ADDITIVE UNITS OF PRODUCT SYSTEMS
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ABSTRACT. We introduce the notion of additive units, or ‘addits’, of a pointed Arveson system.
By the latter we mean a spatial Arveson system with a fixed normalised reference unit. We
show that the addits form a Hilbert space whose codimension-one subspace of ‘roots’ is iso-
morphic to the index space of the Arveson system, and that the addits generate the type I part
of the Arveson system. Consequently the isomorphism class of the Hilbert space of addits is
independent of the reference unit. The addits of a pointed inclusion system are shown to be in
natural correspondence with the addits of the generated pointed product system. The theory
of amalgamated products is developed using addits and roots, and an explicit formula for the
amalgamation of pointed Arveson systems is given, providing a new proof of its independence of
the particular reference units. (This independence justifies the terminology ‘spatial product’ of
spatial Arveson systems). Finally a cluster construction for inclusion subsystems of an Arveson
system is introduced and we demonstrate its correspondence with the Cantor-Bendixson deriv-
ative in the context of the random closed set approach to product systems due to Tsirelson and
Liebscher.

INTRODUCTION

A basic goal of the study of quantum dynamics is the classification of Fy-semigroups, that is
suitably continuous one-parameter semigroups of unital *-endomorphisms of B(H), the algebra
of bounded operators on a separable Hilbert space H ([3]). Each Ej-semigroup is associated
to an Arveson system, that is a suitably measurable one-parameter family of separable Hilbert
spaces £ = (&;)1>0 enjoying associative identifications £y ~ & @ & via unitary operators, and
conversely, to each such Arveson system there is an associated Eg-semigroup. If cocycle conjugate
Ey-semigroups are identified, and isomorphic Arveson systems are too, then these associations are
rendered mutually inverse ([1],[2]; see also [14], and [27]).

A unit of an Arveson system is a nonzero measurable section (us)s>0, which has the continuous
factorisation property: us+: = us ® ug, and Arveson systems are classified into type I, type 11
and (nonspatial or) type III, according to whether their set of units respectively, generates the
system, is nonempty but fails to generate the system, or is empty. Spatial Arveson systems
have an associated index space, a separable Hilbert space constructed from the set of units, whose
dimension is called the index of the system. The index is an isomorphism invariant, and is additive
under the tensor product operation on Arveson systems.

For type I Arveson systems the index is a complete invariant and, for each separable Hilbert
space k there is a paradigm type I system with index equal to dimk, namely the Fock Arveson
system F* ([1]); this is described in the appendix. The isomorphism classes of type II and type IIT
systems are both known to be uncountable ([21],[22],[35],[34]). There is currently a lack of good
invariants to distinguish these, and their classification is far from complete. Tsirelson has shown
measure types of random sets, and generalised Gaussian processes, to be fertile sources of type
1T systems ([33],[32]); Liebscher has made a systematic study of Tsirelson’s examples. To every
product subsystem of an Arveson system £ there corresponds a commuting family of orthogonal
projections satisfying evolution and adaptedness relations, and the von Neumann algebra gener-
ated by them uniquely determines a (probability) measure type of random closed subsets of the
unit interval. The measure types are stationary and factorising over disjoint intervals, and provide
an isomorphism invariant for the Arveson system ([I4]).

Completely positive contraction semigroups on operator algebras are called quantum dynamical
semigroups. For a separable Hilbert space H, every unital quantum dynamical semigroup on B(H)
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dilates to an FEjy-semigroup, and the minimal dilation is unique up to cocycle conjugacy; this
provides an approach to the understanding of quantum dynamics ([4]). For Ep-semigroups on C*-
and W*-algebras, one may associate product systems of Hilbert modules ([I8],[24],[25]). Much
of the theory of Arveson systems and Fy-semigroups on B(H) carries over to product systems of
Hilbert modules and FEy-semigroups on B*(E), the algebra of adjointable operators on a Hilbert
module F. However there is no tensor product operation for product systems of Hilbert modules.
For pointed product systems of Hilbert modules, that is systems with a fixed normalised reference
unit, Skeide overcame this by introducing a notion of spatial product ([28]). In the spatial product,
units are identified and the index is again additive.

By a pointed Arveson system we mean a spatial Arveson system together with a fixed normalised
reference unit. For pointed Arveson systems (€,u) and (F,v), Skeide’s spatial product may be
identified with £ ® v\ u ® F, the product subsystem of the tensor product Arveson system
€ ® F generated by £ ® v and v ® F. This raises the natural question, is this necessarily all of
€ ® F? Powers answered this in the negative, by solving the corresponding equivalent problem
for Ey-semigroups using his ‘sum construction’ ([23]); see also [26], [7] and [29]). Motivated by
this question, the amalgamated product via a contractive morphism of Arveson systems (which
are not necessarily spatial) was introduced in [8] (see Section . This generalises the spatial
product of pointed Arveson systems since the latter may be viewed as the amalgamated product
via the morphism defined through Dirac dyads of the normalized units. (It also answers Powers’
problem for the Powers sum arising from not-necessarily-isometric intertwining semigroups.) A
priori the spatial product may depend on the reference units. Since, as Tsirelson has shown, the
automorphism group of an Arveson system may not act transitively on its set of units ([36]) the
answer to this dependency question is not obvious. It was settled in the negative in [5], see also
[15]. Our work yields another proof of this fact.

In this paper we introduce and systematically exploit the notions of addit and root, for pointed
Arveson systems. We also introduce a cluster construction for product subsystems of an Arveson
system; on the one hand the construction provides a new way of obtaining the type I part of
a spatial Arveson system, on the other hand it reflects the extraction of the derived sets of
random closed subsets of the unit interval in the above correspondence. Whereas Liebscher’s work
heavily relies on direct integral constructions and the measure theory of random sets, by contrast
our cluster construction is done explicitly by elementary Hilbert space means, via an inclusion
subsystem.

The structure of the paper is as follows. In Sections [I| and [2| we give a brief overview of the
basic theory of product systems, Arveson systems and inclusion systems, and set out the notations
and terminology used in the paper. An appendix describes the paradigm case of Fock Arveson
systems F¥, for a separable Hilbert space k, and introduces the ‘Guichardet picture’ for these. In
Section [3] addits and roots are defined. These are additive counterparts to units; roots are addits
which are orthogonal to the reference unit. Addits comprise a Hilbert space with roots occupying
a codimension-one subspace. The roots of the pointed Arveson systems (F*, Q). in which Q¥ is
the vacuum unit, are shown to be indexed by the elements of k, via an isometric isomorphism.
From this we show that, for any normalised unit, the type I part of a spatial Arveson system is
generated by the unit together with its roots, and the dimension of the Hilbert space of roots
equals the index of the Arveson system. Thus the isomorphism class of the Hilbert space of
addits of a pointed Arveson system (€,u) is independent of the choice of unit u of the spatial
Arveson system €. In Section [ we extend the notions of addit and root to pointed inclusion
systems (E,u), and establish a natural bijection between the addits of such a system and the
addits of (€,u) where € is the generated (algebraic) product system and @ is the normalised unit
obtained from wu by ‘lifting’. The behaviour of roots under amalgamated products of both spatial
and pointed Arveson systems is studied in Section [5| In that section we give an explicit formula
for the amalgamated product of pointed Arveson systems which provides another proof of its
independence of the reference units, and thus also of the fact that, up to cocycle conjugacy, the
Powers sum of Ej-semigroups is independent of the choice of intertwining isometries. In Section 6]
we describe our cluster construction for subsystems F of an Arveson system £. When £ is spatial,
and F is generated by a normalised unit, the cluster is shown to be the type I part of £. Finally,
extending part of Proposition 3.33 of [14], we show that the measure type corresponding to a



ADDITS 3

subsystem and the measure type of its cluster are precisely related via the Cantor—Bendixson
derivative.

Some notational conventions. For Hilbert space vectors u € H and = € K, |x)(u| denotes the
bounded operator H — K, v — (u,v)x. For a subset A of the domain of a vector-valued function
g, g4 denotes the function which equals g except that it takes the value 0 outside A (¢f. indicator
function notation). We use P to denote power set, and CC for subset of finite cardinality.

1. PRODUCT SYSTEMS

In this section we introduce our notations and briefly recall the basic terminology of continuous
product systems of Hilbert spaces. Key references are Arveson’s monograph ([3]) and Liebscher’s
memoir ([T4]).

Definition 1.1. An (algebraic) product system & counsists of a family of Hilbert spaces (&;)¢>o0
with associated unitary structure maps

B, iy 2 E®E (s,t>0),
satisfying the natural consistency conditions
(If ® Bf,t)Bf,ert = (Bf,s Y IE>Bf+s,t (T’ S7t > 0)

where I€ := I¢, (s > 0). It is called an Arveson system if each fibre & is separable and the system

is endowed with measurable structure: the families (&;);~¢ and (Bf’t)s,bo are both ‘measurable’.

Remarks. (i) In the literature, the structure maps are usually taken to be the adjoints W, =
(Bs )1 Es ® & — Esyt. Here we use the equivalent B’s instead in order to maintain consistency
with inclusion systems (defined below).

(ii) For the precise meaning of measurability meant here, we refer to [3] and the essentially
equivalent formulation given in [14].

(iii) Frequently one supresses the structure maps and identifies 514 and & ® &, or writes x -y
for the preimage in &4, of t ® y when z € & and y € &;.

(iv) If dim & = 1 for each ¢ > 0 then a choice of unit vector u; € & for each ¢ > 0 reduces the
consistency condition to the multiplier relation

m(s,t)ym(r,s +t) = m(r,s)m(r + s,t)
for the map m : Rsg X Ry — T given by m(s, t)us @ uy = Bitus+t.

