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We present an accurate study of the static-nucleus electronic energy band gap of solid molecular
hydrogen at high pressure. The excitonic and quasiparticle gaps of the C2/c, Pc, Pbcn, and P63/m
structures at pressures of 250, 300, and 350 GPa are calculated using the fixed-node diffusion
quantum Monte Carlo (DMC) method. The difference between the mean-field and many-body
band gaps at the same density is found to be almost independent of system size and can therefore
be applied as a scissor correction to the mean-field gap of an infinite system to obtain an estimate of
the many-body gap in the thermodynamic limit. By comparing our static-nucleus DMC energy gaps
with available experimental results, we demonstrate the important role played by nuclear quantum
effects in the electronic structure of solid hydrogen.

I. INTRODUCTION

Determining the metalization pressure of solid hydro-
gen is one of the great challenges of high-pressure physics.
Since 1935, when it was predicted that molecular solid
hydrogen would become a metallic atomic crystal at 25
GPa,1 compressed hydrogen has been studied intensively.
Additional interest arises from the possible existence of
room-temperature superconductivity,2 a metallic liquid
ground state,3 and the relevance of solid hydrogen to
astrophysics.4,5

Early spectroscopic measurements at low temperature
suggested the existence of three solid-hydrogen phases.4

Phase I, which is stable up to 110 GPa, is a molecular
solid composed of quantum rotors arranged in a hexago-
nal close-packed structure. Changes in the low-frequency
regions of the Raman and infrared spectra imply the ex-
istence of phase II, also known as the broken-symmetry
phase, above 110 GPa. The appearance of phase III at
150 GPa is accompanied by a large discontinuity in the
Raman spectrum and a strong rise in the spectral weight
of molecular vibrons. Phase IV, characterized by the two
vibrons in its Raman spectrum, was recently discovered
at 300 K and pressures above 230 GPa.6–8 Another new
phase has been claimed to exist at pressures above 200
GPa and higher temperatures (for example, 480 K at 255
GPa).9 This phase is thought to meet phases I and IV
at a triple point, near which hydrogen retains its molec-
ular character. The most recent experimental results10

indicate that H2 and hydrogen deuteride at 300 K and
pressures greater than 325 GPa transform to a new phase
V, characterized by substantial weakening of the vibra-
tional Raman activity. Other features include a change in
the pressure dependence of the fundamental vibrational
frequency and the partial loss of the low-frequency exci-

tations.

Although it is very difficult to reach the hydrostatic
pressure of more than 400 GPa at which hydrogen is
normally expected to metalize, some experimental re-
sults have been interpreted as indicating metalization at
room temperature below 300 GPa.6 However, other ex-
periments show no evidence of the optical conductivity
expected of a metal at any temperature up to the highest
pressures explored.11 Experimentally, it remains unclear
whether or not the molecular phases III and IV are metal-
lic, although it has been suggested that phase V may
be non-molecular (atomic).10 Metalization is believed to
occur either via the dissociation of hydrogen molecules
and a structural transformation to an atomic metallic
phase,6,12 or via band-gap closure within the molecular
phases.13,14 In this work we investigate the latter possi-
bility using advanced computational electronic structure
methods.

Structures of crystalline materials are normally deter-
mined by X-ray or neutron diffraction methods. These
techniques are very challenging for low-atomic-number
elements such as hydrogen.15 Fortunately, optical phonon
modes disappear, appear, or experience sudden shifts in
frequency when the crystal structure changes. It is there-
fore possible to identify the transitions between phases
using optical methods.

The electronic structures of the solid molecular phases
have mainly been investigated using computational
methods based on density functional theory (DFT)16–25

and the quasiparticle (QP) approach within the GW
approximation.14,26 Although DFT-based methods can
be used to search for candidate low-energy crystal struc-
tures and to calculate their vibrational properties, the in-
adequacies of DFT are more apparent in the case of band-
gap calculations.27 To obtain accurate gaps, it is vital to
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go beyond mean-field-like methods and solve the many-
electron Schrödinger equation directly. In this work, we
employ the fixed-node diffusion quantum Monte Carlo
(DMC) method to calculate excitonic and QP band gaps
of cold dense hydrogen as functions of pressure.

Fixed-node DMC is the most accurate known method
for evaluating the total energies of continuum sys-
tems of more than a few tens of interacting quantum
particles.28–33 Recently, it has been indicated that DMC
can provide an accurate description of the phase dia-
gram of solid molecular hydrogen.34 Although the DMC
method was originally designed to study ground states,
it is also capable of providing accurate information about
excited states in atoms, molecules, and crystals.35–38

DMC calculations of excitations in crystals remain chal-
lenging because of a 1/N effect: the fractional change in
the total energy due to the presence of a one- or two-
particle excitation is inversely proportional to the num-
ber of electrons in the simulation cell. Since large simula-
tion cells are required to provide an accurate description
of the infinite solid, high-precision calculations are nec-
essary.

The main input to any ab initio calculation is the struc-
ture of the system under study, which in this case is un-
known. Hence there is no option but to use structures
predicted by mean-field methods such as DFT. It is now
generally accepted that DFT results for high-pressure
hydrogen depend on the choice of exchange-correlation
functional.21,22,25 This frustrating limitation may be the
main cause of the contradictions39,40 between existing
computational results.

In the present work we use the DMC method to carry
out a comprehensive study of the pressure dependence
of the energy band gap of solid hydrogen at high pres-
sure. The definitive static-nucleus many-body band-gap
data we provide can be used to correct results obtained
using less accurate methods. The corrections required
are approximately independent of lattice vibrations and
temperature.

The paper is organized as follows. Section II describes
the details of our DFT and quantum Monte Carlo (QMC)
calculations. Section III provides the DMC electronic
structure results for molecular solid hydrogen structures
at 250, 300, and 350 GPa. The nature of metalization is
discussed in Sec. IV. Section V concludes.

II. COMPUTATIONAL DETAILS

A. DFT calculations

We consider the C2/c, Pc, Pbcn, and P63/m molecu-
lar structures of solid hydrogen at pressures of 250, 300,
and 350 GPa. According to ab initio calculations, the
C2/c and Pc structures are the most favorable candidates
for phases III and IV, respectively.17,34 The C2/c and
Pc crystals have weakly-bonded graphene-like layers,17

while the Pbcn structure includes two different layers

of graphene-like three-molecule rings with elongated H2

molecules and unbound H2 molecules.16,17 The P63/m
structure may also be viewed as layered, but it is not
graphene-like: three quarters of the H2 molecules lie flat
in the plane and one quarter lie perpendicular to the
plane. The interplane bonding is relatively strong and
the centers of the molecules fall on a slightly distorted
hexagonal close-packed lattice.16 The structures were
fully relaxed using DFT at fixed pressure, and the re-
laxed structures were then used in the DMC simulations.
Our DFT calculations were carried out within the pseu-
dopotential and plane-wave approach using the Quantum
Espresso41 and castep42 codes. All our DFT calcula-
tions used norm-conserving pseudopotentials, a basis set
of plane waves with a cutoff of 100 Ry, and the Becke-
Lee-Yang-Parr (BLYP) generalized gradient approxima-
tion exchange-correlation energy functional.43 Geome-
try and cell optimizations employed a dense 16×16×16
k-point mesh. The Broyden-Fletcher-Goldfarb-Shanno
quasi-Newton algorithm was used for cell and geometry
optimization, with convergence thresholds on the total
energy and forces of 0.01 mRy and 0.1 mRy/Bohr, re-
spectively, to guarantee convergence of the total energy
to better than 1 meV/proton and the pressure to bet-
ter than 0.1 GPa. Internal coordinates and lattice pa-
rameters of our optimized structures are reported in the
Supplemental Material44.

