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Abstract

The main purpose of this paper is to study the finite-dimensional
solvable Lie algebras described in its title, which we call minimal non-
N . To facilitate this we investigate solvable Lie algebras of nilpotent
length k, and of nilpotent length ≤ k, and extreme Lie algebras, which
have the property that their nilpotent length is equal to the number of
conjugacy classes of maximal subalgebras. We characterise the mini-
mal non-N Lie algebras in which every nilpotent subalgebra is abelian,
and those of solvability index ≤ 3.
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1 Introduction

Let L be a Lie algebra, and let L(0) = L, L(i+1) = [L(i), L(i)] be its derived
series. Recall that L is solvable if there exists r such that L(r) = 0; the
smallest such r is called the derived length of L. Similarly, L1 = L, Li+1 =
[Li, L] is the lower central series of L; L is nilpotent of nilpotency index r
if Lr+1 = 0 but Lr 6= 0. Throughout, L will denote a finite-dimensional
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solvable Lie algebra over a field F . The symbol ‘⊕’ will denote an algebra
direct sum, whilst ‘+̇’ will denote a direct sum of the underlying vector
space structure alone. If U is a subalgebra of L we define UL, the core (with
respect to L) of U , to be the largest ideal of L contained in U . We say that
U is core-free in L if UL = 0.

We denote the nilradical of L by N(L). We define the upper nilpotent
series of L by

N0(L) = 0, Ni(L)/Ni−1(L) = N(L/Ni−1(L)) for i = 1, 2, . . .

The nilpotent length, n(L), of L is the smallest integer n such that Nn(L) =
L.

We define the nilpotent residual, γ∞(L), of L be the smallest ideal of L
such that L/γ∞(L) is nilpotent. Clearly this is the intersection of the terms
of the lower central series for L. Then the lower nilpotent series for L is the
sequence of ideals Γi(L) of L defined by Γ0(L) = L, Γi+1(L) = γ∞(Γi(L))
for i ≥ 0. First we note that this series has the same length as that of the
upper nilpotent series.

Lemma 1.1 Suppose that r is the smallest integer such that Nr(L) = L,
and that s is the smallest integer such that Γs(L) = 0. Then

(i) Γs−i(L) ⊆ Ni(L) for i = 0, . . . , r;

(ii) Γi(L) ⊆ Nr−i(L) for i = 0, . . . , s; and

(iii) r = s.

Proof.

(i) Clearly Γs−1(L) is a nilpotent ideal of L and so Γs−1(L) ⊆ N1(L).
Suppose that Γs−k(L) ⊆ Nk(L) for some k ≥ 1. then

Γs−k−1(L) +Nk(L)

Nk(L)

is a nilpotent ideal of L/Nk(L) and so is contained in Nk+1(L)/Nk(L).
Hence Γs−k−1(L) ⊆ Nk+1(L), and the result follows.

(ii) Clearly Γ1(L) ⊆ Nr−1(L). Suppose that Γk(L) ⊆ Nr−k(L) for some
k ≥ 1. Then

Γk(L) +Nr−k−1(L)

Nr−k−1(L)
∼=

Γk(L)

Γk(L) ∩Nr−k−1(L)

is nilpotent, whence Γk+1(L) ⊆ Nr−k−1(L), and the result follows.
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(iii) From (i) we have that Γs−r(L) ⊆ Nr(L), so s− r ≥ 0; from (ii) we see
that Γs(L) ⊆ Nr−s(L), so r − s ≥ 0. Thus r = s.

�

Although the upper and lower nilpotent series have equal lengths, n say,
we do not necessarily have that Γn−i(L) = Ni(L) for i = 0, . . . , n, as the
following example shows.

Example 1.1 Let L be the metabelian Lie algebra over C with basis x1,
x2, x3, x4 and non-zero products [x1, x2] = x3, [x1, x3] = x3, [x1, x4] = x4,
[x2, x3] = x4. Then N1(L) = Cx2 + Cx3 + Cx4, N2(L) = L, Γ1(L) =
Cx3 + Cx4, Γ2(L) = 0.

From now on we choose to work with the upper nilpotent series. In
section 2 we investigate properties of this series, particularly its relationship
to maximal subalgebras, and of Lie algebras with nilpotent length k or
≤ k. In considering factor algebras, a complication arises because, unlike
the situation in group theory, there are solvable Lie algebras L in which,
for an ideal I of L, N(I) may not be contained in N(L). To overcome
this obstacle we introduce the notions of nilregular and strongly nilregular
subalgebras of L; in particular, it is shown that if a maximal subalgebra
of L has a strongly nilregular core, its nilpotent length is at most one less
than that of L. The section concludes with a fundamental decomposition
theorem for Lie algebras with a given nilpotent length.

In section 3 we introduce the class of extreme Lie algebras in which
Ni(L)/φi(L) is a chief factor for each i = 1, . . . , n(L). These are charac-
teriseded in relation to the decomposition result from the previous section
and described explicitly in two special cases.

The final section then considers the algebras in the title of the paper. By
considering their relationship to extreme Lie algebras the minimal non-N
Lie algebras in which every nilpotent subalgebra is abelian, and those of
solvability index ≤ 3, are characterised. The last result is that a homomor-
phic image of a minimal non-N Lie algebra is minimal non-N if it has a
complemented minimal ideal.

Much of this is inspired by corresponding work in group theory in [5]
and [4], but there are significant differences encountered in the Lie case.
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2 Properties of the upper nilpotent series

The Frattini subalgebra of L, φ(L), is the intersection of the maximal subal-
gebras of L. Since L is solvable, this is an ideal of L ([2, Lemma 3.4]). The
Frattini series of L is given by

φi(L)/Ni−1(L) = φ(L/Ni−1(L)) for i = 1, 2, . . .

Lemma 2.1 Let B be an ideal of L with B ⊆ φ(L). Then Ni(L/B) =
Ni(L)/B and φi(L/B) = φi(L)/B for every i = 1, 2, . . . , n(L).

