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Abstract Time series within fields such as Fi-

nance and Economics are often modelled using

long memory processes. Alternative studies on

the same data can suggest that series may actu-

ally contain a ‘changepoint’ (a point within the

time series where the data generating process

has changed). These models have been shown

to have elements of similarity, such as within

their spectrum. Without prior knowledge this

leads to an ambiguity between these two mod-

els, meaning it is difficult to assess which model

is most appropriate. We demonstrate that con-

sidering this problem in a time varying environ-

ment using the time varying spectrum removes

this ambiguity. Using the wavelet spectrum we

then use a classification approach to determine

the most appropriate model (long memory or

changepoint). Simulation results are presented

across a number of models followed by an ap-
plication to stock cross correlations and US in-

flation. The results indicate that the proposed

classification outperforms an existing hypothe-

sis testing approach on a number of models and

performs comparatively across others.
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1 Introduction

It is not often the case that a given data set

has a known explicit model from which it is

generated. Analysts will look to fit an appro-

priate model to such a series in the hopes of

understanding the underlying mechanisms or to

make predictions into the future. The models

proposed are expected to be distinct in their

properties such that there is a clear prevalence

of a suitable model for the data. However, mod-

els with certain structural features have been

known to have similar properties to other mod-

els [11]. This overlap will be here referred to

as an ‘ambiguity’ between the models. This is

such that either model may appear similar to

one another in some metrics, but provide very

different interpretations on the data generating

process, and lead to different predictions into

the future.

In this paper we consider the ambiguity be-

tween long memory and changepoint models.

This ambiguity has been documented in fields

such as Finance and Economics which are mod-

elled using long memory models [10,26] and

changepoint models [19,28]. Thus it is reason-

able to assert that there is an element of ambi-

guity between these two models. Following the

discussion and in-depth analysis within [6], it

has been shown that both models share some

similar properties, especially within the spec-

trum. Often a decision on a model can not be

made with the ‘luxury’ of prior knowledge, and

as such assuming the data derives from either of

these models comes at a risk of mis-specification.

Existing work in [30] conducts a hypothe-

sis test to determined between the changepoint

and long memory model. The authors choose to

use the changepoint model as a null model with
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the justification that this is the more plausi-

ble model. However in some circumstances this

may not be the case so it leads to the question

as to which model should be the null model. It

would be entirely feasible to choose the change-

point model as the null model, not reject H0

and then flip to have the long memory model

as the null model and also not reject H0. This

does not give a clear answer to the question of

an appropriate model.

As an alternative this paper introduces a

classifier, which places no such assumptions on

which model is preferred. Instead the purpose

of a classifier is only to give a measure of which

category provides the best fit. In the context

here, it can measure which model best describes

a time series, without assuming that this model

is where the data was originally generated from.

Classification of time series has been previously

used in [9] and [18]. It was shown in [30] that

the autocorrelation function and periodogram

of data generated from a changepoint model

and a long memory model exhibit similar struc-

tures (i.e. slow decay in the autocorrelation and

spectral pole at zero). However, if we consider

a time-varying periodogram, then the station-

arity of a long memory model can be seen (con-

stant structure over time), whilst a changepoint

model exhibits the piecewise stationarity ex-

pected (see for example [16]). As the time vary-

ing spectrum shows evidence of a difference be-

tween these models, we use it as the basis for

our classification procedure.

The structure of this article is as follows.

The background and methods to our approach

are given in detail in Section 2. A simulation

study of the proposed classification method, with

a comparison to the Likelihood Ratio Test from

[30], can be found in Section 3. Applications of

the classifier are then given using US price in-

flation and stock cross-correlations in Section 4.

Finally, concluding remarks and a discussion is

given in Section 5.

2 Methods

2.1 Changepoint and Long Memory Models

The aim of our method is to distinguish be-

tween data which arises from either a change-

point or a long memory model. To define these,

we first define the general Autoregressive Inte-

grated Moving Average (ARIMA) model, char-

acterised by its Autoregressive (AR) parame-

ters φ ∈ Rp, Moving Average (MA) parameters

θ ∈ Rq and the Integration (I) parameter d ∈ N.