We used the BLYP functional because the result-
ing structures give lower DMC energies than structures
determined using the Perdew-Burke-Ernzerhof (PBE)
functional34 Therefore, the BLYP geometries are more
accurate and hence DMC band gaps obtained using
BLYP geometries should be more accurate than DMC
band gaps obtained using PBE geometries. Further evi-
dence in support of our approach is provided by Figs. 3,
4, and 5 of Ref. 22 and also Table I of the Supplemental
Material of that work. It was shown that the van der
Waals density functional (vdW-DF)45 geometry of the
C2/c phase is very close to the DMC geometry; in partic-
ular, according to Fig. 5 of Ref. 22, of all the functionals
studied, vdW-DF gives the smallest error in the molecu-
lar bond length relative to DMC calculations. However,
the DFT geometries calculated using the vdW-DF and
BLYP functionals are almost the same. To investigate
further, we have compared the vdW-DF-optimized geom-
etry with the BLYP-optimized geometry for the P63/m
phase at 250 GPa. We find that the difference between
the resulting molecular bond lengths is 0.0007 Å. There-
fore we conclude that BLYP is an accurate DFT func-
tional for optimizing the geometry of solid hydrogen.

B. QMC calculations

Our DMC calculations used Slater-Jastrow trial wave
functions as implemented in the casino QMC code.46

The single-particle orbitals were obtained from DFT cal-
culations using the plane-wave-based Quantum Espresso
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code.41 A norm-conserving pseudopotential constructed
within DFT using the BLYP exchange-correlation func-
tional was employed.43 We chose a very large basis-set
cutoff of 200 Ry.47 The plane-wave orbitals were trans-
formed into a blip spline basis48 before use in our DMC
calculations. A time step of 0.01 a.u. was used for the
DMC calculations.

The fixed-node DMC method samples the variationally
optimal many-electron wave function consistent with an
assumed trial nodal surface. [The nodal surface of an
N -electron wave function Ψ(r1, r2, . . . , rN ) is the (3N −
1)-dimensional surface on which Ψ is zero.] The trial
nodal surface is usually defined by means of a trial wave
function, and the quality of the nodal surface of the trial
wave function affects the quality of the results. This is
the only fundamental approximation in the method.

Our fixed-node DMC results were obtained using real
trial wave functions constructed at the Γ point of the sim-
ulation supercell. To study convergence with cell size and
correct the finite-size errors we used various supercells,
the smallest and largest of which contained 128 and 864
hydrogen atoms. Our Jastrow factor included polynomial
one-body electron-nucleus (1b) terms, two-body electron-
electron (2b) terms, three-body electron-electron-nucleus
(3b) terms, and plane-wave expansions (p terms) in the
electron-electron separations.49 The p terms build long-
ranged correlations into the Jastrow factor and signifi-
cantly improve the wave function and variational energy.
We also employed a backflow (BF)50 transformation to
introduce more correlation into the trial wave function
and thus improve the fixed nodal surface. Our BF trans-
formation included electron-electron and electron-proton
terms and is given by

Xi({rj}) = ri + ξ
(e−e)
i ({rj}) + ξ

(e−P )
i ({rj}), (1)

where Xi({rj}), the transformed coordinate of electron i,
depends on the full configuration of the system {rj}. The

vector functions ξ
(e−e)
i ({rj}) and ξ

(e−P )
i ({rj}) are the

electron-electron and electron-proton BF displacements
of electron i, respectively. They are parameterized as

ξ
(e−e)
i ({rj}) =

Ne∑
j 6=i

αij(rij)rij (2)

and

ξ
(e−P )
i ({rj}) =

NP∑
I

βiI(riI)riI , (3)

where αij(rij) and βiI(riI) are polynomial functions of
electron-electron and electron-proton distance, respec-
tively, and contain optimizable parameters. All ad-
justable parameters in the Jastrow factor and BF func-
tion were optimized using variance and energy minimiza-
tion, respectively, at the variational Monte Carlo (VMC)
level.51,52

The QP energy gap is defined as

∆qp = EN+1 + EN−1 − 2E0, (4)

where E0 is the ground-state energy of a system of N
electrons and EN+1 (EN−1) is the many-body total en-
ergy of the system after an electron has been added to
(removed from) the system. Our calculations of ∆qp are
performed at the Γ point of the supercell Brillouin zone,
equivalent to a mesh of k-points including Γ in the prim-
itive Brillouin zone. We calculate a vertical QP energy
gap, assuming that the ground- and excited-state struc-
tures are the same. The difference between the vertical
and adiabatic QP gaps is expected to be small.53 We used
the same Jastrow factors (and, where relevant, BF func-
tions) for N -, (N+1)-, and (N−1)-electron systems. We
create excitonic states by promoting an electron from a
valence-band orbital into a conduction-band orbital with
the same Bloch wavevector. The excitonic absorption
gap is

∆exc = E′ − E0, (5)

where E′ is the total energy of the excitonic state. Again
we work at the Γ point of the supercell Brillouin zone.
In the ground-state geometry, the singlet excitonic gap is
equivalent to the vertical optical absorption gap.53

To obtain DMC band gaps in the thermodynamic (in-
finite supercell) limit we introduce a scissor correction
δsci(N), defined as the difference between the DMC and
DFT band gaps of a given supercell at a given density:
δsci(N) = ∆DMC(N) −∆DFT(N), where ∆DMC(N) and
∆DFT(N) are DMC and DFT band gaps for a simulation
cell containing N atoms.

III. RESULTS

A. C2/c structure

The C2/c structure has 24 atoms in the primitive unit
cell. Our DMC simulations employed supercells of 192
(2 × 2 × 2), 432 (2 × 3 × 3), and 648 (3 × 3 × 3) atoms.
Table I lists our DMC results for the C2/c phase at pres-
sures of 250, 300, and 350 GPa. Slater-Jastrow trial wave
functions without BF were used.

The top panel of Fig. 1 shows the ground-state VMC
and DMC energies of the C2/c structure at 250 GPa.
Calculations were carried out with five different Slater-
Jastrow trial wave functions: the first included only
one- and two-body Jastrow correlations [SJ(1b+2b)];
the second had one-, two-, and three-body correla-
tions [SJ(1b+2b+3b)]; the third had one-, two-, and
three-body correlations and p terms [SJ(1b+2b+3b+p)];
the fourth had one- and two-body correlations and BF
[BSJ(1b+2b)]; and the fifth had one-, two-, and three-
body correlations, p terms, and BF [BSJ(1b+2b+3b+p)].

The bottom panel of Fig. 1 shows how the choice
of wave function affects the calculated ground-state en-
ergy of the C2/c structure; energies are relative to the
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TABLE I. DMC results for the C2/c structure at pressures P = 250, 300, and 350 GPa. The columns headed E0, E′, EN+1,
and EN−1 list the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet
excited state of that supercell, the ground state of the supercell after one electron has been added, and the ground state of the
supercell after one electron has been removed, respectively. The columns headed ∆exc, ∆qp, and δsci are the values in eV of
the excitonic band gap, the QP band gap, and the scissor correction.