Proof. We have N(L)/B = N(L/B), by [1, Theorem 5], and φ(L)/B =
φ(L/B), by [8, Proposition 4.3]. Suppose that Nk(L)/B = Nk(L/B) and
φk(L)/B = φk(L/B). Then B ⊆ φk+1(L) and

Nk+1(L/B)

Nk(L/B)
= N

(
L/B

Nk(L)/B

)
=
Nk+1(L)/B

Nk(L)/B
,

whence Nk+1(L)/B = Nk+1(L/B). Similarly,

φk+1(L/B)

Nk(L/B)
= φ

(
L/B

Nk(L)/B

)
=
φk+1(L)/B

Nk(L)/B
,

which yields that φk+1(L)/B = φk+1(L/B). �

Lemma 2.2 If A is an ideal of L with Nr−1(L) ⊆ A ⊆ Nr(L), then
n(L/A) = n(L)− r or n(L)− r + 1.

Proof. Put Ki/A = Ni(L/A). Then it is easy to see that Ki/Ki−1 =
N(L/Ki−1), and a straightforward induction argument shows that

Nr−1(L) ⊆ A ⊆ Nr(L) ⊆ K1 ⊆ Nr+1(L) ⊆ . . . ⊆ Kn(L)−r ⊆ Nn(L)(L).

If Kn(L)−r = Nn(L)(L) we have n(L/A) = n(L) − r; otherwise, n(L/A) =
n(L)− r + 1. �

Lemma 2.3 Let M be a maximal subalgebra of the solvable Lie algebra L.
Then

(i) Ni(L) ∩M ⊆ Ni(M);

(ii) Ni(M)L ⊆ Ni(L);

(iii) if Ni(L) ⊆M then Ni(M)L = Ni(L);
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(iv) if k is the smallest positive integer such that Nk(L) 6⊆M then Nk(M)L =
Nk(L) ∩M ; and

(v) if N(L) ⊆M then N(M) acts nilpotently on L.

Proof.

(i) This is a straightforward induction proof.

(ii) It is easy to see that this holds for i = 1. So suppose it holds for
i < k (k ≥ 2). Then there is an r ∈ N such that (Nk(M)L)r ⊆
Nk(M)r ⊆ Nk−1(M), so (Nk(M)L)r ⊆ Nk−1(M)L ⊆ Nk−1(L) by the
inductive hypothesis. Thus Nk(M)L ⊆ Nk(L) and the result follows
by induction.

(iii) This follows from (i) and (ii).

(iv) Suppose that k is the smallest positive integer such that Nk(L) 6⊆M .
Then L = Nk(L) + M and Nk−1(L) ⊆ M , so φk(L) ⊆ M . Moreover,
N2

k ⊆ φk(L) ⊆ M , by Lemma 2.1 and [8]. It follows that Nk(L) ∩M
is an ideal of L and hence that Nk(L) ∩M ⊆ Nk(M)L. The reverse
inclusion follows as in (ii).

(v) Let N(L) ⊆M . We show that N(M) acts nilpotently on L. Suppose
not, and let L = L0+̇L1 be the Fitting decomposition of L relative
to N(M). Then L0 = M and [N(L), L1] ⊆ M ∩ L1 = 0. Hence
L1 ⊆ CL(N(L)) ⊆ N(L), giving L = M , a contradiction.

�

In general, over a field of characteristic p > 0, N(L) is not a characteristic
ideal of L. The best known example is due to Jacobson and first appeared in
[7]; however, it is not solvable. We shall see next that N(L) is characteristic
in L whenever φ(L) is. First we need some lemmas.

Lemma 2.4 Let L be a Lie algebra over a field of characteristic p > 2, let
I be an abelian ideal of L and let D be a derivation of L. Then I +D(I) ⊆
N(L).

Proof. This follows easily from [6, Theorem 1]. �

Lemma 2.5 Let I be a characteristic ideal of L, and let D be a derivation
of L. Then D̄ : L/I → L/I : x+ I 7→ D(x) + I is a derivation of L/I.
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Proof. This is easy to check. �

Proposition 2.6 Let L be a φ-free Lie algebra over a field of characteristic
p > 2. Then N(L) is a characteristic ideal of L.

Proof. Since L is φ-free, N(L) = A1 ⊕ . . . ⊕ Ar, where A1, . . . , Ar are the
minimal abelian ideals of L, by [8, Theorem 7.4]. But D(Ai) ⊆ N(L) for all
D ∈ Der(L) and i = 1, . . . , r, whence the result. �

Corollary 2.7 Let L be a Lie algebra over a field of characteristic p > 2,
and suppose that φ(L) is characteristic in L. Then N(L) is characteristic
in L.

Proof. This follows easily from Lemma 2.5 and Proposition 2.6. �

However, there are solvable Lie algebras L in which N(L) is not a char-
acteristic ideal, as the following example shows.

Example 2.1 Let L be the four-dimensional Lie algebra with basis x1, x2,
x3, x4 and non-zero products [x4, x2] = x1, [x3, x1] = x1 and [x3, x2] = x2
over a field F of characteristic 2. Then N(L) = Fx1 + Fx2 + Fx4 and if
D(x1) = x2, D(x2) = 0, D(x3) = 0, D(x4) = x3 then the extension of D to
L by linearity is a derivation of L. Clearly, D(N(L)) = Fx2 + Fx3. Note
that φ(L) = Fx1, so this leaves open the question of whether Proposition 2.6
holds over a field of characteristic 2.

If we form the split extension X = Fd+̇L, where [d, x] = D(x) for all
x ∈ L, then L is an ideal of X, but N(L) is not.

Consequently, we shall need the following result from [12].

Proposition 2.8 Let I be a nilpotent subideal of a Lie algebra L over a
field F . If F has characteristic zero, or has characteristic p and L has no
subideal with nilpotency class greater than or equal to p − 1, then I ⊆ N ,
where N is the nilradical of L.

Let L be a Lie algebra over a field F and let U be a subalgebra of L.
We call the largest integer r such that Nr(L) ⊆ U the compatibility index of
U . As in [13], if F has characteristic p > 0, we will call U nilregular if the
nilradical of U has nilpotency class less than p − 1. If U has compatibility
index r, we say that U is strongly nilregular ifNk(U)/Nk−1(U) has nilpotency
class less than p− 1 for k = 1, . . . , r. If F has characteristic zero we regard
every subalgebra of L as being nilregular. Then we have the following result.
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Proposition 2.9 If I is a nilregular ideal of L then N(I) ⊆ N(L).

