where J0 is the 0-th order Bessel

function) of the crossover from WV to SV is predicted. The behavior of the GCV in

the different regimes is summarized in a phase diagram in figure 3 (a), along with the

dependence of the GCV on the interaction strength (figure 3 (b-d)) and voltage bias

(figure 3 (e)).

‡ As each channel is only slightly perturbed out of equilibrium, methods of equilibrium bosonization

may be employed.
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Figure 3. (a) The phase diagram in the low temperature regime, τFLkBT � ~.

Regions with different qualitative behavior are depicted by different colors. The

transition between weak and strong values in the high-voltage regime goes through an

intermediate phase where the GCV displays oscillations as a function of the coupling

constant. The latter feature is not present in the two-particle treatment of GCV

(cf. equation (3)). (b) and (c). The normalized GCV,
〈Q2〉MB

GCV

e2V/h , along the cuts

A (eV/kBT = 100), B (eV/kBT = 0.001) in (a). The zoom in (c) highlights the

oscillatory behavior. (d) The oscillatory regime along A for various temperatures

keeping eV τFL/~ = 1. (e) The normalized GCV along the cuts C (λ=10) and D

(λ = 1000) of (a) with a zoom on the relevant oscillatory regime. All the plots are for

ΦS/Φ0 = 0.99π, ΦD = 0 at the low temperature phase, kBTτFL/~ = 0.01 except of

(d) where the temperatures are specified explicitly.

5. Discussion

The oscillations found here and the physics of visibility lobes that was found

experimentally [38] and studied theoretically [39–41] in the context of coherent transport

through a MZI, are both related to interaction effects in an interferometry setup. To

understand this similarity we employ a caricature semi-classical picture: a single particle

wave-packet, whose energy components are in the interval [0, eV ], is injected into the

system MZI (arm 1 of figure 1). During its propagation through the interacting arm, its
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dynamics is affected by Coulomb interaction with the entire out-of-equilibrium Fermi

sea of electrons inside the interaction region of the detector MZI (arm 3 of figure 1),

producing a phase shift of the systems wave-packet. When this single particle wave-

packet interacts with a single electron in the detector (cf. the discussion preceding

equation(2)), its phase shift is 0 ≤ γ ≤ π. If the detector’s arm consists of N electrons,

a phase shift of Nγ is produced, giving rise to oscillations as function of the interaction

strength or N . More qualitatively: the number of background non-equilibrium electrons

inside the detector MZI, 〈N〉 = LeV
2πu

[39–41], splits into n and 〈N〉 − n in arms 3 and 4

respectively, with probability P (n) = T nR〈N〉−n
(〈N〉
n

)
, R = |r1d|2, T = |t1d |2.

Neglecting, for the sake of this caricature, time dependent quantum fluctuations

in the number of particles (we have treated those in full), the incremental addition

to the (system) wave packet action due to an electron in arm 2 interacting with n

background electrons in arm 3 is ∆S(n, t0) = g⊥
L

∫ t0+τFL
t0

n(t)dt. Here t0 ∈ [0, eV ]

is the injection time of an electron wave packet. The added phase to the single

particle wave-function is: ψ → ψei∆S. It follows that the current at D2 per a

specific n is ID2(n, t0) = e2V
h

(
R2 + T 2 + 2RT ·Re

{
e

2πi
ΦS
Φ0 ei∆S(n,t0)

})
. The mean

current is a weighted average over all {n} and t0, leading to a lobe structure. For

example, when 〈N〉 � 1, then ∆S(n) = g⊥τFLn
L

, and the total current is I =

e2V
h

(
R2 + T 2 + 2RT ·DRe

{
e

2πi
ΦS
Φ0

+iηD
})

, where DeiηD = R + Te
ig⊥τFL〈N〉

L , which is

periodic in g⊥ with a period of (2π)2u
τFLeV

. We can repeat the same argument for the detector

MZI and obtain the same lobe structure dependence there.

Measurements on setups consisting of two electrostatically coupled MZI have been

reported [32], albeit not in the context of the present work. By means of external gates

one may control the magnitude of the coupling λ. More accessible experimentally would

be to fix the distance between the MZIs and observe oscillations with V at moderately

low values of λ.