Definition 1.2. Let £ be a product system and let T > 0. The family of unitary operators
UéT = (Uf ’T)teR on Er defined by periodic extension of the prescription

per _ 1% ift=0
T Bfp_)UTBS,, if0<t<T

in which II7" denotes the tensor flip Er_; @ & — & @ E7_4, is called the unitary flip group on Er.
It is easily verified that U&7 = (Utg ’T)teR forms a one-parameter group.

Theorem 1.3 ([14], Theorem 7.7). Let £ be a product system and let T > 0. Then the following
are equivalent:

(i) € is an Arveson system with respect to some measurable structure.
(ii) For allt > 0, & is separable, and for all T €10, 7], UET s strongly continuous.

Let £ be a product system and suppose that, for each ¢ > 0, F; is a closed subspace of &
and that, for each s,t > 0, Bf’t(fs+t) = Fs ® Ft. Then F = (Ft)i>o is a product system with
structure maps BS]; : Fsrt = Fs ® Fi (s,t > 0) given by compression of the structure maps of £.
Such systems are called product subsystems of .

The following automatic measurability result is a significant consequence of Liebscher’s ap-
proach to product systems. Note that in his approach the parameter set of an Arveson system &
is extended to Ry, with & = C.

Theorem 1.4. Let F be a product subsystem of an Arveson system £. Then F is an Arveson
subsystem, in other words the measurable structure of £ induces measurable structure on JF.
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Proof. Let (€™),>1 be a family of sections of £ determining its measurable structure. We must
show that

(a) the sections (Pse}') ., are measurable, and

(b) the family of operators (W7, := Vi ,WE,(V, @ ‘/t))s >0
for the inclusion operators V; : F; — & and orthogonal projections P, := V;V* = Pr,. Without
loss of generality we may suppose that (e}),>1 is an orthonormal basis of & for all ¢ > 0, moreover

it suffices to prove these for s,t < 1 (see [14]).
Let (Psﬁ)o <.1<; De the strongly continuous family of orthogonal projections in B(€:) defined

in (5.1)) below, and set e := e!. By Parseval’s identity, the measurability of ¢t — e¥'-e?_, (p,q € N),
and the strong continuity of t — POJ,'; it follows that, for all I,m > 1 and ¢ € [0, 1],

(e}, Pre) = (e} - e1—y, Poy(ef - e1—y))

= D (ei-ere, ) (Piyef.ef) (el e - ene)

p,q=1

is measurable,

which is now manifestly measurable in ¢. This proves (a). By another application of Parseval’s
identity, we see that

<Vs*+t€ls+tv W;(‘/s*e? @ Vier)) = <ei+t7 ng,t(Pse;n ® Prey'))

Z <ei+t7 Wit(eg ® eg)> <€§, Pse;n> <€g, Pte?)

P,q=1

for I,m,n > 1 and s,t € [0,1], so (b) follows from (a). O

Given two product subsystems £' and £2 of a product system &£, the smallest product system
of £ containing &' and £? is denoted £'\/ £2. Thus if £ is an Arveson system then £'\/ €2 is an
Arveson subsystem of £.

Definition 1.5. Let £ and F be product systems. A family of bounded operators ¢ = (¢ : & —
Fi)e=0 is a morphism of product systems if it satisfies

B:Z_,—t Pstt = (65 ® ¢t)B§t (s,t>0)

and the quasicontractivity condition e=*||¢¢|| < 1 (t > 0), for some k € R; it is an isomorphism
if each ¢; is unitary. A morphism of Arveson systems is a morphism of the underlying product
systems which consists of a measurable family of operators.

Theorem 1.6 ([I4], Corollary 7.16). Let ¢ : € — F be an isomorphism of product systems.
Suppose that €& and F are Arveson systems. Then ¢ and ¢~ are measurable, and thus ¢ is an
isomorphism of Arveson systems.

Definition 1.7. Let £ be an Arveson system. A unit of £ is a nonzero measurable section of £
satisfying
Us+t = Us Ut (3’ t> 0)7
it is normalised if it satisfies ||ut|| = 1 (¢ > 0). The collection of units of £, respectively normalised
units of &, is denoted U¢, respec. Uf, and & is called spatial if U # ().
The type I part of £, denoted £, is the smallest product subsystem of £ containing all the
units of £, and & is said to be of type I if ! is £ itself. Thus, for a spatial Arveson system &,

5:IF :m{ua- ey in € N,ul,-ut elUl t e J:(Fn)} (T >0)
where J§" = {t € (Ru0)" : St = T},

Let &€ be a spatial Arveson system. For each u,v € U¢, the function ¢ — (us, v;) is measurable
and satisfies Cauchy’s multiplicative functional equation f(s +t) = f(s)f(¢), and so there is
v(u,v) € C such that (us,v;) = %) (¢t > 0). The resulting map v : U x U — C is called
the covariance function of £. It is conditionally positive definite: ZE)\jv(ui, u?) > 0 for n €N,
ul,--o L u™ € UE and Ap, -+, \, € C satisfying > \; = 0. It follows that the prescription

(f.9) = ~(uv)f(u)f(v)

u,veEUE
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defines a nonnegative sesquilinear form on the vector space
o Yy & _
V.f{f.l/l —>C‘supprCL{7Zueugf(u)f0}.

Quotienting out by the null space {f € V : (f, f) = 0} and completing yields a Hilbert space k(&),
called the index space of &; its dimension, denoted ind &, is called the indez of &.
The index is an isomorphism invariant for Arveson systems: if £! = £2 then k(E!) = k(E?).

Example 1.8. Our notations for Fock Arveson systems are given in the appendix. The covariance
function of the Fock Arveson system FX is given by
V(€ )i0, (D) in0) = X+ i+ (e,d)  (e.d ek, A peC).
These Arveson systems are of type I and satisfy
k(F*) = k.
Thus FK 22 F*2 implies k; = ko. Conversely, £/ = FX(€) for any Arveson system &.
The following notion plays a central role in this paper, from Section [3| onwards.

Definition 1.9. A pointed Arveson system is an ordered pair (€, u) consisting of a spatial Arveson
system &£ and a fixed normalised unit u, which we refer to as the reference unit.

Remarks. Our terminology is a refinement of Liebscher’s (in [15]); his is in conflict with the
now-common use of the term spatial Arveson system.

There is an obvious notion of isomorphism for pointed Arveson systems.

By means of Fock Weyl operators (see the appendix), it is easily seen that, for a type I Arveson
system &, the family of pointed systems {(£,u) : u € U} are all isomorphic. However, in view of
a theorem of Tsirelson ([36]), this need not be true for type II Arveson systems.

2. INCLUSION SYSTEMS

In this section we introduce notations for inclusion systems and recall their basic theory. We
also describe the Fock inclusion systems. Inclusion systems are defined like product systems except
that their structure maps are only required to be isometric. They arise very often in quantum
dynamics. For instance, the product system associated with a completely positive semigroup
on the algebra of bounded operators on a separable Hilbert space is in fact the product system
generated by an inclusion system derived from the semigroup ([9],[18],[17],[24],[8]). Our basic
reference is [§], where inclusion systems were introduced. Shalit and Solel also studied them, in a
more abstract setting, under the name subproduct systems ([24]).

Definition 2.1. An inclusion system E is a family of Hilbert spaces (E;)¢~o together with iso-
metric structure maps ﬂft :Esyy — Es ® By (s, > 0) satisfying

E E\ pE E E\ gE
(Ir ® Bs,t) r,54+t = ( T,8 ® It ) r4s,t (T‘,S,t > 0),

where I¥ := Iy, (s > 0).

Remark. Thus a product system is an inclusion system whose structure maps are unitary.

Definition 2.2. Let E be an inclusion system. If, for all ¢ > 0, F} is a closed subspace of Ey, and,
for all s,t > 0, ﬁft(Fs+t) C Fys ® Fy, then the isometries ﬂgt : Fopy — Fs ® Fy (s,t > 0) induced
by compression render F' an inclusion system. Such systems are called inclusion subsystems of E.

We now define the product system generated by an inclusion system. It is an inductive limit
construction.

Notation. For T > 0, set

Jr =] J& where J = {t €Rog)": > b = T},
n=1
and for S,T >0, m,ne N, s € Jfgm) and t € J;n), set

S—t:i=(s1,"",Sm,t1, " ,ln) € JéT_JTr”).
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A partial order on Jr is defined as follows. For r € Jr}m) and s € Jr,

szr if s=ry—---—r, where r, € J, fori=1,--- ,m.
Thus (T) < t for all t € Jr. The partially ordered set Jr is directed:
Veserdtesr s t=rand t > s

Let E be an inclusion system and fix T" > 0 for now. For t € Jq(ﬂn), set By :=E, @+ ® By,

thus E(ry = E7. Define isometries (ﬁs ¢ Bs — Et)sgt in gy 35 follows: for p e Nand r € J](,-f) set

BE :{ IEE . B 1fr—(.R)
Rr (IFo > ,® Brp 1,rp) - (IEepE +rp)5r1,r2+~~+rp otherwise ’

and for s < tw1ths€J§m) and t =s; — -+ — s,

E _ pFE
s,t * 7 sl,sl - ® Bsm Sm*

Thus ﬁE =1F =1p.
For T > 0, ((Et)tesr, (BE,)r<sesr) forms an inductive system of Hilbert spaces:

Bee=1" (teJp) and B B, =B (r<s<tinJr).

r,s

Let (ST, (F 1 By — Er)te JT) denote its inductive limit. For ease of reference, we list its key
properties next.
(i) Minimality. Er is a Hilbert space satisfying &7 = Ve, Ranaf.
(i) Isometry. of is an isometry (t € Jp) and o o B, =4F (r <s'in Jp).
(iii) Subnet property. For any K C Jp such that Vscj.Fter : t = s, the inductive limit of
((Be)ter, (BE)r<s n k) equals (Er, of : By = Er)eex).
(iv) Universal property. For K C Jp as in (iii), and any family of Hilbert space isometries
(9¢ + Ex — H)iex satisfying ]S o BE = 7 (r < sin K), there is a unique isometry
7:Er — H such that 5, = j04f (t € K).

