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Studies of the atmospheric accumulation of anthropogenic CO2 indicate a large terrestrial 1 

carbon sink in recent decades1–5, with a substantial fraction located in intact tropical 2 

forests6,7. Evidence for a tropical sink5,8,9 is supported by data from forest inventory plots. 3 

However, the plot network has been criticized for its failure to represent landscape-scale 4 

processes10–13 and especially the effect of severe natural disturbances9–12,14. We 5 

characterize for the first time the frequency distribution of disturbance events in natural 6 

forests 9,11–13 from 0.01 ha to 2,651 ha size throughout Amazonia using a novel 7 

combination of forest inventory, airborne LiDAR, and satellite passive optical remote 8 

sensing data. We find that small-scale mortality events are responsible for aboveground 9 

biomass losses of about 1.6 Pg C y-1 over the entire Amazon region, intermediate-scale 10 

disturbances for about 0.25 Pg C y-1, and with the largest-scale disturbances by blow-11 

downs only accounting for about 0.004 Pg C y-1. Simulation of growth and mortality 12 

based on the forest census growth rates and the region-wide disturbance frequency 13 

distribution indicates that even when all carbon losses from local and landscape-scale 14 

disturbances are considered these are outweighed by the net biomass accumulation by 15 

tree growth, supporting the inference of an Amazon wide carbon sink.  16 

 17 

Global records of atmospheric CO2 concentrations, fossil fuel emissions, and ocean 18 

carbon uptake estimated based on ocean surveys indicate that there is a large terrestrial 19 

carbon sink2,6 of which a substantial portion may be due to uptake by old growth tropical 20 

forests15. On the other hand, were some of the current large tropical forest carbon pools 21 

(including ~100 Pg C in aboveground biomass in Amazonia16,17) to be released rapidly to 22 

the atmosphere10, it would substantially enhance greenhouse warming2. Understanding 23 
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the nature and trajectory of the Amazon forest carbon balance is therefore of considerable 1 

importance. 2 

 3 

The evidence for a tropical old-growth forest sink is based primarily on repeated 4 

biometric measurements of growth and death of individual trees across the tropics. These 5 

measurements indicate that at the plot-level old-growth forests in Amazonia and Africa 6 

have apparently gained carbon over the last 30 years4,5,8,9. The extrapolation of regional 7 

trends from a relatively small number of ~1-ha sized plots has been questioned because 8 

potentially unsampled natural disturbances at the landscape-scale could counterbalance 9 

tree level growth11,12. Resolving this issue requires assessing whether estimates of 10 

biomass gain are robust when fully considering disturbances of all sizes14,18; we test this 11 

statistically against the null hypothesis of net zero change in biomass. Here we synthesize 12 

and characterize for the first time the frequency distribution of natural disturbance at all 13 

spatial scales across forests of the Amazon region using a combination of forest censuses, 14 

airborne LIDAR and passive optical remote sensing from satellite. We ask whether the 15 

net biomass gains inferred from forest census data are an artifact of the small size (~1 ha) 16 

and limited number of plots in the plot network9. We address this question using a simple 17 

stochastic forest simulator based on growth statistics from the forest census network and 18 

the new regional disturbance size-frequency distribution. 19 

 20 

Our approach includes natural causes of tree mortality14 (including partial mortality such 21 

as branch falls) that liberate carbon10, but excludes anthropogenic disturbance caused by 22 

forest clearing, logging, and fires1,2. To determine the frequency distribution of natural 23 
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disturbances in the Amazon at all scales, we quantify small area disturbances using 1 

records of (i) biomass losses from a long-term repeat measurement network spatially 2 

distributed across the entire Amazon3–5,9,19 supplemented by (ii) two large forest plot 3 

surveys (53 and 114 ha) in the Eastern Amazon20, intermediate area disturbances using 4 

(iii) tree-fall gaps detected by airborne LiDAR from four large surveys (48,374 ha) in 5 

Southern Peru21, and large area disturbances from blow-downs using data sets22,23 from 6 