For random variables X1, X2, . . . , Xn this is for-

mally defined as,(
1−

p∑
k=1

φkB
k

)
(1−B)

d
Xt =

(
1 +

q∑
k=1

θkB
k

)
εt

where εt ∼ N(0, σ2) and B is the backward shift

operator such that BXt = Xt−1 and Bεt =

εt−1. A variation of this, Autoregressive Frac-

tional Integrated Moving Average (ARFIMA)

is such that d ∈ R, allowing it to be fractional.

This modification allows long memory behaviour

to be captured through dependence over a large

number of previous observations.

For the purpose of this paper, we define the

changepoint and long memory models as:

Xt ∼

{
µ1 + ARMA(φ1,θ1) if t = 1, 2, . . . τ

µ2 + ARMA(φ2,θ2) if t = τ + 1, τ + 2, . . . n.

(1)

Xt ∼ µ+ ARFIMA(φ, d,θ) t = 1, 2, . . . , n (2)

Note that we depict a single changepoint τ =

bnλc for notational ease, but the software we

provide (see Section 5) contains the generali-

sation to multiple changes through use of the

PELT algorithm [17] and extending Equation

(1) to include multiple τ . Other models such as

ARCH models and Fractional Gaussian Noise

[21] could also be used but we restrict our con-

sideration to ARFIMA here. In the general case

we allow p, q ∈ N, but in the simulations and

applications given in Section 3 and 4 we restrict

their range for computational reasons.

2.2 Wavelet Spectrum

The ambiguity present between diagnostics of

the competing models given in Equation (1)

and (2) can cause issues in identifying the cor-

rect model. Figure 1 shows the average em-

pirical periodograms from realisations of long

memory (ARFIMA(0,0.4,0)) and changepoint

(AR(1), λ = 0.5, φ1 = 0.1, φ2 = 0.4, µ1 = 0,

µ2 = 1) models. It can be seen that the peri-

odogram for the changepoint model has a pole

at zero and shows similar behaviour to that of

long memory.

Before discussing the wavelet spectrum, we

provide a brief background to wavelets and the

specific spectrum we propose to use.

Wavelets capture properties of the data through

a location-scale decomposition using compactly

supported oscillating functions. Through dila-

tion and translation, a wavelet is applied across
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(a) Changepoint periodogram. (b) Long memory periodogram.

(c) Changepoint wavelet spectrum. (d) Long memory wavelet spectrum.

Fig. 1: Empirical periodogram and wavelet spectrum averaged over 500 realizations.

a number of a scales and locations to capture

behaviour occurring over different parts of a se-

ries. Further information on them and their ap-

plication can be found in [5] and [22]. In this

work we use the model framework of the Locally

Stationary Wavelet process which provides a

stochastic model for second order structure us-

ing wavelets as building blocks.

We follow the definition in [7] for a Locally

Stationary Wavelet (LSW) process.

Definition 1 Define the triangular stochastic

array {Xt,N}N−1t=0 which is in the class of LSW

processes given it has the mean-square repre-

sentation

Xt,N =

∞∑
j=1

∑
k

Wj

(
k

n

)
ψj,k−tξj,k,

where j ∈ 1, 2, . . . and k ∈ Z are scale and lo-

cation parameters respectively,

ψj = (ψj,0, . . . , ψj,Lj−1) are discrete, compactly

supported, real-valued non-decimated wavelet

vectors of support length Lj . If the ψj are

Daubechies wavelets [5] then Lj = (2j−1)(Nh−
1)+1 where Nh is the length of the Daubechies

wavelet filter, finally the ξj,k are orthonormal,

zero-mean, identically distributed random vari-

ables. The amplitudes Wj(z) : [0, 1] → R at

each j ≥ 1 are time varying, real-valued, piece-

wise constant functions which have an unknown

(but finite) amount of jumps. The constraints

on Wj(z) are such that if Pj are Lipschitz con-

stants representing the total magnitude of jumps

in W 2
j (z), then the variability of Wj(z) is con-

trolled by

–
∑∞

j=1 2jPj <∞,

–
∑∞

j=1W
2
j (z) <∞ uniformly in z.

As in the traditional Fourier setting, the spec-

trum is the square of the amplitudes and as

such the Evolutionary Wavelet Spectrum can

be defined as

Sj

(
k

N

)
=

∣∣∣∣Wj

(
k

N

)∣∣∣∣2
which changes over both scale (frequency band)

j and location (time) k.