The present analysis interpolates between two conceptually distinct views of

measurement in quantum mechanics: the von Neumann projection postulate, and the

continuous time evolution in the weak system-detector coupling limit. Admittedly these

two views could be obtained as limiting cases of the same formalism. The analysis

presented here demonstrates that the interpolation between the two is non-trivial.

Oscillatory crossover is a unique feature of our many-body analysis. The setup chosen to

demonstrate this SV-to-WV crossover consists of two coupled MZIs (the “system” and

the “detector”). Measurements on such a setup have been reported in the literature (see

e.g., Ref. [32]), with a considerable latitude of controlling the system-detector coupling.

We conclude that our predictions are, then, within the realm of experimental verification.
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Appendix A. Derivation of the formula for two-particle GCV in terms of

the irreducible correlation function

Here we present an extended derivation of equation (2). The two-particle GCV of Q2 is

defined by,

〈Q2〉TPGCV =
〈ID2δID3〉
γ 〈ID2〉

=
〈ID2 (ID3 − 〈ID3〉0)〉

γ 〈ID2〉
(A.1)

This can be rewritten as,

〈ID2〉 〈ID3〉 − 〈ID2〉 〈ID3〉0 + 〈ID2ID3〉 − 〈ID2〉 〈ID3〉
γ 〈ID2〉

(A.2)

which yields equation (2),

〈Q2〉TPGCV =
1

γ

(
〈δID3〉+

〈〈ID2ID3〉〉
〈ID2〉

)
. (A.3)

Appendix B. Strong–to–weak crossover of GCV for two particle system

Here we present the derivation of GCV for two particle system (i.e. equation (3)). In

accordance with equation (A.1) we compute the current-current correlator 〈ID2ID3〉 and

the average current 〈ID2〉, defined with respect to the density matrix ρ = eiγQ2Q3IS1 ⊗
IS4e

−iγQ2Q3 ,

〈ID2ID3〉 =Tr
{
ID2ID3e

iγQ2Q3IS1IS4e
−iγQ2Q3

}
=

=Tr
{
ID2ID3

(
1 + (eiγ − 1)Q2Q3

)
IS1IS4

(
1 + (e−iγ − 1)Q2Q3

)} (B.1)

where in the last step we employed eγQ2Q3 = 1 + (eiγ − 1)Q2Q3 because the eigenvalues

of Qi are only 0 or 1. Then,

〈ID2ID3〉 =

= 〈ID2〉0 〈ID3〉0

1 +
4 sin

(
γ
2

)
Re
{
ie

iγ
2 〈ID2Q2〉0 〈ID3Q3〉0

}
+ 4 sin2

(
γ
2

)
〈Q2ID2Q2〉0 〈Q3ID3Q3〉0

〈ID2〉0 〈ID3〉0


(B.2)

where 〈〉0 denotes average with respect to the noninteracting setup (γ → 0). Similar

calculation for 〈ID2〉 yields

〈ID2〉 = 〈ID2〉0

1 + 〈Q3〉0
4 sin

(
γ
2

)
Re
{
ie

iγ
2 〈ID2Q2〉0

}
+ 4 sin2

(
γ
2

)
〈Q2ID2Q2〉0

〈ID2〉0

 .

(B.3)
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Plugging equations (B.2) and (B.3) in equation (A.1) yields an expression for a two

particle GCV,

〈Q2〉TPGCV =
4 sin

(
γ
2

)
γ

Re
{
ie

iγ
2 〈ID2Q2〉0 〈δID3Q3〉

}
+ sin

(
γ
2

)
〈Q2ID2Q2〉0 〈δQ3ID3Q3〉

〈ID2〉0 + 4 sin
(
γ
2

)
Re
{
ie

iγ
2 〈ID2Q2〉0 〈Q3〉0

}
+ 4 sin2

(
γ
2

)
〈Q2ID2Q2〉0 〈Q3〉0

.