Landsat satellite images in (iv) an East-West22 transect and (v) for the entire Brazilian 7 

Amazon forest23. For small area disturbances we estimate biomass loss associated with 8 

area loss of each event of disturbance. For intermediate disturbances several assumptions 9 

are required to translate the measurements of forest structure from ~1 m airborne LiDAR 10 

data into an estimate of biomass loss (see Supplementary Material). To ensure that our 11 

test of the hypothesis that the plot network effectively measures biomass change is as 12 

robust as possible, our assumptions conservatively err on the generous side to the 13 

magnitude and frequency of intermediate disturbance. For large disturbances, we 14 

reanalyzed records of blow-downs likely caused by downdrafts associated with 15 

convective clouds24 covering Brazilian Amazon forests23 using historical Landsat satellite 16 

images (pixels sizes ~30 m) and a more recent East-West mosaic of Landsat scenes 17 

covering a portion of the Amazon22. Combining the spatial records of large disturbances 18 

detected by Landsat22,23 with a recently developed map of aboveground biomass17, we 19 

estimate carbon loss associated with these large disturbances (Fig. 1). Because of the 20 

uncertainties associated with below-ground biomass1,2,6,17, we discuss carbon losses only 21 

in terms of aboveground biomass (AGB) which probably accounts for ~80% of live 22 

biomass in Amazonia1,16,17. 23 
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 1 

For determining the largest blow-downs we build on an earlier study of large natural 2 

disturbances23 which identified 330 blow-downs ≥ 30 ha distributed in 72 Landsat scenes 3 

from the total 137 scenes (Supplementary Fig. S5) acquired between 1988 and 1991 4 

across the ~3.5×106 km2 forested area of the Brazilian Amazon25. Subsequent digital 5 

image processing for blow-down detection22 in the Central Amazon collected around the 6 

year 2000 (27 Landsat scenes) further revealed a substantial number of medium sized 7 

blow-downs (5-30 ha) not detected using earlier visual inspection methods23. In both 8 

studies22,23 spatial analysis showed a high concentration of all detected blow-down 9 

disturbances west of ~58o W clearly associated with areas of strong convective activity24 10 

as measured from cloud-top temperatures from the TRMM satellite22. Reanalyzing that 11 

data23 here using a Gaussian kernel smoothing algorithm for cluster analysis26 confirms 12 

the concentration of blow-down disturbances in the western Amazon (Fig. 2) with blow-13 

downs 12 times more frequent west of 58o W than to the east. This conclusion does not 14 

depend on the bandwidth size used for the cluster analysis (Supplementary Fig. S6, S7 15 

and S8). 16 

 17 

Amazon-wide there are thus two spatially disjoint size and severity domains of large 18 

disturbances: one domain with large blow-downs centered west of Manaus and another 19 

one where the largest blow-downs are absent (Fig. 2). Although it has been suggested that 20 

the disturbance size frequency distribution follows a power law

€ 

p(x)∝ x −α  (probability 21 

density p(x) and size of an event x)27, the observed distribution suggests a more subtle 22 

picture (Fig. 3). Visually three sections may be identified: an approximately exponential 23 
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decline of frequency with size for smallest size disturbances, a power law type decline for 1 

intermediate scales and another power law decline for the largest-scale disturbance blow-2 

downs (Fig 3a,c). The power law decline for intermediate disturbances with size appears 3 

to be steeper than for largest blow-downs. This is seen in the estimated return times 4 

versus disturbance severity relationship (see Methods) that reveals a sharp increase to 5 

higher values for intermediate range disturbances from 1 to 10 ha (Fig. 3b,d). The data 6 

also show that disturbance-induced tree mortality that cause small-area disturbances have 7 

a return time of about 100 years (Fig. 3b,d). This agrees with studies from other tropical 8 

forest regions that observed an annual tree-fall disturbance rate of 1% by the process of 9 

gap formation due to tree death28. By contrast, the return time of large blow-downs is 10 

very long -- that is, such events are extremely rare -- ranging from 4×105 y to greater than 11 