Considering both scale and location, the two

dimensions allow the differences between the

proposed models to be seen. Examples of the

differences in these spectra are given in Fig-

ure 1 for both the changepoint and long mem-

ory models. To interpret the wavelet spectrum:

scale corresponds to frequency bands with high

frequency at the bottom to low frequency at

the top. Further details on the spectrum and its

applicability can be found in [7], [22] and [16].
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Note that there is a clear difference between

the wavelet spectra of the two models with the

changepoint model being piecewise stationary

(pre and post change), with the change occur-

ring in the spectrum where the change occurs

in the data. In contrast the long memory model

remains flat across each scale and time reflect-

ing the stationarity of the original series.

Due to the fact that the wavelet spectrum

gives a distinction between the two models we

propose to use this as the basis for our inference

regarding the most appropriate model. Whilst

the Fourier spectrum could be used here as in

[14], we choose to use the Evolutionary Wavelet

Spectrum. As shown in Figure 1 this is advan-

tageous for characterising the non-stationarity

changepoint data due to the Scale-Location

transformation used. This is since the Wj(z)

are constant for stationary models, but for non-

stationary models the break in the second order

structure of the original data causes breaks in

the wavelet spectra, as described in [12].

In the next section we detail how to use the

wavelet spectrum of the two models in a classi-

fication procedure.

2.3 Classification

Testing whether a long memory or changepoint

model is more appropriate whilst under model

uncertainty comes with the hazard of

mis-specification. A formal hypothesis test

places assumptions on the underlying model in

both the null and alternative, but the allocation

of the null is hazardous - should the change-

point model be the null or alternative? It would

be entirely feasible to choose the changepoint

model as the null model, not reject H0 and then

flip to have the long memory model as the null

model and also not rejectH0. Given the absence

of a clear null model, which result to proceed

with is unclear. Instead it may be preferable

to quantify the evidence for each model sepa-

rately. A classification method such as the one

proposed here gives a candidate series a mea-

sure of distance from a number of groups, which

can then be used to select the most appropriate

group.

In the previous subsection it was demon-

strated that the wavelet spectrum can used to

distinguish the changepoint model from the long

memory model, and the classifier proposed here

builds on this. However, to begin a classification

method must first ‘teach’ itself on the struc-

ture of the classes through sets of training data.

These are data sets already determined to be in

each category and are the basis for calculating

the distances from each group. This previous

knowledge allows for determination of patterns

and features of each category (that are unique

from other categories) for comparison to the

candidate data set. A common example is the

spam filter on mailboxes, which is trained on

previous spam emails so that it can classify if

a new email that arrives is spam or not. The

decision is made by comparing it to a number

of patterns already determined to be features in

spam email for example, short messages or hid-

den sender identities. Further information on

classification methods and training them can

be found within [20].

In our example we only have a single data

set of length n, the classifier has no previous

information to train on. To remedy this we cre-

ate training data through simulation. Given a

candidate series we first fit the competing mod-

els in Equations (1) and (2) choosing the best

fit for each model. For the changepoint model

the best fit uses the ARMA likelihood within

the PELT multiple changepoint framework to

identify multiple changes in ARMA structure

[13,17]. When considering fitted long memory

models, a number of ARFIMA models are fitted

[29] and selection occurs according to Bayesian

Information Criterion (following [1]).

Following the identification of the best change-

point and long memory models, the training

data is then simulated as (Monte Carlo) real-

isations from these, denoted by

Xg
m =

{
Xg

i,m

}
i=1,2,...,n

m = 1, 2, . . . ,M.

g = 1, 2.

where the group, g = 1 for changepoint simu-

lations and g = 2 for long memory simulations,

M is the number of simulated series and n is

the length of the original series. Note that we

are not sampling from the original series, we are

generating realizations from the fitted models.

Now we have the training data and the ob-

served data, denoted Xo, a measure of distance

of the observed data from each group is cal-

culated. As discussed previously we will use a

comparison of their evolutionary wavelet spec-

tra as the distance metric. Before detailing the

metric, we first define the wavelet spectrum of

the original series as

So = {So
k}k=1,2,...n∗J

where we remove the index over scale j by con-

catenating scales, hence k = 1, 2, . . . n∗J , where
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J = blog2(n)c. Similarly we define the spectra

for each simulated series:

Sg
m =

{
Sg
k,m

}
k=1,2,...n∗J

.