Now let R, S > 0 and set Jg — Js :={r—s:r € Jg,s € Jg}. For t € Jg g there arer € Jg
and s € Jg such that r — s > t. Therefore, by the subnet property (iii), the inductive limit of
((Et)teijsz (ﬁf,v)ugv in JRvJS) equals (ST, (zt Ey — ST)te‘]Rv‘]s) where T'= R+ S. For
r,v’ € Jgp and s,s’ € Jg such that r — s <1’ — &, necessarily r <r’ and s < s’ so

(25 ®ZSE’) © I{Evs,r’vs’ = (Zf" OBI'E,r/) ® (15 OﬁE ’) = ZE ®ZE'

The family (?t By — Er® gS)tGJRVJS), in which 7,_s = 1f ®1F, satisfies % o BF, o= 0
for t < t' in Jg — Js. Therefore, by the universal property (1V) there is a unique isometry
BR E ER+S — ER®Eg such that iy = BR g0t (t € Jr — Jg), equivalently & @1 = B%Sozfvs

(r € Jg, s € Jg). It follows from the minimality property (i) that Ran BR s =Er®Eg, so B%)S
is unitary. It is now easily verified that, for R, S,T > 0, r € Jg, s € Jg and t € Jr,

£ £\ RE E £ £ £ E
(Brs®17)Bpisron_s_y and (Ix ® Bgr)Br sir ©tr_s_t

both equal 1F ®1F @F. Since Uuesne s, Ran 1% is total in Epy gy, it follows that (BI‘%S ®

I%)BI%JF&T = (II% ® BS7T)BI%75+T (R,S,T > 0). In the above notations, we have established the
following theorem.

Theorem 2.3 ([8], Theorem 5). The family (E1)rs0 defined above forms a product system with
respect to the structure maps (B§ 1)sr>0-

As mentioned above, this is called the product system generated by E.

Theorem 2.4. Let £ be a product system and let F be an inclusion subsystem. Then the product
system generated by F may be viewed as a product subsystem of €.

Proof. Let F be the product system generated by F. We need to obtain an isometric morphism
of product systems j: F — €.
Let T > 0. Consider the isometries (Bg ) Fy — & (t € Jp). Forr <sin Jp,

(B’?,s) ‘F (BT s) f,s|Fr = (B’Zg“,r)*lFr
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Therefore, by the universal property (iv), there is a unique isometry jr : Fr — Ep, such that
groi = (B%t)*hmt for the canonical maps +f : Fy — Fr (t € Jr).
Now fix S,T > 0. In view of the identity

£ £ £ £
Bg,rs_t = (Bss® Br)Bsr (se€ Js,t € Jr),
which is not hard to verify,
£ F £ £ £ £
BS,T OJS+T Olg_t = BS,T © (BS+T,S\/t)*|Fsvt = (Bs,s ® BT,t)*|Fs®Ft

and so, since

(s @gr) o Béporl_y=(s®gr)o (o ®1) = (B5)*|rn ® (Bf.) IR,

the operators BE 0547 and (55 ® 7)o B  agree on the set J,¢ ;. ;. Rans) which is total in
Fsir. It follows that the family of isometries (jr : Fr — Er)r>o forms a morphism of product
systems, as required. O

Definition 2.5. Let F and F' be inclusion systems. A morphism E — F is a family of bounded
operators A = (A; : Bt — Fy)i>o satisfying the compatibility condition

Agpe = (BE) (As® A)BE, (s, >0), (2.1)

s,t

and the quasicontractivity condition e *!||4;|| < 1 (t > 0) for some k € R. It is called a strong
morphism if ([2.1)) is strengthened to B, Asyy = (A ® A)BL, (s,t > 0).
A unit of E is a nonzero quasicontractive section u of E satisfying

Usit = (5SEt)*us ® ug (s,t > 0);
it is called a strong wnit if this is strengthened to Bftus+t =us @uy (s,t>0).

Remark. A section x of an inclusion system E may be thought of as a family of bounded operators
X = (Xy = |ze)(1] : C = Et)i>0, where (Cy)i>o is the one-dimensional inclusion system with
Ci=C(t>0)and 85, : A= A® 1=\ (s,t>0). Then z is a (strong) unit if and only if X is a
(strong) morphism.

Theorem 2.6 ([8], Theorem 10). Let £ be the product system generated by the inclusion system
E. Then the family of canonical maps 1¥ := (1F : By — &)¢=o forms a strong isometric morphism
of inclusion systems. Moreover (1F)* := ((1F)* : & — E})i=0 restricts to a bijection from the set
of units of € to the set of units of E, whose inverse is denoted by u +— .

Remarks. (i) The quasicontractivity condition on units is crucial for the above result.
(ii) The unit @ of £ is called the lift of the unit u of E; u = (+¥)*(a).
(iii) For units w and v of E and T' > 0,

(up,or) = tléng<ut,vt>

where, for n € Nand t € J;n), Ut = Uy, ® -+ @ uy,. In particular, ¥ is normalised if u is.

(iv) Similarly (see [8], Theorem 11), every morphism of inclusion systems A : E — F lifts to
a unique morphism A:E — F of the generated product systems. In terms of the corresponding
canonical morphisms, A; = (zf)*gt F (t > 0). The map A — A is a bijection between the
corresponding spaces of morphisms which respects both isometry and unitarity.

We end this section with a key example.

Example 2.7. (Fock inclusion systems.) Let k be a separable Hilbert space. The Fock Arveson
system over k, denoted F¥, is defined in the appendix, where the Guichardet picture of it is also
described. In the notations used there, the Fock inclusion system over k, denoted F¥, is defined
as follows:

Ftk:R\tZ:C@Kt
C I(Ky) = F* (t > 0)
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and, in terms of the canonical identifications

Ki@Ki=CoK, @K @ (K, ®Ky), and

K ®K, @K = CHK, @K, ®Ky ®Kppp where

Krst = (K @K, @K, @Ky @Ky @ Ky) & (K, @ Ks@Ke) (15,2 > 0),
its structure maps are defined as follows: for s,¢ > 0 and (A, g) € Fs"+t,

BEKN9) = (N, gpo,s» (55) gps.s44,0) € CB Ky @ Ky @ (Ks @ Ky)

or, in the notation §; = (1,0) € K,

BEEN 9) = AQs @ Q4 + (0, gj0.51) © R + 25 © (0, (55) gposreg) € Ks @ Ks.
For r,s,t > 0 and (), g) € F,f‘+s+t,

(Avg[O,r[a (Si«()*g[r,r-&-s[v (Sylf+s)*g[r+s,r+s+t[7 O) eC @ KT D Ks @ Kt &® Kr,s,ta

is a common expression for

(BEE @ DB (N g) and (I® BL1)BIE (N g).

In terms of the subspace inclusions j¥ : Ff — FK (¢ > 0), the structure maps of the inclusion
system F¥ and Arveson system F¥ are related by

Fk ok K o ok Fk
Bs,t O Js+t = (15 ®¢) o Bs,t (5,2 >0).

Thus F¥ is an inclusion subsystem of F.
In Corollary below, we verify that F¥ generates the Fock Arveson system FX.

Remark. The failure of the Fock inclusion system F* to be a product system is clearly seen
through the identity
K@K ©Ran Bl =K, @K, (5,¢>0).

3. ADDITS OF POINTED ARVESON SYSTEMS

In this section we introduce the additive counterpart to the multiplicative notion of unit. This
requires the fixing of a reference unit of the Arveson system and so is relevant to spatial Arveson
systems. We show that the space of addits then has a natural Hilbert space structure with a one-
dimensional subspace of ‘trivial’ addits. Elements of the orthogonal complement of this subspace
are called roots and, when the reference unit is normalised, the subspace of roots is shown to be
isomorphic to the index space of the Arveson system. This isomorphism is established by first
revealing the root space of a Fock Arveson system with respect to the vacuum unit.

Definition 3.1. Let (£,u) be an Arveson system with unit. An addit of (£,u) is a measurable
section a of £ satisfying

Gstt = Qg+ Ut + Ug Ay (s,t > 0);
a root of (£,u) is an addit a satisfying
Ut 1 a¢ (t > 0)

Remarks. (i) The set of addits of (£, u) forms a subspace, denoted A, of the space of measurable
sections of £, as does the set of roots, denoted RE.
(ii) Normalisation. Let a € AS and A € C. Then

b= (eMay)iso € Af for the unit v := (ektut)bo.

(iii) Trivial addits. For X\ € C, (Muy)i>o € AL. We refer to these as trivial addits of (€,u), and
write T for the space of these. Note that

TS N RE = {0},

and, for a,b € T¢,
(az, be) = t*(ay, bo) el /fJus |-
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(iv) Direct sum decomposition. For a € A%, define

gTrv . — <<ut7a;> Ut) and aRo°t .= g — gTriv.
[l | t>0

. T H
Claim. a™ € T¢ and aP°°' € RE, so AS = T¢ @ RE.
Since
(ug, %) = (ug, ar) — (ug,a0) =0 (t>0),
it remains to show that ™ is a trivial addit of (£, ). Since

(Ustts Gstr)  (us,as)  (ug,ar)

= + (s,t>0),
st [Jusl* " Jluell?
the measurable function f, : Rsg — C, t — (uy, a;)/||us||* satisfies Cauchy’s additive functional
equation and so f,(t) = f.(1)t, in other words a™™ = (Atuy)¢~o where A = |luq||~2{u1,a;1). In

particular o™V € T,
(v) Let a,b € RE, and suppose that u is normalised. Then
<as+t7 bs+t> = <a37 bs> <ut7 ut> + <u37 us> <at, bt>
= (as, bs) + {a¢, by) (s,t > 0).
Therefore, appealing to measurability once more,
<at, bt> = t<a1,b1> (t > 0)
(cF. (iii).
The above remarks indicate the usefulness of the notion of pointed Arveson system (Defini-
tion .
Notation. To a pointed Arveson system (£,u) we associate the family of bounded operators
(05")50 defined by
05" == tPey, + VtPE, € B(&)  (t>0).