P = 250 GPa

N E0 E′ EN+1 EN−1 ∆exc ∆qp δsci
192 −102.288(1) −102.177(2) −101.888(2) −102.571(2) 3.02(6) 3.18(6) 1.08(6)
432 −230.075(2) −229.947(3) −229.662(3) −230.354(3) 3.5(1) 3.6(1) 1.1(1)
648 −345.278(2) −345.112(3) −344.868(3) −345.524(3) 4.5(1) 4.5(1) 1.2(1)

P = 300 GPa
192 −100.803(1) −100.721(2) −100.381(2) −101.142(2) 2.23(6) 2.26(6) 0.81(6)
432 −226.808(1) −226.713(3) −226.377(3) −227.143(3) 2.6(1) 2.6(1) 0.7(1)
648 −340.400(1) −340.278(3) −339.963(3) −340.707(3) 3.3(1) 3.5(1) 0.7(1)

P = 350 GPa
192 −99.377(1) −99.331(2) −98.934(2) −99.775(2) 1.25(6) 1.22(6) 0.6(1)
432 −223.686(2) −223.611(3) −223.225(3) −224.070(3) 2.0(1) 2.1(1) 0.7(1)
648 −335.419(2) −335.306(3) −334.991(3) −335.736(3) 3.1(1) 3.0(1) 0.8(1)
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FIG. 1. (Color online) Top panel: VMC and DMC energies of
the C2/c structure at 250 GPa. Various wave functions were
used as explained in the text. Total energies were calculated
at the Γ point of a simulation cell containing 288 atoms. Bot-
tom panel: VMC and DMC energies relative to their values
calculated using a SJ(1b+2b) wave function. The incorpora-
tion of BF significantly improves the DMC total energy.

SJ(1b+2b) value, which was chosen as a reference. As
expected, adding 3b correlations and p terms to the Jas-
trow factor reduces the VMC energy substantially, but
the DMC energy is not affected because the trial nodal
surface is unaltered. Using a BF transformation im-
proves the trial nodal surface and lowers the calculated
energy at both the VMC and DMC levels. Adding BF to
a SJ(1b+2b) wave function lowers the DMC energy by
18(1) meV/atom.

The difference between the VMC energies calculated
with the SJ(1b+2b) and SJ(1b+2b+3b+p) wave func-
tions is 45(2) meV/atom, whereas adding BF correlations
to a SJ(1b+2b) wave function lowers the VMC energy
by 53(1) meV/atom. The VMC energy gained by intro-
ducing BF is therefore comparable to that gained using
3b correlations and p-terms. The difference between the
SJ(1b+2b) DMC energy and BSJ(1b+2b+3b+p) VMC
energy is just 9(2) meV/atom.

Table II lists the DMC QP and excitonic gaps of the
C2/c structure at 250 GPa. Results obtained with Slater-
Jastrow (SJ) and BF-Slater-Jastrow (BSJ) wave func-
tions are shown. We used a simulation cell with 192
hydrogen atoms.

Figure 2 illustrates the DMC band structure of the
C2/c phase at pressures of 250, 300, and 350 GPa; the
band energies were obtained by adding the DMC-based
scissor correction to the DFT-BLYP band structure.

B. Pc structure

The Pc structure has 48 atoms in the primitive unit
cell. Our DMC simulations employed supercells of 192
(2 × 2 × 1), 384 (2 × 2 × 2), and 576 (3 × 2 × 2) atoms.
Table III lists our DMC results for the Pc structure at
pressures of 250, 300, and 350 GPa.

Figure 3 illustrates the DMC band structure of the Pc
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TABLE II. DMC results for a simulation cell containing N = 192 atoms in the C2/c structure at 250 GPa. Calculations were
carried out using SJ(1b+2b) and BSJ(1b+2b) wave functions. The columns headed E0, EN+1, and EN−1 list the ground-state
energies in Hartrees of systems containing N , N + 1, and N − 1 electrons, respectively. The column headed E′ lists the energy
of the singlet first excited state of the N -electron system, again in Hartrees. The columns headed ∆qp and ∆exc are the QP
and excitonic energy gaps in eV.

Wave fn. E0 E′ EN+1 EN−1 ∆exc ∆qp

SJ −102.288(1) −102.177(2) −101.888(2) −102.571(2) 3.02(6) 3.18(6)
BSJ −102.373(2) −102.270(4) −101.986(3) −102.662(4) 2.8(1) 2.7(1)

TABLE III. DMC results for the Pc structure at pressures P = 250, 300, and 350 GPa. The columns headed E0, E′, EN+1,
and EN−1 list the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet
excited state of that supercell, the ground state of the supercell after one electron has been added, and the ground state of the
supercell after one electron has been removed, respectively. The columns headed ∆exc, ∆qp, and δsci are the values in eV of
the excitonic band gap, the QP band gap, and the scissor correction.

P = 250 GPa

N E0 E′ EN+1 EN−1 ∆exc ∆qp δsci
192 −101.410(1) −101.266(2) −101.008(2) −101.672(2) 3.92(8) 3.81(8) 1.79(8)
384 −203.298(2) −203.190(3) −202.885(3) −203.596(3) 2.9(1) 3.1(1) 1.6(1)
576 −306.654(2) −306.502(3) −306.238(4) −306.926(4) 4.1(1) 3.9(2) 1.7(2)

P = 300 GPa
192 −99.915(1) −99.8012(2) −99.492(2) −100.214(2) 3.09(8) 3.3(1) 1.7(1)
384 −200.379(2) −200.301(3) −199.951(3) −200.729(3) 2.1(1) 2.1(1) 1.5(1)
576 −303.519(2) −303.395(3) −303.086(4) −303.834(4) 3.3(1) 3.2(2) 1.6(1)

P = 350 GPa
192 −98.474(1) −98.390(2) −98.024(2) −98.828(2) 2.28(8) 2.6(1) 1.4(1)
384 −197.568(2) −197.522(3) −197.126(3) −197.973(3) 1.2(1) 1.0(1) 1.1(1)
576 −299.483(2) −299.388(4) −299.023(4) −299.853(4) 2.6(1) 2.4(2) 1.3(1)

phase at pressures of 250, 300, and 350 GPa; the band
energies were obtained by adding the DMC-based scissor
correction to the DFT-BLYP band structure.

C. Pbcn structure

The Pbcn structure has 48 atoms in the primitive unit
cell. Our DMC simulations employed supercells of 384
(2 × 2 × 2), 576 (3 × 2 × 2), and 864 (3 × 3 × 2) atoms.
Table IV lists our DMC results for the Pbcn phase at
pressures of 250, 300, and 350 GPa.

Figure 4 illustrates the DMC band structure of the
Pbcn phase at pressures of 250, 300, and 350 GPa; the
band energies were obtained by adding the DMC-based
scissor correction to the DFT-BLYP band structure.

D. P63/m structure

The P63/m structure has 16 atoms in the primitive
unit cell. Our DMC simulations employed supercells of
128 (2× 2× 2), 192 (2× 2× 3), 288 (3× 2× 3), and 768
(4× 3× 4) atoms. Table V presents our DMC results for
P63/m phase at pressures of 250, 300, and 350 GPa.

Figure 5 illustrates the DMC band structure of the
P63/m phase at pressures of 250, 300, and 350 GPa; the

band energies were obtained by adding the DMC-based
scissor correction to the DFT-BLYP band structure.