To obtain a group spectra, an average is then

taken over the M simulated series at each posi-

tion of each scale for each group,

S̄
g

=

{
1

M

M∑
m=1

Sg
k,m

}
k=1,2,...n∗J

.

Based on these spectra the distance metric

proposed is a variance corrected squared dis-

tance, across all spectral coefficients as proposed

in [18],

Dg =
M

(M + 1)

n∗J∑
k=1

(So
k − S̄

g
k)2∑M

m=1(Sg
k,m − S̄

g
k)2

(3)

Note that the variance correction occurs within

the denominator to account for potentially dif-

ferent variability seen across simulations for each

group. This is modified from [18] to allow differ-

ent variances within each group. The theoreti-

cal consistency of the classification was shown

in Theorem 3.1 from [8] where the error for

misclassifying two spectra {S(1)
k }k and {S(2)

k }k
(whose difference summed over k is

larger than CN) is bounded by

O
(
N−1 log3

2N +N1/{2 log2(a)−1}−1 log2
2N
)
.

However this result requires a short memory as-

sumption that is clearly not satisfied for our

long memory processes. Thus we prove a simi-

lar bound under the assumption that the spec-

tra are created from ARFIMA processes. We

first replicate the requiblack assumptions from

[8] for completeness:

Assumption 21 (Assumption 2.1 from [8])

The set of those locations z where (possibly in-

finitely many) functions Sj(z) contain a jump

is finite. In other words, let

B := {z : ∃j limu→z− Sj(u) 6= ∃j limu→z+}. We

assume B := #B <∞.

Assumption 22 (Assumption 2.2 from [8])

There exists a positive constant C1 such that for

all j, Sj(z) ≤ C12j.

Theorem 1 Suppose that Assumptions 21 and

22 hold, and that the constants Pj from Defi-

nition 1 decay as O(aj) for a > 2. Let S
(1)
j (z)

and S
(2)
j (z) be two non-identical wavelet spec-

tra from ARFIMA processes. Let I
(J)
k,N be the

wavelet periodogram constructed from a process

with spectrum S(1)(z), and let L
(j)
k,N be the cor-

responding bias-corrected periodogram, with J∗ =

log2N . Let∑
j,k

{
S
(1)
j (k/N)− S(2)

j (k/N)
}2

= O(N).

The probability of misclassifying L
(j)
k,N as com-

ing from a process with spectrum S
(2)
j (z) can be

bounded as follows:

P (D1 > D2) = O
(

log2
2N

[
N−1 +N

1
(2 log2 a−1)

−1
])

Proof The proof is given in Appendix A.

A summary of the proposed procedure is

given in Algorithm 1.

Initialization:
X : {Xi}ni=1 observed series.
n : Length of series
M : Number of bootstrap simulations
S̄1, S̄2 : Empty Spectra 1, 2.

Algorithm:

1. Fit: M1 - best changepoint model (Equation
(1)) to X.

2. Fit: M2 - best long memory model (Equation
(2)) to X.

3. Calculate training spectra
for m = 1, 2, . . . ,M do
Simulate n observations from M1, denote
as Y1

Calculate Evolutionary Wavelet Spectra
S1
m of Y1

Let S̄1 = S̄1 + S1
m

Simulate n observations from M2, Y2

Calculate Evolutionary Wavelet Spectra
S2
m of Y2

Let S̄2 = S̄2 + S2
m

end
4. Calculate the average Evolutionary Wavelet

Spectra for each group S̄1 = S̄
1

M
, S̄2 = S̄

2

M
.

5. Calculate Evolutionary Wavelet Spectrum of X,
So.

6. Compute the distance D1, D2, between So and
S̄1, S̄2 respectively (Equation (3)).

Output: Distances D1, D2.

