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We consider continuously monitored quantum systems and introduce definitions of work and heat
along individual quantum trajectories that are valid for coherent superposition of energy eigenstates.
We use these quantities to extend the first and second laws of stochastic thermodynamics to the
quantum domain. We illustrate our results with the case of a weakly measured driven two-level
system and show how to distinguish between quantum work and heat contributions. We finally
employ quantum feedback control to suppress detector backaction and determine the work statistics.
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Thermodynamics is, at its heart, a theory of work and
heat. The first law is based on the realization that both
quantities are two forms of energy and that their sum
is conserved. At the same time, the fact that entropy,
defined as the ratio of reversible heat and temperature,
can only increase in an isolated system is an expression
of the second law [1, 2]. In classical thermodynamics,
work is defined as the change of internal energy in an
isolated system, W = ∆U , while heat is introduced as
the difference, Q = ∆U −W , in a nonisolated system.
Thermal isolation is thus crucial to distinguish W from
Q. In the last decades, stochastic thermodynamics has
successfully extended the definitions of work and heat
to the level of single trajectories of microscopic systems
[3]. In this regime, thermal fluctuations are no longer
negligible and the laws of thermodynamics have to be
adapted to fully include them. The second law has, for
instance, been generalized in the form of fluctuation the-
orems that quantify the occurrence of negative entropy
production [4]. A particular example is the Jarzynski
equality, 〈exp(−βW )〉 = exp(−β∆F ), that allows the
determination of equilibrium free energy differences ∆F
from the nonequilibrium work statistics in systems at ini-
tial inverse temperature β [5]. The laws of stochastic
thermodynamics have been verified in a large number of
different experiments, see Refs. [6, 7] and the review [8].

The current challenge is to extend the principles of
thermodynamics to include quantum effects which are
expected to dominate at smaller scales and colder tem-
peratures. Some of the unsolved key issues concern the
correct definition of quantum work and heat, means to
distinguish between the two quantities owing to the blur-
ring effect of quantum fluctuations, and the proper clar-
ification of the role of quantum coherence. A variety of
approaches have been suggested to tackle these problems
[9–20], and quantum work statistics has been measured
in isolated systems in two pioneering experiments using
NMR [21] and trapped ions [22]. A new approach may
emerge from the possibility of weakly monitoring quan-
tum systems. Recently, individual quantum trajectories
of a superconducting qubit in a microwave cavity have

been observed using weak measurements [23, 24]. These
measurements only slightly disturb quantum systems ow-
ing to the weak coupling to the measuring device [25].
They hence allow to gain information about states with-
out projecting them into eigenstates. They have been
successfully employed to explain quantum paradoxes [26],
detect and amplify weak signals [27, 28], determine a
quantum virtual state [29], as well as directly measure
a wave function [30]. Motivated by the two experiments
[23, 24], we here investigate the first and second law for
continuously monitored quantum systems and aim at de-
veloping a quantum stochastic thermodynamics based on
quantum trajectories. Such an extension faces several
technical difficulties. First, since a weakly measured sys-
tem can be in a coherent superposition of energy eigen-
states, energy is not a well-defined concept along a single
quantum trajectory. Furthermore, even in the absence of
an external environment, a continuously monitored quan-
tum system is not isolated and the detector backaction,
albeit small, will perturb its dynamics [25]. As a result,
its time evolution will be nonunitary and energy, in the
form of heat, will be exchanged with the detector.

In the following, we introduce suitable and consistent
definitions of work and heat contributions to the quan-
tum stochastic evolution of a weakly measured system
that is externally driven. We use these definitions to de-
termine the distributions of quantum work and heat for
a two-level system, and demonstrate the general validity
of the Jarzynski equality, hence of the second law. We
finally use the tools of quantum feedback control [31] to
suppress detector backaction and thus effectively achieve
thermal isolation of the system. This provides a practi-
cal scheme to experimentally test our definitions of work
and heat along individual quantum trajectories.