107 y depending on size (Fig. 3b). Small disturbances (<0.1 ha) per year are many orders 12 

of magnitude more frequent (~106 events) than large blow-downs (~103 events) over the 13 

Amazon (Fig. 3b).  14 

 15 

Based on the size and frequency of natural disturbances of our data scaled to all Amazon 16 

forest areas (~6.8 x 108 ha)24, the total carbon released by natural disturbances is 17 

estimated as 1.88 Pg C y-1, where approximately 1.66 Pg C y-1 or ~88.3% is accounted 18 

for by small-scale mortality (< 0.1 ha), ~12.7% from intermediate (0.1 to 5 ha), and 19 

~0.02% from large disturbances (> 5 ha). Large disturbances although visually 20 

impressive are extremely rare (Fig. 3b,d), and the estimated amount of biomass loss is 21 

only 0.004 Pg C y-1. By comparison net carbon emissions caused by forest clearing in the 22 

Brazilian Amazon1 in the 1990’s were ~0.2 Pg C y-1. Conversion of the mortality to 23 
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approximate Amazon forest areas implies that natural mortality affects 2.0 x 107 ha y-1 or 1 

2% of total forest area, where about 80.0% is from small-scale mortality, ~19.9% is from 2 

intermediate and only 0.1% from large disturbances. 3 

 4 

The estimated disturbance spectrum permits us to address whether the observed carbon 5 

balance of the Amazon tropical forests inferred from forest plot censuses does indeed 6 

significantly reflect carbon gain (carbon accumulation rates are significantly greater than 7 

zero) considering the potential of disturbance to negate this finding18. For this purpose we 8 

use a stochastic forest growth simulator9 of the form 

€ 

dM =G × dt −D × dt , where dM is 9 

aboveground forest biomass loss in units of carbon per area, dt a time interval, here one 10 

year, and G and D stochastic variables distributed according to the observed distributions 11 

of aboveground mass gain due to growth (G) and loss (D) due to mortality9,11,13 (for 12 

details please see below). We use the simulator (Supplementary Fig. S11) to assess the 13 

mean net carbon balance and its standard deviation we simulated 109 equivalent annual 14 

observations of each scenario and, statistical significance of the results is assessed using a 15 

t-test (Tab. 1). The scenario that we consider to be most realistic for the whole Amazon 16 

region is marked bold in Table 1. For all scenarios ensemble mean net gains are positive 17 

and for all but the most extreme scenario, the t-tests reveal significance. Intermediate 18 

disturbances have a notable effect on mean with relatively small effect on the variance. In 19 

contrast, large disturbances have no perceptible effect on the mean while greatly 20 

increasing the variance and therefore the probability of detection for a positive biomass 21 

trend. The exceptional scenario -- which given our data are clearly over-pessimistic -- 22 

assumes the largest blow-downs occurring not only in Central Amazonia but throughout 23 
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the Amazon forest regions and intermediate disturbances occurring at a rate that greatly 1 

over-represents the importance of floodplain forests (Supplementary Tab. 2S). 2 

 3 

In summary, we have characterized for the first time the full size distribution and return 4 

frequency of natural forest mortality and disturbance in the Amazon forest biome (Fig. 5 

3). Our findings help to resolve the debate about the relative importance of intermediate- 6 

and larger-area disturbances9,11–13 and gains in biomass stocks in intact tropical forest 7 

plots9 for determining the regional-scale carbon balance. In our simulation taking into 8 

account the full range of natural disturbances, we find significant increases in the biomass 9 

of intact Amazonian forest. Although the simulation does not consider the spatial and 10 

temporal interactions of growth and disturbance, these results nonetheless imply 11 

that natural disturbance processes in Amazonia are insufficiently intense or widespread to 12 

negate the conclusion from the pan-Amazon plot network that old-growth forests in that 13 

region have gained biomass. Uncertainty about the role of disturbances in affecting 14 

estimates of the long-term trajectory of the carbon balance of tropical forests is declining 15 

as the forest monitoring effort on the ground increases both in time and space4,5,9,19. Our 16 

characterization of the natural disturbance regime of the Amazon forest yields new 17 

insight into the role of disturbance in tropical forest ecology and carbon balance. 18 

