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• Improved motivation of the proposed method highlighting the main
contributions;

• A highlight of the recent and important applications of the Vertex
Separator Problem;

• Additional and relevant references;

• Improved and simplified presentation of the algorithm;

• Additional results showing the performance of the approach in terms
of time and solution quality;
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Abstract

The Vertex Separator Problem (VSP) is an NP-hard problem which
arises from several important domains and applications. In this paper, we
present an improved Breakout Local Search for VSP (named BLS-RLE). The
distinguishing feature of BLS-RLE is a new parameter control mechanism
that draws upon ideas from reinforcement learning theory for an interdepen-
dent decision on the number and on the type of perturbation moves. The
mechanism complies with the principle “intensification first, minimal diver-
sification only if needed”, and uses a dedicated sampling strategy for a rapid
convergence towards a limited set of parameter values that appear to be the
most convenient for the given state of search. Extensive experimental eval-
uations and statistical comparisons on a wide range of benchmark instances
show significant improvement in performance of the proposed algorithm over
the existing BLS algorithm for VSP. Indeed, out of the 422 tested instances,
BLS-RLE was able to attain the best-known solution in 93.8% of the cases,
which is around 20% higher compared to the existing BLS. In addition, we
provide detailed analyses to evaluate the importance of the key elements of
the proposed method and to justify the degree of diversification introduced
during perturbation.

Keywords: Heuristics, Iterated local search, Vertex separator, Parameter
control, Reinforcement learning
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1. Introduction

Let G = (V, E) be an undirected graph where V = {v1, v2, . . . , vn} is
the set of vertices with nonnegative weights c1, c2, . . . , cn and let E ⊂ V ×V
be a set of unweighted edges. A vertex separator in a graph is a set of
vertices whose removal breaks the graph into two non-empty disconnected
components. More formally, the Vertex Separator Problem (VSP) is to find a
partition of V into disjoint vertex subsets A, B, C with A and B non-empty,
such that (i) there is no edge (i, j) ∈ E , i ∈ A, j ∈ B; (ii) max{|A|, |B|} ≤ b,
1 ≤ b ≤ |V| (b is the problem input) and; (iii)

∑{cj : j ∈ C} is minimized.
A and B are called the shores of the separator C. A separator C is a legal
(feasible) solution if it satisfies the problem constraints (i) and (ii), and is
termed optimal if (i), (ii) and (iii) are met. A separator C is balanced if
max{|A|, |B|} ≤ 2|V|/3.

The problem of finding minimal balanced separators is NP-hard [1]. It
first arose in the context of Very Large Scale Integration (VLSI) design
[2, 3], and has become popular in several other applications. For instance,
in telecommunication networks, a separator determines the capacity and the
brittleness of the network [2]. In bioinformatics and computational biology,
separators in grid graphs provide a simplified representation of proteins [4].
The problem also finds its application in cyber security where it can be
used to disconnect a largest connected component in a network to prevent
a possible spread of an attack. A recent interesting application of VSP is
in decoy routing, a mechanism capable of circumventing common network
filtering strategies. The aim of decoy routing is to prevent nation-state level
Internet censorship by having routers transfer traffic to blocked destinations.
A decoy routing system needs to cover all paths to a large enough set of des-
tinations such that it is economically or functionally infeasible for a warden
to block these destinations. The problem of deploying a minimum number
of decoy routers could be related to VSP [5, 6]. Generalization of the vertex
separator problem also involves applications in distributed routing proto-
cols [7]. But perhaps more importantly, finding small balanced separators is
a major primitive for many graph algorithms, especially for those that are
based on the principle of divide-and-conquer [8, 9, 10, 11, 12]. For instance,
the author in [9] proposed a novel heuristic which partitions a graph via
vertex separators so as to balance the workload amongst the processors and
to minimize the communication overhead. Vertex separators have also been
used for hypergraph partitioning, which has an impact on a wide variety of
parallel and distributed computing applications [10].

Several exact algorithms have been proposed for solving VSP [13, 14,
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15, 16]. These algorithms are able to find optimal results in a reasonable
computing time (within 3 hours) for instances with up to 125 vertices, but
fail to solve larger instances. Given the inherent computational complex-
ity of the problem, approximation algorithms [17, 18, 19], heuristic [20, 21]
and meta-heuristic methods have also been considered. The Breakout Lo-
cal Search (BLS) algorithm [22], along with a Variable Neighborhood Search
(VNS) [23], is among the first metaheuristic approaches applied to the above
defined VSP formulation. BLS is a recent variation of the popular Iterated
Local Search (ILS) metaheuristic [24] with a particular emphasis on the
importance of the perturbation phase. In addition to VSP, BLS has been
shown to provide competitive performance for several well-studied combina-
torial problems including the quadratic assignment [25] and the maximum
clique [26] problems.

Relying on the information related to the search state and progress, the
basic idea of BLS is to use a perturbation mechanism to adaptively deter-
mine a suitable number and type of perturbation moves for the next round
of the perturbation phase. Indeed, the existing BLS algorithm for VSP [22]
determines both the number and the type of perturbation moves (random
or directed moves) by exploiting information on a number of recently visited
local optima stored in a hash table memory structure. Despite its success
on several challenging combinatorial problems, this poses a limitation on its
search dynamics since a more appropriate degree of diversification could be
introduced if these two decisions are reactively determined in an interdepen-
dent manner.

The aim of this paper is twofold. Given the importance of VSP, our
first objective is to enrich the VSP literature with a new self-adaptive ap-
proach, capable of finding high quality solutions with reasonable computing
efforts for different types of problem landscapes. The other objective is to
investigate how reinforcement learning techniques [27] can improve the re-
active characteristic of a local search heuristic, i.e., a BLS algorithm. For
these purposes, we introduce a hybrid between a Breakout Local Search and
a Reinforcement Learning technique (denoted as BLS-RLE), which is an
extension of the current BLS for VSP with a new parameter control mech-
anism based on reinforcement learning. The main novelty of the proposed
algorithm is that it adaptively and interdependently determines the values
for two important parameters: the number of perturbation moves l and the
probability e of using a directed over a random perturbation type. Rein-
forcement learning techniques for parameter control have recently become
a feature of the research agenda of the Evolutionary Computing commu-
nity [28, 29, 30], and the Local Search community [31, 32]. The proposed
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parameter control mechanism is modeled as the multi-armed bandit prob-
lem [33, 34], a reduced version of the reinforcement learning problem where
learning is performed with respect to a single state. In a multi-armed bandit
problem, the agent is repeatedly faced with a choice among different options,
or actions. In our case, an action corresponds to the application of a param-
eter pair configuration (l, e) for the perturbation phase. After each action,
the agent receives a numerical reward that captures the immediate impact
on the search process. While the reward points out whether an action is
good in an immediate sense, an action value is the total amount of reward
an agent can expect to accumulate over the future. The objective of the
multi-armed bandit problem is to maximize the expected action value over
some time period. The originality and success of the proposed parameter
controller lie in the two following key elements: (i) a dedicated strategy for
sampling of configurations (l, e), which enables rapid convergence towards a
limited set of actions (parameter pair settings) that appear to be the most
convenient for the given state of search, and (ii) a reward function which
complies with the principle “intensification first, minimal diversification only
if needed” [35]. Furthermore, the proposed mechanism does not introduce a
significant computational overhead compared to the existing BLS for VSP,
while substantially improving the performance of BLS. Even though the ob-
jective of this work is to provide an effective approach to VSP, the proposed
RL controller for BLS is general and can be considered for solving other im-
portant combinatorial problem. The corresponding code is available online
for future use.

The existing BLS, as well as BLS-RLE, are able to solve to optimality
all the instances from the current VSP benchmark [13] within less than a
second [22]. To evaluate the performance of BLS-RLE with respect to BLS
and several other algorithms from the ILS family, we thus use a new set of
426 challenging instances with different sizes and structures. A large num-
ber of these instances are motivated by several VSP applications including
VLSI design, cyber security, and decoy routing. Extensive computational
comparisons highlight the benefit of the proposed parameter control mecha-
nism. Indeed, BLS-RLE significantly improves the performance of BLS and
competes very favorably with several other variants of ILS. Briefly, out of
the 422 considered instances, BLS-RLE was able to attain the best-known
solution in 93.8% of the cases, which is around 20% higher compared to the
BLS algorithm.

The rest of the paper is organized as follows. In Section 2, we pro-
vide a motivation and the general framework of the existing BLS method
for combinatorial problems. Section 3 presents the improved BLS frame-
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work and applies it to the vertex separator problem. Experimental results
and extensive statistical comparisons are given in Section 4. Section 5 pro-
vides analyses of the problem landscape to evaluate the hardness of the used
benchmark instances, and to justify the behavior of the proposed approach.
This section further analyzes the importance of the key algorithmic com-
ponents of BLS-RLE. Finally, conclusions are presented and discussed in
Section 6.