(B.4)

In the weak limit (γ → 0) this expression simplifies to

lim
γ→0
〈Q2〉TPGCV = 2Re

{
i 〈ID2Q2〉0 〈δID3Q3〉

〈ID2〉0

}
, (B.5)

and in the strong limit (γ → π),

lim
γ→∞
〈Q2〉TPGCV =

4

π

〈Q2ID2Q2〉0 〈δQ3ID3Q3〉 −Re {〈ID2Q2〉0 〈δID3Q3〉}
〈ID2〉0 − 4Re {〈ID2Q2〉0 〈Q3〉0}+ 4 〈Q2ID2Q2〉0 〈Q3〉0

. (B.6)

Appendix C. Perturbative calculation of expectation values

In this section we derive the expression for expectation values of the current and the

current-current correlator. Employing a path integral formalism, a general formula for

the expectation value of an operator Ô[Ψ†,Ψ] is,

〈
Ô[Ψ†,Ψ]

〉
=

∫
D[Ψ̄,Ψ]Ô[Ψ̄,Ψ]eiS[Ψ̄,Ψ]∫

D[Ψ̄,Ψ]eiS[Ψ̄,Ψ]
, (C.1)

where S = S0 + Sint + ST is the full action over the Schwinger-Keldysh contour with

S0[Ψ̄,Ψ] =
4∑

m=1

∫
drdr′Ψ̄m,α(r)Ğ−1

m,αβ(r − r′)Ψm,β(r′), (C.2)

Sint[Ψ̄,Ψ] =
4∑

m,n=1

∫
drρm,α(r)gmnη̂

cl
αβρn,β(r) (C.3)

and

ST [Ψ̄,Ψ] =
4∑

m,n=1

∫
drdr′Ψ̄m,α(r)Γmn(r, r′)γ̂clαβΨn,β(r′). (C.4)

where α,β are the Keldysh indices in forward/backward basis, m,n are the wire indices,

r denotes the spacial 2-vector (r=(x,t)), ρm,α(r) = Ψ̄m,α(r)Ψm,α(r) is the density of the

particles, η̂clαβ is the Keldysh matrix (cf. Table C2),

gmn =


g‖ 0 0 0

0 g‖ g⊥ 0

0 g⊥ g‖ 0

0 0 0 g‖

 , (C.5)
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HH
HHH

HHχ

α, β
(+/−) (cl/q)

+ γ̂+
αβ =

(
1 0

0 0

)
γ̂+
αβ = 1

2

(
1 1

1 1

)

− γ̂−αβ

(
0 0

0 −1

)
γ̂−αβ = 1

2

(
1 −1

−1 1

)

cl γ̂clαβ =

(
1 0

0 −1

)
γ̂clαβ =

(
1 0

0 1

)

q γ̂qαβ =

(
1 0

0 1

)
γ̂qαβ =

(
0 1

1 0

)
Table C1. A list of Keldysh γ̂χαβ matrices (for fermions) in different bases of bosonic

(χ) indices and fermionic indices (α, β).

Γmn(r, r′) =


0 Γs(x, x

′) 0 0

Γ∗s(x, x
′) 0 0 0

0 0 0 Γ∗d(x, x
′)

0 0 Γd(x, x
′) 0

 δ(t− t′) (C.6)

and Γs(x, x
′) = Γ1sδ(x − x1s

1 )δ(x′ − x1s
2 ) + Γ2sδ(x − x2s

1 )δ(x′ − x2s
2 ) and Γd(x, x

′) =

Γ1dδ(x − x1d
3 )δ(x′ − x1d

4 ) + Γ2dδ(x − x2d
3 )δ(x′ − x2d

4 ). Ğ−1
m,αβ(k, ω) is the inverse of the

fermionic Green function for particles whose dynamics is described by HS
0 +HD

0 , which

in (k, ω) representation is given by [42]

Ğm,βα(k, ω) =
1

2

[
F (ω) + α

ω − vFk + iε
− F (ω)− β
ω − vFk − iε

]
. (C.7)

Here we assume the setup was in thermal equilibrium with a temperature T (described

by the fermionic population function F (ω) = tanh
(
ω

2T

)
at the time t → −∞, when

the tunneling Γ, and the interaction g were adiabatically turned on. By assuming

small tunneling the action can be expanded in power series to desired order in Γ, then

equation (C.1) gets a form,

〈
Ô[Ψ†,Ψ]

〉
=

∑
n

1
n!

