arXiv:1407.1159v2 [cond-mat.mes-hall] 4 Dec 2014
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Generating on-demand maximally entangled states is one of the corner stones for quantum infor-
mation processing. Parity measurements can serve to create Bell states and have been implemented
via an electronic Mach-Zehnder interferometer among others. However, the entanglement generation
is necessarily harmed by measurement induced dephasing processes in one of the two parity subspace.
In this work, we propose two different schemes of continuous feedback for a parity measurement.
They enable us to avoid both the measurement-induced dephasing process and the experimentally
unavoidable dephasing, e.g. due to fluctuations of the gate voltages controlling the initialization
of the qubits. We show that we can generate maximally entangled steady states in both parity
subspaces. Importantly, the measurement scheme we propose is valid for implementation of parity
measurements with feedback loops in various solid-state environments.

PACS numbers: 73.23.-b, 03.65.Ta, 03.67.Bg, 03.65.Yz

I. MOTIVATION

The generation, the control and the read-out of
pairs of entangled qubits serve as stepping stones
towards the implementation of quantum information
protocols. While the readout of individual qubits is
typically associated with the irreversible destruction
of the given coherent state, it has been shown that
a joint measurement of two qubits can serve as an
effective mechanism to generate entanglement between
two measured qubits initially in a product state,''2
and may be used for error correction schemes.'®'* This
measurement-based creation of entanglement is achieved
by operating the detector as a parity meter. The
corresponding observable in the computational basis of
the qubits reads P = 6. ® 62, where o! are the Pauli
matrices for the qubits ¢ = 1,2. The parity operator
P has two eigenvalues, +1, corresponding to the even
subspace spanned by the states {|11),[|{{)}, and to the
odd subspace spanned by {|tl),[|{1)}. Measuring the
parity causes the two-qubit state to collapse onto a
superposition of even or odd states and, in particular
onto the maximally entangled states or Bell states
in an ideal situation, |¥F) = ([11) + [J1))/v2 and

W) = (1) £ [411)/ V2.

Parity measurements have been proposed in various
solid-state systems that serve as potential architec-
tures for quantum computing. In circuit quantum
electrodynamics (QED), generation of entanglement
through a parity measurement has been very recently
achieved in 3D circuit QED':!6 as well as in 2D Circuit
QED'7, an architecture suitable for surface coding. Also
quantum transport-based measurements can equally
well act as parity measurements: both the quantum
point contact (QPC)*% and the electronic Mach-Zehnder
interferometer (MZI)? have been investigated as parity
meters for two double-quantum dots (DDs) charge
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FIG. 1. (Color online). Parity measurement through a MZI
and induced dephasing. (a) Sketch of the MZI operated as a
parity meter for two charge qubits, @1 and @2, including the
feedback circuit. The feedback is implemented via a gate volt-
age, which controls the bias energies of the qubits. Electrons
are injected in lead |1) and the current is measured in lead |3).
The input |2) and output |[4) are not used in this proposal.
(b) Signal at the detector’s output. The Aharonov-Bohm flux
® can be tuned to have indistinguishable signals for even and
odd states, I. and I, respectively. (c) Probabilities for the two
qubits to be in each of the four maximally entangled states
as a function of time without feedback (f = 0, dashed lines)
and with optimal feedback (f = opt, solid lines).

qubits as shown in Fig. 1(a). By adjusting the coupling
strengths between the qubits and the detector, and by
tuning either the microwave resonator frequency or the
magnetic flux threading the electronic MZI, only two
values for the photon intensity or the electrical current



corresponding to the two parity subspaces are detected.

It has been shown theoretically? 1118 and confirmed
in the experiments of Refs. 15-17, that the two parity
subspaces are not on an equal footing with respect to
dephasing processes. While the two even states [11)
and |}]}) give rise to the same measurement outcome
within the parity measurement process, they differ by a
phase factor which depends on the specific measurement
outcome.  Consequently, the different measurement
backaction leads to a loss of phase coherence when
averaging over an ensemble of realizations. This de-
phasing in the even subspace, which we characterize
as intrinsic because it is induced by the unavoidable
measurement backaction, does not affect the odd states.
Therefore, entangled states made of a superposition of
even states experience decoherence even in the absence
of external noise. In this paper we address the possibility
of including a feedback loop in the parity measurement
scheme to overcome this intrinsic dephasing.