Proof. This is [13, Proposition 2.1]. �

We shall call L primitive if it has a core-free maximal subalgebra. It is
said to be primitive of type 1 if it has a unique minimal ideal that is abelian;
since L is solvable this is the only type that can occur here (see [11]). If B
is an ideal of L and U/B is a subalgebra of L/B, the centraliser of U/B in
L is CL(U/B) = {x ∈ L : [x, U ] ⊆ B}.

Proposition 2.10 Let L be a solvable Lie algebra over a field F , and let
M be a maximal subalgebra of L of compatibility index r. If ML is strongly
nilregular, then Ni(M) = Ni(ML) = Ni(L) for i = 1, . . . , r.

Proof. First we show that if ML is nilregular then N(M) = N(ML) =
N(L). We have that N(M) acts nilpotently on L, by Lemma 2.3 (v). Now
L/ML is primitive of type 1, and so L/ML = A/ML+̇M/ML, where A/ML is
the unique minimal ideal of L/ML and is self-centralising, by [11, Theorem
1.1]. Since L = A + M , we have that A + N(M) is an ideal of L, and so
[A,N(M)] +ML = [A,A+N(M)] +ML = ML or A, since A/ML is a chief
factor of L.

The former implies that [A,N(M)] ⊆ML, whence

N(M) +ML

ML
⊆ CL/ML

(
A

ML

)
=

A

ML
.

Thus N(M) ⊆ A ∩M ⊆ML.
The latter gives that [A,N(M)] +ML = A. But then an easy induction

shows that A ⊆ A (adN(M))r +ML for every r ∈ N, whence A = ML since
N(M) acts nilpotently on L. But this is impossible, so N(M) ⊆ML.

It follows that N(M) ⊆ N(ML) and hence N(M) ⊆ N(L), by Proposi-
tion 2.9. Hence N(M) = N(ML) = N(L).

So suppose now that Nk(M) = Nk(ML) = Nk(L) for some 1 ≤ k < r.
Then (M/Nk(L))L = ML/Nk(ML) is nilregular, so, by the above,

N

(
M

Nk(M)

)
= N

(
M

Nk(L)

)
= N

(
ML

Nk(ML)

)
= N

(
L

Nk(L)

)
,

whence
Nk+1(M)

Nk(M)
=
Nk+1(ML)

Nk(ML)
=
Nk+1(L)

Nk(L)

7



and Nk+1(M) = Nk+1(ML) = Nk+1(L). The result follows by induction. �

Note that the above result is not true for all maximal subalgebras, as is
shown in the next example.

Example 2.2 Let X be as in Example 2.1. Then M = Fd + Fx1 + Fx2
and L are both maximal subalgebras of X of compatibility index 1. However,
N(L) 6= N(X) = Fx1 + Fx2, and MX = Fx1 + Fx2, so N(ML) = ML 6=
M = N(M).

Let N (k), N (≤ k) denote the classes of Lie algebras of nilpotent length
k and of nilpotent length ≤ k respectively. Of course, over a field of char-
acteristic zero, every Lie algebra L ∈ N (≤ 2). However, over a field of
characteristic p > 0 it is easy to construct Lie algebras L ∈ N (k) for any
k ∈ N.

A class H of finite-dimensional solvable Lie algebras is called a homo-
morph if H contains, along with an algebra L, all epimorphic images of
L. A homomorph H is called a formation if L/A, L/B ∈ H implies that
L/A ∩ B ∈ H, where A, B are ideals of L. A formation H is said to be
saturated if L/φ(L) ∈ H implies that L ∈ H.

Proposition 2.11 The class N (≤ k) is saturated formation for each k ≥ 1.

Proof. It is shown that N (1) is a saturated formation in [2, Lemma 3.7].
Suppose that it holds for k = r. Then N (≤ r + 1) is clearly a homomorph.
Suppose that L/A, L/B ∈ N (≤ r + 1). Let S/A = N(L/A) and T/B =
N(L/B). Then L/S, L/T ∈ N (≤ r), so L/S ∩T ∈ N (≤ r). But there exist
m, n ∈ N such that Sm ⊆ A and Tn ⊆ B, so (S ∩ T )m+n ⊆ A ∩ B. Hence
L/A ∩B ∈ N (≤ r + 1), and N (≤ r + 1) is a formation.

Suppose now that L/φ(L) ∈ N (≤ r+1). ThenN(L/φ(L)) = N(L)/φ(L),
by [8, Theorem 6.1], so L/N(L) ∈ N (≤ r) and L ∈ N (≤ r + 1). It follows
that N (≤ r + 1) is saturated. �

Corollary 2.12 Let L ∈ N (k) have more than one minimal ideal. Then
there is at least one minimal ideal A of L such that L/A ∈ N (k).

Proof. If A1, . . . , An are minimal ideals of L, where n > 1, and L/Ai ∈
N (≤ k − 1) for all 1 ≤ k ≤ n, then L ∈ N (≤ k − 1), by Proposition 2.11. �

Proposition 2.13 Let L be a solvable Lie algebra over a field F . If M is a
maximal subalgebra of L for which ML is strongly nilregular, then n(M) =
n(L)− i where i ∈ {0, 1}.
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Proof. Let r be the compatibility index of M . Then L = M +Nr+1(L) and
L/Nr+1(L) ∼= M/M ∩ Nr+1(L) = M/Nr+1(M)L, by Lemma 2.3 (iv). Now
Nr(L) = Nr(M) by Proposition 2.13, so Nr(M) ⊆ Nr+1(M)L ⊆ Nr+1(M).
It follows from Lemma 2.2 that n(M/Nr+1(M)L) = n(M)−r−1 or n(M)−r.
Hence n(L)− r − 1 = n(M)− r − 1 or n(M)− r, which gives the result. �

Lemma 2.14 Let L ∈ N (n). Then we can write L = Nk(L)+Uk, where Uk

is a subalgebra of L, Nk(L)∩Uk ⊆ φ(Uk) = φk+1(L)∩Uk, Uk ⊆ Uk−1 for each
k = 1, . . . , n. Moreover, N(Uk) = Nk+1(L) ∩ Uk for each k = 0, . . . , n− 1.