Remarks. Let a,b € AS for a pointed Arveson system (£, u). For all ¢ > 0,

Triv

Triv __
a; =tay

= t(u1, a1)uy = tPey, a1,

(1, bEOYY = (g, by) — (ug, oY) = 0, so af™™ L bReot,

(a0, be) = ("™ 5P+ (aft, i)

= t2(aTF, bTVY 4 t(aftoot bRty = (B,a4,6,b,), where 0 := 5"
Proposition 3.2. Let (£,u) be a pointed Arveson system. Then the prescription
(a,b) = (a1, b1)¢, (3.1)
endows the vector space AS with the structure of a Hilbert space for which the direct sum decom-
position
A8 =TS @ R

is an orthogonal decomposition.
Proof. Set 6, := 65" (t > 0).

Clearly (3.1)) defines a nonnegative sesquilinear form on AS. Suppose that a € A satisfies
(a,a)y = 0. Then a; = 0 and so |la¢|| = ||0ta1]] =0 (t > 0), so a = 0. Thus (3.1) defines an inner
product on AZ. Suppose next that (a(”)) is a Cauchy sequence with respect to the induced metric
on Af. Then, for all ¢t > 0,

laf” —ai™ |l = 160" — 0™ e, < [6elllaf” — ai™ e, = max{t. Vi}[ay” —a™le,
(n,m € N), so (aﬁ”)) is Cauchy, and thus convergent, in &. Set a; := lim, o0 aﬁ") €& (t>0).
Then a is a measurable section of £ satisfying

Astt = nll_)lflg<> ai?t = nh_}rr;o (ag")-ut + us-agn)) = Qg U + Ug Oy (s,t > 0),

so a € AS. Moreover
Ha(”) —al = Ha(ln) —aille, = 0 as n — 0.
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Therefore A is complete and thus a Hilbert space with respect to the inner product (3.1).
It remains to show that (7€)t = RE. Tt follows from remarks above that RS C (T%)%; the
reverse inclusion follow since

i Uy, ay
a € (T‘f)L — alﬁlv = <||u’1||2> uy =

O

We next find the roots of the pointed Fock Arveson system (F¥,QK), for a separable Hilbert
space k, by working in the Guichardet picture (described in the appendix). Thus

Qk=dpecFr  (t>0)
and, for ¢ € k we define the measurable section x° := (c[,¢[)¢>0 of F¥, in which

¢ ifoerV
= (7
C[O’t[(a> { 0 otherwise

Remark. Both O and each x¢ are actually sections of the Fock inclusion system FK.
Proposition 3.3. Let k be a separable Hilbert space. The prescription
c— X° (cek) (3.2)
El;]?ngi;zn isometric isomorphism from k to Rg’k, the space of roots of the pointed Arveson system
, Q).

Proof. Abbreviate (F*, Q) to (F,), and Rg’k to Rq, and let K; be as in the appendix.
Claim 1. x° € Rq (c € k).
Fix c € k. Let s,t > 0, then for a.a. o
(X5 + Qs x7)(0)
= XE(U N [0,5[) 6@(0 N[s, s+ t[) + 5@(0 N [O,SD Xf((a N[s,s+t[) — s)
[ ¢ ifoeTW and either o C [0,s[ or o C [s,5 + 1]
"1 0 otherwise
_J)c ifoe Fglﬁt
0 otherwise

= X§+t(g)7

SO X5t = Xor Q¢ + Qg+ x§ (s, > 0). Since x7 L € (t > 0), it follows that x¢ € Rq.
Now let a € Rq and set ¢ = V*a; € k where V is the isometry k =+ K; C Fi, c— x§.
Claim 2. ess-supp a; C Fgl) (t>0).

Fix t > 0. For ¢ € QN10,t[, a; = ag- Q—q + Qy- a1—q so0, for a.a. o,

ar(0) = 1ry, (o) [aq(oN[0,q]) ¢ ((o N g, t]) — q) + 6¢(c N[0, q]) ar—q((c N [g,t]) — q)]
and therefore
at(0) = 0 unless either o C [0,¢[ or o C [g, t[.
Thus, by the countability of Q, there is a null set N of [p,¢[ such that

Voer . W Ygeanoi: at(0) =0 unless o C [0,q[ or o C [g,[.

Foro={s; <---<s,}€ F%tz[) \ WV, choosing ¢ € Q such that s; < ¢ < s3, we have o ¢ [0, ¢[ and
o ¢ [q,t] so a;(c) = 0. Thus ess-supp a; C I‘Eogtl[). Since a is a root of (F,Q), 0 = (Q, ar) = a(0),

thus ess-supp a; C FES’)t[.

Claim 3. a = x°.
Fix t > 0. By the proven Claims 2 and 1, a¢, x§f € K¢ C F; and a, x¢ € Rq. It follows that, for
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each e € k and s €]0, ¢,

<Clt, e[O,s[> = <as° Qs+ Qgras—s, XE' Qt—s>
= (as, X5)
=S

(a1, x7) = s{c,e) = {clo[ €p0,s]) = (XE> €[o,s[)-

Therefore, since as, x§ € Ky and the set {eg s : e € k,0 < s < t} is total in K¢, a; = x§. Thus

C

a = x°.

The prescription (3.2)) therefore defines a bijection k — Rg. The bijection is manifestly linear
and, since ||[X°||r, = X7l = llcpafll = llcllk (¢ € k), it is isometric too and thus an isometric
isomorphism. O

Corollary 3.4. Let (E,u) = (fkl ® Fk, Ok @ ka) for separable Hilbert spaces ki and k. Then,
in the above notation,

RS = (RE™ @ 0) @ (00 o BE®).

Proof. Set k = ky @ k.

Under the natural isomorphism of pointed Arveson systems (F*, Q%) — (£,u), the unit ¢ of
F* maps to the unit e ® e°2 of &, for e = (e1, e2) € k. Therefore, for ¢ = (c1,ca) € k, the root x©
of (F*, k) maps to the root 2 of (€, u) given by

€1,¢2 _ /\71 Act Aca le Qk2
Xt wm (e2 @y ® Q%)
=X @O+ X (6> 0).
In view of the orthogonality relation
XS @A L @x2 (¢ €ky,yen € kot > 0),

the result follows. O

Our goal now is to show that the addits of a pointed Arveson system generate the type I part
of the Arveson system. We first show this for type I systems.

Lemma 3.5. Let k be separable Hilbert space. Then the vacuum unit and its roots generate the
Fock Arveson system FX.

Proof. Since the set of roots of (F*, QX) is {x¢ : ¢ € k}, and F* is generated by its units {(e*c$);0 :
¢ € k, A € C}, it suffices to prove that

n

(Qg,nt—i—xg,nt)'z —E&f as n— o0 (c €k, t>0).

Thus fix ¢ € k and ¢ > 0, and set z, = Q%_,, + x5-., (n € N). Since H(gcn)2 > =1+
271t|c)|2)2" < etlel” (n € N), it suffices to prove that

(e(9), (xn)2n> — (e(g),e¢) as m— 00

for all right continuous step functions g € K; whose discontinuities lie in the set {j2=Nt:j, N € N}.
Thus fix such a step function g = >°7_, dfs_iil,si[ in which so = 0 and s, = t. Then, for sufficiently
large n,

8; =27 "k;(n)t for some k;(n) €N (i=1,---,p).

It therefore follows, by Euler’s exponential formula, that
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(o) ()™ =TT (sl @77

(n) _p.(n)
ki =k Ty

=[[@+27t(@ " ¢))

(n) (n)
ki 7k‘i—1

_ ﬁ (14 o )

as required. O

Corollary 3.6. Let k be a separable Hilbert space. Then the product system generated by the Fock
inclusion system F* is the Fock Arveson system JFX.

Proof. In view of the remark which precedes Proposition this follows from Lemma (3.5
O

Theorem 3.7. Let £ be a spatial Arveson system. Let u € Uf and let F be the product subsystem
of £ generated by u and all its roots. Then the following hold.

(a) F=¢&L.

(b) RS =RE .

(c) ind€ = dim RE.

Proof. Let h and k be the Hilbert spaces R and k(&) respectively, and let F' be the inclusion
subsystem of £ generated by u and all of its roots. Thus dimk = ind € and F is the product
subsystem of £ generated by F. Recall that, by Theorem F is an Arveson subsystem of £.

(a) We first show that F is a product subsystem of £. By Proposition the following
prescription defines unitary operators

A Ff = Fy AP+ x% = uy+a; (AeC,ach=REt>0),
and it is easily seen that A = (A;)¢~0 is an isomorphism of inclusion systems. By Corollary
the product system generated by F" is F". By Remark (iv) after Theorem A lifts to an
isomorphism of product systems A: F" = F. Theorem together with the remark following
it, imply that Ais an isomorphism of Arveson systems, and so F is of type L. It follows that F is
a product subsystem of £7.