The majority of previous theoretical works investi-
gating the implementation of feedback loops focused
on a Bayesian formalism. It consists in updating the
density matrix elements according to a state estimation
which depends on the full history of the state’s evolution
and of the measurement outcomes.'® 22 Experimentally,
this feedback scheme has been successfully implemented
to stabilize Rabi oscillations of a single-qubit subject
to measurement-induced dephasing.?® This Bayesian
procedure has to be compared to a Markovian or
direct feedback, where the feedback is proportional
to the measurement outcome.?* 2% The Markovian
feedback presents the strong advantage to be much less
challenging numerically and experimentally, as it does
not require real-time resolution of non-linear stochastic
differential equations needed for the state estimation in
the Bayesian approach. While in general the Bayesian
approach to feedback leads to more accurate results, it
has been shown that, in the case of QND measurements
and in the absence of external noise sources, Markovian
and Bayesian approaches coincide.?” In this work, we
show that the implementation of a Markovian feedback
is sufficient to tackle the intrinsic dephasing present in
the even subspace as discussed above.

To be concrete, we consider an architecture made
of an electronic MZI?®?° coupled to two DDs charge
qubits.  This choice is motivated by the very good
coherence properties of the MZI?* 34 which make it an
ideal candidate as a quantum detector.?>3% In Ref. 9,
one of the authors has derived the conditions under
which it can be operated as an ideal parity meter.
Measurement-induced entanglement has been shown in
principle, but is not stable due to intrinsic and external
sources of noise. The goal of this work is to go beyond
these results, and to show that a Markovian feedback
efficiently compensates the measurement-induced de-

phasing and that external sources of noise, unavoidable
in realistic setups, can also be overcome by including a
second feedback based on the Bayesian approach. With
this, we demonstrate how to generate in a deterministic
way, target maximally-entangled states that do not
decay in time.

The paper is organized as follows. In Sect. II, we
present the microscopic derivation of the state at the out-
put of the MZI after the transit of IV electrons, imposing
that the detector acts as a parity meter. In Sect. III, we
analyze the average detector outcome and, based on the
previous derivation of the output state, derive the de-
phasing rates affecting the parity measurement. In par-
ticular, we discuss the dephasing rate I', between the
even and odd states which sets the time scale at which
entanglement is generated, and we explain the origin of
the dephasing rate I'¢. present within the even subspace.
We introduce the concurrence conditioned on the parity
outcome as a measure of the amount of entanglement
generated in each parity class through the measurement
process and advance a Markovian feedback scheme that
tackles this intrinsic dephasing. To trigger future exper-
iments, in Sect. IV, we expand our feedback mechanism
to take into account the effect of additional sources of
noise, especially when considering fluctuating tunnelling
and bias energies in the DDs. To this end, we introduce a
second joint measurement, whose outcome is used to im-
plement a feedback based on the Bayesian approach. By
combining the two feedback schemes, we achieve the de-
terministic generation of maximally-entangled states via
a parity measurement, characterized by maximal concur-
rences in both parity subpsaces.

II. MICROSCOPIC MODEL

The electronic MZI is made of a Corbino disk, built
in the quantum Hall regime.?8 3% The transport of elec-
trons takes place along chiral edge states, which ensure a
uni-directional transport. Two quantum point contacts
(QPC) (left and right) act as beam splitters for the in-
coming electronic wave-packets. They are characterized
by their reflection and transmission probabilities, Ry, r
and TR 1, respectively. The electrons are injected in lead
|1), biased by an energy eV compared to the other leads
which are at the Fermi energy Er. The DDs charge
qubits are coupled capacitively to the arms of the MZI,
as depicted in Fig. 1. Depending on the charge config-
uration of the DDs, each electron injected in the MZI
acquires different phases in the upper (u) and lower (d)
arms of the interferometer, @285/),905;5/). Their expres-
sions are derived from the interaction Hamiltonian be-
tween the charge in the DDs and the charge in the arms
of the MZL.%1837:38 " The indices s,s’ € {1,]} span the
DDs’ computational basis. Starting with the qubits in a
product state and decoupled from the detector described
by the state |Uqet), the initial state describing the whole



system reads:

(D 1) + @t 1) + a0 1) + ol (1) ) @ [ Wae)
(1)

with [T 2 +]a(TV ]2 4 ]atD 2 4 |2 = 1. After the
passage of a single electron, the detector and the qubits
become entangled:!+6:9:22,39,:40

) = 3 0t [ef 3y + D] @ sy, (@)

(ss")
where the states |3) and |[4) denote the two output leads
of the interferometer (see Fig. 1) and the coefficients

c{**) and C{**) in terms of the system’s parameters are
given by:
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The Aharonov-Bohm flux 27®/®,, where &, = h/e
is the flux quantum, arises from the magnetic field
threading the sample. The second equality for both
coefficients is obtained by assuming symmetric QPCs,
Ry, = Rg = 1/2 in order to optimize the strength of
the measured signal in agreement with the original
experiments?830:32,

Parity detection— To operate the electronic MZI as a
parity meter, we have to impose that:

(LT = [(UH)]? =P, (5)
(1)) = [ P1)]? = P.. (6)

where P, (P.) is the probability to find the qubits in an
odd (even) state. The two distinguishable currents at the
output of the parity meter are then given by:
22V 2e2V

I, = h P,, I.= W P,. (7)
Following Ref. 9, Egs (5) and (6) are satisfied if the two
parity assumptions are verified: (P1): d¢, = 0pq = dp,
(P2) : 27®/®g = 0 modw. Experimentally, the first
condition can be fulfilled by controlling the capacitive
coupling between the arms of the MZI and the DDs and
the second one is directly implemented by tuning the
magnetic field.2830 The coupling is assumed to be weak
such that:

Al=1,-1.<1,1.. (8)

Consequently, the detector output noise Sy is assumed
to be independent of the qubits’ state, Sip = (Sg+55)/2,

3

with SIOI/E = 263V/hT;1/e(1 - To/e) the detector shot
noise associated with the transmission probability from
lead |1) to lead |3) of the MZI for the qubits in the even
and odd subspaces. The detector shot noise Sy; defines

the measurement rate of the apparatus,*' I'y, = (fSII )1 .
A quantum-limited ideal parity meter, i.e., a detector

which detects the parity of the qubits as fast as it
dephases them, is characterized by I'y, = I'¢,, where
T'e, describes the loss of phase coherence between the
even and odd states. To get an explicit expression of
T'eo, and of the dephasing rates within each subspace,
T'ee and I'y,,, we expand the microscopic single-electron
formulation of the output state |¥1) to the case of a large
number N of electrons and obtain an expression for |¥y ).

For this, we consider a time interval 7, much larger
than the time h/eV between two consecutive electrons
passing through the MZI, 7 >> h/eV (we recall that eV
sets the energy bias of the dc-source). During this time
window 7, N > 1 electrons are sent into the interferom-
eter, independently from each other. Equation (1) then
evolves to:

W)

ZZ( JeB e s

9)

Here, we have introduced the notation |n, N —n) to
describe the state where n electrons have reached the
output lead |3) of the MZI, whereas N — n have reached
the output lead [|4). The chirality of the edge states
along which the electrons travel in the MZI ensures that
the N electrons injected into lead |1) exit either through
lead |3) or lead [4).

Though it is possible to inject a controlled train of
single quasiparticles in a MZIL,*? the most natural exper-
imental configuration is that of an applied dc-bias. In-
deed, a dc-source with a typical bias of ~ 1ueV will lead
to the continuous emission of electrons with a typical co-
herence length ~ 40ueV (much longer than the coherence
length of Levitons for instance, ~ 1ueV, see Ref. 36 for
details). Because the electronic MZI is of the order of
few peV, electrons sent by a dc-source can therefore be
considered as interacting independently with the charges
of the DQDs coupled to the arms of the interferometer.