2. Breakout Local Search

Iterated Local Search (ILS) [24] is a popular metaheuristic which has
been used for tackling a large variety of hard combinatorial problems. Its
basic idea is to iterate between a local search phase to intensify the search,
and a perturbation phase to diversify the search. The degree of diversifi-
cation introduced by an ILS method depends both on the number and on
the type of moves applied for perturbation. For most ILS algorithms, these
values are fixed throughout the search thus introducing a constant degree of
diversification regardless of the search state. To cope with this limitation,
a variation of ILS, named Breakout Local Search (BLS) [25, 26, 36], was
recently proposed in the literature. BLS puts particular emphasis on the
importance of the diversification phase. Based on relevant information on
the search state, it adaptively determines an appropriate number of per-
turbation moves and selects between two or more types of perturbations
of different intensities. More precisely, the idea behind BLS is to introduce
weaker diversification as the search is visiting new unexplored solutions, and
to gradually increase diversification as the number of repetitions of an al-
ready visited solution increases. BLS has previously been applied to the
vertex separator problem and has been shown to outperform several varia-
tions of ILS on this problem [22].

Algorithm 1 shows the general scheme of BLS. To apply it to any combi-
natorial problem, four procedures need to be specified: GenerateInitialSolution
generates an initial solution for the search; DescentBasedSearch is the de-
scent/ascent local search procedure which searches a defined neighborhood
for a solution which is better than the current one, and stops if such a
solution is not found; DetermineJumpMagnitude determines the number l
of perturbation moves (“jump magnitude”); DeterminePerturbationType se-
lects the type t of perturbation moves among two or several alternatives of
different diversification intensities. t is selected probabilistically, according
to a probability e that is adaptively selected from a vector e. In its sim-
plest form with only two types of perturbation moves, e.g., directed and
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Algorithm 1 General BLS framework

1: s′ ← GenerateInitialSolution
2: l← l0 /*Initialise the number l of perturbation moves */
3: while stopping condition not reached do
4: s← DescentBasedSearch(s ′)
5: l← DetermineJumpMagnitude(l , s, history)
6: t← DeterminePerturbationType(s, e, history)
7: s′ ← Perturbation(l , t , s, history)
8: end while

random, the probability vector e is a set of all the probabilities e of select-
ing a directed over a random perturbation type. Once the number l and
the type t of perturbation moves are selected, BLS calls the Perturbation
procedure which applies l moves of type t to the current local optimum (we
say that the solution is perturbed). The perturbed solution becomes the
new starting point for the next phase of the descent-based local search. The
history element in DetermineJumpMagnitude, DeterminePerturbationType
and Perturbation indicates that some information from the search history is
used to influence the decisions made in these procedures.

In all the previous applications of BLS, DetermineJumpMagnitude and
DeterminePerturbationType procedures are mutually exclusive, and the val-
ues for l and e are thus determined independently from each other. As a
result, the combination of l and e may not constitute the optimal degree of
diversification required at one stage of the search.

3. Breakout Local Search based on Reinforcement Learning (BLS-
RLE)

The main novelty of BLS-RLE lies in a dedicated perturbation control
mechanism that uses ideas from reinforcement learning [27] to interdepen-
dently determine the values for the number of perturbation moves l and the
probability e of selecting one perturbation type over another. More pre-
cisely, the proposed mechanism is based on an adaptive operator selection
paradigm [37, 38, 39], where the application of each action is followed by an
immediate reward from the environment (the problem). This instantaneous
reward is used for calculating an action value which provides a quality es-
timate of the corresponding action based on its historical performance. An
action selection model is then employed to select the next action to be
applied. Given the space limitation, we next describe only the new pertur-
bation strategy of BLS-RLE. The interested reader is referred to [22] for a
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detailed description of the other algorithmic components of BLS-RLE (i.e.,
DescentBasedSearch, GenerateInitialSolution, hash table structure, directed
and random perturbation moves), which are identical to those used by BLS
for VSP.

3.1. General framework of BLS-RLE

Given a finite set of values L = {l0, ..., lh−1} for the number of pertur-
bation moves and a finite set of values E = {e0, ..., ek−1} for the proba-
bility of selecting a directed over a random perturbation type, let Pall =
{(l, e)0, ..., (l, e)h·k−1} be the set of all the possible combinations (parameter
pair settings) of L and E. We use the terms action and parameter pair
interchangeably throughout the paper to denote (l, e) ∈ Pall.

The proposed RL-based parameter control technique favors actions that
introduce a weaker diversification when the search is located in an unvisited
region of the search space. As the search keeps going back and forth between
already visited local optima, the preference shifts towards actions that result
in a higher degree of diversification with the aim to discover new local op-
tima. Therefore, the pairs in Pall need to be sorted according to the degree
of diversification they introduce into the search, prior to the optimization
phase. This is performed by a PrelearningPhase procedure.

To limit the number of considered actions and to reduce the learn-
ing time, our technique uses an action selection model that selects the
next action (l, e) for perturbation only from a very limited learning set
Plearn{(l, e)0, ..., (l, e)κ−1} ⊂ Pall of possible parameter pair configurations,
where κ is a constant. The set of allowed actions is periodically being up-
dated with a new and more preferred action for a given stage of the search.
According to an analysis provided in Section 5.2.3, sampling of the allowed
action space constitutes one of the key features of the proposed parameter
controller. The proposed BLS-RLE framework is presented in Algorithm 2.

BLS-RLE first calls the PrelearningPhase procedure (line 3 of Algorithm
2, see Section 3.2) to assign a rank to each pair (l, e) ∈ Pall, according to the
estimated diversification strength that each pair introduces into the search.
To evaluate the amount of introduced diversification for each (l, e) ∈ Pall,
BLS-RLE maintains a set of recently visited local optima in a hash table
HT memory (lines 9 and 17 of Algorithm 2, see [22]). The PrelearningPhase
procedure is called only once, before the main run of the proposed algorithm.
After pre-learning, a limited subset of allowed actions Plearn ⊂ Pall is ini-
tialized with κ pairs that significantly differ in the amount of diversification
they introduce into the search (line 4 of Algorithm 2). To generate a starting
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Algorithm 2 Improved BLS framework (BLS-RLE)

1: Let L = {l0, ..., lh−1} be the set of possible values for the number of perturbation
moves

2: Let E = {e0, ..., ek−1} be the set of possible values for the probability of applying
directed over random perturb.)

3: Pall ← PrelearningPhase(L,E) /* See Section 3.2*/
4: Plearn ← {(l, e)0, ..., (l, e)κ−1} /* Initial set of κ learning parameter pairs sorted in

ascending order according to the degree of diversification introduced */
5: iter ← 0
6: HT ← ∅
7: s′ ← GenerateInitialSolution
8: s← DescentBasedSearch(s ′)
9: HT ← UpdateHashTable(s)

10: while stopping condition not reached do
11: i← SelectParameterPair() /*See Section 3.4)*/
12: (l, e)← (l, e)i ∈ Plearn
13: s′ ← Perturbation(l , e, s, history)
14: s← DescentBasedSearch(s ′)
15: r ← DetermineParameterPairReward(s,HT ) /*See Section 3.3*/
16: ApplyReward(i , r) /*See Section 3.3*/
17: HT ← UpdateHashTable(s)
18: if (iter > ε) then
19: UpdateLearningParameterSet() /*See Section 3.5*/
20: iter ← 0
21: else
22: iter ← iter + 1
23: end if
24: end while

point for the search, BLS-RLE calls GenerateInitialSolution to obtain a so-
lution s′, which is then improved with a descent-based local search procedure
to obtain a local optimum s (lines 7-8 of Algorithm 2, see [22]).

After initialization, each iteration of BLS-RLE performs the following
steps. First, BLS-RLE employs the action selection model through the
SelectParameterPair procedure (lines 11-12 of Algorithm 2, see Section 3.4),
to select a parameter pair (l, e)i ∈ Plearn. The pair (l, e)i ∈ Plearn is selected
proportionally to its action probability, which is based on the action value
of the corresponding parameter pair configuration. We employ the Soft-
max action-selection rule [27] as the action selection model. However, no-
tice that other action selection models can be easily deployed instead. The
Perturbation procedure is then called with the selected (l, e)i to perturb the
current solution (line 13 of Algorithm 2). This is immediately followed by the
descent-based local search which repairs the perturbed solution and reaches
a local optimum s (line 14 of Algorithm 2). Next, BLS-RLE determines
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the success (immediate reward) of applying the selected pair (l, e)i with re-
spect to s (line 15 of Algorithm 2, see Section 3.3), and updates the action
value attributed to the pair (l, e)i with the acquired reward (line 16, see Sec-
tion 3.3). The action value of a parameter pair configuration (l, e)i takes into
account the recent immediate rewards awarded to (l, e)i that are determined
based on a quality and a diversity criterion. Initially, action values for all
(l, e) ∈ Plearn are set to 1. Finally, the UpdateLearningParameterSet proce-
dure is periodically called (after ε iterations of BLS-RLE) to update Plearn
with a new parameter pair from Pall (line 18-23 of Algorithm 2, see Sec-
tion 3.5), considering the learned action probabilities corresponding to the
current parameter pairs in Plearn and the parameter pair ranks determined
in the pre-learning phase. After a call of UpdateLearningParameterSet , all
the action values are reset to 1.