Algorithm 1: Wavelet Classifier Algorithm

3 Simulation Study

To test the empirical accuracy of our proposed

approach, simulations were conducted over a

number of models. Here, these models are cho-

sen over a number of parameter magnitudes

and combinations to show the effectiveness of
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the approach outlined in Section 2. A number

of these models also appear in [30] which uses

a likelihood-ratio method to test the null hy-

pothesis of a changepoint model. Their results

for these models are correspondingly given as a

comparison.

For each model given in the tables below,

500 realisations of each model were generated

and classified, using M = 1000 training simula-

tions for each fit. For computational efficiency,

the maximum order of the fitted models are

constrained to p, q ≤ 1. Three different time

series lengths were computed for each model;

512, 1024 and 2048. It is expected that as a se-

ries grows larger, more evidence of long memory

features will become prevalent, and as such the

effect of length of series on accuracy is investi-

gated.

We have used n = 2J as the length of the se-

ries as the wavelet decomposition software [25]

requires that the series transformed is of dyadic

length. This is not a desirable trait as data sets

come in many different sizes. Thus we overcome

this using a standard padding technique [22]

that adds 0’s to the left of each series until the

data is of length 2J . The extended wavelet coef-

ficients are then removed before calculating the

distance metric.

3.1 Changepoint Observations

For the changepoint models we used the simu-

lations given in [30]. Table 1 gives the parame-

ters used in Equation (1) along with the correct

classification rate. The results show that if the

data follows a changepoint model then we have

a 100% classification rate. A movement of the

changepoint to a later part of the series, as in

models 5 and 6, does not appear to have an ef-

fect upon classification rates unlike for the Yau

and Davis method. It is not really a surprise

that we are receiving 100% classification rates

as if a changepoint occurs then it is a clear fea-

ture within the spectrum.

It should be noted that as the Yau and Davis

method is a hypothesis test we would expect

results around 0.95 for a 5% type I error.

3.2 Long Memory Observations

In contrast to the changepoint models, the clas-

sification of a long memory model is expected

to be less clear. This is due to the variation

within the wavelet spectrum of long memory se-

ries that could be interpreted as different levels

and hence a changepoint model would be more

appropriate. To demonstrate the effect of the

classifier on long memory observations, a larger

number of models were considered. We simu-

lated long memory models with differing levels

of long memory as measured by the d parame-

ter, values close to 0 are closer to short memory

models and values close to 0.5 are stronger long

memory models (values > 0.5 are not station-

ary and thus not considered).

The results in Table 2 give an indication of

the accuracy of the classifier in a number of dif-

ferent situations. Overall, as the length of the

time series increases we see an increase in clas-

sification accuracy. This is to be expected as

evidence of long memory will be more preva-

lent in longer series. Similarly as we increase

the long memory parameter d from 0.1 to 0.4

we improve the classification rate.

Some interesting things to note include, when

there are strong AR parameters (φ) such as

models 7-10 and 19-22 we require longer time

series to achieve good classification rates. How-

ever, in contrast if there are strong MA compo-

nents as in the remaining models the classifier

performs better. A larger effect is found when

the MA parameter is negative, seen through

models 11-14 where the classifier performs

strongly even at n = 512. This effect is fur-

ther exemplified by models 23-26 which include

a further MA parameter and achieve near 100%

classification at n = 512. Here the maximum

used p, q was 2.

Comparing our results to that of Yau and

Davis we note that the opposite performance

is seen. For the likelihood ratio method there

is high power for models with strong AR com-

ponents and poor performance for strong MA

components. Notably the strong MA performance

is much worse than our method on the strong

AR components.

4 Application

To further demonstrate the usage of our ap-

proach, two applications to real data are given

in this section. The first is an economics ex-

ample based on US price inflation and this is

followed by financial data on stock

cross-correlations. A sensitivity analysis was con-

ducted over the possible maximum values of

p, q. It was found that no additional parame-

ters were required beyond maximum p, q = 4,

thus these results are presented here.
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Model Parameters Classification Rate Y&D Likelihood Ratio
Ref λ µ φ1 θ1 φ2 θ2 n = 512 n = 1024 n = 2048 n = 500 n = 1000

1 0.5 1 0.1 0.3 0.4 0.2 1.00 1.00 1.00 0.99 0.97
2 0.5 2 0.1 0.3 0.4 0.2 1.00 1.00 1.00 0.95 0.93
3 0.5 1 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.97 0.99
4 0.5 2 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.94 0.95
5 0.7 1 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.94 0.94
6 0.7 2 0.1 0.3 0.8 0.2 1.00 1.00 1.00 0.91 0.93

Table 1: Changepoint observations results with Likelihood Ratio comparison [30].