IV. DISCUSSION

A. Static-nucleus results

1. Exciton binding

We calculated the DMC singlet and triplet excited-
state total energies for the C2/c phase using a simulation
cell containing 192 hydrogen atoms. The singlet excited-
state energy was obtained by promoting an electron with-
out flipping its spin; the triplet excited-state energy was
obtained by promoting an electron and flipping its spin.
The values of the first singlet and triplet excited-state
total energies at a pressure of 250 GPa are −102.177(2)
and −102.174(3) Hartrees, respectively; thus the differ-
ence in the singlet and triplet excitonic gaps is statisti-
cally insignificant. Indeed, we find that the singlet and
triplet exciton binding energies in high-pressure solid hy-
drogen are smaller than 0.1 eV and cannot be resolved
above the statistical and finite-size errors in our DMC
results. Many-body perturbation theory calculations of
the excitonic gap of the Cmca-12 structure show that the
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TABLE IV. DMC results for the Pbcn structure at pressures P = 250, 300, and 350 GPa. The columns headed E0, E′, EN+1,
and EN−1 list the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet
excited state of that supercell, the ground state of the supercell after one electron has been added, and the ground state of the
supercell after one electron has been removed, respectively. The columns headed ∆exc, ∆qp, and δsci are the values in eV of
the excitonic band gap, the QP band gap, and the scissor correction.

P = 250 GPa

N E0 E′ EN+1 EN−1 ∆exc ∆qp δsci
384 −204.109(2) −203.969(2) −203.693(3) −204.384(3) 3.8(1) 3.8(1) 1.5(1)
576 −306.573(2) −306.442(3) −306.169(3) −306.845(3) 3.5(1) 3.6(1) 1.4(1)
864 −459.801(3) −459.650(3) −459.391(4) −460.052(4) 4.1(1) 4.3(1) 1.4(1)

P = 300 GPa
384 −201.177(2) −201.067(2) −200.745(3) −201.499(3) 2.9(1) 3.0(1) 1.4(1)
576 −302.286(2) −302.180(3) −301.857(3) −302.611(3) 2.9(1) 2.8(1) 1.5(1)
864 −453.392(3) −453.260(3) −452.942(4) −453.703(4) 3.6(1) 3.8(2) 1.5(1)

P = 350 GPa
384 −198.219(2) −198.146(2) −197.764(3) −198.598(3) 2.0(1) 2.1(1) 0.9(1)
576 −297.994(2) −297.927(3) −297.546(3) −298.380(3) 1.8(1) 1.7(1) 0.9(1)
864 −446.970(3) −446.892(3) −446.519(4) −447.334(4) 2.1(1) 2.3(2) 0.9(1)

TABLE V. DMC results for the P63/m structure at pressures P = 250, 300, and 350 GPa. The columns headed E0, E′, EN+1,
and EN−1 list the total DMC energies in Hartrees of the ground state of a supercell containing N electrons, the first singlet
excited state of that supercell, the ground state of the supercell after one electron has been added, and the ground state of the
supercell after one electron has been removed, respectively. The columns headed ∆exc, ∆qp, and δsci are the values in eV of
the excitonic band gap, the QP band gap, and the scissor correction.

P = 250 GPa

N E0 E′ EN+1 EN−1 ∆exc ∆qp δsci
128 −67.887(1) −67.755(2) −67.448(2) −68.197(2) 3.59(6) 3.51(7) 1.2(1)
192 −102.401(1) −102.272(2) −101.956(3) −102.720(3) 3.51(6) 3.4(1) 1.1(1)
288 −153.446(2) −153.303(3) −152.996(3) −153.756(3) 3.89(9) 3.8(1) 1.4(1)
768 −410.141(3) −409.998(3) −409.691(4) −410.451(4) 3.9(1) 3.8(1) 1.3(1)

P = 300 GPa
128 −66.821(1) −66.718(2) −66.401(2) −67.141(2) 2.80(6) 2.7(1) 1.0(1)
192 −100.918(1) −100.817(2) −100.499(3) −101.237(3) 2.75(6) 2.7(1) 0.9(1)
288 −151.198(2) −151.081(3) −150.757(3) −151.523(3) 3.2(1) 3.2(1) 1.4(1)
768 −403.192(3) −403.082(3) −402.757(4) −403.517(4) 3.0(1) 3.0(1) 1.3(1)

P = 350 GPa
128 −65.832(1) −65.760(2) −65.405(2) −66.186(2) 1.96(6) 2.0(1) 0.9(1)
192 −99.501(1) −99.431(2) −99.081(3) −99.850(3) 1.9(1) 1.9(1) 0.7(1)
288 −149.067(2) −148.982(3) −148.647(3) −149.403(3) 2.3(1) 2.3(1) 1.0(1)
768 −397.818(3) −397.735(3) −397.398(4) −398.156(4) 2.2(1) 2.2(1) 1.0(1)

exciton binding energy decreases with increasing pressure
from 66 meV at 100 GPa to 12 meV at 200 GPa.54 Ac-
curate DMC calculations of the exciton binding energy
would therefore require an unattainable precision of bet-
ter than 10 meV in the total energy of the simulation cell.
Therefore, in the rest of this paper, we do not attempt
to distinguish the excitonic band gap ∆exc from the QP
band gap ∆qp.

2. Backflow

The simplest possible antisymmetric many-electron
trial wave function is a Slater determinant of Hartree-
Fock or DFT orbitals. Multiplying the Slater determi-
nant by a Jastrow factor helps to keep electrons away
from each other and significantly lowers the energy ex-
pectation value calculated in a VMC simulation, but does
not change the nodal surface or the fixed-node DMC
energy. Introducing a BF transformation,50 which can
be viewed as a leading-order improvement to the Slater-
Jastrow form,55,56 changes the nodes and thus lowers the
DMC energy. Here we have systematically investigated
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FIG. 2. (Color online) DMC scissor-corrected DFT-BLYP
band structures of the C2/c phase at pressures P = 250, 300,
and 350 GPa. The dashed line shows the Fermi energy.

the influence of BF on the fixed-node DMC results for
solid hydrogen. We also have addressed the question of
how the choice of wave function affects VMC and DMC
results.

Band gaps calculated using Hartree-Fock theory, which
neglects electron-electron correlation, are generally much
too large. DMC calculations using Slater-Jastrow trial
wave functions retrieve a high percentage of the correla-
tion energy and produce gaps closer to experimental val-
ues. It is unsurprising that improving the DMC descrip-
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FIG. 3. (Color online) As Fig. 2, but for the Pc phase at
pressures P = 250, 300, and 350 GPa.

tion of electronic correlation by adding a BF transforma-
tion further lowers the calculated DMC gap. As shown in
Table II, using BF trial wave functions decreases the cal-
culated QP and excitonic gaps of the C2/c structure by
0.5(1) and 0.2(1) eV, respectively, bringing them within
error bars of each other. Although the inclusion of BF
considerably improves the DMC results, the computa-
tional cost is high. One of the most expensive operations
in any DMC code is the evaluation of the orbitals and
their first two derivatives, and the evaluation of the col-
lective BF coordinates makes this even slower, because
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FIG. 4. (Color online) As Fig. 2, but for the Pbcn phase at
pressures P = 250, 300, and 350 GPa.

every element of the Slater matrix must be updated ev-
ery time a single electron is moved. For this reason we
did not utilize BF wave functions for the other structures
at different pressures.