3.2. Parameter Pair Pre-learning

Algorithm 3 PreLearning(L,E )

Require: Set L = {l0, ..., lh−1} of values for the number of perturbation moves and set
E = {e0, ..., ek−1} of values for the probability of applying a directed over a random
perturbation

Ensure: Parameter pair list Pall = {(l, e)0, ..., (l, e)h·k−1} sorted according to the degree
of diversification introduced by each pair

1: Pall ← GenerateCombinations(L,E) /* Creates the set of all h · k parameter pairs */
2: c[0, ..., h · k − 1] ← 0 /* For each parameter pair, initialize the number of encounters

of an already visited solution from hash memory */

3: s′ ← GenerateInitialSolution
4: s← DescentBasedSearch(s ′)
5: for j:=0 to α · h · k − 1 do
6: (l, e)← (l, e)j mod (h·k) ∈ Pall
7: s′ ← Perturbation(l , e, s, history)
8: s← DescentBasedSearch(s ′)
9: if (HT (s)) /* Is s in hash table memory? */ then

10: c[j mod (h · k)]← c[j mod (h · k)] + 1
11: end if
12: end for
13: Sort Pall in ascending order according to c values

The purpose of pre-learning is to estimate the degree of diversification
introduced with each parameter pair (l, e) ∈ Pall, where the degree of diver-
sification is measured by the frequency the search encounters new solutions
after an application of (l, e). Therefore, for each available parameter pair,
a standard iterated local search algorithm [24] is employed to capture the
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degree of diversification of the pair under consideration, as demonstrated
in Algorithm 3. Specifically, starting from an initial locally optimal solu-
tion, it alternates between a perturbation phase to perturb the current local
optimum and a descent-based local search phase (DescentBasedSearch is
detailed in [22]) to reach a local optimum. Given a parameter pair setting
(l, e), the perturbation phase simply consists of performing l moves of the
directed (tabu-based) perturbation [22] with probability e, and l moves of
the random perturbation [22] otherwise. The ILS procedure terminates af-
ter α · h · k iterations, where α is a coefficient which denotes the number of
times each parameter pair setting (l, e) is used for the perturbation phase (in
our experiments α = 100). Let (l, e)j mod (h·k) be the parameter pair setting
used for perturbation at iteration j, the procedure increments the counter
c[j mod (h · k)] corresponding to (l, e)j mod (h·k) if the descent-based search
returned to an already encountered local optimum stored in the hash table
memory.

Note that the best solution found in the pre-learning phase could serve
as the starting point for the main BLS-RLE search (i.e., instead of the local
optimum generated in lines 7-8 of Algorithm 2).

In the end, parameter pairs in Pall are sorted in an ascending order
according to the learned degree of diversification. The rank of a parameter
pair configuration (l, e)i ∈ {(l, e)0, ..., (l, e)h·k−1} corresponds to its order in
Pall. These ranks are later required for sampling the action space, as well
as for the reward function.

Finally, it is worth mentioning that the proposed RL-based parameter
controller is able to ensure a meaningful guidance for the search if and only
if the structure of the problem landscape is such that different (l, e) pairs
introduce different degrees of diversification into the search (e.g., in case of
rugged landscapes). In cases of landscapes with large plateau regions, the
controller loses its power and could result in a performance worse than that
of a random parameter selection mechanism.

3.3. Reward and Value Functions

After a perturbation with action (l, e)i ∈ Plearn followed immediately by
a descent-based search to reach a local optimum s, the quality or value of
the employed action has to be estimated. The action value is updated based
on the reward ri that captures the immediate impact of (l, e)i on the search
process. Intuitively, the action value indicates the total amount of reward
an agent can expect to accumulate over the future.

To determine the reward ri, we take into account both the quality and
the diversity criteria. The higher the score assigned to (l, e)i, the better

11



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the performance of (l, e)i in the last perturbation phase. Notice that the
parameter pairs in Plearn ⊂ Pall are ordered in an increasing order of their
rank, determined in the pre-learning phase (see previous Section).

The element of the reward for diversity rdiv can be obtained with the
following formula:

rdiv =

{
0, if HT (s)

κ− i, otherwise

}
, (1)

where HT (s) returns the value true if s is present in the hash table HT .
The rationale behind Eq. 1 is to introduce the least amount of diversification
sufficient to discover new local optima. Therefore, the smaller the index i of
the parameter setting pair (l, e)i (i.e., the closer i is to zero), the higher the
score of the reward. In this way, we prevent from using a parameter pair
setting (l, e) ∈ Plearn which unnecessarily introduces too much diversity into
the search. The reward function thus complies with the principle “intensifi-
cation first, minimal diversification only if needed” [35], and constitutes one
of the key features of the proposed parameter controller. More precisely, the
proposed perturbation mechanism is biased towards lower ranked parameter
pair settings (pairs that introduce a lower degree of diversification) as the
search keeps discovering new local optima. On the other hand, the rank
of the selected parameter pairs (i.e., the degree of diversification) increases
with the increase of repetitions of already encountered local optima.

The reward for quality rqual is determined according to the next equation:

rqual =

{
0, if HT (s)

(1− f(s)−f(sbest)
f(sbest)

)2 · 10, otherwise

}
, (2)

where f(s) and f(sbest) are respectively the objective function values of
the current and the best solution found during the search until the current
iteration. The quality reward takes into account the relative fitness gain
of the current solution s with respect to the best solution found sbest, and
distributes it in a quadratic manner, i.e., 10(1−x)2, where x is the relative
fitness gain. The rationale is to favor parameter pair settings which lead to
undiscovered high quality local optima with lower deviations from the best
solution found.

Given rewards rdiv and rqual for the parameter pair setting (l, e)i ∈
Plearn, the total reward ri attributed to (l, e)i is

ri = δ1 · rdiv + δ2 · rqual, (3)
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where δ1 and δ2 are two coefficients that determine respectively the impact
of the diversity rdiv and the quality rqual of the overall reward ri.

Once the reward ri for the performance of (l, e)i in the last perturbation
is computed, BLS-RLE calls the ApplyReward(i , ri) function which updates
the credit (i.e., the empirical quality estimate r̂i) attributed to (l, e)i with
its latest reward ri. The empirical quality estimate can be defined as the
performance summary of an action, and is used to compute the action value
q corresponding to the given parameter pair configuration. One could em-
ploy various different ways to update the empirical quality estimate [37],
including instantaneous, average, or rank based rewards. The simplest is to
consider the most recent reward ri as the empirical quality estimate r̂i for
(l, e)i. However, this tends to be a very unstable and noisy estimation [37].

In our work, the empirical quality estimate r̂i assigned to a given pa-
rameter pair setting (l, e)i ∈ Plearn is the average of the w latest rewards
attributed to (l, e)i [37], where w = 100 in our experiments. This results
in an aggregation of 0 ≤ w ≤ 100 latest rewards, which constitutes a more
stable and noise-tolerant credit for r̂i. More precisely, let Ri be a set of
the least recent rewards for (l, e)i. The empirical quality estimate for the

(l, e)i pair is calculated as: r̂i =
∑|Ri|

j=1Ri(j)/|Ri|, where |Ri| denotes the
cardinality of the set Ri, and Ri(j) is the j-th element of the Ri set.

Finally, we estimate the action value qai(t+ 1), corresponding to action
(l, e)i (or ai for short), with the following update rule:

qai(t+ 1) = qai(t) + λ(r̂i(t)− qai(t)),

where t is the time step and λ ∈ (0, 1] is the adaptation rate (λ is fixed to
0.1). For t = 0, the value of qai(t) is initialized to 1.

3.4. Parameter Pair Selection with a Reinforcement Learning Approach

To select an action for the next perturbation phase, BLS-RLE utilizes
the Softmax action-selection approach [27] (SelectParameterPair procedure
at line 11 of Algorithm 2) which uses a trial-and-error learning methodology
to actively explore the available actions.

More precisely, let A = {a1, a2, . . . , aκ} be the set of κ possible actions
(i.e., parameter pair configurations) and letQ(t) = {qa1(t), qa2(t), . . . , qaκ(t)}
be the set of action values corresponding to the action set A at the time
step t. The Softmax-based approach assigns a probability to each action ai
by using the Gibbs (or Boltzmann) distribution for the assignment. More
precisely, we define the action probability pai(t) according to the following
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equation:

pai(t) =
eqai (t)/τ

∑κ
j=1 e

qaj (t)/τ
,

where τ is a positive parameter called temperature. High values for τ result
(almost) equal probabilities for all the available actions, while low tempera-
ture values induce larger differences in the selection probabilities. Therefore,
the best performing actions are selected with higher probabilities in the next
step. It is useful to mention that, as the temperature decreases (approaches
to zero), the Softmax action selection rule becomes very greedy and tends
to always select the best performing actions.

Having calculated the probabilities of all the available choices, we select
the pair (l, e)i ∈ Plearn according to a stochastic selection procedure, in the
form of a simple roulette wheel selection procedure [40].