Quantum work and heat. We consider a system with
time-dependent Hamiltonian Ht that is initially in a ther-
mal state at inverse temperature β, ρ0 = exp(−βH0)/Z0,
where Z0 is the partition function. The system is driven
by an external parameter λt during a time τ . At the en-
semble level, quantum work and heat are introduced by
considering an infinitesimal variation of the mean energy,
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U = 〈H〉 = tr {ρtHt} [32, 33]:

dU = tr {ρtdHt}+ tr {dρtHt} = δW + δQ. (1)

Heat is further related to entropy S = −ktr{ρt ln ρt} via
δQ = TdS [32, 33]. For an isolated system with uni-
tary dynamics heat vanishes, since dS = 0, and therefore
dU = δW in agreement with classical thermodynamics
[1, 2]. Heat therefore appears to be fundamentally asso-
ciated with the nonunitary part of the dynamics.

At the level of individual realizations, energy is a
stochastic quantity owing to thermal and quantum fluc-
tuations. The distribution p(u) of the total energy change
u may be determined by performing projective measure-
ments Πn and Πm, with outcomes E0

n and Eτm, at the
beginning and at the end of the driving protocol [9, 34],

p(u) =
∑
m,n

P τm,nP
0
nδ(u−∆Em,n). (2)

Here P 0
n = tr {Πnρ0} denotes the probability of the eigen-

value E0
n, P τm,n = tr {Πmρn,τ} the transition probability

from state n to m, with ρn,τ the time evolved projected
density operator ρn,0 = Πnρ0Πn/P

0
n , and ∆Em,n =

Eτm − E0
n the energy difference. For unitary dynamics,

p(u) reduces to the work distribution p(W ), but, in gen-
eral, Eq. (2) does not allow to distinguish work from heat.
In the following, we generalize Eq. (2) and identify work
and heat for a weakly measured system.

A quantum system continuously monitored by a quan-
tum limited detector may be assigned, for each individual
trajectory, a conditional density operator ρ̃t that reduces
to the usual density operator ρt when averaged over all
the trajectories, ρt = 〈〈ρ̃t〉〉 [31, 35]. The evolution of ρ̃t
is commonly described by a stochastic master equation
that contains a random parameter ξ(t) that accounts for
the detector shot noise, see Eqs. (9)-(10) below for an
example. An important observation is that such master
equation has a unitary component, corresponding to the
dynamics generated by the system’s Hamiltonian, and a
nonunitary part that stems from the continuous coupling
to the detector. For an infinitesimal time step, these two
contributions are additive and may be written as,

dρ̃t = δW[ρ̃t]dt+ δQ[ρ̃t]dt, (3)

where δW[ρ̃t] and δQ[ρ̃t] are operators associated with
the respective unitary and nonunitary parts of the dy-
namics. We identify them as corresponding to work and
heat at the level of an infinitesimal quantum trajectory.
This separation cannot be directly extended to the entire
(time integrated) trajectory, since the stochastic master
equation is generally a nonlinear function of the operator
ρ̃t. However, when averaged over quantum fluctuations,
Eq. (3) allows to extend the first law (1) to single real-

izations of the stochastic measurement outcome,

dŨt =tr {Ht(ρ̃t−dt + dρ̃t)} − tr {Ht−dtρ̃t−dt}
=tr {ρ̃t−dtdHt}+ tr {HtδWdt}+ tr {HtδQdt}
=δW̃t + δQ̃t, (4)

where in the second line dHt = Ht−Ht−dt and the mid-
dle term tr{HtδWdt} = 0 since δW is unitary [36]. In the
last line, δW̃t = tr {ρ̃t−dtdHt} and δQ̃t = tr {HtδQdt},
indicating that work is related to a change of the Hamil-
tonian, as expected, and heat to the nonunitary δQ.
Equation (4) is a direct extension of stochastic thermo-
dynamics to the quantum domain. The first law (1) is
recovered when Eq. (3) is averaged over both stochastic
and quantum fluctuations. The integrated work and heat
contributions to the changes in transition probabilities,
dP̃m,n = P̃ τm,n− P̃ 0

m,n, with P 0
m,n = δn,m the initial tran-

sition probability, can be further obtained from Eq. (3)
by carefully adding all the different terms (see Ref. [37]).
We find, for each individual quantum trajectory,

dP̃m,n = δP̃Wm,n + δP̃Qm,n, (5)

with the two quantities,

δP̃Wm,n = tr

{
Πm

∫ τ

0

dt δW[ρ̃t]