We next show that £7 is a product subsystem of F, equivalently that, for any normalised unit v
of & v, € F; (t > 0). To this end, let v € U and fix an isomorphism of pointed Arveson systems
¥ (F Q) = (E1,u). Then (e7tv;)i=0 = ¥(w®) for some ¢ € k and 2 € R. Set a := 1h(x¢) € RE" .
Since any root of (€1, u) is a root of (€,u), as € Fs (s > 0) and

n n

A K .92 . .
Yi(ef) = Hm 9y (G +x5-0e) = Hm (ug-ny+az-ng) ~ €T

so vy = e~iwtemtlel®/2 (%) € Fy (t > 0), as required.
Therefore F = &1, so (a) holds. (b) follows from (a).
(¢) By (a) we have isomorphisms of Arveson systems
FreF=¢gl=F
This implies that h 2 k, and so ind £ = dimk = dim h = dim Ri. (I

4. ADDITS OF POINTED INCLUSION SYSTEMS

In this section we extend notions of the previous section to inclusion systems, and show that,
as with units, addits of an inclusion system lift to addits of the generated product system.

We call an ordered pair (E,u), consisting of an inclusion system F and a normalised unit u of
E, a pointed inclusion system.
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Definition 4.1. ([8]) Let (F,u) be a pointed inclusion system. An addit of (E,u) is a section a
of E satisfying the additivity condition

o = (B5) (as @us +us @ az) (s, >0),
and the following boundedness condition: there is &k € Ry such that
lae]® < k(t+t%) (¢t >0).
An addit a of (E,u) is a root if it satisfies
ar L ug (t>0).

We now establish the additive counterpart to (the second part of) Theoremﬁ, whose notations
we continue to adopt.

Proposition 4.2. Let (E,u) be a pointed inclusion system, and let £ be the product system
generated by E, and u the lift of u. Then the following hold.

(a) The map («F)* : ()" : & — Et)t>0 restricts to a bijection from the set of addits of
(€,7u) to the set of addits of (E,u), whose inverse is denoted by a — a.
(b) If a is a root of (E,u) then @ is a root of (€,7).

Proof. Let us drop the superscripts on 8%, B and 7.
(a) First let b be an addit of (£,@). Then ¢*(b) is an addit of (E,u) since

Bt (Zzbs QU +us @ Z:bt) = ((Zs ®1) 0 ﬁs,t)* (bs ® Uy + Us ® bt)
= (Bs,t o 'Lert)*(bs & at + as ® bt) = Z:+tbs+t (S,f > 0)

Let a denote the resulting map from addits of (€,%) to addits of (E,u). Suppose that addits b!
and b2 of (£,7) satisfy a(b') = a(b?). Fix T > 0. An induction on n confirms that, for any addit
b of (€, 1),

BT,t bT = Zﬁtl [ ®ﬂtj71 ®btj @ﬂthrl Q.- ®ﬂtn, and
j=1

BT,tOZt:Zt1®‘”®7’tn (nEN,tGJr}n))
Therefore, for any addit b of (£, ),
((1, @+~ ®1;,) 0 Bry)br

*
1 bT

U @ @up,, @by Quy,, @ Quy,  (neNte JPY).

I

1

J

Now the RHS is the same for b = b' and b = b?, therefore 1{bt. = 4;b2 (t € Jr). Since the net
(ztzt) te, converges strongly to I%, it follows that b}, = bZ. Unfixing T we conclude that b! = b
and so « is injective.

Since the trivial addits of (£,u) are clearly mapped by « onto the trivial addits of (E,u), in
order to establish the surjectivity of « it suffices to fix a root a of (E,u) and find a root, a say,
of (£,4) such that +*(@) = a. Accordingly, let a be a root of (E,u), with boundedness constant k
and fix T' > 0.

Claim 1. Setting a¢ := Y7 Uy @+ Que,_, @ ay, Qug, | @ DUy

: (n € N,t € J™), the

n

net (ztat) e, Converges.
First note that the net is bounded since a; L u; (t > 0), so

leael® = lael® = llag [P < &> (4 + ) KT +T%  (neNteJf).
j=1 j=1

Next note the identity
15040t = (g 40t = as (s < tin Jr).
Fix € & and € > 0. Choose r € Jr such that ||z — ir2fx| < e. Then, for t > r,

[(ag — trar, 2)[* = [(seas, (I — wop)z)* < k(T +T2)e
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It follows that (@tat) is weakly Cauchy. Set ap := weak-lim¢e s, 1ear. Now

tedr
1503140y = 1s0s (s <t in Jr),

therefore 151iar = 1sas (s € Jr). It follows that 1sas — ar (in norm), as claimed.
Claim 2. Setting @ := (ar)r>0, @ is an addit of (€,u) such that +*(a) = a.
Let S, T > 0. Write ug for 327, uy, @+~ ®@uy, (n €Nt € Jq(«n)). Then, for s € Jg and t € Jr,

(1s @ 1) (as @ ug + us ® ag) = (1s @ 14)as—t = B ts_tls—_t-
Taking limits and using the fact that the net (¢,uy)ecs, converges to ug (R > 0), we see that
as ® Ur + us ® ar = Bgrasir.
Thus @ is an addit of u. Now, since
1ray = PBr 40y = ar (t € Jr),

it follows that «%.ar = ar, and Claim 2 is established.
Therefore « is also surjective and so (a) follows.
(b) Let a be a root of (E,u). Then

(ztat7ztut> = (at,ut> =0 (T > O,t (S JT)

Taking limits we see that (ar,ur) =0 (T > 0), so @ is a root of u. The proof is now complete. [

5. AMALGAMATION

The amalgamation of Arveson systems, via a contractive morphism, was introduced in [§]. This
generalised a construction of Skeide which corresponds to the case where the morphism is given
by Dirac dyads from normalised units ([28]). A formula for its index, in terms of that of the
constituent systems, was given in [I9]. In this section we first show how the root space of an
amalgamated product of pointed Arveson systems (defined to be that given by the corresponding
morphism of Dirac dyads) may be expressed in terms of the root spaces of its constituent systems,
when the morphism is partially isometric. The amalgamated product of pointed Arveson systems
may be realised as a product subsystem of the tensor product Arveson system ([I9], Theorem 2.7);
we give an explicit formula for the subsystem which shows, in particular, that it is independent of
the fixed normalised units and so depends only on the underlying Arveson systems. The latter fact
may alternatively be proved using random sets ([I5]), or directly ([5]); see also [6]. The section
ends with a new formula for the space of roots of the tensor product of two pointed Arveson
systems.

To begin we quote a basic result.

Theorem 5.1 ([8], Section 3; [19], Theorem 2.7). Let C : £2 — E! be a contractive morphism
between Arveson systems. Then there is a triple (€, J', J?), unique up to isomorphism, consisting
of a product system &€ and isometric morphisms of product systems J* : E¢ — & (i = 1,2) such
that
(i) (JH*J2 =Cy (t>0), and

(i) €= JHEL)V J%(&?).
Notation: £' @c £2. Terminology: the amalgamated product of £' and £2 via C.

Conversely, let E* and £? be product subsystems of an Arveson system F. Then E'\/E? =

E @c E% where C = ((Jtl)*JtQ)Do for the inclusion morphisms J*: E* — F (i = 1,2).

Remarks. The construction of £! ®¢ £? is via an inclusion system; in case £' and £2 are product
subsystems of an Arveson system F, £! ®¢ £2 is the product subsystem of F generated by the
inclusion subsystem (£} V 2);>o0.

When C' takes the form (|u%>(uf|)t>0 for normalised units u’ of £ (i = 1,2), the case treated

in [28], €' ®@¢ €2 is denoted E! @1 4,2 E2.
The following proposition is a straight-forward consequence of Theorem

Proposition 5.2. Let (£,u) and (F,v) be pointed Arveson systems. Then
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Notation. For a pointed Arveson system (€, u), we set
RE .= {a; : a € RE}.
Thus RE is a closed subspace of the Hilbert space &£;; by definition, RS = RE.

Theorem 5.3. Let £ = £E' ®¢ E2 for spatial Arveson systems E' and £2 and a partially isometric
morphism C : 2 = EY, and let u? € Z/llg2. Suppose that € is an Arveson system and that u® lies
in the initial space of C: C;Cyu? = u? (t > 0). Then u' := Cu? is a unit which is identified with
u? in £ and, denoting the common unit in £ by u,

1 2
RE = RE @¢, RE..

Proof. Tt follows from Theorem that we may identify £' and £2 with subsystems of £, and C
with ((J})*J2)i>0 where J! and J? are the corresponding inclusion morphisms. By Proposition
2.10 of [I9], the projections Pg; and Pgz commute, so Pgiqgz = Pgi Pgz (t > 0). Thus £'NE? =
(EFNEY) !
Rii @c, Riz coincides with Rii \Y Ri; in RE. The theorem is therefore proved once it is shown
that RE, v RE, = RE.

Let a € Rf and set ¢ := (Jfby + JPb7 — Jiby), , where by = (J{)*as, bf = (J7)*a; and
by = (Ji)*a; (t > 0), and J denotes the inclusion morphism €' N E? — £. Thus

is a product subsystem of £. Under this identification u? and u! are identified, and

Ct = (Pgtl +P‘€t2_Pgt1ﬂ£t2)at:P5t1vgt2 Qg (t>0)
Claim. ¢ € RE. First note that

by @ up +ug @b = (J; @ )" (as @ us +us @ ar)
= (1} ® J}) B asie = B, (1) s = Bbly, (56> 0)
so bl € Rii Similarly, b? € Ri; and b € RE'NE’ Thus Jib, J2b2, Jb € RE, so ¢ € RE.
Now E := (Etl \% Sf) +>0 is an inclusion subsystem which generates the Arveson system &, and
0= Perves(ar — c0) = PE(ar — c) =i (F) (ai — ) (> 0),

so (1F)*(a — ¢) = 0. Since (a —¢) € RE

u?

it follows from Proposition that a — ¢ = 0. Thus
a1 =c; = JIb 4+ I3 — Jiby € RE +RE c RE VRE .
The result follows. U

Corollary 5.4. Let (EY,u') and (E%,u?) be pointed Arveson systems. Then, identifying & =
EY @1 2 E% with (E' @ u?) \/(u! @ E2), and letting u denote u? identified with u',

RE = REL @ RE.