〈
Ô[Ψ̄,Ψ](iST [Ψ̄,Ψ])n

〉
Ω∑

n
1
n!

〈
(iST [Ψ̄,Ψ])n

〉
Ω

(C.8)

where 〈〉Ω denotes averaging with respect to the action S0 + Sint.

The current in a chiral system with linear dispersion is linearly proportional to the

density (〈I〉 = evF 〈ρ〉). The expectation value of the density is obtained by weakly

perturbing the system by a quantum potential probe V q, which should be taken to zero

at the end to restore causality [42]. Therefore, we obtain an expression for the current

measured at Dm (m = 1, 2, 3, 4) (cf. figure 1),

〈IDm(x, t)〉 = −ievF
2

Tr
{
G̃m(x, t;x, t)γ̂q

}
,
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HH
HHH

HHχ

α, β
(+/−) (cl/q)

+ η̂+
αβ =

(
1 0

0 0

)
η̂+
αβ = 1

2

(
1 1

1 1

)

− η̂−αβ

(
0 0

0 −1

)
η̂−αβ = 1

2

(
−1 1

1 −1

)

cl η̂clαβ =

(
1 0

0 −1

)
η̂clαβ =

(
0 1

1 0

)

q η̂qαβ =

(
1 0

0 1

)
η̂qαβ =

(
1 0

0 1

)
Table C2. A list of Keldysh η̂χαβ matrices (for bosons) in different bases of bosonic

χ, α and β indices.

where G̃m,βα(x, t;x, t) = −i
〈
T Ψm,β(x, t)Ψ̄m,α(x, t)

〉
is the fermionic Green function

of the system (averaged with respect to the full action, S) at point (x,t) of the m-

th arm. The trace is over the Keldysh indices, where γ̂q is the Keldysh matrix (cf.

Table C1). For the sake of simplicity we compute first 〈ID1(x, t)〉 by expanding it to

second (leading) order in Γ. We then employ the current conservation to find 〈ID2〉,
〈ID2(x, t)〉 = I0 − 〈ID1(x, t)〉, where I0 = e2

h
V . To this order, particle tunnels twice. We

employ equation (C.8) to expand G̃ in SΓ. This yields

〈ID2(x, t)〉 =
ievF

2

∫
dt1dt2

∑
p,q={1s,2s}{

Γ∗pΓqG1,αβ(x− xp1, t− t1)γ̂clβγG2,γδ(x
p
1 − x

q
2, t1 − t2)γ̂clδεG1,εζ(x1 − x, t1 − t)γ̂qζα

}
.

(C.9)

Here

Gm(x, t)βα = −i
〈
T Ψm,β(x, t)Ψ̄m,α(0, 0)

〉
(C.10)

is the fermionic Green function averaged with respect to the interacting action, S0+Sint.

We perform Fourier transform over the time variable to obtain,

〈ID2(x, 0)〉 =
ievF

2

∫
dω

2π

∑
p,q={1s,2s}

Γ∗pΓqG1,αβ(x− xp1, ω)γ̂clβγG2,γδ(x
p
1 − x

q
2, ω)γ̂clδεG1,εζ(x1 − x, ω)γ̂qζα.

(C.11)

To find the current-current correlator, we generalize the last procedure, employing

〈〈ID2ID3〉〉 = 〈〈ID1ID4〉〉, to obtain,
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1

τ

∫ τ/2

−τ/2
dt 〈〈ID1(x′, t)ID4(x, 0)〉〉 = −e

2v2
F

τ

∫ τ/2

−τ/2
dt
∑
pqrs

Γ∗pΓqΓ
∗
rΓs

∫
dt1dt2dt3dt4×

×G1,αβ (x′ − xp1, t′ − t1) γ̂clβγG4,ηθ (x− xr4, 0− t4) γ̂clθιM̃
′
ικγδ (xs3, x

r
3, x

q
2, x

p
2; t3, t4, t2, t1)×

× γ̂clκλG4,λµ (xs4 − x′, t3 − 0) γ̂clδεG1,εζ (xq1 − x, t2 − t) γ̂
q
ζαγ̂

q
µη

(C.12)

where M̃ ′(r4, r3, r2, r1),M̃(r4, r3, r2, r1)−G2(r2 − r1)G3(r4 − r3). And

M̃δγβα(r4, r3, r2, r1),−
〈
T Ψ3,δ(r4)Ψ̄3,γ(r3)Ψ2,β(r2)Ψ̄2,α(r1)