The main steps of the Softmax methodology for selecting parameter
setting pairs are general and follow the concept of adaptive (or dynamic)
operator selection [37]. Thus, several other methodologies can be employed
instead of Softmax, including evolutionary meta-learning methods [41, 42],
probabilistic models such as probability matching [39], adaptive pursuit [39],
statistical based models like the multinomial distribution tracking with his-
tory forgetting [38, 43], and reinforcement learning approaches [37, 27]. How-
ever, the application and comparison of all these approaches is out of the
scope of this article and will be studied in a future work.

3.5. Update of the Parameter Pair Learning List

After a fixed number of BLS-RLE iterations, we replace the worst param-
eter pair setting (l, e)w ∈ Plearn (i.e., the one with the lowest action proba-
bility) with a new and potentially better pair (l, e)n ∈ Pall, (l, e)n /∈ Plearn.
Recall that Plearn ⊂ Pall is maintained to reduce the action space (i.e., the
number of available parameter pair choices) resulting in shortened learning
time. In fact, one of the keys elements to success for the proposed parame-
ter controller is the strategy for action space sampling, which enables rapid
convergence towards a limited set of actions (Plearn) that appear to be the
most convenient for the given state of search (see Section 5.2.3).

To determine (l, e)n for Plearn, we first estimate the action probabilities
for all the parameter pair settings from Pall \Plearn, based on the previously
learned action probabilities attributed to the pairs from Plearn. For this
purpose, we simply take the action probabilities of all the pairs in Plearn, and
interpolate them linearly to sample the action probabilities corresponding
to pairs Pall \ Plearn. The boundaries for the linear interpolation are set as
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follows: for (l, e)0 ∈ Pall the estimated action probability is computed as
p(l,e)0 = pf/i, where pf is the action probability corresponding to (l, e)0 ∈
Plearn and i is the rank (order number) of (l, e)0 ∈ Plearn in Pall; for (l, e)m ∈
Pall the estimated action probability is computed as p(l,e)m = pl/(m − j),
where pl is the action probability corresponding to the last pair (l, e)κ−1 ∈
Plearn, m = |Pall| − 1, and j is the rank (order number) of (l, e)κ−1 ∈ Plearn
in Pall. An example of this procedure is depicted in Figure 1.

 0     1     2    3    4     5    6    7     8    9         

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Parameter pair rank

A
ct

io
n
 p

ro
b
a
b
ili

ty

Figure 1: Linearization of action probabilities, corresponding to the parameter setting
pairs in Plearn (κ = 3), to sample action probabilities for pairs Pall \ Plearn (the number
of all the possible parameter setting pairs in Pall is 10).

Next, we sort the parameter pairs from Pall \Plearn in a decreasing order
according to their estimated action probability. A parameter pair setting
(l, e)n ∈ {Pall \Plearn} is then selected in an adaptive and random way, i.e.,
the higher the estimated action probability of a parameter pair setting, the
more possibly this pair is chosen to replace (l, e)w ∈ Plearn. More precisely,
the ith best parameter pair setting from Pall \Plearn is selected according to
the following probability function:

N(i) = iφ/

k∑

j=1

jφ, (4)

where k is the total number of pairs in Pall \Plearn, and φ is a negative real
number which controls the intensity of the selection procedure. The smaller
the value of φ, the higher the possibility to select a parameter pair setting
with a higher action probability.

Once Plearn is updated with (l, e)n, BLS-RLE sorts Plearn in an ascending
order according to the amount of diversification introduced by each pair
(l, e) ∈ Plearn. Finally, the action values for all (l, e) ∈ Plearn are reset to 1.
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4. Experimental Results and Comparisons

In this section, we demonstrate the performance of the proposed ap-
proach on a wide variety of problem instances with different characteristics.
Before proceeding with experimental evaluations, we first define the experi-
mental protocol and present the benchmark sets used for comparisons.

4.1. Experimental Protocol

The main objective of this section is to analyze the performance of the
proposed RL-based perturbation mechanism compared to the existing BLS
perturbation mechanism, and the standard perturbation strategies com-
monly used by the ILS algorithms. More precisely, we wish to evaluate the
ability of the method to self-adaptively establish the most suitable balance
between intensification and diversification, for an instance or a benchmark
set at hand, without any particular need for human intervention. The abil-
ity to self-adapt its performance for a given instance at hand constitutes the
essence of reactive search methods [35]. We carry out comparisons between
BLS-RLE and the following algorithms:

• BLS - the existing breakout local search proposed in [22];

• BLS-RND - a BLS algorithm which, for each perturbation phase, ran-
domly selects a value for e from the range [0.95, 1] and a value for l
from the range [3, 150]. Random variation of the search parameters is
adopted as “base-line” [44] to evaluate the impact and the usefulness
of the proposed self-adaptive mechanism.

• ILS-DIRP - an iterated local search algorithm which combines a simple
descent procedure with the directed perturbation (l is fixed to 40).

• ILS-RNDP - an iterated local search algorithm which combines a sim-
ple descent procedure with the random perturbation (l is fixed to 40).

• VNS - a recent variable neighborhood search algorithm from [23]. How-
ever, results obtained with VNS are available only for a subset of in-
stances used in the following experiments.

All algorithms1 are implemented in C++ and compiled with GNU g++
under GNU/Linux running on a machine equipped with AMD Opteron CPU

1The source code of BLS-RLE is available at: http://www.epitropakis.co.uk/

BLS-RLE/
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of 2.2 GHz and 32 GB of RAM. The results reported by BLS-RLE and the
first four algorithms are obtained under the same computing conditions. It
is worth noting that BLS-RND, ILS-DIRP and ILS-RNDP can be viewed
as simplified versions of the existing BLS algorithm (i.e., variations of ILS),
and were implemented solely for the purpose of the reported experimental
comparisons. The experiments for VNS are taken from the corresponding
paper, and are only used for indicative purposes. The main emphasis is thus
put on the comparison with BLS, BLS-RND, ILS-DIRP and ILS-RNDP.

To demonstrate the self-adaptive capabilities of BLS-RLE, we do not
fine-tune the parameters of BLS-RLE. The setting of parameters for BLS-
RLE, determined mostly based on our intuition and some manual trials,
is given in Table 1. A parameter sensitivity analysis (available online2)
indicates that the most sensitive parameters are the temperature (τ) of the
Softmax-based adaptive procedure, as well as the diversity (δ1) and quality
(δ2) coefficients of the reward function. Temperature values close to τ = 2
seem to lead to very good performance gains, while very stable behavior is
exhibited when δ1 ∈ {0.5, 1, . . . , 3} and δ2 ∈ {2, 2.5, 3}. This indicates that
the contribution of the quality reward component should be amplified as
it provides valuable guidance for the BLS-RLE search. The remaining 6
parameters (α, ε, κ, φ, w, and λ) do not exhibit a statistically significant
impact on the resulting performance of BLS-RLE. However, fine-tuning of
some of these parameters may result in a slight improvement of the algorithm
performance. In our experiments with BLS-RLE, the set Pall is populated
with all the combinations of L = {3, 5, . . . , i − 2, i, i + 2, · · · , 147, 149} and
E = {0.95, 0.96, 0.97, 0.98, 0.99, 1}. Note that the ranges of values from
which BLS-RND selects a value for l and e are the same as in the case of
BLS-RLE. For BLS, we use the configuration of parameters suggested in
the corresponding paper [22], while the tuning procedure to determine the l
parameter for ILS-DIR and ILS-RND is the same as the one used for tuning
BLS in [22]. For each algorithm and each problem instance, we conduct
30 independent runs, with the time limit set to 2000 seconds (and 1800
seconds for instances used in the comparison with VNS as in [23]). The
pre-learning phase is executed only once, and is not accounted for in each
of the 30 independent runs. The time overhead incurred by the pre-learning
phase, as well as the possibility of a warm-start pre-learning procedure, are
investigated in Section 5.2.2.

2http://www.epitropakis.ac.uk/BLS-RLE
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Table 1: Parameter settings of BLS-RLE.

Parameter Description Value
κ the size of the learning parameter pair set Plearn 6
α the number of pre-learning iterations for each pair in Pall

(Section 3.2)
100

τ the temperature of the Softmax-based adaptive procedure
(Section 3.4)

2

ε the update frequency of the parameter pair learning list
(Section 3.5)

2000

δ1 coefficient for reward function (Section 3.3) 1.5
δ2 coefficient for reward function (Section 3.3) 3
γ tabu tenure of DIRP random(0.2|C|, 0.7|C|)
φ coefficient used by the strategy that updates Plearn (Sec-

tion 3.5)
2

w the number of latest rewards considered for computing the
empirical quality estimate (Section 3.3)

100

4.2. Benchmark instances

The existing VSP benchmark set [13] consists of 104 instances with
11 ≤ |V| ≤ 191, 20 ≤ |E| ≤ 13922, the size constraint b = 2|V|/3, and with
densities in the range of [0.05, 0.93]. A total of 84 instances were adapted
from the well-known Market Matrix repository3, which consists of intersec-
tion graphs obtained from the coefficient matrices of linear equations, while
20 instances come from the DIMACS challenge on graph coloring. Optimal
solutions are known for the complete benchmark set. A detailed description
and motivation for these instances can be found in [13]. However, it has
been shown in [22, 23] that this benchmark set does not represent a real
challenge for heuristic approaches, since BLS and VNS can often solve these
instances to optimality in less than a second. To evaluate the performance
of BLS-RLE with respect to the reference algorithms, we thus introduce
a large set of challenging instances (426 instances in total) with different
properties (i.e., sizes, densities, applications) from the following benchmark
sets:

B1: The ISPD98 Circuit Benchmark Suite4 arising from VLSI design (one
of the first applications of VSP [8, 2, 3]). This benchmark set consists
of 17 very large graphs with 12752 ≤ |V| ≤ 185495, 14111 ≤ |E| ≤
189581, b = 2|V|/3 and a maximal density of 0.0782.