In the limit of N > 1 independent electrons, the cen-
tral limit theorem applies and the binomial distribution
in Eq. (9) tends to a Gaussian distribution. The output
state |Uoys) in lead |3) (where the current is actually mea-
sured) is obtained by projecting the state |¥U ) onto the
state |n, N — n). Expressing the numbers of electrons n
and N in terms of the corresponding currents, n = Is7/e
and N = I;7/e (the subindices refer to the leads, e is the
electrical charge and 7 is the time interval at which the
detector signal is registered), we obtain the output state
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FIG. 2. (Color online). Generation of entanglement through the parity measurement with feedback. a) Amplitude of the
oscillations between the populations of the even Bell states |\I/ei> as a function of time for different values of the feedback pa-
rameter. For f = 1, the amplitude does not decay as expected for the optimal feedback when considering a QND-measurement.
b) Conditional concurrences plotted as a function of time in units of the measurement time set by the dephasing rate Ieo.
The optimal value for the feedback parameter f = 1 leads to steady maximally-entangled states in both parity subspaces:
Ce = C, do not decay. For comparison, conditional concurrences are shown for different values of non optimal feedback f:

f=20,0.5,0.75.
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The width D of the two Gaussian distributions centered
around the average values for the even and odd currents is
set by the detector shot noise, D = Sy;/7. Equation (10)
constitutes one of the main results presented in this
work and is in full agreement with previous theoretical
expressions derived within a quantum Bayesian formal-
ism.120:22 Importantly, the parity measurement provides
faithful information about the state of the system, as
long as the width of the two Gaussian distributions is
smaller than the signal AI = I, — I. to be resolved. The
phase factor for the state |{1) corresponds to a shift in
energy of the qubits induced by the coupling to the de-
tector (equivalent to an ac-Stark shift in Circuit QED*?).

The free evolution of the qubits during the time inter-
val 7 is generated by the Hamiltonian Hy,:

Hp=3 %&; + A5 (11)
i=1,2

where €; and A; are the energy bias and the tunneling
energy of the qubits i = 1,2 and the operators 6% and
&% are the Pauli matrices of the respective qubits. When
the tunneling energy A is set to 0 and ¢; = ¢, the effect

of the free evolution is merely adding a phase factor
eFie7/h o the even states. Different bias energies do not
change the dynamics in the even subspace and do not
lead to additional dephasing in the odd subspace. As
A = 0, this corresponds to a quantum non-demolition
measurement (QND), [Hqp, P] = 0. In the following,
we derive the explicit expressions for the dephasing
rates ['ep,I'ee and T'y, in the QND case. This shows
that the parity measurement is of special interest as
dephasing remains present, even when considering a
QND measurement. It is the presence of dephasing in
the even subspace that motivates the implementation of
a feedback scheme.

III. INTRINSIC DEPHASING: MARKOVIAN
FEEDBACK

A. Dephasing processes

The dephasing rates are obtained by averaging the ra-
tios of the phase factors in Eq. (10) over many realiza-
tions:

1 ,

Ipo = ——log <e’2115“”/e> =0, (12)
T
1 ‘ eV [6p?

Fee —_7] 2 (I3—1I1)T/e — 1
~log (e ) T\ ) (13)
1 : r

Lo = ——log (emTa=lor/ey — Ze . (14)

There is no dephasing present in the odd subspace as
there are no fluctuating quantities. In fact electrons
travelling through the interferometer acquire exactly the



same phase on the upper and lower arms if the qubits
are in the state [t} or |}1). Contrarily, within the even
subspace the dephasing rate I'¢. is finite. When the
qubits are in an even configuration, the electrons acquire
a different phase when traveling along the upper or the
lower arms of the interferometer. The fluctuations in the
phase factor of the states [11) and |}J)) is the hallmark
of the quantum uncertainty concerning the path of the
electrons when travelling through the MZI. The origin
of I'ye can also be understood from the detector’s point
of view: because the phase acquired by the electrons
depends on the states |11) and ||]) and is asymmetric
between the upper and lower arms, the qubits acquire
path information, which leads to dephasing.

Note that T'., sets the time scale at which entangle-
ment is generated through the parity measurement pro-
cess: it corresponds to I'vp = Iy, = (AI)2/4S1;. Because
the rate I'. is four times larger than I',,, the parity mea-
surement will never achieve the creation of significant
entanglement in the even subspace if the corresponding
dephasing is not compensated by a feedback loop.