Proof. For a' € Rii and a2 € RE,

u?)
<G,%,G,?>Cl = <a%a01a?> = <a’%7u%> <u%,a%> =0.

The result follows. O

Remark. Root spaces need not behave well under amalgamation over contractive morphisms
that are not partially isometric.

Example 5.5. Fix A # 0. Set £ = £' ®¢ £2 where £! = £2 = F* for the trivial Hilbert space

k= {0}, and C = (|u}><u?|)t>0 for the units u!' := Q% and u? := (e_t)‘Z/QQt{O})t>O. Theorem

2.7 of [19] implies that £ is isomorphic to the product system generated by the normalised units

OF and @ of FC, in other words & is isomorphic to the Fock Arveson system FC itself. Thus
Rii ={0} = RE,, but, for any unit u of &, RE =~ C.

u2»
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For an inclusion subsystem F' of an Arveson system &, consider the following family of ortho-
gonal projections in B(&;):

Pp, @ IY_, ifo=r<t<l1
P, if0=randt=1
F o _ 31
Pt= IFopPy oI, ifo<r<t<l ° (5.1)
If ® Pp,_, ifo<r<t=1.

It follows from Proposition 3.18 of [14] that, for a product subsystem F of £,
Pl —1If as (t—s)—0.
Theorem 5.6. Let £ and F be spatial Arveson systems. Then, for any normalised units u and v

of £ and F respectively,
£@up FE(EFH)\/(E @ F).

Proof. Let u € Uf and v € U{. Set G := (£ ®@v)\/(u® F) and, forn € Nand i € {1,--- ,n},
set P := Péct“ where Cu denotes the product subsystem of £ generated by u, and (s,t) =
((i = 1)/n,i/n). By Proposition G = & @y F, and so, by symmetry, it suffices to show that
£ ® F! is a product subsystem of G. By Theorem it suffices to show that z ® a; € G; for t > 0,
z € & and a € R7. The argument we give, for the case t = 1 easily adjusts to deal with general
t > 0. Thus let z € £ and a € R with ||a]| = 1.

Let ¢ > 0. Choose n € N such that ||z — PSpz|| < e for (t —s) < 1/n and take the root
decomposition

n . ; . (i—1 - (n—i) )
ar =Y ot where o' = (v1/0) " arjne (vrm) (=1, ,m).
=1

Thus [|2*|| = |la1 /| = 1//n for each i and, since z* L a7 for i # j,
|z ® a1 — Zizl P'z® f”lHZ =l Zi:l(z — P'z) ®xz“2 == ;Hz — Pr|? < 2

We must therefore show that Pz ® 2 € Gy (n € N,i = 1,--- ,n). Accordingly, fix n € N and
i€ {l,---,n}. Note that

Pz e Lin{cl- ----c“l-ul/n-c”l- ceeed it e 51/n}
and, for ¢!, .- ,c" € E1 /s
(Cl. ....C’L_l.ul/n.cz"’_l. ....cn) ®le =

(c'® Vin)e e e V1 /n)* (U1/m @ G1/m): (e Vi) e (€ @ v1ym),
whilst
Cj ® U1/n € gl/n ®'U1/n - gl/n (,7 7& Z) and U1 /n ® a1/n € U1/n ®f1/n - gl/n'

It follows that Pz @ z' € (gl/n)’" C Gy, as required. O

Remark. This result reaffirms justification for referring to the above (spatial) Arveson system as
the spatial product of the spatial Arveson systems £ and F.

Corollary 5.7. Let £ and F be spatial Arveson systems. Then, for normalised units v and v of
E and F respectively,

E o)\ uaF) =0 F = (EaF).
Proof. The first identity follows from Proposition[5.2] and Theorem[5.6] The second is well-known;
it is a consequence of the following identity (see [3], Corollary 3.7.3):
U‘g®}-={u®v:ueug,veu}-}. (5.2)
U

Our next result is the counterpart for roots of the identity (5.2) for units. It generalises
Corollary [3.4]
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Theorem 5.8. Let (£,u) and (F,v) be pointed Arveson systems. Then

REST = (RS @v) @ (u® RY).
Proof. First note that, by Theorem and the identity (£ ® F)! = & @ FI, we may suppose
without loss that € and F are type I Arveson systems. Writing (€1, u!) and (€2, u?) for (€, u) and
(F,v) respectively, and setting k := k(E?) (i = 1,2), there are isomorphisms of pointed Arveson
systems ¢’ : (F*,Qf) — (€', u’) (i = 1,2). Since the isomorphism ¢! @ ¢? : (F** @ Fr2, Qk @
QkQ) — (51 ®&ELut® u2) restricts to a bijection of roots, and maps

REM © 0% to REL @u? and Q9 @ RE* to u! @ RS,

u?2

the result follows from Corollary O

6. CLUSTER CONSTRUCTION

In the first half of this section we develop a cluster construction for product subsystems of an
Arveson system, and show how the construction leads to a new description of the type I part of
a spatial Arveson system. In the second half we relate our construction to the Cantor-Bendixson
derivative which sends a closed subset of the unit interval to its ‘cluster’, namely the collection of
its accumulation points, via the connection to random sets elaborated in [I4].

Notation. For an inclusion subsystem F' of an Arveson system &£, and t > 0, set
FPt =& O F° where FP := WY (EOF)@ (& © Fyr).

<r<t

Proposition 6.1. Let F be an inclusion subsystem of an Arveson system £. Then FSt+ :=
(FteL) s an inclusion subsystem of € containing F'.

The proof of this proposition is no easier than that of its generalisation, Proposition [6.9] which
is given there (and does not depend on any of the intervening theory).

t>0

Definition 6.2. Let F be a product subsystem of an Arveson system &£. The cluster of F in £
is the product system generated by the inclusion system F©+. We denote it F.

Lemma 6.3. Let F be a product subsystem of an Arveson system &, and let s,t > 0. Then the
following hold.
(a) FL @ F C FSG and Fo @ Fot € Foy.
(b) (FELOF,)@F, C Foy © Fopr and Fo @ (FP- © F,) C Foh © Foga.
Proof. Let s,t > 0. (a) Let r > 0 satisfy 0 < r < s+ ¢.
If r < s, then
Fr®@Fiir =FF @ (Fasr @ Fo) "
=Fr(F, @F @&, 0F ) CFYF @ & F;-.
If r = s, then
FreoFh, , =FroF Cc&eFft.
If r > s, then
FreFh, , CERE_s®@Fh , CE @ (Fros ® Foprr)™ = E @ Ff.
Therefore
Fo CFSOFGEQF =(Fot @ F) .
The first inclusion follows. The second now follows by symmetry.
(b) Since F is a product subsystem of £, the first inclusion in (b) follows from the first inclusion
in (a):
(FroF)@F =FStoF © Fo@F C Fog © Fepu
The second inclusion in (b) follows similarly. O
Corollary 6.4. Let (£,u) be a pointed Arveson system, and set F = Cu. Then, for s,t > 0,
FEt@u, ¢ FOE and (FET O F) @uy C FS5E © Fayss
us @ Fyt C Foy and us ® (FEH 0 F) € Foy © Fage.
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Notation. For a pointed Arveson system (€, u), set
X5 = (Cu)®t o Cuy  (t>0),
and define isometries
ji’t“ C X8 S XEY g meuy (0<s<t).
Then ((Xf’u)t>0, (jf”;‘)o<r<5) is easily seen to form an inductive system of Hilbert spaces. Let
(X&m, (v xE X&%)50) denote its inductive limit, and write @+ uq, for (@) (>0,
z € XF"). Thus
(T Uy )+ Uoe = T+ Uso € XE (rt >0,z € X5").
Finally, define isometries (Sf ™)¢s0 on X% by the requirement
SEM (2 Ung) = Uge 2+ Uoe (z € Us>0 Xf’“),
and set S5 = Iye.u.
As usual, when it is expeditious to do so we identify z-y and z @ y = Bit(x- y), for x € &,
y € & and s,t > 0.
Lemma 6.5. Let (£,u) be a pointed Arveson system. Then
XEY @t = X5 @ o + SEU(XF" ® us), and
X&" = X5 @uge + SEUXEM, (s,1>0).
Proof. We drop the superscripts. Let s,t > 0 and set F = Cu. Then, by Proposition
Xopt = Fo ©Cusyy C(FELRFPH) 0C(us @) = Xs @up @ us @ Xy © X ® X,
but
X, ® X, C {us}t @ {u}* Fo C Xsﬁrt,
S0 X4t C X5 ® ur B us ® Xy The reverse inclusion also holds since
X, ®u @ us @ Xy = (FOL 0 Cuy) @ up @ us ® (FEL 6 Cuy)
= (FOT @up @ us ® Fh) © Cugqy C F&y © Cugpy = Xoit
The first identity follows. The second follows from the first. O

Lemma 6.6. Let (£,u) be a pointed Arveson system. Then S&U := (Sf"")t>0 is a strongly
continuous one-parameter semigroup of isometries. Moreover it is purely isometric.