 19 

Methods Summary 20 

Forest Inventories and Remote Sensing to Assess Disturbance Effective detection of 21 

forest disturbance that results in tree mortality4,6,11–13,20 and the release of carbon to the 22 

atmosphere1,2,6,10 requires observational methods that encompass relevant spatial 23 
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scales2,14. We combine repeat measurement data from forest censuses with analysis of 1 

Landsat and LiDAR images permitting us effectively to estimate mortality across all 2 

relevant spatial scales (Fig. 1). For mortality that affects less than about 0.1 ha, we 3 

combine two spatial and temporal sources of data: (1) 484 forest plot censuses from 135 4 

(~1 ha) permanent plots covering 1545 census years of tree-by-tree measurements, 5 

distributed over the entire Amazon region including the Guiana Shield (see 6 

Supplementary Methods), from the RAINFOR network which covers 45 Amazon 7 

regions9; and (2) losses of biomass in areas of branch or tree-fall gaps10,11,28 of two plots 8 

of 53 and 114 ha from the Tapajós National Forest in the Eastern Brazilian Amazon20. To 9 

estimate disturbances at an intermediate area (from 0.1 to 5 ha) we used a large area of 10 

airborne LiDAR data from four samples in the Southern Peruvian Amazon21 covering in 11 

total 48,374 ha. For disturbances covering large areas (disturbance size > 5 ha) we 12 

combine three remote sensing data sets: (1) a spatially extensive record of large 13 

disturbances from blow-downs ≥ 30 ha from 128 Landsat scenes from the Brazilian 14 

Amazon and 8 scenes from outside of Brazil23; (2) a high resolution study of blow-downs 15 

≥ 5 ha using 27 Landsat scenes on an east-west transect in the central Amazon22; and (3) 16 

a multi-sensor remote sensing product of aboveground biomass for the tropics17. For all 17 

mortality (Tab. 1; Supplementary Tab. S1) we estimate areas and biomass defined as 18 

losses in aboveground biomass (AGB) stocks (Supplementary Fig. S3). 19 

Return time versus disturbance size To estimate return times of forest area loss events 20 

of a given size we first scale estimated number frequencies to the full Amazon forest by 21 

multiplying them with the ratio (AAmazon/Aprobed) where AAmazon= 6,769,214 km2 (INPE25, 22 

Supplementary Fig. S4) is the total forested area of the Amazon. The empirical 23 
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probability p*(A)ΔA that a fixed location will be affected by a disturbance of area A 1 

during one year is then

€ 

p* (A)ΔA = (( A'
A '∈(A ,A +ΔA )
∑ ) /AAmazon )  where the sum is over all events 2 

across the Amazon region with area A’ in the interval (A,A+ΔA), and ΔA is a finite area 3 

interval. The probability for the occurrence of a disturbance event per year with area loss 4 

larger than A at a fixed location is then 5 

P(X ≥ A) = p*(A ')
A '≥A

∞

∑ ΔA ' = Atotal
disturbed

AAmazon

− p*(A ')ΔA '
A '=0

A

∑  using the identity 6 

p*(A)ΔA
A=0

∞

∑ =
1

AAmazon

Ai
i=1

N

∑ =
Atotal
disturbed

AAmazon

 (i.e. not 1, therefore the notation p* instead of p) 7 

where N is the total number of observed disturbances and Atot
distrbd = Ai

i=1

all disturbance

∑  is the total 8 

annually disturbed forest area in the Amazon.  9 

 10 

Therefore an estimate for the return time 

€ 

τ(X ≥ A)  of a disturbance event X with forest 11 

area lost larger than A at a fixed location is given by the inverse of the cumulative PDF: 12 

τ (X ≥ A) = 1
P(X ≥ A)