}
, (6)

δP̃Qm,n = tr

{
Πm

∫ τ

0

dt δQ[ρ̃t]

}
. (7)

These expressions depend explicitly on the quantum tra-
jectory ρ̃t which we stress by using the notation δ instead
of d. They provide an unambiguous way to distinguish
between work and heat at the level of a single trajectory.
Remarkably, they are valid even if the system remains in
a coherent superposition of energy eigenstates, that is,
when its energy is ill-defined. Equation (5) holds for the
trajectory averaged quantities dPm,n = δPWm,n + δPQm,n,

with δPαm,n = 〈〈δP̃αm,n〉〉, α = W,Q. This averaged dis-
tinction between work and heat contributions to tran-
sition probabilities requires access to single trajectories,
thus cannot be established directly at the ensemble level.

The second law in the form of the Jarzynski equal-
ity,

∫
dWp(W ) exp(−βW ) = exp(−β∆F ), immediately

follows from Eq. (2) for an isolated system [9]. How-
ever, the equality is not satisfied for an open system
with nonunitary dynamics owing to the heat term [34].
The second law may be restored by replacing P τm,n by

PWm,n = P 0
m,n + δPWm,n, that is, by setting δPQm,n to zero

at each time step, see Fig. 3. We next show how quantum
work and heat may be identified theoretically, by numer-
ically analyzing a weakly measured two-level system, and
experimentally, by means of quantum feedback control.
Application to a monitored qubit. In order to illus-

trate our approach, we consider a driven two-level sys-
tem S with Hamiltonian, Ht = εσz + λtσx, where λt is
the external driving and σi the usual Pauli matrices. The
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FIG. 1. (color online) First law for a weakly measured qubit.
a) Infinitesimal change of work, heat and energy along a single

quantum trajectory ρ̃t; for each realization dŨt = δW̃t + δQ̃t,
Eq. (4). b) Corresponding signal I(t) in the detector. Param-
eters are S0/∆I

2 = 2.5 · 105dt, ~/g = 1.6 · 102dt, ~/ε = 103dt,
ν = 8 and τ = 3 · 103dt (see main text).

system is continuously coupled to a quantum limited de-
tector D via the interaction Hamiltonian HI:

H = Ht +HD + σzHI, (8)

where, without loss of generality, we identify σz as the
system’s observable that is monitored by the detector.
The effect of the detector is fully characterized by the
averaged signals, (I1, I2), and Gaussian noises, (S1, S2),
measured when the qubit is in the two eigenstates, (|1〉,
|2〉), of the measured observable. We assume to be in
the weak measurement regime, i.e. at time scales smaller
than the measurement time τM = (S1 + S2)/(I1 − I2)2.
For concreteness and simplicity, we will interpret the
qubit in Hamiltonian (8) as describing a double quan-
tum dot sharing a single electron and interacting with
a quantum point contact (QPC), but it can also be ap-
plied to a qubit coupled to a microwave resonator [38] in
a circuit QED set-up as in the experiments [23, 24]. We
accordingly identify the configurations where the elec-
tron occupies only one dot by 〈σz〉 = ±1. Coherent
superpositions of the two are possible. The detector
monitoring the occupation of the dots is a voltage bi-
ased QPC with Hamiltonian [39–42] HD =

∑
lEla

†
l al +∑

r Era
†
rar+

∑
l,r Ω(a†ral+a

†
l ar) and the interaction term

reads HI =
∑
l,r δΩ/2(a†ral + a†l ar). The signal in the

detector is the current I(t) across the QPC, with aver-
ages I1(2) = 2πΩ2

1(2)ρlρre
2V/~ = e2T1(2)V/h and noises

S1(2) = e(1 − T1(2))I1(2). Here ρl,r are the densities of
states in the left and right electrodes, and T1(2) are the
dimensionless transmission probabilities across the QPC.