B. Markovian feedback mechanism

As the effect of the fluctuating part of the intrinsic
measurement backaction is proportional to the qubits’
Hamiltonian the feedback can be simply implemented by
adjusting the bias energy of the qubits as follows:

6/=€+f(7(13—11)§). (15)

We recall that I; corresponds to the incoming current in
lead |1), whereas I3 is the measurement outcome. This
procedure corresponds to a Markovian feedback, without
any state estimation. Taking into account the last
measurement outcome is sufficient here to stabilize the
probabilities of generating the four maximally-entangled
states as seen in Fig. 1. We have assumed the feedback
parameter to be the same for both qubits. This is
justified as different f would lead to extra dephasing in
the odd subspace, which can be taken care by a more
general feedback scheme discussed in Sect. IV. In Fig. 2
(a), we show the amplitude of the oscillations that the
even Bell states under go. For the optimal value of the
feedback parameter, f = 1, this amplitude is maximal
and does not decay in time.

The optimal value of f can be derived from an analyt-
ical model based on the Langevin equation for the phase
difference acquired by the qubits in the even subspace
using Eqgs. (10) and (15):

b(t) = limwz—%—iﬂr\/ﬁ(l—f)f(t)a

T—0 T

where &(t) = (I3 — I)/V/D is a fluctuating variable
characterised by a white noise: (£(¢)&(¢')) = 26(t — t/).

From the above equation, one deduces the corresponding
Fokker-Planck equation for the probability distribution
of the phase ¢:**

d
GRG0 = (- 1D Po,)

(1— f)24T., d?
o
P(¢,t). (16)

P(¢,1)

Lee(f) d?
T dg?

Here T'.e(f)/7 corresponds to the diffusion coefficient of
the phase ¢, given that the random variable depends
on the output current 3. From Eqgs. (10) and (14),
the expression of D = 4e?I'.,/m%7 is derived. The
optimisation of our feedback scheme corresponds to
requiring that Tee(f)/Teo = 4(1 — f)?> = 0. When the
feedback parameter f = 0, one recovers the dephasing
rate .. derived in Eq. (14) and for f = 1, we reach the
optimal situation where dephasing in the even subspace
vanishes.

Numerical implementation— To implement the continu-
ous nature of the measurement and the feedback numer-
ically, we consider two small consecutive time intervals
At large enough such that Eq. (10) holds, but still short
compared to the measurement time 1/T¢,. At the end of
the first interval, the state has evolved due to its bias en-
ergy ¢, and a current measurement result I3 is drawn from
the probability distribution pertaining to I3. The state
describing the system ” qubits+detector” is then given by
Eq. (10). Consequently, the measurement result is used
to adjust the bias energy € to ;41 = €+ f(m(I5 — I)2).
During the second time interval, the state evolves un-
der the Eq. (11) with a bias energy ¢;11. Notice that
for At — 0, measurement and evolution can be treated
consecutively, also in the general case of [H, P] # 0.

C. Deterministic generation of entanglement:
Conditional concurrences

To  describe quantitatively the amount of
measurement-generated  entanglement during the
parity measurement with feedback, we introduce the
conditional concurrence C./,(p) defined as the entan-
glement concurrence post-selected on the measurement
outcome. The concurrence is defined as:%°

C(p)

where \; are eigenvalues of the matrix R =

=max (0,A; — A2 — Az — A\g) , (17)

NN
P= Y sensy O ) s15h) (251 | denoting  the
two-qubits density matrix and p its “spin-flipped”
counterpart. Since the concurrence itself is a measure
of entanglement for mixed states, we introduce the
conditional concurrence defined as the concurrence
post-selected on the measurement outcome (either I,



or I,).17. This allows us to further distinguish entan-
glement creation in the even and in the odd subspaces.
Figure 2 displays the conditional concurrences C, and
C, for different values of the feedback parameter f.
As expected, changing the feedback parameter has no
quantitative effect on the generation of entanglement
in the odd subspace: C, = 1 and the dashed curves
corresponding to different values of f are barely distin-
guishable. In contrast, it is only for the optimal value
of f derived from the Fokker-Planck equation, Eq. (16),
that deterministic entanglement is created in the even
subspace for long times compared to the measurement
time. While these results have been derived consid-
ering the electronic MZI as parity meter for charge
qubits, they remain valid for considering alternative
solid-state architectures, for instance circuit QED setups.