B2: Scale-free network graphs generated with the Barabási-Albert model

3http://math.nist.gov/MatrixMarket/
4http://vlsicad.ucsd.edu/UCLAWeb/cheese/ispd98.html
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[45, 46]: Scale-free networks are widely observed in natural and human-
made systems, including the internet, the world wide web, citation
and social networks. The choice of this benchmark set is motivated
by the application of VSP to cyber security and decoy routing [5, 6].
It comprises 95 instances from [23], with 100 ≤ |V| ≤ 1000, b =
2|V|/3, and the node degree d randomly selected from [1,V]. These
instances were used to evaluate the performance of a VNS algorithm in
the corresponding paper. We further generate an additional set of 85
more challenging Barabási-Albert instances with 1000 ≤ |V| ≤ 2000,
b = 2|V|/3, d ∈ [3, 100], and density in the range of [0.03, 0.897].

B3: Exponential network graphs generated by the Erdös-Rényi model [47]:
Unlike scale-free networks, exponential networks are homogeneous,
i.e., most nodes have approximately the same number of links. Each
graph is denoted as G(V, p), where V is the number of vertices and p is
the probability of connecting a pair of vertices. Obviously, the density
of a graph increases with the value of p. Our benchmark set consists
of 95 instances taken from [23], with 100 ≤ |V| ≤ 1000, b = 2|V|/3
and p ∈ [0.2, 0.1]. Moreover, we introduce 45 more challenging Erdös-
Rényi instances with 1000 ≤ |V| ≤ 5000, p ∈ [0.01, 0.5], and density in
the range of [0.0198, 0.977].

B4: A set of graphs taken from the Stanford SNAP database5 (16 in-
stances) and the University of Florida Sparse Matrix Collection6 (19
instances): The selected instances from the SNAP database include
internet peer-to-peer networks, as well as instances arising from com-
munication networks, web graphs, and social networks. These graphs
are very large with 3809 ≤ |V| ≤ 122749. The selected instances from
the Sparse Matrix Collection were derived from different real applica-
tions including co-authorship and protein interaction networks, with
1000 ≤ |V| ≤ 11125, b = 2|V|/3 (as in B1), and density in the range
of [0.000131, 0.0132].

B5: A set of 54 benchmark instances7 consisting of toroidal, planar, and
random graph with 800 ≤ |V| ≤ 3000, and density ranging from
0.00133 to 0.06. These graphs were generated in [48] to test methods
for solving semidefinite programming problems, and adapted in [22] to

5http://snap.stanford.edu/data/
6http://www.cise.ufl.edu/research/sparse/matrices/
7Instances available at: http://www.info.univangers.fr/pub/hao/BLSVSP.html
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evaluate BLS on the VSP problem.

All benchmark sets are publicly available at 8, while the hardness of the
benchmark sets is analyzed in Section 5.

4.2.1. Experimental and Statistical Results

This section summarizes the performances obtained with the imple-
mented algorithms on the five benchmark sets (B1 to B5) from Section
4.2, and statistically verifies the observed behavior. Due to space limita-
tions and the large number of considered benchmarks, a more detailed pre-
sentation of individual results per problem instance is available at: http:

//www.epitropakis.co.uk/BLS-RLE/.
To compare the performances (in terms of solution quality, i.e., attained

objective function values) of all the algorithms across all the problem in-
stances from a given benchmark set and across every execution, we nor-
malize the obtained objective values in a common range of values. Given
a problem instance, this is achieved with a linear normalization procedure
that takes an objective value defined on a range D = [Omin, Omax] and trans-
forms it linearly to a new range F = [omin, omax] (here F = [0, 1]), where
Omin and Omax is the minimal and maximal observed objective value re-
spectively. Formally, let x ∈ [A,B] be an objective value returned by an
algorithm for an instance at hand and let f : D → F be a transformation
function, the normalized objective value can be calculated according to the
following relation: y = f(x) = (x−Omin)/(Omax−Omin). For each algorithm
Alg, we then compute a sample set YAlg = {y1, y2, . . . , yn} consisting of the
normalized objective values across all the benchmark instances and runs,
where n is the number of problem instances from a benchmark set times the
number of executions of the given algorithm per instance. Intuitively, values
close to zero indicate the best performance, while the performance is worse
as the values increase to one. We provide boxplot graphs to compare the
distributions of the normalized objective values in YAlg obtained with each
algorithm.

To assess whether there exists a significant difference in the observed per-
formances between at least two algorithms on the complete set of benchmark
instances, we first employ the Friedman rank sum test [49] on all sample sets
M = {m1,m2, . . . ,mb}, where M represents the set of normalized mean per-
formance values obtained with a given algorithm for each instance from a

8http://www.epitropakis.co.uk/BLS-RLE/
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given set of b benchmark instances. The null hypothesis of the Friedman
rank sum test states that the underlying distributions of all samples M are
the same, while the alternative hypothesis states that at least two sam-
ples are not the same [49]. If significant difference in performances exists,
we carry out a post-hoc analysis to determine which two algorithms differ
in performance. For the post-hoc analysis, we perform pairwise Wilcoxon-
signed rank tests on the sample sets M . Additionally, to alleviate from
having Type I errors in multiple comparisons with a higher probability, we
apply the Bonferroni correction method and report the adjusted p-values
(pbonf).

Benchmark B1 (Friedman: p < 0.0001, χ2 = 61.741)
BLS BLS-RLE BLS-RND ILS-DIRP
p pbonf p pbonf p pbonf p pbonf

BLS-RLE 0.002 0.002 – – – – – –
BLS-RND 0.013 1.000 0.001 0.010 – – – –
ILS-DIRP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – –
ILS-RNDP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Benchmark B2 (Friedman: p < 0.0001, χ2 = 230.731)
BLS-RLE <0.001 <0.001 – – – – – –
BLS-RND <0.001 <0.001 0.258 1.000 – – – –
ILS-DIRP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – –
ILS-RNDP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Benchmark B3 (Friedman: p < 0.0001, χ2 = 134.479)
BLS-RLE <0.001 <0.001 – – – – – –
BLS-RND <0.001 <0.001 0.888 1.000 – – – –
ILS-DIRP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – –
ILS-RNDP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.007 0.073

Benchmark B4 (Friedman: p < 0.0001, χ2 = 115.343)
BLS-RLE <0.001 0.002 – – – – – –
BLS-RND <0.001 0.005 0.001 0.014 – – – –
ILS-DIRP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – –
ILS-RNDP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.004

Benchmark B5 (Friedman: p < 0.0001, χ2 = 154.347)
BLS-RLE <0.001 <0.001 – – – – – –
BLS-RND 0.453 1.000 <0.001 <0.001 – – – –
ILS-DIRP <0.001 0.002 <0.001 <0.001 <0.001 0.001 – –
ILS-RNDP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Benchmark B1-B5 (Friedman: p < 0.0001, χ2 = 610.000)
BLS-RLE <0.001 <0.001 – – – – – –
BLS-RND <0.001 <0.001 <0.001 <0.001 – – – –
ILS-DIRP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 – –
ILS-RNDP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 2: Post-hoc analysis of the mean normalized performances reported with BLS-RLE
and the reference algorithms across all the individual benchmark sets B1-B5 and the
combined benchmarks.

For each benchmark set B1-B5, Figure 2 provides boxplot graphs (a)-(g)
to show the distribution of the normalized performances (YBLS−RLE , YBLS ,
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(b) B2 - our instances
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(c) B2 - instances from [23]
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(d) B3 - our instances
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(e) B3 - instances from [23]
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(g) B5
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Figure 2: Boxplots of the normalized objective values for each individual benchmark set
B1-B5 ((a)-(g), as well as for the combination of all benchmark sets (h).