3. Finite-size effects in scissors corrections

Our results indicate that the magnitude of the scissor
correction depends on the crystal structure and the ap-
plied pressure. To within our statistical error of 0.1(1)
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FIG. 5. (Color online) As Fig. 2, but for the P63/m phase at
pressures P = 250, 300, and 350 GPa.

eV, we found that δsci(N) is independent of system size
N for N≥200. The DMC band gap at infinite system size
is therefore ∆DMC(N →∞) = ∆DFT(N →∞) + δsci.

The scissor correction δsci has a very weak bond-length
dependence, but the DFT band gap ∆DFT is sensitive to
the molecular bond length. The bond lengths used here
lie within 0.0007 Å of those calculated using the van der
Waals density functional (vdW-DF),45 which are known
to differ by less than 0.008 Å from the optimized DMC
bond lengths for the C2/c phase.22 Figure 6 illustrates
the P63/m DFT band gaps, which were obtained using
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FIG. 6. (Color online) DFT energy gap as a function of molec-
ular bond length for the P63/m phase at fixed density. The
results are calculated using the BLYP, PBE, and vdW-DF
functionals.

the BLYP, PBE, and vdW-DF functionals, as a func-
tion of H–H molecular bond length. The gradient of the
band gap with respect to molecular bond length is ∼ 27.3
eV/Å. The same gradient is obtained with each density
functional. Multiplying the maximum bond-length error
of 0.008 + 0.0007 ≈ 0.009 Å by the gradient of the DFT
gap with respect to bond length shows that the resulting
error in the static-nucleus gap is no greater than 0.25 eV.

4. DMC band gaps

Table VI shows the static-nucleus DMC band gaps of
the C2/c, Pc, Pbcn, and P63/m structures at pressures
of 250, 300, and 350 GPa. The band gaps of the C2/c and
Pc structures are similar, as are those of the Pbcn and
P63/m structures. The P63/m band gaps are slightly
greater than those of the other structures studied. A
linear extrapolation suggests that the band gaps of the
C2/c, Pc, Pbcn, and P63/m structures vanish at pres-
sures of 464(5), 421(6), 442(5), and 473(4) GPa. DMC
calculations of the phase diagram predict that the static-
nucleus molecular-to-atomic phase transition also occurs
in the pressure range 415–475 GPa.12

TABLE VI. DMC band gaps for different high-pressure solid
molecular hydrogen structures at pressures of 250, 300, and
350 GPa.

∆DMC (eV)Structure
250 GPa 300 GPa 350 GPa

C2/c 3.0(2) 2.3(2) 1.6(2)
Pc 3.2(2) 2.4(2) 1.3(2)
Pbcn 3.6(2) 2.8(2) 1.7(2)
P63/m 3.6(2) 2.8(2) 2.0(2)

Figure 7 compares the pressure dependence of the
static-nucleus DMC band gaps of the C2/c, Pbcn, Pc,
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FIG. 7. Static-nucleus DMC energy gaps for the C2/c, Pc,
Pbcn, and P63/m structures against pressure P . References
(a),57 (b),11 (c),18 and (d)7 are energy gaps at different P (±3
GPa) reported by experiments.

and P63/m structures of hydrogen with experimental
data. The DMC energy gaps of the Pc and C2/c struc-
tures at 300 GPa are close to the absorption-edge mea-
surements for hydrogen at 100 K and above 300 GPa
reported in Ref. 57. These authors predicted that, at
low temperatures, metallic hydrogen should be observed
at about 450 GPa, when the electronic band gap closes.
The Pbcn and P63/m energy gaps are larger than the ex-
perimentally measured gap over the entire pressure range
studied. Figure 7 illustrates that there is substantial dis-
agreement between experimental gap measurements.

B. Nuclear quantum effects

It is well known12,34 that nuclear quantum effects
(NQEs) are significant in hydrogen-rich systems and af-
fect the phase transitions of high-pressure solid hydrogen.
DFT-based path-integral molecular dynamics (PIMD)
simulations21 indicate that the influence of NQEs on the
band gap is strongly dependent on the choice of exchange-
correlation functional. PIMD results at T = 200 K ob-
tained using the PBE58 functional predict that the band
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gaps of the C2/c and Pbcn structures close below 250
GPa,21 in disagreement with experiment. PIMD simu-
lations employing the Heyd-Scuseria-Ernzerhof (HSE)59

functional are not significantly better, although using
a van der Waals functional leads to an improvement.21

These results are surprising because DFT calculations us-
ing the hybrid HSE functional normally yield much bet-
ter ground-state band gaps than calculations using the
semilocal PBE functional.60

Assuming the validity of the Born-Oppenheimer ap-
proximation, the full electron-nuclear wave function
Ψ(R,d) may be approximated as Φ(R|d)χ(d), where
Φ(R|d) is a function of the positions R = (r1, r2, . . . , rN )
of the N electrons in the supercell at fixed nuclear po-
sitions d, and χ(d) is the nuclear wave function. The
band structure as calculated using PIMD is an average
of the band structures corresponding to the electronic
wave functions Φ(R|d), weighted according to the nu-
clear probability density |χ(d)|2. Since each HSE band
gap is likely to be better (wider) than the corresponding
PBE band gap, the finite-temperature HSE-PIMD gap
ought to be better than the PBE-PIMD gap. The obser-
vation that both PIMD gaps are poor suggests, there-
fore, that both functionals produce inaccurate nuclear
probability densities |χ(d)|2. This problem is consistent
with other observed failures of DFT for high-pressure
hydrogen.25 Understanding the influence of NQEs and
temperature on the band gap of solid hydrogen is a chal-
lenging problem that may require going beyond DFT-
based methods. We do not address this problem here,
but a comparison of our static-nucleus DMC band gaps
with experimental results can yield estimates of NQEs.

It is not straightforward to measure the band gap at
pressures greater than 300 GPa, but the experimental re-
sults shown in Fig. 7 suggest that solid hydrogen remains
an insulator up to 350 GPa or more. The C2/c and Pc
structures are currently considered34 the most likely can-
didates for phases III and IV, respectively, and the Pbcn
and P63/m structures have higher band gaps than these.
Despite the inevitable band-gap reduction due to NQEs,
we assume that all of the structures considered in this pa-
per have nonzero band gaps at 300 GPa and 300 K. The
estimated molecular-to-atomic transition pressure, cal-
culated using static-nucleus DMC calculations together
with DFT anharmonic vibrational corrections, is about
374 GPa.12 According to Fig. 7, the vibrational renor-
malization of the gap of C2/c (the structure believed to
correspond to phase III) would have to be −1.3(2) eV
if the gap is to have closed at 374 GPa. Assuming that
the Pc structure is the best candidate for phase IV, as
has been reported recently,34 the calculated DMC band
gap at 300 GPa is 0.6(2) eV larger than the experimen-
tal gap reported in Ref. 7. The difference is similar to
the zero-point renormalization of the diamond band gap
at ambient conditions, which was found to be as large as
0.6 eV,61,62 but the atomic mass of carbon is twelve times
that of hydrogen and we would expect a larger band-gap

reduction here. Other experimental results18 report an
energy gap of 1.2 eV for high pressure hydrogen at 300 K
and pressures around 300 GPa. This would imply a NQE
band-gap reduction of 1.2(2) eV, which we believe to be
more plausible. Bearing in mind the expected NQE, our
static-nucleus DMC gaps are more consistent with the
experimental results reported in Ref. 18 than with those
reported in Refs. 57, 11, and 7. Hence our results suggest
that due to the strong zero-point motion and coupling
between the band gap and molecular bond length, it is
possible all of the graphene-like phases have a significant
density of states within the static gap.