Proof. Clearly S is a one-parameter semigroup of isometries. Let o € X;f Mandy € X 5 ' where
p,q > 0. Fix T' > 0 such that T > max{p,q+ 1}. Then, for 0 < ¢t < 1,

(T @ Uoo, Ut @Y D Uno) = (T @ UP_py Ut @Y @ Ur—g—t) = (& D ur_p, UL (y @ ur_yg))

where UST = (Utg ’T)teR is the unitary flip group on &r. Weak continuity of the semigroup
S&:v therefore follows from the strong continuity of U%”. Since weak continuity implies strong
continuity for one-parameter semigroups on Banach spaces, the first part follows.

For the last part, let s,t > 0. Then

U Q2R Upo L TR Us R Uso = T R Ueo (zeXf’”,xeXf’“).
It follows that Ran S&* 1 Ran 5™ (¢ > 0), so

m Ran 55" C (W(Ramyt‘g’“)L = ( U Ranjtg’u>L = {0},

t>0 t>0 t>0

and therefore S€* is purely isometric. O
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By Cooper’s Theorem ([10]; see Theorem 9.3, Chapter III of [30]), it follows from Lemma
that, for any pointed Arveson system (&, u) there is a Hilbert space k(£,u) and unitary operator
VEu . XEu 5 KEU .= [2(R,;k(E,u)) such that VE4SE™ = S:(S’M)Vg’“ (t > 0). Moreover
k(&,u) is separable since X is.

Recall our notation K5* := {g € K& : ess-suppg C [0,¢]} (t > 0).

Lemma 6.7. Let (€,u) be a pointed Arveson system. Set F&* = (Ft) w0 where F = Cu. For
t > 0, define the operator

oS FE = Foa XP 5 FFEY —Ca kS, A+ ae (N JFVEYD us)

where Jy denotes the inclusion map Kf’u — K&¥, Then ¢ = (gbf’u)bo is an isomorphism of
inclusion systems.

Proof. Drop the superscripts from F&u K& XEu gfu  j&u G&u (p 5 () and V¥, and
abbreviate k(&, u) to k.
Each operator ¢, is easily seen to be unitary. Fix s,¢ > 0. Then

(B 0 dast) (usre) = BLS(1,0) = (1,0) @ (1,0)
= ¢s(us) @ dr(ur) = (65 ® ¢t)(ﬁ§tus+t)~

Also, if 2 = we-up +us- 21 = 55,4 (js(;vs) + Ssjt(l‘t)) where z5 € X, and x; € Xy, then

(ﬁfj’tk 0 psyt)(2) = 5£%k (0, J24,V (sr oo + Ss(24-Uso)))
= BIF(0, Ty (V (s o) + S5V (210 usc)))
= (0, J;V (25 tuoo)) ® (1,0) + (1,0) ® (0, J; V(24 o))
= ¢(25) @ di(ur) + ds(us) ® (1) = (65 © 61)(BL,2)-

Since Fyy; = Cugys @ g5, (]S(Xs) + Ssjt(Xt)), it follows that ﬁf;k 0 Psit = (¢s @ Pt) © Bgt.
Therefore ¢ is an isomorphism of inclusion systems. O

Theorem 6.8. Let £ be a spatial Arveson system. Then, for any normalised unit u of £,
(Cuy =&

Proof. Let u € U and set F = Cu.

The isomorphism of inclusion systems ¢, defined in Lemma lifts to an isomorphism of
product systems v : F~ — FX&%  Theorems and imply that ¢ is an isomorphism of
Arveson systems. Thus Fis of type I, and so is contained in €.

Now let a € RS and t > 0. Then

e

ar=a, QUp—r + U @y € Fr @ Fp—yp & Fr @ Fi=, C (FFr @ Ff,) 0<r<t),

so a; € ]_-teJ_. By Theorem [3.7, the product subsystem of £ generated by u and all of its roots is
ET therefore F~ contains . The result follows. O

Before turning to its connection with the Cantor-Bendixson derivative applied to random closed
sets (in the closed unit interval), we briefly mention a natural generalisation of our cluster con-
struction. For an ordered pair of inclusion subsystems F' = (F'', F'?) of an Arveson system &, and
t > 0, set

FPH =& O F° where FP :=Voert(E& O FN @ (&_, O F2,).
this extends the earlier construction (for a single inclusion subsystem F of &) as follows:

(F,F)Pt =F2 (t>0).

Proposition 6.9. Let F' = (F!, F?) be an ordered pair of inclusion subsystems of an Arveson

system E. Then FO+ = (FteL) is an inclusion subsystem of £ containing F' and F?.

t>0
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Proof. Let s,t > 0. For 0 <r < t,
(F)r @ (FL,)" C(F)T @& C(Fr @ FL)" C (B
so FP c (FH*, thus F}! ¢ FP+; also
58® (F‘rl)l - (Fsl (X)F’rl)L - (Flerr)La
s0
E @ (Fy)" @ (FL)t C (Fyy,)T @ (FL,)" C Foy,
thus & @ F° C Fo,.
By symmetry, F? C F°" and FE ® & C FS,,. Therfore

Foy C(E@FPH)N(FEt® &) = FPt o FRL
It follows that F©+ is an inclusion system containing F'' and F2. O

This completes the treatment of our cluster construction for product subsystems. In order to
relate it to random closed sets we summarise the basic relevant properties of hyperspaces next.
Thus let X be a topological space. The Vietoris topology on K(X), the collection of compact
subsets of X, has {Hy : U open in X }U{Mp : F closed in X} as sub-base ([12]); the hit sets and
miss sets of K(X) being defined as follows:

Hya={Z€KX):ZNA#0} and My:={Z€eK(X):ZNA=0} (ACX).
Note that, for A, B C X and A C P(X), the following hold: {Z € K(X): Z C A} = M 4,
MA:(HA)C’ HU‘A:UAG,AHA’ H@:(Z)and {@}:Mx, SO

ACB = HyCHp, Mya=(), ,Ma My=K(X)and {0} = (Hx)".

AcA
Thus @ is an isolated point of K(X), and a nonempty basic open set of K(X) takes the form
B = MpNHy, N---NHy, for some set F closed in X, n € N and sets Uy, -+, U, open in X such
that FCNU; # () for i =1,--- ,n. Note also that, for a sequence (F},) of closed sets of X,

Fy|F = Mp=|]J Mpg,. (6.1)
n=1

For any dense subset D of X, Ko(X) N P(D) is dense in K(X), where Koo(X) denotes the
collection of subsets of X having finite cardinality. If X has compatible metric d (with diameter
at most one) then the induced Hausdorff metric dg on K(X) (for which dy(Z,0) = 1 = du(0, 2)
for all Z € K(X) \ {0}) is compatible with the Vietoris topology, and is complete if d is. If
e >0and F CC X is an e-net ([3I], Definition 7.2.8) with respect to a compatible metric d for
X with diameter at most one, then P(F') is an e-net for dy, so K(X) is totally bounded with
respect to dy if X is totally bounded with respect to d. It follows from these basic facts that
Koo(X) is dense in K(X), and K(X) is separable, metrisable, completely metrisable, Polish, or
compact metrisable, if X has that property. When X is compact Hausdorff (so that K (X) equals
the collection of closed subsets of X), the Vietoris topology coincides with another well-known
hyperspace topology, namely the Fell topology.

For a subset A of X we denote by A’ its derived set, consisting of its points of accumulation,
{x € X :x e A\ {x}}. Note that (1) A’ C 4, (2) A" is closed if A is, (3) if X is a Ti-space then
A" = A’  and so A’ is closed. Note the further elementary properties (assuming, for (5), that X
isTy): for ACBC X,C C X, UopeninX and K € K(X),

4) (AnCY cB'nC', ) ANU#0D = #(ANU)=0c0; (6) K'=0 < #K < oo.

Thus, for X Hausdorff, the prescription Z — Z’ defines a map Ax : K(X) — K(X), the Cantor—
Bendizson derivative (whose study, as an operator, was initiated by Kuratowski; see [13]).

We now turn to the connection with random closed sets. Set C := K(I), Cop := Koo(I) and
A := Ay, where I denotes the unit interval [0, 1] with its standard topology. Thus C is compact and
metrised by the Hausdorff metric of the standard metric of I, in particular it is second countable,
with countable dense subset Coo NP(INQ), and A~L({@}) = Coo € C. By a random closed subset
of I is meant simply a C-valued random variable, in other words a measurable map from €2 to C,
for a probability space (2,5, P).
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Lemma 6.10. Let F,U C I, with F closed, U open and F' D U. Then, the following hold.
(a) AN (Mp) C{ZeC:#(ZNF) <o} C{ZeC:#(ZNU)< oo} C A~ (My).
(b) Let OF denote the topological boundary of F. Then
AN Mp)UHor ={Z €C:#(ZNF) < oo} UHpp
={ZeC:#(ZNIntF) < oo} UHpp = A" (M r) U Hop.
Proof. (a) follows from (4), (6) and (5) above.
(b) For Z € C, (a) implies that the middle sets are sandwiched by the outer sets. Let Z €

C\ Hopp = Myp. Then ZNOF =0,s0 ZNF =ZNIntF and so Z’NF = Z'NInt F. Thus
Z € A1 (Mp) if and only if Z € A=Y (M 7). Therefore the outer sets coincide, as required. [

The contents of the following proposition are known; we include their short proofs since they
are instructive and do not seem to be readily available.

Proposition 6.11. The following hold.

(a) Borel(C) = U{MJ : J is a closed subinterval of H}.