Proof. Put U0 = L. Then L = N1(L)+U1 for some subalgebra U1 of L with
N(L)∩U1 ⊆ φ(U1), by [8, Lemma 4.1]. Having constructed Uj we construct
Uj+1 such that Uj = Nj+1(L) ∩ Uj + Uj+1 and Nj+1(L) ∩ Uj+1 ⊆ φ(Uj+1),
which we can do, by using [8, Lemma 4.1] again. Now, it is easy to see
inductively that L = Nk(L) + Uk, Nk(L) ∩ Uk ⊆ φ(Uk) and Uk ⊆ Uk−1 for
each k = 1, . . . , n. Furthermore

φk+1(L) ∩ Uk

Nk(L) ∩ Uk

∼=
Nk(L) + φk+1(L) ∩ Uk

Nk(L)
=
φk+1(L)

Nk(L)

= φ

(
L

Nk(L)

)
∼= φ

(
Uk

Nk(L) ∩ Uk

)
=

φ(Uk)

Nk(L) ∩ Uk
,

so φ(Uk) = φk+1(L) ∩ Uk.
Clearly Nk(L) +N(Uk) ⊆ Nk+1(L) so N(Uk) ⊆ Nk+1(L)∩Uk. But also,

there is a natural number r such that

(Nk+1(L) ∩ Uk)r ⊆ Nk(L) ∩ Uk ⊆ φ(Uk),

so Nk+1(L) ∩ Uk/φ(Uk) is nilpotent. It follows from [8, Theorem 6.1] that
Nk+1(L) ∩ Uk is a nilpotent ideal of Uk, so Nk+1(L) ∩ Uk ⊆ N(Uk) and
equality results. �

Next we have a fundamental decomposition result.

Theorem 2.15 Let L ∈ N (n) if and only if there are nilpotent subalgebras
Bi of L for i = 1, . . . , n such that

(i) Ni(L) = B1 + . . .+Bi for i = 1, . . . , n,

(ii) L = B1 + . . .+Bn,

(iii) [Bi, Bj ] ⊆ Bi for 1 ≤ i ≤ j ≤ n, and
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(iv) Ni(L) ∩ Ui ⊆ φ(Ui) = φi+1(L) ∩ Ui, where Ui = Bi+1 + . . . + Bn, for
i = 1, . . . , n− 1.

Proof. Let L ∈ N (n), Ui be as in Lemma 2.14 and put Bi = N(Ui−1),
where U0 = L.

(i) Clearly B1 = N1(L). Suppose that B1 + . . .+Bk = Nk(L). Then

B1+ . . .+Bk+1 = Nk(L)+N(Uk) = Nk(L)+Nk+1(L)∩Uk = Nk+1(L).

(ii) B1 + . . .+Bn = Nn(L) = L.

(iii) [Bi, Bj ] = [N(Ui), N(Uj)] ⊆ [N(Ui), Ui] ⊆ N(Ui) = Bi.

(iv) We have Uk = Uk+1 +Nk+1(L)∩Uk = Uk+1 +N(Uk) = Uk+1 +Bk+1.
Hence Ui = Ui+1+Bi+1 = Ui+2+Bi+2+Bi+1 = · · · = Bi+1+ · · ·+Bn,
and Ni(L) ∩ Ui ⊆ φ(Ui) from Lemma 2.14.

The converse is clear. �

3 Extreme Lie Algebras

The Lie algebra L is monolithic if it has a unique minimal ideal A, the
monolith of L. If B is an ideal of L and A/B is a minimal ideal of L/B we
say that A/B is a chief factor of L. The series

{0} = A0 ⊂ A1 ⊂ . . . ⊂ An = L

is called a chief series if Ai/Ai−1 is a chief factor of L for each 1 ≤ i ≤ n.

Lemma 3.1 Let L be a Lie algebra such that N(L)/φ(L) is a chief factor
of L. Then L has at most one complemented minimal ideal, and if A is one
such, then φ(L/A) = φ2(L)/A.

Proof. If φ(L) = 0, then N(L) is the monolith and the result follows easily
from [8, Theorems 7.3 and 7.4]. So assume that φ(L) 6= 0 and let A be a
complemented minimal ideal of L. Then A 6⊆ φ(L), so A + φ(L) = N(L).
Let M be a maximal subalgebra of L, and suppose that φ2(L) 6⊆ M . Then
N(L) 6⊆ M , so L = M +N(L) = M + A+ φ(L), giving M + A = L. Thus
A 6⊆M . It follows that every maximal subalgebra of L/A contains φ2(L)/A.
Put T/A = φ(L/A). Then φ2(L) ⊆ T .
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Let M/N(L) be a maximal subalgebra of L/N(L) and suppose that
(T +N(L))/N(L) 6⊆M/N(L). Then M+T +N(L) = M+T = L. But now
T 6⊆M , so φ(L/A) 6⊆M , whence A 6⊆M . It follows that L = M +A = M ,
a contradiction. Hence φ2(L)/N(L) = φ(L/N(L)) ⊇ (T + N(L))/N(L),
which yields that T = φ2(L).

Now suppose that B is another minimal ideal of L with B 6= A. Then

B ∼= (A+B)/A ⊆ N2(L)/A = N(L/A),

by the above. It follows that N2(L) ⊆ CL(B). Suppose that B 6⊆ φ(L).
Then, as before, we have that B + φ(L) = N(L) and hence that B ∼=
N(L)/φ(L). But CL(N(L)/φ(L)) = N(L), by [8, Theorem 7.4], since
N(L/φ(L)) = N(L)/φ(L). This yields that N(L) = CL(B), a contradic-
tion. Hence B ⊆ φ(L) and L has, at most, one complemented minimal
ideal. �

We call L extreme if Ni(L)/φi(L) is a chief factor of L for each i =
1, 2, . . . , n(L).

Lemma 3.2 Every factor algebra of an extreme Lie algebra is extreme.