YBLS−RND YILS−DIRP , YILS−RNDP ) corresponding to the five algorithms.
For the sake of clarity, we include two boxplots per benchmark for B2 ((b)
and (c)) and B3 ((d) and (e)) to separate the presentation of our instances
from those taken from [23]. Moreover, subfigure (h) provides a boxplot to
summarize the overall performances across all the instances from B1-B5.
The Friedman rank sum test reveals a statistically significant difference in
performances between the considered algorithms across all the benchmark
sets B1-B5. To determine which two algorithms differ in performance, we

22



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

thus continue with the post-hoc analysis and show in Table 2 the obtained
p-values from the Wilcoxon-signed rank tests (column ‘p’) and the Bonfer-
roni correction method (column ‘pbonf ’). Moreover, for each comparison,
we include in Table 2 the p and χ2 values reported by the Friedman rank
sum test. From boxplots (a), (f) and (g), we observe that BLS-RLE out-
performs the four reference algorithms on the benchmark sets B1, B4 and
B5. Indeed, we observe that the normalized objective values obtained with
BLS-RLE are very close to zero. The p-values from Table 2 also confirm a
significant statistical difference in performance between BLS-RLE and the
reference methods on these benchmarks. For the other two benchmark sets
(B2 and B3), the boxplots (b)-(e) and the p-values indicate an almost equal
performance of BLS-RLE and BLS-RND, which however remains superior
to that reported by BLS, ILS-DIRP and ILS-RNDP. Surprisingly, BLS-RND
shows to be more effective than BLS across all the benchmark sets, which
emphasizes the weakness of the current BLS perturbation mechanism. These
observations support the study from [44] that suggests considering random
variation of parameters when evaluating a new parameter control mecha-
nism.

B2: Barabási-Albert B3: Erdös-Rényi
Algorithm Avg. Time(s) % Dev. # Best Avg. Time(s) % Dev. # Best
BLS 278.063 0.790 0.000 95 291.031 0.576 0.010 95
BLS-RLE 278.063 3.164 0.000 95 291.010 1.722 0.000 95
BLS-RND 278.063 3.234 0.000 95 291.010 1.920 0.000 95
ILS-DIRP 278.907 105.853 0.002 95 291.943 37.991 0.242 93
ILS-RNDP 278.063 6.867 0.000 95 291.102 35.754 0.086 93
VNS 279.250 36.560 0.160 68 292.020 33.890 0.100 71

Table 3: Comparison on the Barabási-Albert (B2) and Erdös-Rény (B3) benchmark sets
from [23].

From the presented results, we further note that all the five algorithms
exhibit a highly robust performance on the Barabási-Albert (B2) and Erdös-
Rényi (B3) instances introduced in [23] (see boxplots (c) and (e)). Indeed,
the normalized objective values are equal (or close) to zero, indicating the
good ability of the algorithms to locate and reach the best-known solutions
in most of the trials. Given a significant variation in performances of the
five algorithms across the other benchmarks, this puts to question the hard-
ness of the instances from [23]. Table 3 provides a comparison with the
Variable Neighborhood Search (VNS) algorithm from [23] on these two sets
of instances. For each algorithm, we report the average quality over all the
instances (column ‘Avg.’), the CPU time in seconds (column ‘Time(s)’), the
average percent deviation with respect to the best-known (or improved) so-
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lution (column ‘% Dev.’), and the number of times that the given algorithm
either matches or improves the best-known solution. Basically, BLS-RLE
and the other four algorithms are able to improve the best result reported
by VNS for 27/95 Barabási-Albert instances. For the Erdös-Rény instances,
BLS-RLE, BLS and BLS-RND improve the result for 24/95, within a time
that is generally less than a few seconds.

Benchmark set BLS-RLE BLS BLS-RND ILS-DIRP ILS-RNDP
#best #avg #best #avg #best #avg #best #avg #best #avg

B1 (17 instances) 15 15 1 2 1 0 0 0 0 0
B2 (180 instances) 156 134 123 95 157 147 161 82 96 96
B3 (140 instances) 138 135 132 119 138 136 133 81 121 114
B4 (35 instances) 33 26 15 13 16 10 5 0 0 0
B5 (50 instances) 54 51 41 20 43 24 31 16 3 1

Table 4: Frequency that each algorithm reports an equal or improved best and average
performance on a given benchmark set, with respect to the competing algorithms.

Finally, the boxplot (h) sums up the performances of the five algorithms
across all the benchmark instances. We may conclude that BLS-RLE shows
the best overall performance, which is also confirmed by the statistical com-
parison from Table 2. The second best performing algorithm is BLS-RND,
followed by BLS and ILS-DIRP. ILS-RND exhibits the worst performance
and generally returns solutions with considerable deviation from the best-
known solution. For each benchmark set and algorithm, Table 4 further
presents the number of instances for which the given algorithm reports an
equal or improved best (column ‘#best’) and average (column ‘#avg’) per-
formance, with respect to the competing algorithms. These results confirm
the success of BLS-RLE on instances from B1, B4 and B5, and show a slight
advantage of BLS-RND over BLS-RLE on the B2 benchmark set.

For indicative purposes, the boxplot in Figure 3 presents the normalized
times required by each algorithm to attain the reported average result, across
all the benchmark instances. While BLS-RND and BLS-RLE require almost
the same amount of time to reach the reported results (in terms of median
and mean time values), BLS has only a slight advantage over BLS-RLE in
terms of the median time value. Indeed, the proposed RL-based parameter
controller introduces only a constant overhead in computational complexity
compared to BLS, as action rewards, action values and action probabilities
can be determined in constant time, if we exclude the time it takes to verify
whether an attained local optimum is the hash table structure which is
also done by BLS. Given the computed action probabilities, the selection of
the next action for perturbation is performed in constant time, while the
periodic sampling of action space has the complexity of O(n) where n is the
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Figure 3: Boxplot of the normalized times, required by each algorithm to reach the re-
ported average result, for all the benchmark instances.

size of Pall.

5. Analyses and Discussion

The purpose of this section is twofold. Firstly, the structure of the
selected VSP instances is analyzed with the aim of determining the hardness
of the used benchmark sets. Secondly, our aim is to provide the experiments
to isolate the effects of important algorithmic components, with the purpose
of understanding their behavior and evaluating their contribution to the
success of the proposed approach.

The analyses are presented as follows. Section 5.1 provides analyses of
the problem landscape to evaluate the hardness of the VSP benchmark sets
and to show the structural properties of the considered instances. In Section
5.2.1, we analyze the effects of the pre-learning procedure and the amount
of diversification introduced by each parameter pair setting. Section 5.2.2
further analyzes the time overhead introduced by the pre-learning procedure
with the increase of the number of vertices and the graph density. More-
over, it investigates the possibility of a warm-start pre-learning procedure to
eliminate or reduce the time overhead introduced by pre-learning. Finally,
in Section 5.2.3, we evaluate the importance of the strategy for the action
space sampling which is one of the distinguishing features of BLS-RLE.

5.1. Fitness-Distance Correlation and Distribution of Local Optima

The fitness-distance correlation analysis (FDC) provides useful indica-
tions about the problem hardness. It captures the correlation between the
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solution fitness and its distance to the nearest best-known solution or global
optimum (if available). For a minimization problem, if the solution fitness
decreases with the decrease of the distance to the optimum, then the objec-
tive function should provide a good guidance for the search since there is
a “path” to the optimum via solutions with decreasing (better) fitness. In
case of perfect fitness-distance correlation, the fitness-distance correlation
coefficient ρ takes a value close to 1. For correlation of ρ ≈ −1, the fitness
function is completely misleading. We consider an instance to be hard if
ρ ≤ 0.250. FDC can also be visualized with a fitness-distance plot, which
graphically displays the data for computing the fitness-distance correlation
coefficient ρ.

We analyze the landscape correlation and the distribution of local optima
on 40 selected VSP instances, which is around 9% of our VSP benchmarks.
The results reported for each instance are based on 2000 independent runs
of BLS, and using hamming distance to measure the distance between two
locally optimal solutions. Since the optimal solutions for the selected in-
stances are not known, we use instead the best-known local optima and
refer to them as global optima.

Table 5 summarizes the analytical results. Column ‘ρ’ shows a positive
fitness-distance correlation in the problem landscapes, except for instances
c-43 and soc-Epinions1 from the benchmark set B4. Therefore we consider
these two instances as among the hardest ones used in our experiments,
which might explain the low success rate of reaching the corresponding
best-known solutions. For the other instances, we observe different degrees
of landscape correlation with 0.142 ≤ ρ ≤ 0.987, which implies that the
used benchmark sets contain instances of various hardness. Characteris-
tic examples are the yeast from B4 which is a quite challenging instance
(ρ = 0.142), and E4000 003, E5000 002 from B3 which are among the
easiest instances according to the value of ρ. The fitness-distance plot in
Figure 4 visualizes the fitness-distance correlation for three selected VSP in-
stance. These plots further show the difference in the landscape correlation
between soc-Epinions1 and E5000 002. Another obvious indicator of the
problem hardness, provided in Table 5, is the instance size (i.e., the number
of vertices |V |, the number of edges |E|, as well as the graph density defined
as 2|E|/|V |(|V | − 1). In [14], the authors confirm that the hardness of the
instances increases with the number of vertices and density. The graphs that
we used in our experiments are significantly larger and thus much harder
than those from the existing VSP benchmark set [14].

To gain a better insight into the distribution of locally optimal solutions
in the search space, we further investigate the distances between locally
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Table 5: Landscape analysis for 40 selected VSP instance from benchmark sets B1 −B5,
based on 2000 independent runs of BLS. For each instance, we provide the number of
vertices (|V |) and edges (|E|), the graph density, the average vertex degree (avg. deg.),
the number of distinct local optima (i.e., the size of the analyzed sample, #lo) and global
optima found (#go), the FDC coefficient (ρ), the average distance between a local op-
timum and its nearest local optimum (avg. dmin), between local optima (avg. dall), and
between a local optimum and the nearest global optimum (avg dgo).