(b) A is Borel measurable.
Proof. (a) Denote the RHS c-algebra by 3. Let U be open in I and let F' be closed in I. Then
U = | J, for a sequence (J,) of closed subintervals of I, and F' = (| F, for a sequence (F,) of
closed sets of I such that F,, | F' and, for each n € N, F,, = Ufﬁ}) J& for some closed subintervals
JE e ") 6f I. Therefore, using (6.1),

oo k(n)

Hy = G Hy, = G (M) €% and Mp = G Mg, = | (| My €%
n=1 n=1 n=1 n=1 1=1

Since C is second countable it follows from Lindel6f’s Theorem that every open set of C is a
countable union of basic open sets, so ¥ D Borel(C). The reverse inclusion is clear.

(b) Let J be a closed subinterval of I, say [a, b]. For U open in I and p € N, since I is Hausdorff,
the set {Z € C: #(ZNU) > p} equals the open set

U {HV1 N---NHy,: Vi, ,V, disjoint open subsets of U}.
It follows from that M; = U,~, My, = U,—, My, where U, :=Ja — %,b+ L[NNI (n € N).
Now, by part (a) of Lemma [6.10]
AN (M) c{ZeC:#(ZnU,) <o} C{ZeC:#(ZNU,) <o} C AT (My,)
for each n € N. It follows that
AN M) = | J{ZeC:#(znU,) <o) = | {ZeC:#(Z2nU,) =)’ € Borel(C).

neN n,peN
The Borel measurability of A therefore follows from (a). O

Remark. A is not continuous, since {()} is closed in C but A=1({0}) is not closed because it
equals Cyp which is a dense proper subset of C.

For the convenience of the reader we quote the key propositions upon which our next result
depends. recall that in Liebscher’s approach the parameter set of an Arveson system & is extended
to R4, with & := C.

Theorem 6.12 ([I4], Theorem 3.16, Proposition 3.18, Corollary 3.21). Let £ be an Arveson
system, let P = (P, 1)ogr<t<1 be a family of nonzero orthogonal projections in the von Neumann
algebra B(&1) satisfying the evolution and bi-adaptedness conditions

P.yPiy=P.; and Py € IEQB(& )18, (0<r<s<t<l1), (6.2)

and let w and ¢ be faithful normal states on B(E1). Then the following hold:
(a) The map (r,t) = P, is strongly continuous, with P, — If as (r,t) — (s,8) for0 < s < 1.
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(b) There is a unique Borel probability measure PL on C satisfying

N N
B, ( r11‘:1 M[Si’ti]) - w( Hi:l Psi’t")
(NeNO0<s;<t; <1 fori=1,---,N).
(c) PE(H{ay) =0 (a €1).
(d) The correspondence 1y, , = Psi (0 < s <t < 1), extends to an injective normal unital
representation wF . L>°(PL) — B(&;). Moreover,

Rann? = {Ps;: 0<s<t <1},
(e) ]P’f;NIP’f.

Remarks. (i) For a product subsystem F of &, the family P7 = (P7,)o<r<i<1, as defined in (5.1)),
satisfies (6.2]).

(i) By (e), the space L>°(PL), and therefore also the representation 7
choice of faithful normal state w on B(&7).

(iii) For a faithful normal state w on B(&;), we write PZ and 77 respectively for the Borel
probability measure PZ and representation 77, when P = P7. Let M7 denote the probability
measure equivalence type of P7. By (e), M7 is independent of the choice of faithful normal state
w.

P is independent of the

We need the following extension of [14], Corollary 6.2.
Theorem 6.13. Let F be a product subsystem of an Arveson system E. Then
M = {Pf tw is a faithful normal state on B(&y)}.

Proof. The proof in [14], for the case where F is generated by a unit of £, works equally well for
an arbitrary product subsystem. O

We are now ready to give our generalisation of Proposition 3.33 of [14].

Theorem 6.14. Let F be a product subsystem of an Arveson system E. Then the following
hold.

(a) ﬂ-}—(lA*l(M[s,t]))_ = Pg’:tv (0 g s<t < 1)
(b) P2 o A=Y =P, for any faithful normal state w on B(&;).
(c) M7 o A7t = M7
Proof. Let 0 < s <t < 1. First note that, by part (b) of Lemma|6.10]and part (c) of Theorem|6.12]
™ (Laiqan,) = 7 (Lizecsznis i <oo})- (6-3)

For Z € C,
#(Z N [S,t]) 22 = Hue]&t[ HYANS H[S,u[ N H[u,t]'
s

and for 0 <a <b <1, 7T]:(1H[a7b[) = f(lH[a7b]), and
™ () =1 = Ply =1 @ Prr @I,

SO
™ (b, i) =15 @ Prr @ Pri @17, (s<u<t).

By the normality of 77, it follows that
™ (Lzecsp(znisz2y) = iugtff O Pr orp, @ =L@ Py &I,
s<u N
— 1 1 I AS] :
where V = Vocuer (Foey ® Fi=,) = FZ . By the evolution property,

P = A (= = PLYE —PL)) = A (PL+PL —PL).

u,t

<u<t s<u<t
It therefore follows that
oL
Wf(l{zec:#(Zn[s,t])@}) =Il® PFtefs QIf_, = Pft . (6.4)

Now

{ZecC:#(Zn[s1) <o} =|]Cp (6.5)
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where the union is over partitions P = {s = sgp < --- < sy = ¢} and Cp := ﬂfil {Zec:
#(Z N [si—1,s;])) < 1}. And so, applying (6.4) with [s;_1, s;] in place of [s, ],

T(1eyp) HPF s for P={s=50<---<sy=1}.

Therefore, by 7 the normality of 77, and the fact that the inclusion system F'©L generates
the product system F7,
Pl = (1{zec #(Znls t]<o0} )
Combined with (6.3), this proves (a). Now (a) implies that
(I, PT) = won >( s ) = B2 oA () M),
for subintervals [sq,t1],- -+, [sn, tn] of I, so (b) follows from part (b) of Theorem
(¢) In view of Theorem this follows immediately from (b). O

APPENDIX. FOCK ARVESON SYSTEMS AND THE GUICHARDET PICTURE

The symmetric Fock space over a Hilbert space H is denoted T'(H). Its exponential vectors
e(h) == ((n!)_1/2h®")n>0 (h € H) form a linearly independent and total set which witnesses
the exponential property of symmetric Fock spaces, namely I'(H; @ Hy) = T'(H;) ® T'(Hz) via
e(h1, ha) = e(h1)®e(hz). For any contraction C' € B(H), T'(C) := ,,5, C®" defines a contraction
in B(T'(H)) satisfying I'(C)e(h) = ¢(Ch) (h € H); the map C — I'(C) is a morphism of involutive
semigroups with identity, in particular, I'(C') is isometric, respectively coisometric, if C' is. For
h € H, the Fock Weyl operator is the unitary operator W(h) on I'(H) satisfying

W(h)w(k) = e "™k (b + k), where w(k) :=e IFI7/2(k) (k€ H).
Now let k be a separable Hilbert space. Set
K:=L*(Ry;k) and K;:={g € K:ess-suppg C [0,¢]}  (t>0),

and let S* := (SK);>¢ denote the one-parameter semigroup of unilateral shifts on K. The Fock
Arveson system over k, denoted F¥, is defined by

Fr=T(L3([0,t;k)) ® Q[t oo = = Lin{e(g) : g € K¢}, (t>0)

where Q[t denotes the vacuum vector £(0) in T'(L?([t, oo[; k)), with structure maps determined

by the prescnption
Bl i e(h) = e(hjo o) @ e((S5)7h), for h€ Koy (5,6 >0).
It is an Arveson system consisting of an increasing family of subspaces of the Hilbert space
F¥ =T(K). Its set of normalised units is given by {(eMw¢);~o : ¢ € k, A € R} where
w’ = (e llell® t/25c = w(C[Ot[))t>O and €¢:= (5(C[O,t[))t>0~

The vacuum unit w® = €°, of the Arveson system F¥, is denoted QK.

In order to describe the Guichardet picture of the Fock Arveson system over k which (only here
in this appendix) we denote by G¥, we need to introduce the symmetric measure space I'y over the
Lebesgue space [0, ¢[, for 0 < ¢ < oo ([I1]). As a set,

Iy :={o C[0,t: #0 < o0}.

Thus, denoting {o C [0,t[: #0 = n} by I‘g"), Unso an) is a partition of I';. Since, for each n € N,
the map
n)

Agn)::{se]R’}r:sl<---<sn<t}—>F§ s— {s1," " ,8n}

an)

. .o . n . . . .
is bijective, Lebesgue measure on AE ) induces a measure on and thereby an isometric iso-

morphism L? (Aﬁ”)) — L2(1“§")). Composing with the isometric isomorphism
L2, ([0, KE™) — L2(AM;KE™), F s Vil F| y o)

sym
(and ampliating) gives an isometric isomorphism

L2 ([0,4™k®") — L2(T{k®")  (n e N).

sym
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By declaring that ) € Fgo) C I'; is an atom of measure one, we have an isometric isomorphism

Ff = Co @ L ((0,0"k*") = Co @ L2 (177:k™") = G,

n=1 n=1

where G := {G € Gk :ess-supp G C I‘t} and, in terms of ®(k), the full Fock space over k,

These isomorphisms are restrictions of a single isomorphism ]-1‘0 — G

Gk, == {G € L*(T'; (k) : G(0) € k¥#7 for a.a. o}.
k

00

under which e(g) — 7,

where, for g € K,

in

1 if o =0,
(@) = gls) @ @glsn) o ={s1 <o <su}’

particular, £(0) — &y. Moreover, for G € G and t > 0,

[ Glo—t) ifoC[too]
(F(SE)G) (o) = { 0 otherwise °

The corresponding structure maps in the Guichardet picture are given by the prescription

BIEH (0, 8) = H(aU(B+9))Irg o q (0 8)  (H €64,
For further details on Fock space and the Guichardet picture, see [16] and [20].
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