Proof. Let B be an ideal of the extreme Lie algebra L. Suppose first that
B ⊆ φ(L). Then Ni(L/B)/φi(L/B) is a chief factor of L/B for each i,
by Lemma 2.1, and L/B is extreme. So suppose that B 6⊆ φ(L). Then
φ(L/B) = φ2(L)/B, by Lemma 3.1, and the result again follows. �

We say that the chief factor A/B is complemented if there is a maximal
subalgebra M of L such that L = A+M and A ∩M = B. We define c(L)
to be the number of complemented chief factors in a chief series for L. This
is independent of the particular chief series chosen, by [11, Theorem 2.3].

Let x ∈ L and let adx be the corresponding inner derivation of L. If
F has characteristic zero suppose that (adx)n = 0 for some n; if F has
characteristic p suppose that x ∈ I where I is a nilpotent ideal of L of class
less than p. Put

exp(adx) =
∞∑
r=0

1

r!
(adx)r.

Then exp(adx) is an automorphism of L. We call the group I(L) generated
by all such automorphisms the group of inner automorphisms of L. Two
subsets U, V are conjugate in L if U = α(V ) for some α ∈ I(L).

Then we have the following characterisation of extreme Lie algebras.
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Theorem 3.3 Let L be a solvable Lie algebra. Then the following state-
ments are equivalent:

(i) L is extreme;

(ii) n(L) = m(L), the number of conjugacy classes of maximal subalgebras
of L;

(iii) n(L) = c(L); and

(iv) if B is an ideal of L, then L/B has at most one complemented minimal
ideal.

Proof.

(i) ⇒ (ii) : Let L be extreme and consider the series

0 ⊂ φ1(L) ⊂ N1(L) ⊂ . . . ⊂ φi(L) ⊂ Ni(L) ⊂ . . . .

There is a unique conjugacy class of maximal subalgebras of L com-
plementing the chief factor Ni(L)/φi(L) for each i = 1, 2, . . . , n(L), by
[1]. But each maximal subalgebra of L must complement one of the
complemented chief factors in the above series, and must, therefore,
belong to one of these n(L) conjugacy classes. Hence n(L) = m(L).

(ii) ⇒ (iii) : We use induction on the dimension of L. Suppose that L is a Lie
algebra satisfying n(L) = m(L) and assume that the implication holds
for Lie algebras of smaller dimension than that of L. If φ(L) 6= 0, we
have n(L/φ(L)) = n(L) = m(L) = m(L/φ(L), and so, by induction,
n(L) = n(L/φ(L)) = m(L/φ(L)) = c(L/φ(L)) = c(L).

So suppose that φ(L) = 0. Then N(L) = Asoc(L) and each of the r
(say) minimal ideals in Asoc(L) is complemented, by [8, Theorem 7.4
and Lemma 7.2]. It follows that n(L) = m(L) ≥ m(L/N(L)) + r ≥
n(L)− 1 + r. Hence r = 1 and, by induction, c(L) = 1 + c(L/N(L)) =
1 + n(L/N(L)) = n(L).

(iii) ⇒ (i) : This follows from the fact that there is at least one complemented
chief factor A/B satisfying φi(L) ≤ B < A ≤ Ni(L) for each i =
1, 2, . . . , n(L).

(i) ⇔ (iv) : If L is extreme, then so is L/B, by Lemma 3.2. Hence L/B has at
most one complemented minimal ideal, by Lemma 3.1.

Conversely, suppose that L satisfies (iv) and consider L/φi(L). Since
Ni(L)/φi(L) is the direct sum of complemented minimal ideals of
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L/φi(L), as above, it follows that Ni(L)/φi(L) is a chief factor of
L/φi(L). Hence L is extreme.

�

Lemma 3.4 Let L be an extreme Lie algebra.

(i) If L is nilpotent, then dimL = 1.

(ii) If L ∈ N (n) then Nn−1(L) = Γ1(L) = Lk has codimension one in L,
for all k ≥ 2.

Proof.

(i) Since L is nilpotent, φ(L) = L2, and so dimL/L2 = 1. The result
follows.

(ii) This follows from Lemma 3.2 and (i).

�

Theorem 3.5 The Lie algebra L ∈ N (n) is extreme if and only if L has
the decomposition given in Theorem 2.15, dimBn = 1 and N(Uk)/φ(Uk) is
a chief factor of Uk for each k = 0, . . . , n− 1.

Proof. We have that

Nk+1(L)

φk+1(L)
=
Nk+1(L) ∩ Uk +Nk(L)

φk+1(L) ∩ Uk +Nk(L)
∼=

(Nk+1(L) ∩ Uk +Nk(L))/Nk(L)

(φk+1(L) ∩ Uk +Nk(L))/Nk(L)

∼=
Nk+1(L) ∩ Uk/Nk(L) ∩ Uk

φk+1(L) ∩ Uk/Nk(L) ∩ Uk

∼=
Nk+1(L) ∩ Uk

φk+1(L) ∩ Uk
=
N(Uk)

φ(Uk)
.

Also dimBn = 1 by Lemma 3.4 (ii). �

If S is a subalgebra of L, we will denote by S the image of S under
the canonical homomorphism from L onto L/φ(L). We have the following
characterisation of those Lie algebras L ∈ N (≤ 2) that are extreme, which
includes all extreme Lie algebras over a field of characteristic zero.

Corollary 3.6 Let L ∈ N (≤ 2). Then L is extreme if and only if one of
the following holds.

(i) dimL = 1; or
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(ii) L = A+̇U where A = N(L) is the monolith of L and U is a one-
dimensional subalgebra of L which acts irreducibly on A.

Proof. This is just the cases n = 1, 2 in Theorem 3.5. �

Corollary 3.7 Let L be supersolvable. Then L is extreme if and only if one
of the following holds.

(i) dimL = 1; or

(ii) L/φ(L) is the two-dimensional non-abelian Lie algebra.

Proof. Let L be supersolvable and extreme. Then dimN(L) = 1 and so
dimL/CL(N(L)) = 1. But N(L) = N(L), so CL(N(L)) ⊆ N(L). It follows
that dim(L/N(L)) ≤ 1 and L ∈ N (≤ 2). But now either dimL = 1 or
L = A+̇U where dimA = dimU = 1, by Theorem 3.5. In the latter case
dimL = 2 and L cannot be abelian.