Under the assumption of a weakly coupled detector,
the detector signal is a random variable, and the evo-

lution of the system depends on the specific realization
of the stochastic process. This is captured by a well-
established Bayesian formalism [41, 42] which describes
the evolution of the system conditional to the detector’s
outcome in terms of a nonlinear stochastic differential
equation for the system’s density matrix ρ̃(t). In the Ito
formulation, we have [41, 42],

˙̃ρ11 =− 2
λ(t)

~
Im (ρ̃12) + ρ̃11(1− ρ̃11)

2∆I

S0
ξ(t), (9)

˙̃ρ12 =2i
ε

~
ρ̃12 − i

λ(t)

~
(1− 2ρ̃11)− ρ̃12

(∆I)2

4S0

+ (1− 2ρ̃11)ρ̃12
∆I

S0
ξ(t), (10)

where ∆I = I2 − I1 and ξ(t) is the white noise of the
detector’s signal with 〈ξ(t)〉 = 0, 〈ξ(t)ξ(t′)〉 = σ2δ(t− t′)
and σ =

√
S0/2. The detector current I(t) is further,

I(t) = I0 +
∆I

2
(2ρ̃11 − 1) + ξ(t). (11)

For each realization of the measurement outcome,
Eqs. (9) and (10) allow to identify the unitary and
nonunitary contributions to the time evolution, since
the nonunitary part is proportional to ∆I. We rewrite
Eq. (3) as dρ̃t = δW[ρ̃t]dt+ (∆I/S0)δM[ρ̃t]dt, and iden-
tify δW with the work done by the driving λt along an
infinitesimal trajectory and δQ = (∆I/S0)δM as the
heat associated with the detector backaction of the de-
tector. Due to the nonlinearity of the stochastic mas-
ter equation, we can only determine the distributions of
work and heat numerically. We specify the driving as
λt = g(1/ cosh(ν(1 − t/τ)), where τ is the duration of
the experiment, and reformulate equations (9) and (10)
in the Stratonovich form [41, 42]. We solve them nu-
merically by the Monte-Carlo method for an ensemble of
300 realizations of the random signal I(t) in the interval
t/τ ∈ [0, 1] using a time step dt = 0.01. The results for
work, heat and energy along a given quantum trajectory,
Eq. (4), are shown in Fig. 1, while those for the work and
heat contributions to the transition amplitudes, Eqs. (6)-
(7), are presented in Fig. 2 (see Ref. [37] for details).

Figure 1a) demonstrates the reconstruction of quan-
tum averaged work and heat changes, δW̃t and δQ̃t,
along a single quantum trajectory, based on the defini-
tions given in Eq. (4). The corresponding signal I(t)
in the detector is displayed in Fig. 1b). Contrary to
the case of an isolated system for which dŨ = δW̃ , the
heat contribution δQ̃t is here clearly visible. Equation(4)
holds for each individual realization and thus extends the
first law of stochastic thermodynamics to the quantum
regime. Figure 2b) shows the unambiguous distinction of
the work and heat contributions, δP̃Wm,n and δP̃Qm,n, eval-
uated via Eqs. (6)-(7), to the final transition probability
P τm,n. We stress that, although P τm,n is always positive,
as a proper probability should be, the work and heat con-
tributions need not be: the probability to go from state



4

P11 P21 P12 P22

0.50

0.25

0.00

0.25

0.50

0.75

1.00
(a)

Final Pm,n

Work contribution

Heat contribution

Initial Pm,n

δP̃21 δP̃12

0.35

0.00

0.40
(b)