Model Parameters Classification Rate Y&D LR Power
Ref φ d θ1 θ2 n = 512 n = 1024 n = 2048 n = 500

7 -0.8 0.1 0.6 0.42 0.61 0.79 0.63
8 -0.8 0.2 0.6 0.56 0.83 0.94 0.97
9 -0.8 0.3 0.6 0.66 0.90 0.96 0.98

10 -0.8 0.4 0.6 0.75 0.88 0.96 0.96
11 0.1 0.1 -0.8 0.74 0.87 0.95 0.08
12 0.1 0.2 -0.8 0.84 0.96 0.99 0.09
13 0.1 0.3 -0.8 0.89 0.98 1.00 0.15
14 0.1 0.4 -0.8 0.88 0.99 1.00 0.32
15 0.1 0.1 0.8 0.54 0.78 0.90
16 0.1 0.2 0.8 0.61 0.85 0.91
17 0.1 0.3 0.8 0.62 0.87 0.95
18 0.1 0.4 0.8 0.63 0.87 0.98
19 0.6 0.1 -0.8 0.33 0.45 0.65
20 0.6 0.2 -0.8 0.38 0.62 0.83
21 0.6 0.3 -0.8 0.44 0.63 0.87
22 0.6 0.4 -0.8 0.39 0.59 0.86
23 0.0 0.1 0.7 -0.7 0.94 0.97 0.99
24 0.0 0.2 0.7 -0.7 1.00 0.99 1.00
25 0.0 0.3 0.7 -0.7 1.00 1.00 1.00
26 0.0 0.4 0.7 -0.7 1.00 0.99 1.00

Table 2: Long memory observations results with Likelihood Ratio comparison [30].

4.1 Price Inflation

US price inflation can be determined using the

GDP index. The dataset used here is available

from the Bureau of Economic Analysis, based

on quarterly GDP indexes, denoted Pt, from

the first quarter of 1947 to the third quarter of

2006 (227 data points). Price inflation is calcu-

lated as πt = 400 ln(Pt/Pt−1) (thus n = 226).

A plot of the inflation is given below in Fig-

ure 2a. Studies of the persistence of this data

have been conducted to determine the level of

dependence within the series. A high amount of

persistence, indicating long memory, was found

in [26]. However [19] found a structural break,

which when accounted for showed the series to

have low persistence, indicating the presence of

changepoints with short memory segments. Ap-

plying our classification approach to this series

will give an additional indication as to which

model is statistically more appropriate.

The parameters of the fitted changepoint

and long memory models are given in Table 3.

Diagnostic autocorrelation and partial autocor-

relation function plots are given in Figure 3.

The level shifts are given in respect to their po-

sition in the series, but correspond to 1951 Q3,

1962 Q4, 1965 Q2, 1984 Q2. The classifier re-

turns a changepoint classification for this series.

4.2 Stock Cross Correlations

Stock Cross Correlation data has been obtained

from the supplementary material of [3]. The

data consists of Open to Close stock returns for

6 companies from January 1st 2001 to 30th July

2008 (n = 2156). The data is first transformed

using a Fisher Transformation, then correlations

are calculated between each stock. Here analy-

sis will look at the correlation between Ameri-

can Express and Home Depot.

This data has been analysed previously by

[2] to determine between fractional integration

(long memory behaviour) and level shifts and

is given in Figure 2b. Parameters for the mod-

els fitted by the algorithm are also in Table

3. It can be seen that one of the AR coeffi-

cients is close to 1 indicating an element of

non-stationarity, however we conducted a test

of stationarity on this segment using the locits

R package [24] which implements the test of
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stationarity from [23] (no rejections) and also

the fractal R package [4] which implements

the Priestley-Subba Rao (PSR) test [27] (time

varying p-value 0.061). This coupled with auto-

correlation and partial autocorrelation function

plots given in Figure 4 means we conclude that

the segment is stationary. Here the estimated

changepoints at times 715, 841, 847 and 896

correspond 15/12/2002, 20/04/2003, 26/04/2003

and 14/06/2003. The distance scores given by

the classifier indicate a strong preference for

long memory over changepoints. This result stands

against that found in [2] which indicated a pref-

erence for a model with similarly 4 changepoints.