The main effect of quantum and thermal vibrations is
to increase the intermolecular interactions and weaken
the intramolecular bonding. Bearing in mind the sym-
metries and geometries of the crystals studied, we would
expect the NQE-induced band-gap reduction to be larger
in the layered C2/c, Pc, and Pbcn structures than in the
P63/m structure. This suggestion is consistent with the
high structural flexibility of phase IV observed in ab initio
variable-cell molecular dynamics simulations63 at pres-
sures of 250–350 GPa and temperatures of 300–500 K.
Protons in the graphene-like layers were seen to transfer
readily to neighboring molecular sites via a simultane-
ous rotation of three-molecule rings. The role played by
nuclear dynamics needs to be investigated in subsequent
work, and ultimately this prediction about the nature of
the phase transition needs to be tested by experiment.

V. CONCLUSIONS

In summary, we have performed DMC calculations of
the QP and excitonic energy band gaps of solid molec-
ular hydrogen at high pressure. We find that the exci-
ton binding energy is smaller than 100 meV/atom and
that our DMC QP and excitonic band gaps are within
error bars of one another. We have systematically inves-
tigated the energy reductions obtained by introducing a
better description of electronic correlation into our VMC
and DMC trial wave functions. Using a highly-correlated
BF wave function reduces the DMC band gap and sig-
nificantly improves the ground-state DMC energy by de-
creasing the fixed-node errors. A comparison of our DMC
band-gap results with experiments suggest that NQEs re-
duce the band gap significantly, especially in the layered
structures. We also find that there is a strong coupling
between the band gap and molecular bond length.
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This supplemental material reports the DFT-
optimized geometries of the C2/c, Pc, Pbcn, and P63/m
structures at pressures of P = 250, 300, and 350 GPa.

TABLE I: The C2/c primitive unit-cell lattice vectors a, b, and c, and
the positions of the hydrogen atoms at pressure P = 250 GPa. The
vectors and atomic positions are in Å and fractional coordinates, respec-
tively.

x y z
a 1.4815461 −0.0022109 −2.5639192
b −0.0243118 5.4390488 0.0000000
c 1.4815461 −0.0022109 2.5639192
H 0.844631 0.121031 0.501696
H 0.155369 0.878969 0.498304
H −0.001696 0.378969 0.655369
H 1.001696 0.621031 0.344631
H 0.609886 0.112150 0.516675
H 0.390114 0.887850 0.483325
H 0.983325 0.387850 0.890114
H 0.016675 0.612150 0.109886
H 0.314275 0.124817 0.756728
H 0.685725 0.875183 0.243272
H 0.743272 0.375183 0.185725
H 0.256728 0.624817 0.814275
H 0.337548 0.125465 0.009452
H 0.662452 0.874535 0.990548
H 0.490548 0.374535 0.162452
H 0.509452 0.625465 0.837548
H 0.817527 0.128149 0.992764
H 0.182473 0.871851 0.007236
H 0.507236 0.371851 0.682473
H 0.492764 0.628149 0.317527
H 0.072678 0.138432 0.219647
H 0.927322 0.861568 0.780353
H 0.280353 0.361568 0.427322
H 0.719647 0.638432 0.572678

TABLE II: The C2/c primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 300 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 1.4418320 −0.0023929 −2.4943937
b −0.0245155 5.2664807 0.0000000
c 1.4418320 −0.0023929 2.4943937

H 0.853516 0.121171 0.501453
H 0.146484 0.878829 0.498547
H −0.001453 0.378829 0.646484
H 1.001453 0.621171 0.353516
H 0.612310 0.111255 0.517590
H 0.387690 0.888745 0.482410
H 0.982410 0.388745 0.887690
H 0.017590 0.611255 0.112310
H 0.313389 0.125082 0.757924
H 0.686611 0.874918 0.242076
H 0.742076 0.374918 0.186611
H 0.257924 0.625082 0.813389
H 0.337469 0.125322 0.018152
H 0.662531 0.874678 0.981848
H 0.481848 0.374678 0.162531
H 0.518152 0.625322 0.837469
H 0.808604 0.128015 0.983437
H 0.191396 0.871985 0.016563
H 0.516563 0.371985 0.691396
H 0.483437 0.628015 0.308604
H 0.070981 0.139194 0.217197
H 0.929019 0.860806 0.782803
H 0.282803 0.360806 0.429019
H 0.717197 0.639194 0.570981

TABLE III: The C2/c primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 350 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 1.4090036 −0.0023292 −2.4373157
b −0.0239256 5.1308644 0.0000000
c 1.4090036 −0.0023292 2.4373157
H 0.860370 0.121372 0.501166
H 0.139630 0.878628 0.498834
H −0.001166 0.378628 0.639630
H 1.001166 0.621372 0.360370
H 0.613210 0.111125 0.517812
H 0.386790 0.888875 0.482188
H 0.982188 0.388875 0.886790
H 0.017812 0.611125 0.113210
H 0.313064 0.125308 0.758260
H 0.686936 0.874692 0.241740
H 0.741740 0.374692 0.186936
H 0.258260 0.625308 0.813064
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H 0.337492 0.125151 0.024865
H 0.662508 0.874849 0.975135
H 0.475135 0.374849 0.162508
H 0.524865 0.625151 0.837492
H 0.801888 0.127847 0.976122
H 0.198112 0.872153 0.023878
H 0.523878 0.372153 0.698112
H 0.476122 0.627847 0.301888
H 0.070329 0.139154 0.216192
H 0.929671 0.860846 0.783808
H 0.283808 0.360846 0.429671
H 0.716192 0.639154 0.570329

TABLE IV: The Pc primitive unit-cell lattice vectors a, b, and c, and the
positions of the hydrogen atoms at pressure P = 250 GPa. The vectors
and atomic positions are in Å and fractional coordinates, respectively.

x y z
a 2.9548501 0.0000000 0.0100312
b 0.0000000 5.1399756 0.0000000
c 0.0043851 0.0000000 5.4494028
H 0.051805 0.122043 0.772062
H 0.226554 0.211250 0.745395
H 0.227557 0.554236 0.735110
H 0.682445 0.167463 0.994329
H 0.988247 0.305590 0.990770
H 0.883618 0.435073 0.993366
H 0.733552 0.385678 0.244800
H 0.572241 0.288611 0.272867
H 0.569761 0.953638 0.259868
H 0.938883 0.324581 0.492573
H 0.871698 0.102596 0.490583
H 0.015449 −0.013503 0.498013
H 0.236684 0.114039 0.222648
H 0.068407 0.210166 0.236894
H 0.072603 0.547790 0.252763
H 0.434675 0.178970 0.994106
H 0.379833 0.400640 0.995677
H 0.520261 0.518307 0.993036
H 0.555211 0.377402 0.743625
H 0.728557 0.287520 0.715628
H 0.724771 0.948264 0.729009
H 0.186204 0.336922 0.494094
H 0.485722 0.191035 0.498222
H 0.375603 0.063185 0.494324
H 0.051805 0.877957 0.272062
H 0.226554 0.788750 0.245395
H 0.227557 0.445764 0.235110
H 0.682445 0.832537 0.494329
H 0.988247 0.694410 0.490770
H 0.883618 0.564927 0.493366
H 0.733552 0.614322 0.744800
H 0.572241 0.711389 0.772867
H 0.569761 0.046362 0.759868
H 0.938883 0.675419 0.992573
H 0.871698 0.897404 0.990583
H 0.015449 1.013503 0.998013
H 0.236684 0.885961 0.722648
H 0.068407 0.789834 0.736894
H 0.072603 0.452210 0.752763
H 0.434675 0.821030 0.494106
H 0.379833 0.599360 0.495677
H 0.520261 0.481693 0.493036