Instance |V | |E| density avg. deg. #lo #go ρ avg. dmin avg. dall avg. dgo
ibm02 19601 19584 0.000101 2.0 1991 1 0.455 301.3 460.5 388.4
ibm04 27507 31970 0.000085 2.3 1999 1 0.365 795.4 1069.4 986.4
ibm06 32498 34826 0.000066 2.1 1998 1 0.307 558.9 743.5 693.6

N2000 003 010 2000 5991 0.0030 6.0 1937 1 0.399 77.7 113.0 95.9
N3000 010 020 3000 29883 0.0066 19.9 1998 1 0.857 307.3 399.2 324.3
N3000 030 040 3000 89127 0.0198 59.4 2000 4 0.283 829.3 1161.0 1061.3
N4000 007 010 4000 27951 0.00340 14.0 2000 1 0.625 124.6 160.9 153.0
N4000 010 020 4000 39883 0.00498 19.9 1060 1 0.741 168.9 220.5 191.7
N4000 035 040 4000 138927 0.0174 69.5 1998 2 0.216 1236.6 1579.9 1492.5
N4000 045 050 4000 178259 0.0222 89.1 1998 11 0.316 1277.5 1619.8 1460.8
N5000 007 010 5000 69902 0.0280 14.0 2000 2 0.742 114.7 147.9 141.4
N5000 025 030 5000 124435 0.00995 49.8 2000 1 0.339 1112.9 1280.4 1149.5

E4000 001 4000 157385 0.0196 78.7 1998 5 0.472 1308.4 1660.5 1468.6
E4000 002 4000 313976 0.0393 157.0 1999 55 0.634 1243.6 1710.2 1358.2
E4000 003 4000 468183 0.0585 234.1 2000 250 0.972 1178.3 1739.2 1255.1
E5000 001 5000 245933 0.0197 98.4 1997 6 0.506 1699.5 2107.3 1886.5
E5000 002 5000 489837 0.0392 195.9 1998 622 0.987 1620.7 2168.4 1199.2
E5000 003 5000 730917 0.0580 292.4 1999 114 0.932 1487.6 2171.8 1738.1

c-43 11125 67400 0.00109 12.1 1999 2 -0.118 82.7 143.0 135.9
yeast 2361 7182 0.00258 6.1 2000 2 0.142 63.1 135.9 154.6

bcsstk17 10974 219812 0.00365 40.1 1100 164 0.638 18.2 292.0 209.3
ca-HepPh 7241 202194 0.00771 55.9 1991 1 0.496 708.8 866.8 1005.6
gre 1107 1107 5664 0.00925 10.2 897 1 0.393 3.9 39.3 152.8
sstmodel 3345 13047 0.00233 7.8 289 72 0.867 2.4 38.9 36.2
erdos992 6100 7515 0.00403 2.5 1953 2 0.526 65.4 97.8 86.4
lnsp3937 3937 25407 0.00328 12.9 1996 1972 0.838 44.3 93.1 0.7

oregon2 010505 5441 19505 0.00132 7.2 2000 1 0.661 27.5 47.0 34.8
email-Enron 9660 224896 0.00482 46.6 1998 3 0.845 547.1 771.9 606.3

soc-Epinions1 22908 389439 0.00148 34.0 2000 1 -0.030 1801.2 2577.6 19172.7
p2p-Gnutella05 8846 31839 0.00080 7.2 2000 1 0.449 1193.5 1342.9 1377.5
p2p-Gnutella06 8717 31525 0.00082 7.2 2000 1 0.401 1137.7 1297.8 1268.9
p2p-Gnutella08 6301 20777 0.00100 6.6 2000 1 0.481 646.9 759.2 732.3

G23 2000 19990 0.0100 20.0 1999 22 0.393 229.7 555.0 398.5
G25 2000 19990 0.0100 20.0 1997 35 0.515 188.1 478.9 317.0
G27 2000 19990 0.0100 20.0 1800 3 0.331 302.4 631.1 541.6
G30 2000 19990 0.0100 20.0 1991 30 0.504 279.4 616.3 435.7
G35 2000 11778 0.0589 11.8 2000 12 0.539 200.4 393.2 350.7
G36 2000 11778 0.0589 11.8 2000 1 0.371 209.1 432.8 414.1
G37 2000 11785 0.0589 11.8 2000 1 0.285 193.6 372.1 348.9
G42 2000 11779 0.0589 11.8 1860 3 0.267 228.1 429.3 409.7

optimal solutions from a given sample Q. Column ‘avg. dmin’ shows the
average distance between a local optimum lo and its nearest local optimum
lo′ where dmin(lo) = minlo′∈Q,lo′ 6=lo d(lo, lo′), while columns ‘avg. dall’ and
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Figure 4: Fitness-distance correlation analysis (FDC) for 3 VSP instances.

‘avg. dgo’ show respectively the average distance between local optima from
Q, and the average distance between a local optimum and the nearest global
optimum. From Table 5 (columns ‘avg. dmin’ and ‘avg. dall’), we observe
that the distances between local optima are significant in most cases, con-
sidering the average vertex degree (see columns ‘avg. deg ’) that represents
the average number of vertices affected by the utilized search operator. Only
for few instances (e.g., bcsstk17, sstmodel and gre 1107), the minimal and
average distances between local optima pairs are low. From column ‘#lo’,
we further observe that, for most instances, the search returns a new local
optimum almost after each run. This implies that it should not be hard for
the search to escape from an attraction basin of a local optimum. More-
over, relatively significant distances between local optima for most instances
should prevent the search from cycling even with a weak diversification.

5.2. Analyses of the Algorithmic Components

5.2.1. Pre-learning Phase and the Parameter Pair Selection Mechanism

In this section, we analyze the outcome of the pre-learning phase and
show the amount of diversification introduced by each parameter pair set-
ting from Pall = {(l, e)0, . . . , (l, e)n}. Based on the observations made from
the analyses, we justify the selection choices for particular parameter pair
settings (l, e) ∈ Pall applied for perturbation.

Because of the space limitations, we provide the results of the pre-
learning analysis only for four selected instances (ibm02, N3000 030 040,
E5000 002 and bcsstk17). For each instance, Figure 5 provides two 3D
scatter plots that show respectively the average amount of diversification
for each parameter pair setting (l, e) ∈ Pall (top figures) and the average
ranking for each (l, e) ∈ Pall (bottom figures). For the sake of clarity, the
amount of diversification is expressed as #new lo/α, where α is the number
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of iterations of the pre-learning procedure per parameter pair setting and
#new lo is the number of unique local optima encountered over α iterations.
This analysis is based on 100 independent executions of the pre-learning pro-
cedure (α = 100).

We observe from the top figures in Figure 5 that, in cases of ibm02,
N3000 030 040, E5000 002, each pair (l, e) introduces on average a sig-
nificant degree of diversification (i.e., not less than 0.92/1.00). This phe-
nomenon may be justified by the distribution of local optima as observed
in the previous section. Indeed, the distances between locally optimal so-
lutions for these instances are quite significant, especially for E5000 002,
which prevents the search from cycling given any setting of l and e. On the
other hand, according to the information presented in Table 5 (see columns
‘avg. dmin’ and ‘avg. dall’), local optima for bcsstk17 appear to be clustered
together. This explains to some extent the lower degree of diversification in-
troduced into the search for bcsstk17. As expected, plots for instance ibm02
and bcsstk17 also indicate that the degree of diversification increases with
the increase of the number of perturbation moves l. On the other hand, the
plots for E5000 002 and N3000 030 040 do not reveal such a clear correla-
tion between (l, e) values and the amount of introduced diversification.

To show the deviation of the diversification degree from the mean for
each (l, e) ∈ Pall, we provide error bars around the mean in Figure 6 (top
figures) for the four selected instances. Moreover, the bottom figures in
Figure 6 provides Standard Error (SE) of the mean rank for each (l, e) ∈ Pall.
Despite the stochastic nature of the pre-learning procedure, we observe only
a minor deviation of the diversification degree from the mean which implies
a stable ranking (with a relatively small SE) assigned to each (l, e) ∈ Pall.