〉
(C.13)

is the collision matrix. We perform Fourier transform over the time differences, such

that ω2 corresponds to t2 − t1, ω3 to t4 − t3 and ω̄ to 1
2
(t3 + t4)− 1

2
(t1 + t2). Finally, it

yields

1

τ

∫ τ/2

−τ/2
dt 〈〈ID1(x′, t)ID4(x, 0)〉〉 = −e

2v2
F

τ

∫ τ/2

−τ/2
dt
∑
pqrs

Γ∗pΓqΓ
∗
rΓs

∫
dω̄dω2dω3

(2π)3
eiω̄t×

×G1,αβ

(
x′ − xp1, ω2 −

ω̄

2

)
γ̂clβγ ××G4,ηθ

(
x− xr4, ω3 +

ω̄

2

)
γ̂clθιM̃

′
ικγδ (xs3, x

r
3, x

q
2, x

p
2;ω3, ω2, ω̄)×

× γ̂clκλG4,λµ

(
xs4 − x′, ω3 −

ω̄

2

)
γ̂clδεG1,εζ

(
xq1 − x, ω2 +

ω̄

2

)
γ̂qζαγ̂

q
µη.

In order to find a simpler expression for the time integral over τ , we denote

the current-current correlator by F (t): F (t) = 〈〈ID2(x′, t)ID3(x, 0)〉〉, and its Fourier

transform F (ω̄). equation (C.14) can be written in these terms as

F̄,
1

τ

∫ τ/2

−τ/2
dtF (t) =

1

τ

∫ τ/2

−τ/2
dt

∫
dω̄

2π
eiω̄tF (ω̄). (C.14)

It is easy to find an expression for F (ω̄) by comparing equations (C.14) and (C.14).

First, we write 1
2τ

[F (ω̄) + F (−ω̄)] = 1
4τ

∫∞
−∞ [F (t) + F (−t)] (eiω̄t + e−iω̄t)dt. From the

other hand we approximate the average by,

F̄ ≈ 1

2τ

∫ ∞
−∞

[F (t) + F (−t)] e−π(t/τ)2

dt

where we have assumed that F (t) grows much slower than eπ(t/τ)2
, and the antisymmetric

part of F (t) is cancelled by the averaging. By comparing the exponentials in the two

equations we obtain ω̄ =
√

2π
τ

. Then F̄ = 1
2τ

[
F (
√

2π
τ

) + F (−
√

2π
τ

)
]
.

Appendix D. Calculation of the fermionic correlators

Here we derive the expressions for the fermionic propagator (cf. equation (C.10)) and

the collision matrix (cf. equation (C.13)) averaged with respect to the action S0 + Sint,
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within an interacting arms (2,3) of MZI (the propagator in arms 1 and 4 can be found by

taking g⊥ → 0). In this calculation we employ the functional bosonization approach for

system out of equilibrium [43, 44]. We apply the Hubbard-Stratonovich transformation,

and introduce the bosonic auxiliary field Φ, writing an action S0 + Sint as [45],

S0 + Sint[Ψ̄,Ψ; Φ] = Ψ̄G−1
[Φ]Ψ +

1

4
Φg−1Φ, (D.1)

with the notation,

Ψ̄G−1
[Φ]Ψ =

∑
m=2,3

∫
drdr′Ψ̄m,α(r)G−1

[Φ]m,αβ(r − r′)Ψm,β(r′)

where

G−1
[Φ]m,αβ(r − r′) = Ğ−1

m,αβ(r − r′)− γ̂χαβΦm,χ(r)δ(r − r′)

and

Φg−1Φ =
∑

m,n=2,3

∫
drΦm,α(r)g−1

mnη̂
cl
αβΦn,β(r).

where we implicitely sum over the Keldysh indices α, β, χ = ±1 (in forward/backward

basis) and g−1
mn is the inverse of the m,n = 2, 3 submatrix of gmn (cf. equation (C.5)).