Conversely, if dim(L/φ(L)) ≤ 2 then L/φ(L) is supersolvable, and so L
is supersolvable, by [1, Theorem 6]. Clearly L is also extreme in each of
cases (i) and (ii). �

Example 3.1 It is easy to check that every three-dimensional Lie algebra as
described in Corollary 3.7 has a basis x, y, z with non-zero products [x, y] =
y + z, [x, z] = αz for some 0 6= α ∈ F . Moreover, no two of these with
different values of α are isomorphic.

4 Minimal non-N algebras

If X is a class of Lie algebras, we say that L is minimal non-X if every
proper subalgebra of L, but not L itself, belongs to X . We say that L is
minimal non-N if it is minimal non-N (≤ k) for some k; in other words, if its
nilpotent length is greater than that of any of its proper subalgebras. Over
a field of characteristic zero a Lie algebra can only be minimal non-N (1)
and these are described in [9].

Lemma 4.1 Let L be minimal non-N (≤ k − 1) and let M be a maximal
subalgebra of L. Then

(i) L2 = Nk−1(L) has codimension one in L;

(ii) if Ni(M) 6⊆ Nk−1(L) then Nk−1(L) ∩ Ni(M) has codimension one in
Ni(M) for i = 1, . . . , k − 1; and
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(iii) if N(L) ⊆M then N(M) ⊆ Nk−1(L).

Proof.

(i) Let M be a maximal subalgebra of L containing Nk−1(L). Since
L/Nk−1(L) is nilpotent, M is an ideal of L and has codimension one in
L. But Nk−1(M)L = Nk−1(L), by Lemma 2.3 (ii), so, if Nk−1(L) 6= M ,
then M has nilpotent length k, contradicting the fact that it is minimal
non-N (k). Hence M = Nk−1(L).

Now let M be any maximal subalgebra containing L2, so M is an
ideal of codimension one in L. We have M ∩Ni(L) = Ni(M)L for each
i = 1, . . . k−1 by Lemma 2.3 (i) and (ii). It follows that M∩Nk−1(L) =
Nk−1(M)L = M , so M ⊆ Nk−1(L), whence M = Nk−1(L) = L2.

(ii) Suppose Ni(M) 6⊆ Nk−1(L). Then L = Nk−1(L) +Ni(M), so

L

Nk−1(L)
∼=

Ni(M)

Nk−1(L) ∩Ni(M)
,

whence the result.

(iii) Let N(L) ⊆ M . Then N(M) acts nilpotently on L, by Lemma 2.3
(v). If N(M) 6⊆ Nk−1(L) then L = Nk−1(L) +N(M) and L/Nk−2(L)
is nilpotent, a contradiction.

�
In group theory, every minimal non-N (k) group is extreme, and so a

natural question is whether this holds for Lie algebras. We show next that
this is ‘usually’ the case for Lie algebras. We call a class H of Lie algebras
a semi-homomorph if, for all L ∈ H,

(i) L/N(L) ∈ H; and

(ii) if A is an ideal of L and A ⊆ φ(L), then L/A ∈ H.

Lemma 4.2 Let H be the class of Lie algebras L in which all maximal sub-
algebras of L have strongly nilregular cores. Then H is a semi-homomorph.

Proof.

(i) Let M/N(L) be a maximal subalgebra of L/N(L). Clearly we have
that (M/N(L))L/N(L) = ML/N(L) and ML/N(L) has compatibility
index one less than that of ML, r − 1 say. Then

Ni(ML/N(L))

Ni−1(ML/N(L))
∼=
Ni+1(ML)

Ni(ML)
,
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which has nilpotency class < p − 1 for i = 1, . . . , r − 1, since ML is
strongly nilregular. Hence M/N(L) has a strongly nilregular core.

(ii) Let M/A be a maximal subalgebra of L/A. Then (M/A)L/A = ML/A.
Also, Ni(L/A) = Ni(L)/A, by Lemma 2.1, so ML/A has the same
compatibility index as ML, r say. Also Ni(M) = Ni(ML) = Ni(L) for
i = 1, . . . , r, by Proposition 2.10.

We claim that Ni(ML/A) = Ni(ML)/A for each i = 1, . . . , n(ML). Put
Ki/A = Ni(ML/A), so Ki+1/Ki = N(ML/Ki). Then K1 is a subideal
of L, A ⊆ K1 ∩ φ(L) and K1/A is nilpotent, so K1 is nilpotent, by
[8, Theorem 6.1]. It follows that K1 ⊆ N(ML) and N(ML/A) =
N(ML)/A. Hence

K1 ⊆ N(ML) ⊆ K2 ⊆ . . . ⊆ Ki ⊆ Ni(ML) ⊆ Ki+1 ⊆ Ni+1(L) ⊆ . . .

and Ki+1/Ki ⊆ Ni+1(L)/Ki = Ni+1(ML)/Ki for i = 1, . . . , r − 1.
It follows that Ni+1(ML/A) = Ki+1/A ⊆ Ni+1(L)/A. The reverse
inclusion is clear and the claim is established.

Now we have that

Ni(ML/N(L))

Ni−1(ML/N(L))
∼=

Ni(ML)

Ni−1(ML)
,

which has nilpotency class < p−1 for i = 1, . . . , r, since ML is strongly
nilregular. Hence M/N(L) has a strongly nilregular core.

�
A solvable primitive algebra has a unique minimal, self-centralising, ideal

A such that L = A+̇U (see [11]). We shall say that a class of Lie algebras
H has the primitive quotient property if, for every primitive algebra L in H
with minimal ideal A, L/A is minimal non-N .

Theorem 4.3 Let H be a semi-homomorph with the primitive quotient
property, and let L ∈ H be a Lie algebra which is minimal non-N (≤ n).
Then

(i) L is extreme; and

(ii) L/N(L) is minimal non-N (≤ n− 1).

Proof.

