
Editorial for the SCP SPLC 2010 Special Issue

Jan Bosch
1
 and Jaejoon Lee

2

Guest Editors

1

 Chalmers University of Technology, SE-412 96 Gothenburg, Sweden

jan@JanBosch.com

2
 School of Computing and Communications, Lancaster University, Lancaster, UK

j.lee3@lancaster.ac.uk

Since its rise to general awareness and popularity starting close to two decades ago,

the concept of software product lines has taken the center stage in the software reuse

community. After more than four decades of research into effective and efficient

reuse of software inside the four walls of the organization, and countless initiatives,

software product lines presented an approach that has proven to provide real

productivity improvements in the development cost of software intensive products.

This has allowed companies to increase their product portfolio with an order of

magnitude, to allow for much higher degrees of configurability by customers,

facilitated common look-and-feel across a wide product population and enabled

companies to be more innovative by decreasing the cost of new product experiments.

It achieved this by broadening the scope of study from technology to include process,

business strategy and organizational aspects. Successful product lines address all

aspects relevant to the organization and then adopt and institutionalize the approach in

the company.

This special issue features eight papers from the 14
th

 Software Product Line

Conference (SPLC 2010). SPLC provides an institution and the premier meeting

place for the software product line community. In particular, SPLC 2010 was held in

Jeju, South Korea, and the accepted papers covered various areas of software product

line engineering including product line contexts, variability management, formal

approaches, product validation, and feature modeling. We invited eight top quality

papers and they were significantly improved and extended for this special issue.

The paper of Karataş et al. introduces a mapping from extended feature models to

constraint logic programming over finite domains. The mapping is used to translate

into constraint logic programs; basic, cardinality-based and extended feature models,

which can include complex cross-tree relationships involving attributes. This

translation enables the use of off-the-shelf constraint solvers for the automated

analysis of extended feature models involving such complex relationships. The

authors also present the performance results of some well-known analysis operations

on an example translated model.

The paper by Hartmann et al. describes the limitations of the current practice of

combining heterogeneous components in a product line and describes the challenges

that arise from software supply chains. This paper is motivated by the fact that

software product lines are increasingly built using components from specialized

suppliers. Hartmann et al. introduce a model driven approach for automating the

integration between components that can generate a partially or fully configured

variant, including glue between mismatched components. In particular, the authors

analyses the consequences of using the approach in an industrial context, using a case

study derived from an existing supply chain.

Ubayashi et al. propose a product line engineering method, which focuses on

constructing embedded systems that take into account the contexts such as the

external physical environments. The main goal is to avoid unexpected and

unfavourable behaviours that might emerge in a system if a developer does not

recognize any possible conflicting combinations between the system and contexts. In

this paper, the authors provide the notion of a context-dependent product line, which

is composed of the system and context lines and show a development process that

includes the creation of both product line assets as well as context assets.

Eklund et al. present an in-depth view of how architects work with maintaining

product line architectures at two internationally well-known automotive companies:

the truck and bus manufacturer Scania and the car manufacture Volvo. The case study

shows several interesting results: the process of managing architectural changes as

well as the information the architects maintain and update is surprisingly similar

between the two companies, despite that one has a strong line organization and the

other a strong project organization. What does differ is that the architects studied see

themselves interacting much more with other stakeholders than architects in general.

The authors conclude that the results indicate how the company’s different core

values influence the architects when defining and maintaining the architectures over

time.

Ganesan et al. present an analysis of the unit testing approach developed and used

by the Core Flight Software System (CFS) product line team at the NASA Goddard

Space Flight Center (GSFC). The goal of the analysis is to understand, review, and

recommend strategies for improving the CFS’ existing unit testing infrastructure as

well as to capture lessons learned and best practices that can be used by other

software product line (SPL) teams for their unit testing. The authors found that the

unit testing approach incorporated many practical and useful solutions such as

allowing for unit testing without requiring hardware and special OS features in-the-

loop by defining stub implementations of dependent modules. Ganesan et al. conclude

that these solutions are worth considering when deciding how to design the testing

architecture for a SPL.

Marinho et al. introduce an approach for the development of mobile and context-

aware software using the Software Product Line (SPL) paradigm. Mobile devices are

multipurpose and multi-sensor equipment supporting applications able to adapt their

behavior according to changes in the user’s context (device, location, time, etc.).

Although several solutions have been proposed to facilitate their development, reuse

is not systematically used throughout the software development life-cycle. The

authors present a Nested SPL for the domain of mobile and context-aware application,

and discuss lessons learned in the SPL development with a context-aware visit guide

product line.

Cetina et al. introduce Dynamic Software Product Lines (DSPL), which encompass

systems that are capable of modifying their own behavior with respect to changes in

their operating environment by using run-time reconfigurations, and prototype a

Smart Hotel DSPL to evaluate the reliability-based risk of the DSPL. The authors

discuss some guidelines learned in the case study and suggest that DSPL engineers

should provide users with more control over the reconfigurations.

Heuer et al. propose a formal syntax and semantics for defining variability in Petri

nets and use these extended Petri nets as a foundation to formally define variability in

UML activity diagrams. UML activity diagrams serve as a basis for several testing

techniques in product line engineering. The authors illustrate the contribution of such

formalization to assurance activities in product line engineering by describing its

usage in three application examples.

We sincerely thank all the reviewers; Creation of this special issue was not

possible without their contributions.