Following the functional bosonization procedure [45], we obtain a general expression for

an n-fermion correlator,〈
T

n∏
i

Ψai(ri)Ψ̄bi(qi)

〉
=

〈
T

n∏
i

Ψai(ri)Ψ̄bi(qi)

〉
0

e
− 1

2

〈
T (
∑n
i θai (ri)−θbi (qi))

2
〉

Φ ,(D.2)

where a, b = (α,m) denote the Keldysh and the wire indices, r, q = (x, t), 〈〉0 is the

fermionic correlator with respect to the free action

S0[Ψ̄,Ψ] = Ψ̄Ğ−1Ψ, (D.3)

and 〈〉Φ is the Φ-field correlator with respect to the action

SΦ[Φ] =
1

4
Φg−1Φ + ΦΠ̂Φ (D.4)

respectively. Here

ΦΠ̂Φ =
∑
m=2,3

∫
drdr′Φm,α(r)Π̂m,αβ(r, r′)Φm,β(r′)

with the polarization matrix,

Π̂m,αβ(r − r′) =
i

2
Tr
{
γ̂αĞm(r − r′)γ̂βĞm(r′ − r)

}
, (D.5)

where the trace is taken over the Keldysh fermionic indices [42]. The θ field is defined

by

θm,α(r) = −i
∑
βγ=±1

∫
dr′GB

m,αβ(r − r′)η̂clβγΦm,γ(r
′), (D.6)
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where GB is the bosonic free Green function with linearized spectrum,

GB
m,βα(k, ω) =

1

2

[
B(ω) + α

ω − vFk + iε
− B(ω)− β
ω − vFk − iε

]
. (D.7)

The action for the Φ field (cf. equation (D.4)) is quadratic due to Larkin-Dzyaloshinskii

[46] theorem, therefore an exact expression for the Φ-field correlator is

iQ̆mn,αβ(r − r′), 〈T Φm,α(r)Φn,β(r′)〉Φ = i
(
g−1
mnη̂

cl
αβδ(r − r′) + δmnΠ̂m,αβ(r − r′)

)−1

.

We reduce the problem of finding an inverse of an infinite-dimensions matrix, inverting

it to the finite (4) dimensions by Fourier-transforming it to a diagonal (k, ω) basis.

Employing equation (D.6) we obtain the θ-field correlator,

iK̆mn,αβ(r − r′), 〈T θm,α(r)θn,β(r′)〉Φ =

= −i
∫
dqdq′

[
GB(r − q)η̂clQ̆(q − q′)η̂clGB(q′ − r′)

]
mn,αβ

,
(D.8)

where we implicitly sum over the Keldysh and the wire indices. This yields,

K̆mn = δmn

(
B
[
K̆R
‖ − K̆A

‖

]
K̆R
‖

K̆A
‖ 0

)
+ σxmn

(
B
[
K̆R
⊥ − K̆A

⊥

]
K̆R
⊥

K̆A
⊥ 0

)
(D.9)

where

K̆
R/A
‖ (k, ω) =

π

k

[
1

ω − vρk ± iε
+

1

ω − vσk ± iε
− 2

ω − vFk ± iε

]
, (D.10)

and

K̆
R/A
⊥ (k, ω) =

π

k

[
1

ω − vρk ± iε
− 1

ω − vσk ± iε

]
. (D.11)

Here, vρ = u + 2g⊥
π

, vσ = u − 2g⊥
π

, with u = vF +
2g‖
π

. We plug this result in

equation (D.2) to compute the Green function (equation (C.10)) and the collision

matrix of the particles in arms 2 and 3 (equation (C.13)). The calculation requires

transformation of equations (D.10) and (D.11) to real (x,t) space. Here we present the

final result,

Gm,βα(x, t) = − T

2vF

1√
sinh

[
πT
(
t− x

vρ
+ i

Λ
[αΘ(t)− βΘ(−t)]

)]×
× 1√

sinh
[
πT
(
t− x

vσ
+ i

Λ
[αΘ(t)− βΘ(−t)]

)] . (D.12)