FIG. 2. (color online) a) Averaged final transition probabil-
ities P τm,n (yellow) for a continuously monitored qubit with

their work and heat contributions, δPWm,n (blue) and δPQm,n
(red), and the initial transition probability, P 0

m,n = δmn (pur-

ple). The first law like equation dPm,n = δPWm,n + δPQm,n is

verified. b) Work and heat contributions, δP̃Wm,n and δP̃Qm,n
at the single trajectory level. Same parameters as in Fig. 1.
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FIG. 3. (color online) Transition probabilities P τmn for the
weakly measured qubit with (orange) and without (yelllow)
feedback control for a) τ1 = 1.4 ·103dt and b) τ2 = 2.5 ·103dt.
The feedback strength is f = 3. The isolated, unitary, case
(red) is shown as a reference. The feedback loop effectively
suppresses the detector backaction and the associated heat
exchange, achieving thermal isolation.

n to m at time τ can, for instance, be smaller than the
initial transition probability [43]. Note that a quantity,
dPαm,n = Pα,τm,n − Pα,0m,n, α = W,Q, that only depends on
initial and final times, cannot be defined, reflecting the
fact that there are no heat or work operators.

Quantum feedback control. In classical thermody-
namics work is associated with the variation of the in-
ternal energy of the isolated system [1, 2]. After having
shown above how heat can be theoretically identified, we
next take advantage of a feedback loop protocol to sup-
press the detector backaction [31], offering a scheme to
reach isolation experimentally. Quantum feedback has
recently been demonstrated experimentally for a super-

conducting qubit [45]. Specifically we control the ampli-
tude, g, of the system’s driving depending on the contin-
uos detector outcome, i.e. g → gt ≡ (1− f∆ϕt)g, where
f is the feedback strength and ∆ϕt the phase difference
between the actual vector (with backaction) and desired
vector (without backaction) in the Bloch sphere of the
qubit (see Refs. [37, 41] for details). This allows to op-
erationally counter the effects induced by the continuous
monitoring. From a thermodynamic point of view, the
feedback adds an extra amount of work that exactly can-
cels the heat contribution to the transition probabilities.

Figure 3 shows the numerically simulated final tran-
sition probabilities P τm,n for the weakly measured qubit
with (orange) and without (yellow) quantum feedback
for two driving times. We observe in both cases that the
feedback process effectively suppresses the heat contribu-
tions (identified in Fig. 2) and that the transition proba-
bilities agree with those of the isolated system with uni-
tary dynamics (brown). Quantum feedback control thus
appears as a powerful tool to determine the statistics of
the work done by the external driving in a continuously
monitored system. The heat statistics can be further eas-
ily obtained by measuring the undriven system, that is,
when no work is performed and dŨt = δQ̃t.

The above findings can be directly used to verify the
quantum Jarzynski equality for the driven qubit. Since
any measurement induced heating is prevented by the
feedback, only the initial inverse temperature β of the
system matters. Determining the quantum work statis-
tics via Eq. (2), we find ∆F1 = −0.488 and ∆F2 =
−0.496 with feedback control for τ1 = 1.4 · 103dt and
τ2 = 2.5 ·103dt and ∆F = −0.495 in the unitary case (for
β = 10). The excellent agreement demonstrates the cor-
rectness of the definitions of work and heat, and confirms
the second law for a weakly measured quantum system.

Conclusions. We have extended the laws of stochas-
tic thermodynamics along individual quantum trajecto-
ries of a weakly measured system. We have shown how
to distinguish work and heat contributions to both the
energy changes and the transition probabilities. We have
further demonstrated the usefulness of our approach with
the analysis of a driven qubit and introduced methods to
identify work from heat numerically as well as experi-
mentally with the help of quantum feedback control.
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Note added. While completing this manuscript, we
became aware of a preprint by Elouard et al. [46] that
also discusses quantum stochastic thermodynamics.
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