For the sake of completeness, let us mention the case
of finite tunnelling, A # 0 in Eq. (11). The operators
512 tend to mix the two parity subspaces, which would
render the parity measurement procedure ineffective
to generate entanglement. However, this undesired
effect can be avoided by controlling the strength of
the parity measurement. Indeed, for sufficiently strong
measurements (I's, 3> A/R), the projective nature of the
parity measurement prevents the two parity subspaces
from mixing. The concurrences C. and C, are then
similar to the ones shown in Fig. 2.

We conclude this section by comparing our results with
Ref. 15, where a parity measurement in a 3D circuit
QED architecture was implemented along with a pro-
jective feedback to deterministically obtain a target Bell
state. The projective feedback consists in flipping one
qubit when the measurement outcome indicates a state
belonging to the even subspace. This single-qubit rota-
tion results in states consisting of superposition of only
odd states. However, dephasing leads to a maximum of
created entanglement at some finite time. As this time is
shorter than the measurement time (which sets the time
at which a clear separation of parity subspaces is possi-
ble), the maximum fidelity obtained is 66%. We claim
that our feedback mechanism is of particular relevance
for this situation as for f — 1 the maximum entangle-
ment is reached after an arbitrary large time, allowing
for a distinct separation of parity subspaces and thus for
a theoretical fidelity of 100%, i.e. a deterministic cre-
ation of target Bell states. To trigger future experiments
in this direction, we consider in the next section exter-
nal sources of noise, which are unavoidable in a realistic
realization of our proposal.

IV. ADDITIONAL SOURCES OF NOISE :
BAYESIAN FEEDBACK

Deterministic generation of given Bell states requires
an initial initialization of the qubits. Experimentally, this
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FIG. 3. (Color online). Deterministic generation of entan-
gled states in the presence of external sources of noise. Upper
panel: Conditional concurrence C, as a function of the mea-
surement strength I'; normalized by I'., for different noise
strengths I'e /T'co. In the absence of external noise, the Marko-
vian feedback that compensates the intrinsic dephasing is
enough to produce Bell states which do not decohere in time:
Ce =1 (red crosses). For non-zero values of noise, C. reaches
a saturated value which decreases when the noise strength
becomes large. Lower panel: Conditional concurrence C, fol-
lows the same evolution as C.: here the behaviour of C, as a
function of the noise strength I'c /T, is plotted.

requires tuning of gate voltages, which induces fluctua-
tions in the energy and tunnelling energies of the qubits,
and therefore leads to additional dephasing. To mimic
this situation, we assume that the noise sources of the
qubits are statistically uncorrelated, so that their Hamil-
tonian now reads:

=Y (5 +&m)et, (18)

i=1,2

where the fluctuating terms &;,79 = 1,2 are separately
drawn from a white noise distribution with a width D.
This leads to an extra dephasing within each subspace,
characterized by the rate I'c. Treating the additional
dephasing along with the intrinsic dephasing requires
that the detector output is a continuous variable on such
time scale, i.e. At has to remains the shortest time-scale
of the problem. In particular I'c At <« 1. With a deco-
herence time 1/T¢ ~ 1078 seconds for charge qubits?®
and a typical impinging rate eV/h ~ 1019 seconds™! in
MZI interferometers??3°, the condition can be met in



current and future experiments. We assume the general
case of non-symmetric bias energies ¢;, but we do not
consider noise in the tunnelling. This is justified by
realizing that the consequence of a noisy tunnelling can
be split into two distinct effects, which can be easily
compensated. First, it induces a dephasing between the
parity subspaces that can be suppressed by a sufficiently
strong parity measurement as discussed in the previous
section. Secondly, it causes a fluctuating phase within
the parity subspaces, which can be reabsorbed in the
fluctuating part of the Hamiltonian Eq. (18).

To the contrary, the presence of bias energy fluctu-
ations results in a dephasing within both subspaces so
that, for any finite D¢, the built-up entanglement reaches
a maximum at some finite time and decreases afterwards
down to zero.!'?20 These dephasing processes can not
be compensated by a Markovian feedback based on the
parity measurement result. Indeed, because [Hgp, P] = 0,
the parity measurement does not infer any information
about the loss of phase coherence and its outcome is then
of no use for a feedback procedure aiming at compensat-
ing external sources of noise. We therefore introduce a
new measurement operator,