Fourier-transforming the time coordinate yields,

Gm,βα(x, ω) = − i

2vF
[F (ω) + αΘ(x)− βΘ(−x)] eiω

x
u
ξ(λ)

∫ 1

−1

ς

(
T
|x|
u
λ, s

)
eisω

|x|
u
λds

(D.13)
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with the definitions λ =
[

1
u

2g⊥
π
−
(

1
u

2g⊥
π

)−1
]−1

, ξ(λ) = 2λ2
√

4λ2+1−1
, and ς(A, s) =

A√
sinh[πA(1−s)] sinh[πA(1+s)]

. For the sake of consistency check, limg⊥→0,g‖→0G = Ğ. And

the collision matrix reads,

M̃δγβα(x4, x3, x2, x1) = G3,δγ(x43)G2,βα(x21)ζ̃(1)
γα (x31)ζ̃

(1)
δβ (x42)ζ̃

(2)
γβ (x32)ζ̃

(2)
δα (x41)

where, ζ̃
(1)
βα (x, t) =

√
sinh

[
πT
(
t− x

vρ
+ i

Λ
[αΘ(t)−βΘ(−t)]

)]
√

sinh[πT(t− x
vσ

+ i
Λ

[αΘ(t)−βΘ(−t)])]
and ζ̃

(2)
βα (x, t) =

(
ζ̃

(1)
βα (x, t)

)−1

. Fourier-

transforming the time coordinates yields,

M̃δγβα(x1, x2, x3, x4, ω3, ω2, ω) =
1

2

∫
dω′dω′2dω

′
3

(2π)3
G3,δγ(x43, ω3 − ω′3)G2,βα(x21, ω2 − ω′2)×

× ζ̃(1)
γα (x31,

ω − ω′ + ω′2 − ω′3
2

)ζ̃
(1)
δβ (x42,

ω − ω′ − ω′2 + ω′3
2

)ζ̃
(2)
γβ (x32,

ω′ − ω′2 − ω′3
2

)ζ̃
(2)
δα (x41,

ω′ + ω′2 + ω′3
2

)

,

(D.14)

where we have used the short notation xij = xi− xj; G is the single particle propagator

given by equation (D.13), and ζ̃
(1/2)
βα (x, ω) = 2πδ(ω) cosh

(
πTxλ
u

)
−2xλZ̃

(1/2)
βα (x, ω), where

Z̃
(1/2)
βα is given by,

Z̃
(1/2)
βα (x, ω) = − i

2u
[B(ω) + αΘ(x)− βΘ(−x)]eiω

x
u
ξ(λ)

∫ 1

−1

κ(T
|x|
u
λ, s)e±isω

x
u
λds,

(D.15)

where B(ω) = coth( ω
2T

) is the Bose function and κ(A, s) =
√

sinh[πA(1+s)]
sinh[πA(1−s)] .

equation (D.14) has a pictorial interpretation, presented in figure D1, according to

which, the Z̃ particles are the dressed bosons that carry the interaction between the

electrons.

Appendix E. Passage of the electron through the MZI: a semiclassical

picture

Here we present the propagation of a localized wave packet (according to a semiclassical

picture) through an interacting arm of MZI, and derive the condition to be in the

semiclassical regime. We assume semiclassically a propagating rectangular shaped wave

packet with a width ∼ ~
eV

in time domain (cf. figure E1). The propagation of the single

particle wave function can be derived by convolving the initial state with the retarded

Green function,

Ψ(x, t) = i

∫
GR(x− x′, t) ∗Ψ(x′, 0)dx′. (E.1)

An expression for the zero temperature retarded Green function is (this is simply derived

from equation (10)).