Finally, Figure 7 shows the selection and application frequency of each
(l, e)i ∈ Pall, 0 ≤ i ≤ n for the four selected VSP instances (ibm02,
N3000 030 040, E5000 002 and bcsstk17). The x-axis indicates the rank i
of (l, e)i ∈ Pall, while the y-axis provides the normalized selection frequency
of (l, e)i. These results are based on one run of BLS-RLE with 500000 it-
erations of the main procedure, using the default parameter settings. For
instances ibm02, N3000 030 040 and E5000 002, we observe that BLS-RLE
is biased towards parameter pair settings with a lower rank since they intro-
duce an amount of diversification sufficient to encounter new local optima.
On the other hand, in case of bcsstk17, parameter pairs of higher ranks are
being selected more frequently since lower ranked pairs are often not suf-
ficient to escape from local optima in the given landscape. This behavior
thus coincides well with the observations made from our previous analyses,
where we observed low minimal and average distances between local optima
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(c) B3 : E5000 002
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(g) B3 : E5000 002
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Figure 5: 3D scatter plots showing the average degree of diversification introduced with
each (l, e) ∈ Pall (top figures) and the average rank for each (l, e) ∈ Pall (bottom figures).
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Figure 6: Error bars showing the variability of diversification degree for each (l, e) ∈ Pall
(top figures) and standard error of ranks (bottom figures).

in case of bccsstk17, and significantly higher distances between local optima
for ibm02, N3000 030 040 and E5000 002 (see Table 5).
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Figure 7: Frequency of selection and application of parameter pair settings (l, e)i ∈ Pall
for the 4 selected VSP instances.

5.2.2. Time Overhead and Warm-Start of the Pre-learning Procedure

This section shows the time overhead incurred by the pre-learning phase.
Moreover, we investigate the possibility of a warm-start pre-learning proce-
dure, i.e., reuse of the information (parameter pair ranks) learned in this
phase for a different instance with same or similar properties.

Since it was confirmed in [14] that the hardness (complexity) of a VSP
instance is highly correlated with the number of vertices and the graph den-
sity, it is reasonable to assume that the time required for the pre-learning
phase depends on these two factors. To demonstrate this point, we gener-
ate two benchmark sets of 30 instances with the Erdös-Rényi model [47].
To generate the first benchmark set, we fix the number of vertices to 2000
and use increasing values (from 0.01 to 0.30) for the probability p of con-
necting a pair of vertices. The second benchmark set includes graphs with
|V | = {500, 600, 700, . . . , 3400} and densities of approximately 0.096. The
plots in Figure 8 illustrate the overhead time incurred by the pre-learning
procedure for the first and the second set of benchmark instances. The
x-axis corresponds to instances in order of increasing densities (number of
vertices), while the y-axis shows the average time in seconds required by
the pre-learning phase over 30 independent executions, with α = 100. As
expected, we observe a significant increase in the time overhead with the
increase of the graph density (sub-figure (a)) as well as with the increase of
the number of vertices (sub-figure (b)).

We next investigate the possibility of reducing or eliminating this time
overhead by using parameter pair ranks determined for an instance of the
same or similar structure, from the same source (benchmark). Therefore, we
use the parameter pair ranks determined for instances ibm01, N2000 003 010,
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Figure 8: Pre-learning time overhead with the increase of the graph density (sub-figure
(a)) and the number of vertices (sub-figure (b)).

E1000 001 01, and G1 when running our algorithm on benchmark setsB1, B2, B3
and B5 respectively. In Figure 9, we provide boxplot graphs to illustrate
the impact of a warm-start pre-learning procedure on solution quality, when
combined with BLS-RLE. For each benchmark set (B1, B2, B3 and B5), we
compare the normalized objective values obtained with the standard BLS-
RLE, and with those obtained with the BLS-RLE using a warm-start pre-
learning procedure. Figure 9 also reports p-values, based on the Wilcoxon
test, for the mean results reported by the two BLS-RLE versions. From
Figure 9, we observe a negative impact of the warm-start pre-learning pro-
cedure only in case of the benchmark set B5, with p < 0.0001. Surprisingly,
BLS-RLE with warm-start pre-learning performs significantly better than
the standard BLS-RLE for the benchmark set B2 (p < 0.0001), and slightly
better than the standard BLS-RLE for instances from B1 (p = 0.517). No-
tice that the benchmark instances in the B1, B2, and B3 sets belong to the
same classes of problems, while B5 is a collection of three different types
of graphs (toroidal, planar, and random graphs). As such, these results
imply that a warm-start pre-learning mechanism could be considered with
BLS-RLE to reduce the overhead time incurred by the pre-learning phase,
especially for problem instances with same characteristics.

5.2.3. Analysis of the Action Space Sampling Strategy

One of the key features of the proposed algorithm is the dedicated strat-
egy for action space sampling (see Section 3.5), which enables rapid conver-
gence towards a limited set of actions that appear to be the most convenient
for the given state of search. To evaluate the impact of this element to the
overall success of BLS-RLE, we compare BLS-RLE with the following mod-
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Figure 9: Boxplots comparing the normalized objective values for the benchmark sets B1,
B2, B3 and B5, obtained by the standard BLS-RLE (without warm-start pre-learing) and
the BLS-RLE using a warm-start pre-learning procedure.

ifications of our algorithm:

• BLS-RLE-Pall: Unlike BLS-RLE, this algorithm does not perform
any sampling of the actions. Instead, it allows selection of any action
from the set of all the possible actions Pall at any given time. As such,
the learning is performed on all the actions from Pall, i.e., Plearn = Pall;

• BLS-RLE-Pall-restart: This algorithm is a slight modification of
BLS-RLE-Pall with a restart mechanism, which resets action values
corresponding to each (l, e) ∈ Pall to 1 after ε time steps (ε = 2000);

• BLS-RLE-RND: This algorithm performs sampling of the action
space as in BLS-RLE. However, BLS-RLE-RND employs a different
strategy to update Plearn after ε time steps, which consists of replac-
ing the worst performing action from Plearn with a randomly selected
action from Pall \ Plearn.

We carry out the comparison using the selected instances shown in Ta-
ble 5 (30 independent runs, with a maximal time limit set to 2000 seconds),
and the default parameter values (as presented in Table 1). To illustrate
the performance of the four algorithms, Figure 10 presents a box-plot graph
of their normalized performances over all the considered problem instances
and executions. It can be clearly observed that BLS-RLE has a performance
superior to those of the reference algorithms, which is confirmed by the p-
values from both the Wilcoxon-signed rank test and the Bonferroni correc-
tion method provided in Table 6 (a statistically significant difference between
the algorithms was verified beforehand by a Friedman test, p < 0.001 and
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Figure 10: Boxplot of the normalized objective values obtained with BLS-RLE, BLS-
RLE-Pall, BLS-RLE-Pall-restart and BLS-RLE-RND algorithms over all the considered
problem instances and runs.

BLS-RLE-Pall BLS-RLE-Pall-restart BLS-RLE
p pbonf p pbonf p pbonf

BLS-Pall-restart 0.045 0.272 – – – –
BLS-RLE <0.001 <0.001 <0.001 <0.001 – –

BLS-RLE-RND <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Table 6: Post-hoc analysis of the normalized performances reported with BLS-RLE and
its competitors across all the benchmark sets.

χ2 = 96.891). Indeed, we observe that the normalized objective values ob-
tained with BLS-RLE generally go to zero. According to the boxplot and
the p-values from Table 6, the second best performance is obtained with
BLS-RLE-Pall and BLS-RLE-Pall-restart which perform equally well, fol-
lowed by BLS-RLE-RND. These results not only emphasize the importance
of action space sampling for BLS-RLE but also highlight the significance of
the proposed action space sampling strategy used by BLS-RLE (see Section
3.5).

6. Conclusion

This paper presented an improved Breakout Local Search (BLS) ap-
proach, based on ideas that draw upon reinforcement learning, for the ver-
tex separator problem. As the previous BLS algorithms, the proposed BLS
method (denoted as BLS-RLE) iterates alternatively between a descent-
based local search to reach a local optimum and an adaptive multi-type
perturbation to escape from the attained local optimum. The main feature
of BLS-RLE is a novel parameter controller that interdependently deter-
mines the values for two variable-parameters, the number l of perturbation
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moves and the probability e of selecting tabu-based over random perturba-
tion, depending on the success of the given parameter setting in the previous
perturbation phases. More precisely, to escape from a local optimum s, BLS-
RLE selects a parameter pair setting (l, e) from a limited learning set Plearn
according to its action value, which is determined using a Softmax rule based
on an empirical quality estimate of the given parameter pair setting. The
originality and success of the proposed parameter controller lie in the two
following key elements: (i) a dedicated strategy for action space sampling,
which enables rapid convergence towards a limited set of actions that ap-
pear to be the most convenient for the given state of search (ii) a reward
function which complies with the principle “intensification first, minimal
diversification only if needed”.

To evaluate the ability of the proposed method to self-adaptively estab-
lish the most suitable balance between intensification and diversification, we
performed extensive computational experiments on a wide set of instances
with different sizes and structures. A large number of these instances is
motivated by several VSP applications including VLSI design, cyber secu-
rity, and decoy routing. The obtained results highlight the benefit of the
proposed parameter control mechanism. Indeed, BLS-RLE significantly im-
proves the performance of BLS and competes very favorably with several
other variations of ILS. Given the generality of the proposed RL-based pa-
rameter controller, it could be used with BLS for other important combina-
torial problems. The parameter controller is available online for future use,
and its success on other problems is going to be the topic of our future work.

Another contribution of this work are analyses of the problem landscape
that aim to evaluate the hardness of the used benchmark instances, and
to explain the behavior of BLS-RLE. Moreover, we justified the complexity
of the method with detailed analyses of the key algorithmic elements. A
careful computational complexity analysis of the proposed approach will be
studied in a future work.
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