The difference is likely due to the fact that in

[2] the changepoint model does not contain any

short memory dependence and we have shown

here that if that short memory structure is cor-

rectly taken into account within the sub-series

then the series shows greater evidence of long

memory properties.

5 Conclusion

The wavelet classification process presented

within this paper provides the user a distinct

choice over a number of proposed models, and

when explicitly applied to an ambiguity such as

long memory or a changepoint as in Section 3,

it provides an additional piece of information to

aid decision making. The accuracy of the clas-

sifier over a number of simulated models has

been presented within Section 3 and applied to

data from the Financial and Economic fields in

Section 4.

The Evolutionary Wavelet Spectrum pro-

vides a representation of non-stationarity which

is lacking in the commonly used (averaged over

time) spectrum. This gives an advantage when

drawing comparisons between non-stationary

and stationary series, since the wavelet spec-

trum may appear substantially different. Quan-

tifying this visual difference allows for a direct

comparison between the series and each pro-

posed model.

The variance-corrected squared distance met-

ric used in the proposed classifier has been

demonstrated to be quite accurate under the

ambiguity of long memory and changepoint mod-

els. It is particularly effective at identifying

changepoint models correctly, as the results in

Table 1 demonstrate. It was noted that there

is relatively lower variation between the simu-

lations generated for the changepoint than the

long memory model, which reduces the distance

metric significantly even though it is variance

corrected.

As mentioned in Section 1 there are many

series that can be found in fields such as Eco-

nomics and Finance which show evidence of the

ambiguity investigated here. This classification

is not intended to propose a final model for

these series, but instead give additional infor-

mation, treated perhaps as a diagnostic. This

could be to begin investigation of a series, or

to confirm a previously found model fit. As this

is not a formal test, the lack of assumptions

allows for more flexibility in how the classifica-

tion can be used. This work however is not re-

stricted only to the ambiguity mentioned here,

further work could extend it to determine be-

tween other features, such as local trends and

seasonal behaviour or combining the behaviour

of both models i.e., a long memory model with

a changepoint.

An aspect not covered in this paper is the

precise form of ARMA and long memory mod-

els in the LSW paradigm, i.e. how the model co-

efficients relate to theWj,k’s. This is an interest-

ing area for future research which would cement

the LSW model as an encompassing model but

is beyond the scope of this paper.

An R package (LSWclassify) is available

from the authors that implements the method

from the paper.
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A Proof of Theorem 1

Proof We replicate the steps of the proof within the
Appendix of [8] up until (A.6), where following this
step the short memory condition is used. To briefly

summarise previous steps,

P (D1 −D2 > 0) = P (X − t > 0) ≤ E(X̃2)/t2,

(by Chebyshev’s Inequality)

E(X̃2) =: I + II,

I ≤ CJ0J∗
−J0∑
j=−1

−J∗∑
i=−1

2i+jE
{
b2i,j

}
,

E
{
b2i,j

}
=: 2A+ 2B.

Definitions for these components can be found in the
original proof. Component A is where we alter the
proof.

Recall I
(i)
k,N is the wavelet periodogram at a fixed

scale i, at position k with total length N , with d
(i)
k,N

the wavelet coefficient corresponding to it through

the relationship I
(i)
k,N =

(
d
(i)
k,N

)2
. We continue the

proof from (A.6) using the ARFIMA assumption in-
stead. Following from above (A.6):

A = E

{
N∑
k=1

{
I
(i)
k,N − E

(
I
(i)
k,N

)}
cj,k

}2

≤ 22j
N∑

k,k′=1

∣∣∣cov
(
I
(i)
k,N , I

(i)
k′,N

)∣∣∣
= 22j

N∑
k,k′=1

2cov2
(
d
(i)
k,N , d

(i)
k′,N

)
(by Isserli’s Theorem) (4)