16



(i) We use induction on dimL. Suppose first that φ(L) 6= 0. Let A be a
minimal ideal of L contained in φ(L). Then n(L/A) = n(L), so L/A
is minimal non-N . By the inductive hypothesis, L/A, and hence L is
extreme. So suppose that φ(L) = 0. If there are at least two minimal
ideals then there is at least one, A say, such that n(L/A) = n(L), by
Corollary 2.12. But then L = A+̇M for some maximal subalgebra M
of L, and n(M) = n(L/A) = n(L), a contradiction.

Thus there is a unique minimal ideal A = N(L), L is primitive and
n(L/A) = n(L)− 1. Since H has the primitive quotient property, L/A
is minimal non-N . Moreover, since H is a semi-homomorph, L/A, and
thus L, is extreme, by induction.

(ii) Consider the series

0 ⊂ φ1(L) ⊂ N1(L) ⊂ . . . ⊂ φi(L) ⊂ Ni(L) ⊂ . . . ,

and let M be a maximal subalgebra of L containing N1(L). Then M
must complement one of the complemented chief factors Nk(L)/φk(L)
for some 2 ≤ k ≤ n in the above series. But then L = Nk(L) + M ,
M∩Nk(L) = φk(L) and Ni(M) = Ni(L) for i = 1, . . . , k−1, by Lemma
2.3. Thus n(M)− k + 1 = n(M/Nk−1(L)) = n(L/Nk(L)) = n(L)− k,
whence n(M/N1(L)) = n(M) − 1 = n(L) − 2 = n(L/N1(L)) − 1 and
L/N1(L) is minimal non-N (n− 1).

�

Corollary 4.4 Let L be a Lie algebra in which all maximal subalgebras
have strongly nilregular cores and which is minimal non-N (≤ n). Then L
is extreme and L/N(L) is minimal non-N (≤ n− 1).

Proof. Let H be the class of Lie algebras whose maximal subalgebras have
strongly nilregular cores. Then H is a semi-homomorph, by Lemma 4.2.Let
L be a primitive algebra in H with minimal ideal A = N(L), and let M be
a maximal subalgebra containing A. Then N(M) = A by Proposition 2.10,
so L/A is minimal non-N (≤ n− 1) and H satisfies the quotient primitive
property. The result now follows from Theorem 4.3. �

A Lie algebra L is called an A-algebra if all of its nilpotent subalgebras
are abelian. These arise in the study of constant YangMills potentials and in
relation to the problem of describing residually finite varieties. The structure
of solvable Lie A-algebras was studied in some detail in [10]. In the case of
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an A-algebra the lower nilpotent series and the derived series coincide ([10,
Lemma 2.3]), and so the terms “derived length” and “nilpotent length” are
identical.

Corollary 4.5 If L is an A-algebra which is minimal non-N (≤ n), then L
is extreme and L/N(L) is minimal non-N (≤ n− 1).

Proof. Let H be the class of A-algebras. Then H is a semi-homomorph, by
[10, Lemma 2.1 (iii)]. Let L ∈ H be primitive with minimal ideal A = N(L)
and letM be a maximal subalgebra containingA. ThenN(M) is abelian and
so [N(M), A] = 0, giving N(M) ⊆ CL(A) = A. It follows that N(M) = A
and so H has the primitive quotient property. �

Corollary 4.6 Let L be minimal non-N (≤ 2) and have solvability index
≤ 3. Then L is extreme and L/N(L) is minimal non-N (≤ 1).

Proof. Let H be the class of Lie algebras of solvability index ≤ 3. Then H
is clearly a semi-homomorph. Let L ∈ H be primitive with minimal ideal
A = N(L) and let M be a maximal subalgebra containing A. If L has
solvability index ≤ 2 it is clear that L/A is minimal non-N , so assume that
L has index 3.

We have L(1) = N2(L), by Lemma 4.1 (i) and L(2) ⊆ N(L) = A, so
N2(L)/A is abelian. Now N(M) ⊆ N2(L) by Lemma 4.1 (iii), and so

[N2(L), N(M)] ⊆ N2(L)2 ⊆ A ⊆M.

Then either M 6= N2(L) or L = N2(L) +M , in which case N(M) is an ideal
of L and N(M) = A. In either case M/A is nilpotent and so H has the
primitive quotient property. �

Example 4.1 Note that there are extreme Lie algebras which are not mini-
mal non-N . For example, let L be the Lie algebra over any field F with basis
x, y, z with non-zero products [x, y] = y + z, [x, z] = z. Then φ(L) = Fz
and N(L) = Fy + Fz, so L is extreme. However, if M = Fx + Fz then
n(M) = 2 = n(L).

Next we seek to characterise the algebras considered in Corollaries 4.5
and 4.6. We can characterise the A-algebras that are also minimal non-N
as follows.

Theorem 4.7 Let L be a Lie A-algebra of derived length n+ 1 over a field
F . Then L is minimal non-N if and only if the following hold.
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(i) L = An+̇An−1 . . . +̇A1+̇Fx where Ai is an abelian subalgebra of L for
each 1 ≤ i ≤ n;

(ii) L(i) = An+̇An−1 . . . +̇Ai for each 1 ≤ i ≤ n;

(iii) [Ai, Aj ] ⊆ Aj for j > i;

(iv) Ai is an irreducible L/L(i+1)-module for each 0 ≤ i ≤ n; and

(v) Nn−i+1(L) = L(i) for each 0 ≤ i ≤ n.

Proof. Suppose first that L is minimal non-N . Since L is an A-algebra of
derived length n+1, L = An+̇An−1 . . . +̇A1+̇A0 and L(i) = An+̇An−1 . . . +̇Ai,
where Ai is an abelian subalgebra of L for each 0 ≤ i ≤ n, by [10, Corollary
3.2]. But dimA0 = 1, by Lemma 4.1 (i), so A0 = Fx for some x ∈ L. This
gives (i) and (ii). The decomposition in (i) follows from the splitting of a
Lie A-algebra over each term in its derived series ([10, Theorem 3.1]), so

L = An+̇Bn, where An = L(n), Bn = An−1+̇Bn−1, where An−1 = B
(n−1)
n ,

and so on. But now [Ai, Aj ] ⊆ L(j) ∩Bj+1 ⊆ Aj if j > i, giving (iii).
A straightforward induction argument shows that Ai ⊆ Nn−i−1 for 0 ≤

i ≤ n. We now establish (iv) and (v) by induction on n. Then (iv) clearly
holds for i = 0, and (v) holds for i = 0 by Lemma 4.1 (i), so suppose that
they hold for all i ≥ k (k ≥ 0). Then Nn−k+1(L) = L(k) = An+̇ . . . +̇Ak

and L(k+1) = An+̇ . . . +̇Ak+1 ⊆ Nn−k(L). It follows that Nn−k(L) = L(k+1)

by the irreducibility of Ak and the fact that Nn−k(L) 6= Nn−k+1(L) (since
L has nilpotent length n+ 1).