P, =6lws2. (19)
This operator has the advantage to distinguish between
states within one parity subspace while commuting with
the parity operator P. Thus its measurement allows us
to infer information about the relative phase between
states in the even or in the odd subspace. Experimen-
tally, this joint measurement can be implemented by
pulsed measurements, combining single-qubit operations
(7 /2-rotations) with a parity measurement.!”47

To obtain more accurate results with this feedback loop
based on P, we consider here a Bayesian appgoach.1716’23
Because [Py, P] = 0, the measurement of P, does not
mix the parity subspaces. Therefore, the dynamics of
the system, along with the joint measurement of P, and
P, leads, at long times, to a decay of the density matrix
elements connecting states of different parity. The evolu-
tion of the state at long time, and the effect of feedback,
can then be characterized by the two phases expressed in
terms of the real and imaginary parts of the density ma-
trix’ elements p,s 5o Written in the computational basis
of the two qubits spanned by the indices ss’:

Re{ptt,11}

Re{pTi,lT}(20)
Im{pyp41}

¢ = arctan
Im{pyy g1}

¢, = arctan

Compared to the free evolution of the two-qubit system,
phase differences of

A¢e = (61 +62)T_¢67 A(bo = (61 _62)T_¢o(21)

have to be accounted for by the feedback mechanism
within each subspace. Intrinsic dephasing is therefore
compensated by the Markovian feedback and external

sources of noise by the Bayesian one. Accounting for
these two procedures, the bias energies ¢; of the qubits
are updated as following;:

Ao, + Ao,
q%4+ﬁ4@giﬂ (22)

Ao, — Ao,
62%6/2+fm¥’ (23)

where the energies €] and €, are given by Eq. (15).
Though the experimental implementation of Bayesian
feedback is more challenging than the direct feedback,
this procedure remains realistic as the feedback is limited
to one control parameter.20’22’23

Figure 3 shows the resulting conditional concurrences
as a function of the strength of the second measurement
P,. Here we model the detector noise by its variance
D,, the induced dephasing by T'¢ (see Eq. (18) and
below) and the interaction between the qubits’ operators
and the observable by a coupling parameter \;. These
parameters determine the measurement strength of
P,, T, = A\2/D,.*® The concurrences are plotted as a
function of I';, normalized by the measurement rate I'.,,
for different normalized values of the noise I'¢ /T'c,.

For no external noise, I'¢ /T, = 0, the second feedback

loop through the measurement of B, is superfluous, the
conditional concurrence C, remains maximal for all the
values of T'; /T., (red crosses). This corresponds to the
results presented in the precedent section on the Marko-
vian feedback. When noise in the bias energies is taken
into account, the second measurement P, is necessary
to infer information about the loss of phase coherence.
The conditional concurrence C, saturates when increas-
ing the measurement strength I';.. This is consistent with
previous theoretical works on a single two-level system.?°
The curves in Fig. 3 show that entanglement is generated
and stabilized, even in the presence of external sources
of noise, when we combine our Markovian and Bayesian
procedures. For completeness, the lower panel shows that
conditional concurrences in the odd and even subspaces
behave uniformly.

V. CONCLUSIONS

In this work we have analyzed different feedback
schemes for parity measurement of two qubits and con-
sidered explicitly the parity measurement of two DDs by
a properly tuned MZI. We have first introduced a mi-
croscopic description of the measurement process which
allowed us to quantify the measurement backaction in
the even-parity subspace, where dephasing is dominant.
This enabled us to implement a Markovian feedback, nu-
merically much less demanding that the Bayesian one.
Introducing the concurrence as an appropriate measure
of entanglement, we showed that one can optimally tune



the feedback strength to overcome the decay of entangle-
ment. However, this feedback cannot overcome external
sources of noise, unrelated to the measurement. To tackle
these extra-dephasing processes, we have analyzed a more
elaborate feedback scheme requiring the measurement of
an additional joint operator. Its measurement outcomes
are then used for a state estimation of the qubits, al-
lowing for the implementation of a second feedback loop
based on the Bayesian approach. The combination of the
two feedback loops leads to stable entangled states, also
in the presence of external noise sources. Though the
analysis in our work is based on a Mach-Zehnder inter-
ferometer detection of double quantum dots, our proto-

cols, the general formalism, and the results are generally
valid for any implementation of a parity measurement in
various solid-state architectures.
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