GR(x, t) =
iu

πλxvF

Π
(
u
xλ

(t− xξ(λ)
u

)
)

√
1−

(
u
xλ

(t− xξ(λ)
u

)
)2

(E.2)
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Figure D1. The collision matrix M̃ (cf. equation (D.14)). A diagrammatic

representation of the renormalized inelastic collision between two chiral fermions

inside the interacting region. Straight lines correspond to fermionic Green functions

(gray- outside the interacting region and black- inside). Wavy lines correspond to

bosonic Green functions (red and blue for the two different types of bosons, cf.

equation (D.15)). The vertices x1,x3 (x2,x4) correspond to the two entry (exit) points

of the interaction region on the edges. The Keldysh indices (±) at these points are

indicated by α, β, γ, δ. Electrons enter the interacting region with energies ω2+ 1
2ω and

ω3 − 1
2ω and exit with energies ω2 − 1

2ω and ω3 + 1
2ω respectively, exchanging energy

ω via 4 possible different bosons.

where Π(x) =

{
1 −1 < x < 1

0 o.w.
is a rectangle function. The wave packet at 4 different

points is shown in figure E1. We observe, the wave packet has been broadened as

a result of the interaction, its width in time at different space points is given by

∆t(x0) = ~
eV

+ 2λx0

u
. The center of mass of the wave packet then propagates with

velocity vCM = u
ξ(λ)

. Consistent with the semiclassical picture, we require the width of

the wave packet to be much smaller compared with the propagation time through the

MZI, ∆t(L)� L/vCM . From this condition we deduce, eV � ~u
L

and λ� 1.

Appendix F. General GCV for an N-state system

Here we present a derivation of GCV for a general system with N-states being measured

by a Gaussian detector. We show that the weak-to-strong crossover in such a case

may be oscillatory with a bounded number of periods of the order of O(N2). The

initial state of the system is a mixed state, which is represented by the density matrix

ρs =
∑

n,mRnm |αn〉 〈αn|. The detector is initialized in the zeroth coherent state (we

denote the α′s coherent state by |α̃〉) such that its density matrix is ρd =
∣∣0̃〉 〈0̃∣∣.

We neglect the dynamics of the system and the detector assuming the measurement

process was short in time compared to the typical timescales of the system and the

detector. The coupling Hamiltonian is HI = w(t)gÂ(b† + b) with b, b† are the ladder

operators of the detector, Â =
∑

n an |αn〉 〈αn| and w(t) is a window function around the

time of the measurement. The post-selection is represented by the projection operator,
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Figure E1. A propagation of the wave packet through an interacting arm of the

MZI, at zero temperature, for λ = 1 for different points (a) x0 = 0, (b) x0 = u~
eV , (c)

x0 = 2 u~eV , (d) x0 = 3 u~eV . As can be derived from equation (E.2), the width of the

wave packet is given by, ∆t = ~
eV + 2λx0

u .

Πf =
∑

n,m Pnm |αn〉 〈αn|. Plugging into equation (1) and considering, ρtot = ρs ⊗ ρd
and δq = b, yields 〈

Â
〉
GCV

=

∑
n,m anRnmPmne

− g
2

2
(an−am)2∑

n,mRnmPmne
− g2

2
(an−am)2

. (F.1)

The numerator and the denominator consist of sums of Gaussian (in g) functions, with

different coefficients and prefactors. Each Gaussian is a monotonic function (for g > 0),

thus the maximal number of extremas in the weak-to-strong crossover (g ∈ [0,∞)) is of

the order of O(N2), where N is the number of system’s states.

Appendix G. A full list of diagrams

Figure G1 depicts a full list of irreducible diagrams to fourth (leading) order in tunneling

which should be taken in account for the current-current correlator. It is divided to

diagrams with no flux dependence (cf. figure G1(a)), diagrams which are dependent on

either ΦS or ΦD (cf. figures G1(b) and G1(c)), and diagrams which are depend on both

ΦS and ΦD, cf. figure G1(d).
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(a) Diagrams independent of the Aharonov-Bohm flux.
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(b) Diagrams with ΦS dependence.
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(c) Diagrams with ΦD dependence.
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(d) Diagrams depending on both ΦS and ΦD.

Figure G1. The full list of irreducible diagrams to fourth (leading) order in tunneling

which should be taken in account for the current-current correlator (cf. equation (8)).

Semi-classical paths of the particles are marked by solid lines (red) and dashed lines

(blue), corresponding to forward and backward propagation in time (cf. equations (7)

and (8)). The diagrams are divided to four groups by their Aharonov-Bohm flux

dependence. The leading diagrams which were included in the calculation of the GCV,

are in 1(d).
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