Also φn−k(L) ⊆ L(k+1) = Nn−k(L), and Nn−k(L)/φn−k(L) is irreducible,
since L is extreme, by Theorem 4.3. Hence M = φn−k(L)+̇Ak+̇ . . . +̇A1+̇Fx
is a maximal subalgebra of

Ak+1+̇Ak+̇ . . . +̇A1+̇Fx ∼= L/L(k+2) = L/Nn−k−1(L).

But L/Nn−k−1(L) is minimal non-N (k + 1), by Theorem 4.3 (ii), so M ∈
N (k + 1). It follows that N(M) = φn−k(L)+̇Ak, so [φn−k(L), Ak] = 0. But
Ak is a Cartan subalgebra of Ak+1+̇Ak, by [10, Theorem 3.1], so φn−k(L) = 0
and Ak is an irreducible L/L(k+1)-module. This establishes (iv) and (v).

Conversely, suppose that (i)-(v) hold and let M be a maximal subalgebra
of L. Clearly L ∈ N (n+1). Let i be the smallest integer such that L(i) 6⊆M .
Then L(i)/L(i+1) is a minimal ideal of L/L(i+1), so M/L(i+1) complements
L(i)/L(i+1) in L/L(i+1). Hence M (i) ⊆ M ∩ L(i) ⊆ L(i+1). But n(L(i+1)) <
n− i+ 1 by (v). Hence n(M) < n+ 1 and L is minimal non-N . �

Recall the following result from [3].
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Theorem 4.8 ([3, Theorem 4]) Let L be solvable and φ-free. Then L is
minimal non-(nilpotent-by-abelian) if and only if F has characteristic p > 0
and L = A+̇B, where A is the unique minimal ideal of L, dimA ≥ 2,
A2 = 0, and either B = M+̇Fx, where M is a minimal ideal of B such that
M2 = 0 (type I), or B is the three-dimnsional Heisenberg algebra (type II).
Moreover, if p ≥ 3 then dimA is divisible by p.

Then we have the following characterisation of the algebras of solvability
index 3 which are minimal non-N (2).

Theorem 4.9 Let L be a solvable Lie algebra of solvability index 3. Then L
is minimal non-N (2) if and only if it is minimal non-(nilpotent-by-abelian)
of type I.

Proof. Let L be minimal non-N (2), and denote the image of a subalge-
bra S of L under the natural homomorphism onto L/φ(L) by L. Then
L = N(L)+̇U where U is a subalgebra of L, by [8, Theorems 7.3 and 7.4].
Moreover, U = A+̇Fx where A is abelian, N2(L) = N(L) +A and L/N(L)
is minimal non-nilpotent, by Corollary 4.6. It follows from [9, Theorem 2.1]
that N2(L)/N(L) is irreducible. Now U is a maximal subalgebra of L, so
U ∈ N (2), which yields that N(U) = A and U is nilpotent-by-abelian.

Let M be any maximal subalgebra of L. Then either M ∼= U or N(L) ⊆
M . Suppose that N(L) ⊆ M . Then M = N2(L) or L = N(L) + Fx. In
either case M is nilpotent-by-abelian. Hence L is minimal non-(nilpotent-
by-abelian). It is of type I, since otherwise L ∈ N (2).

Conversely, suppose that L is minimal non-(nilpotent-by-abelian) of type
I. Then L has solvability index 3 and the maximal subalgebras of L are
nilpotent-by-abelian, as in the paragraph above. Clearly L itself is not
nilpotent-by-abelian. �

Lie algebras as described in Theorem 4.9 do exist over every field of
characteristic p > 0, as is shown in [3]; over an algebraically closed field
they are minimal non-supersolvable ([3, Theorem 5]). Finally we show that
a homomorphic image of a minimal non-N Lie algebra is minimal non-N if
it has a complemented minimal ideal.

Theorem 4.10 If L is a minimal non-N Lie algebra in which all maximal
subalgebras have nilregular cores, and A/B is a complemented chief factor
of L, then L/B is minimal non-N .
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Proof. Suppose there is a chief series of L through A and B in which A/B is
the kth complemented factor, where 1 ≤ k ≤ c(L). If k = 1, then B ⊆ φ(L)
and so n(L/B) = n(L), in which case L/B is minimal non-N because L is.

So let k > 1 and assume that the theorem holds for the (k−1)th comple-
mented factor C/D. Without loss of generality we may assume that D = 0.
Then A/B is the second complemented factor in some chief series of L. It
follows from Theorem 4.3 that L and L/N(L) are extreme, and so every
chief series of L has only one complemented chief factor below N(L), by
Theorem 3.3. If N(L)∩A 6⊆ B then N(L)∩A/N(L)∩B is a complemented
chief factor of L and L would have a chief series with two complemented
chief factors below N(L), a contradiction. Hence N(L) ∩A ⊆ B.

Let n = n(L). Then L/A and L/B are both extreme, by Lemma 3.2 and
so

n(L/B) = c(L/B) = n− 1 and n(L/A) = c(L/A) = n− 2,

by Theorem 3.3. Let M/B be a maximal subalgebra of L/B. We have
B 6⊆ φ(L) and N(L)/φ(L) is a chief factor of L, so M ⊇ φ(L) +B ⊇ N(L).
But L/N(L) is minimal non-N , by Theorem 4.3, so n(M/N(L)) ≤ n− 2. It
follows that Nn−2(M) ⊆ N(L)∩A ⊆ B, whence n(M/B) ≤ n−2 < n(L/B)
and L/B is minimal non-N , as claimed. �
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