H 0.555211 0.622598 0.243625
H 0.728557 0.712480 0.215628
H 0.724771 0.051736 0.229009
H 0.186204 0.663078 0.994094
H 0.485722 0.808965 0.998222
H 0.375603 0.936815 0.994324

TABLE V: The Pc primitive unit-cell lattice vectors a, b, and c, and the
positions of the hydrogen atoms at pressure P = 300 GPa. The vectors
and atomic positions are in Å and fractional coordinates, respectively.

x y z
a 2.8721684 0.0000000 0.0083383
b 0.0000000 4.9971927 0.0000000
c 0.0017747 0.0000000 5.2769962
H 0.051715 0.119639 0.774639
H 0.228491 0.212358 0.748311
H 0.228411 0.554441 0.735696
H 0.720414 0.167891 0.994553
H 0.977070 0.317093 0.990756
H 0.863785 0.453872 0.993313
H 0.736073 0.385519 0.246674
H 0.570005 0.287105 0.275987
H 0.566274 0.951725 0.259221
H 0.960809 0.324731 0.493149
H 0.854576 0.121455 0.491324
H 0.004118 −0.002464 0.497268
H 0.240210 0.115142 0.219030
H 0.065276 0.211423 0.235256
H 0.069995 0.550262 0.251794
H 0.457756 0.179152 0.994294
H 0.361029 0.381287 0.995771
H 0.508367 0.506823 0.993381
H 0.554915 0.380206 0.740782
H 0.729287 0.286137 0.713187
H 0.727884 0.948834 0.729893
H 0.222943 0.336152 0.493550
H 0.473760 0.180157 0.497967
H 0.357178 0.044910 0.493968
H 0.051715 0.880361 0.274639
H 0.228491 0.787642 0.248311
H 0.228411 0.445559 0.235696
H 0.720414 0.832109 0.494553
H 0.977070 0.682907 0.490756
H 0.863785 0.546128 0.493313
H 0.736073 0.614481 0.746674
H 0.570005 0.712895 0.775987
H 0.566274 0.048275 0.759221
H 0.960809 0.675269 0.993149
H 0.854576 0.878545 0.991324
H 0.004118 1.002464 0.997268
H 0.240210 0.884858 0.719030
H 0.065276 0.788577 0.735256
H 0.069995 0.449738 0.751794
H 0.457756 0.820848 0.494294
H 0.361029 0.618713 0.495771
H 0.508367 0.493177 0.493381
H 0.554915 0.619794 0.240782
H 0.729287 0.713863 0.213187
H 0.727884 0.051166 0.229893
H 0.222943 0.663848 0.993550
H 0.473760 0.819843 0.997967
H 0.357178 0.955090 0.993968



3

TABLE VI: The Pc primitive unit-cell lattice vectors a, b, and c, and the
positions of the hydrogen atoms at pressure P = 350 GPa. The vectors
and atomic positions are in Å and fractional coordinates, respectively.

x y z
a 2.8020939 0.0000000 0.0072472
b 0.0000000 4.8746222 0.0000000
c 0.0001586 0.0000000 5.1561712
H 0.052024 0.118022 0.773331
H 0.231026 0.213405 0.746984
H 0.229354 0.554312 0.735177
H 0.749540 0.169188 0.994567
H 0.971965 0.324748 0.991471
H 0.847316 0.467868 0.993840
H 0.737293 0.385581 0.246427
H 0.566659 0.285169 0.273290
H 0.563095 0.950687 0.259336
H 0.974307 0.326237 0.493760
H 0.843067 0.135599 0.491916
H −0.004491 0.003429 0.496532
H 0.240558 0.115364 0.218154
H 0.062825 0.212923 0.238850
H 0.067323 0.552106 0.252377
H 0.472186 0.177870 0.994243
H 0.347779 0.366179 0.995591
H 0.499051 0.500508 0.993489
H 0.555391 0.382505 0.741427
H 0.730371 0.284511 0.714939
H 0.730777 0.949265 0.729866
H 0.250840 0.335106 0.493385
H 0.469272 0.172978 0.497109
H 0.342813 0.031941 0.493705
H 0.052024 0.881978 0.273331
H 0.231026 0.786595 0.246984
H 0.229354 0.445688 0.235177
H 0.749540 0.830812 0.494567
H 0.971965 0.675252 0.491471
H 0.847316 0.532132 0.493840
H 0.737293 0.614419 0.746427
H 0.566659 0.714831 0.773290
H 0.563095 0.049313 0.759336
H 0.974307 0.673763 0.993760
H 0.843067 0.864401 0.991916
H −0.004491 0.996571 0.996532
H 0.240558 0.884636 0.718154
H 0.062825 0.787077 0.738850
H 0.067323 0.447894 0.752377
H 0.472186 0.822130 0.494243
H 0.347779 0.633821 0.495591
H 0.499051 0.499492 0.493489
H 0.555391 0.617495 0.241427
H 0.730371 0.715489 0.214939
H 0.730777 0.050735 0.229866
H 0.250840 0.664894 0.993385
H 0.469272 0.827022 0.997109
H 0.342813 0.968059 0.993705

TABLE VII: The Pbcn primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 250 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 2.9486345 0.0000000 0.0000000
b 0.0000000 5.1289102 0.0000000
c 0.0000000 0.0000000 5.4432550
H 0.906756 0.117310 0.017651
H 0.593243 0.382690 0.517652
H 0.093244 0.117310 0.482349
H 0.406757 0.382690 0.982348
H 0.093244 0.882690 0.982349
H 0.406757 0.617310 0.482348
H 0.906756 0.882690 0.517651
H 0.593243 0.617310 0.017652
H 0.078886 0.212184 0.025101
H 0.421113 0.287816 0.525101
H 0.921114 0.212184 0.474899
H 0.578887 0.287816 0.974899
H 0.921114 0.787816 0.974899
H 0.578887 0.712184 0.474899
H 0.078886 0.787816 0.525101
H 0.421113 0.712184 0.025101
H 0.078102 0.551281 0.003287
H 0.421896 0.948719 0.503287
H 0.921898 0.551281 0.496713
H 0.578104 0.948719 0.996713
H 0.921898 0.448719 0.996713
H 0.578104 0.051281 0.496713
H 0.078102 0.448719 0.503287
H 0.421896 0.051281 0.003287
H 0.630055 0.170179 0.250071
H 0.869945 0.329820 0.750071
H 0.369945 0.170179 0.249929
H 0.130055 0.329820 0.749929
H 0.369945 0.829821 0.749929
H 0.130055 0.670180 0.249929
H 0.630055 0.829821 0.750071
H 0.869945 0.670180 0.250071
H 0.809822 0.350488 0.245946
H 0.690177 0.149511 0.745946
H 0.190178 0.350488 0.254054
H 0.309823 0.149511 0.754054
H 0.190178 0.649512 0.754054
H 0.309823 0.850489 0.254054
H 0.809822 0.649512 0.745946
H 0.690177 0.850489 0.245946
H 0.679734 0.479715 0.250721
H 0.820266 0.020285 0.750721
H 0.320266 0.479715 0.249279
H 0.179734 0.020285 0.749279
H 0.320266 0.520285 0.749279
H 0.179734 0.979715 0.249279
H 0.679734 0.520285 0.750721
H 0.820266 0.979715 0.250721