[15] gives bounds for the covariance of wavelet
coefficients;

cov
(
d
(m)
k,N , d

(j)
n,N

)
= C1|α|2d−1−2M +R2M+1

α = 2m−jk − n, m ≥ j

|R2M+1| ≤ C2|α|2d−2−2M ,

where M ≥ 1 is the number of vanishing moments in
the wavelet used. Using |α| = |2i−ik−k′| = |k−k′| ≥
1 and substituting into Equation (4):

A = 22j+1
N∑

k,k′=1

(C3|α|2d−1−2M +R2M+1)2

= 22j+1
N∑

k,k′=1

|C3|α|2d−1−2M +R2M+1|2

≤ 22j+1
N∑

k,k′=1

(
∣∣C3|α|2d−1−2M

∣∣+ |R2M+1|)2

≤ 22j+1
N∑

k,k′=1

(C4|α|2d−1−2M

+ C5|α|2d−2−2M )2
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As |α|2d−2−2M ≤ |α|2d−1−2M we have:

A ≤ 22j+1
N∑

k,k′=1

(
C6|k − k′|2d−1−2M

)2
= 22j+1

N∑
k,k′=1

C7
1

|k − k′|−2(2d−1−2M)

= 22j+1
N−1∑
s=1

(N − s)C7
1

s−2(2d−1−2M)

= 22j+1C7

[
N

N−1∑
s=1

1

s−2(2d−1−2M)

−
N−1∑
s=1

1

s−4(d−M)+1

]

Given that |d| < 0.5 and M ≥ 1 then 4 < −2(2d−1−
2M) = δ1 and 3 < −4(d−M)+1 = δ2. We can then
replace the sums using the definition of Generalised
Harmonic Numbers and their convergence:

Hn,m =

n∑
k=1

1

km

Hn,m = O(1) as n→∞ (m > 1)

Thus

A ≤ 22j+1C7 (NHN−1,δ1 −HN−1,δ2) = 22j+1C7HN ,

where HN = NHN−1,δ1 − HN−1,δ2 . Returning to
consider (A.4) from [8], we find a bound for compo-
nent I, where J0, J∗ = log2N and ∆ = 1

(2 log2 a−1)
:

I = C8J0J
∗
−J0∑
j=−1

−J∗∑
i=−1

2i+j
[
22j+1C7 (NHN−1,δ1

−HN−1,δ2) +N1+∆2j
]

= C8 log2
2N

−J0∑
j=−1

2j
[
22j+1C7HN

+N1+∆2j
] (

1− 2J∗
)

= C8 log2
2N

 −J0∑
j=−1

C723j+1
(
1− 2J∗

)
HN

+

−J0∑
j=−1

23j
(
1− 2J∗

)
N1+∆


= C9 log2

2N
(
1− 2−J∗

)
HN

−J0∑
j=−1

23j+1

+ C8 log2
2N

(
1− 2−J∗

)
N1+∆

−J0∑
j=−1

23j

= C9 log2
2N

(
1− 2−J∗

)
HN

2

7

(
1− 2−3J0

)
+ C8 log2

2N
(
1− 2−J∗

)
N1+∆ 1

7

(
1− 2−3J0

)
= log2

2N
(
1−N−1

) (
1−N−3

)[
C10HN + C11N

1+∆
]

= log2
2N

(
1−N−3 −N−1 +N−4

)[
C10HN + C11N

1+∆
]

≤ C12 log2
2N

(
HN +N1+∆

)

Following this, using results in [8] the probability
of misclassification is:

P (X > t) = O
(
log2

2N
[
N−1 +N∆−1

])
.
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Fig. 3: Inflation diagnostics. (Top) Left: Original data with fitted changepoint model; Middle: Auto-

correlation Function of changepoint model Residuals; Right: Partial autocorrelations of changepoint

model residuals. (Bottom) Left: Original data with fitted long memory model; Middle: Autocorre-

lation Function of long memory model Residuals; Right: Partial autocorrelations of long memory

model residuals.

Fig. 4: Stock diagnostics. (Top) Left: Original data with fitted changepoint model; Middle: Autocor-

relation Function of changepoint model Residuals; Right: Partial autocorrelations of changepoint

model residuals. (Bottom) Left: Original data with fitted long memory model; Middle: Autocorre-

lation Function of long memory model Residuals; Right: Partial autocorrelations of long memory

model residuals.