TABLE VIII: The Pbcn primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 300 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 2.8665778 0.0000000 0.0000000
b 0.0000000 4.9873021 0.0000000
c 0.0000000 0.0000000 5.2874542
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H 0.905419 0.116032 0.014983
H 0.594579 0.383967 0.514983
H 0.094581 0.116032 0.485017
H 0.405421 0.383967 0.985017
H 0.094581 0.883968 0.985017
H 0.405421 0.616033 0.485017
H 0.905419 0.883968 0.514983
H 0.594579 0.616033 0.014983
H 0.081216 0.213260 0.021939
H 0.418783 0.286740 0.521939
H 0.918784 0.213260 0.478061
H 0.581217 0.286740 0.978061
H 0.918784 0.786740 0.978061
H 0.581217 0.713260 0.478061
H 0.081216 0.786740 0.521939
H 0.418783 0.713260 0.021939
H 0.079865 0.552562 0.003381
H 0.420134 0.947439 0.503381
H 0.920135 0.552562 0.496619
H 0.579866 0.947439 0.996619
H 0.920135 0.447438 0.996619
H 0.579866 0.052561 0.496619
H 0.079865 0.447438 0.503381
H 0.420134 0.052561 0.003381
H 0.635745 0.170661 0.249928
H 0.864255 0.329339 0.749928
H 0.364255 0.170661 0.250072
H 0.135745 0.329339 0.750072
H 0.364255 0.829339 0.750072
H 0.135745 0.670661 0.250072
H 0.635745 0.829339 0.749928
H 0.864255 0.670661 0.249928
H 0.811960 0.347505 0.246306
H 0.688038 0.152494 0.746305
H 0.188040 0.347505 0.253694
H 0.311962 0.152494 0.753695
H 0.188040 0.652495 0.753694
H 0.311962 0.847506 0.253695
H 0.811960 0.652495 0.746306
H 0.688038 0.847506 0.246305
H 0.676441 0.482422 0.250410
H 0.823559 0.017578 0.750410
H 0.323559 0.482422 0.249590
H 0.176441 0.017578 0.749590
H 0.323559 0.517578 0.749590
H 0.176441 0.982422 0.249590
H 0.676441 0.517578 0.750410
H 0.823559 0.982422 0.250410

TABLE IX: The Pbcn primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 350 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 2.7993623 0.0000000 0.0000000
b 0.0000000 4.8704307 0.0000000
c 0.0000000 0.0000000 5.1630716
H 0.904448 0.114957 0.012595
H 0.595551 0.385042 0.512595
H 0.095552 0.114957 0.487405
H 0.404449 0.385042 0.987405

H 0.095552 0.885043 0.987405
H 0.404449 0.614958 0.487405
H 0.904448 0.885043 0.512595
H 0.595551 0.614958 0.012595
H 0.083442 0.214150 0.018828
H 0.416557 0.285850 0.518829
H 0.916558 0.214150 0.481172
H 0.583443 0.285850 0.981171
H 0.916558 0.785850 0.981172
H 0.583443 0.714150 0.481171
H 0.083442 0.785850 0.518828
H 0.416557 0.714150 0.018829
H 0.081343 0.553714 0.003142
H 0.418655 0.946286 0.503143
H 0.918657 0.553714 0.496858
H 0.581345 0.946286 0.996857
H 0.918657 0.446286 0.996858
H 0.581345 0.053714 0.496857
H 0.081343 0.446286 0.503142
H 0.418655 0.053714 0.003143
H 0.641145 0.170913 0.249794
H 0.858856 0.329086 0.749794
H 0.358855 0.170913 0.250206
H 0.141144 0.329086 0.750206
H 0.358855 0.829087 0.750206
H 0.141144 0.670914 0.250206
H 0.641145 0.829087 0.749794
H 0.858856 0.670914 0.249794
H 0.814220 0.344747 0.246713
H 0.685779 0.155253 0.746712
H 0.185780 0.344747 0.253287
H 0.314221 0.155253 0.753288
H 0.185780 0.655253 0.753287
H 0.314221 0.844747 0.253288
H 0.814220 0.655253 0.746713
H 0.685779 0.844747 0.246712
H 0.673572 0.485054 0.250249
H 0.826428 0.014946 0.750249
H 0.326428 0.485054 0.249751
H 0.173572 0.014946 0.749751
H 0.326428 0.514946 0.749751
H 0.173572 0.985054 0.249751
H 0.673572 0.514946 0.750249
H 0.826428 0.985054 0.250249

TABLE X: The P63/m primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 250 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 1.7160682 −2.9723174 0.0000000
b 1.7160682 2.9723174 0.0000000
c 0.0000000 0.0000000 2.7375848
H 0.094169 0.393708 0.250000
H 0.606280 0.700455 0.250000
H 0.299532 0.905818 0.250000
H 0.905818 0.606279 0.750000
H 0.393708 0.299532 0.750000
H 0.700455 0.094169 0.750000
H 0.197456 0.260701 0.250000
H 0.739286 0.936748 0.250000
H 0.063240 0.802532 0.250000
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H 0.802532 0.739286 0.750000
H 0.260701 0.063239 0.750000
H 0.936748 0.197456 0.750000
H 0.333327 0.666660 0.621534
H 0.666660 0.333327 0.121534
H 0.666660 0.333327 0.378466
H 0.333327 0.666660 0.878466

TABLE XI: The P63/m primitive unit-cell lattice vectors a, b, and c,
and the positions of the hydrogen atoms at pressure P = 300 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 1.6708873 −2.8940616 0.0000000
b 1.6708873 2.8940616 0.0000000
c 0.0000000 0.0000000 2.6505633
H 0.090344 0.394824 0.250000
H 0.605164 0.695514 0.250000
H 0.304474 0.909643 0.250000
H 0.909643 0.605164 0.750000
H 0.394824 0.304474 0.750000
H 0.695514 0.090344 0.750000
H 0.196550 0.259170 0.250000
H 0.740818 0.937374 0.250000
H 0.062614 0.803438 0.250000
H 0.803438 0.740818 0.750000
H 0.259170 0.062614 0.750000
H 0.937374 0.196550 0.750000
H 0.333327 0.666660 0.617900

H 0.666660 0.333327 0.117900
H 0.666660 0.333327 0.382100
H 0.333327 0.666660 0.882100

TABLE XII: The P63/m primitive unit-cell lattice vectors a, b, and
c, and the positions of the hydrogen atoms at pressure P = 350 GPa.
The vectors and atomic positions are in Å and fractional coordinates,
respectively.

x y z
a 1.6319197 −2.8265678 0.0000000
b 1.6319197 2.8265678 0.0000000
c 0.0000000 0.0000000 2.5838070
H 0.088092 0.396172 0.250000
H 0.603815 0.691913 0.250000
H 0.308074 0.911896 0.250000
H 0.911896 0.603815 0.750000
H 0.396172 0.308074 0.750000
H 0.691913 0.088092 0.750000
H 0.196206 0.257433 0.250000
H 0.742554 0.938766 0.250000
H 0.061221 0.803782 0.250000
H 0.803782 0.742554 0.750000
H 0.257433 0.061221 0.750000
H 0.938766 0.196206 0.750000
H 0.333327 0.666660 0.615045
H 0.666660 0.333327 0.115045
H 0.666660 0.333327 0.384955
H 0.333327 0.666660 0.884955