=
1

Atotal
disturbed

AAmazon

− p*(A ')ΔA '
A '=0

A

∑
. 13 

An analogous equation holds for return time with respect to biomass loss associated with 14 

a disturbance event. 15 

Forest Aboveground Biomass Simulation Once the disturbance spectrum of 16 

aboveground biomass loss is defined we can infer the standard deviation introduced into 17 

an ensemble of growth rates from forests censuses using the simple stochastic forest 18 

simulator of the form 

€ 

dM =G × dt −D × dt introduced above which predicts forest 19 
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carbon mass change per area (M) due to growth (G) and loss (D) due to mortality9,11,13 1 

during the time interval dt. For G we used as input parameters growth from 484 forest 2 

censuses9 covering N=135 plots and N = 1545 census years, and mortality (aboveground 3 

biomass loss) from our new disturbance spectrum analysis. To generate random numbers 4 

distributed according to our observed distribution we use the inverse transform method9. 5 

For growth we use specifically G ~N(µ,σ) with µ = 2.5 or 2.75 (Mg C ha-1 yr-1) 6 

respectively, and σ =0.85 (Mg C ha-1 yr-1), the mean value for the Amazon region 7 

according to the RAINFOR data9 and Eastern Amazon respectively. For D, we used our 8 

Amazon forest mortality frequency distribution (Fig. 3) and modifications thereof for 9 

purpose of sensitivity and uncertainty analysis of our approach (see main text and legend 10 

of Tab. 1 and Supplementary Tab. S2). The growth component of the simulation model is 11 

conservative with respect to the hypothesis of net biomass gains, as it neglects any 12 

growth enhancement after large disturbance events29 and so overestimates the period of 13 

biomass decline. In real forests, disturbance-recovery growth enhancements shorten the 14 

total period for which disturbance-induced net biomass losses occurs for any given patch 15 

of forest, and therefore mitigate the impact of disturbance events on the summary 16 

statistics of net biomass trajectories. 17 

 18 

To ensure that the simulation of disturbances is operating correctly we checked the 19 

predicted Amazon disturbance spectrum against the observed spectrum using a sample of 20 

5 x 108 simulation runs, also revealing that such a number is sufficient to reproduce the 21 

full spectrum. The simulator was then run for 109 annual equivalent samples for each 22 

scenario (Tab. 1, Supplementary Tab. S2, and S11). We started the simulator from an 23 
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arbitrary value zero and let mass accumulate or decline indefinitely thus, in effect, 1 

permitting to represent the whole Amazon. From these 109 samples of biomass gain or 2 

loss we assessed whether the inference of a large carbon sink in old-growth forests is 3 

statistically significant9, by consulting the t statistic 

€ 

t = dM /dt /(σ / N ). 

€ 

dM /dt  is the 4 

trajectory sample mean net carbon balance over one year, and σ the trajectory sample 5 

standard deviation over the same period. A t-test is justified given the large sample size 6 

despite the skewed distributions of net gains, i.e. means are indeed nearly normally 7 

distributed as predicted by the central limit theorem and tested by Monte Carlo 8 

simulations based on the observed distribution of net gains. 9 

 10 

We run the simulator for various disturbance distribution scenarios to explore the 11 

sensitivity of the model to parameter selection. Scenarios with results summarized in 12 

Table 1 include (i) three blow-down extents: none, Central Amazon, and the full region, 13 

and (ii) two assumed time-scales (1 and 3.6 y) for detectability of disturbances observed 14 

with LiDAR21. Sensitivity to change in growth rates and an extreme case intermediate 15 

disturbance regime taken from the Peruvian river floodplains are also examined 16 

(Supplementary Tab. S2). The two intermediate disturbance area cases explore the 17 

sensitivity of our results to the spatially biased coverage of the LiDAR data to one part of 18 

the southwest Amazon. The first of the intermediate-scale scenarios use data from terra 19 

firme only, the most relevant data for answering our main question because terra firme 20 

forests occupy a far larger portion of the Amazon region than seasonally flooded forests. 21 

The second extreme intermediate-scale scenario includes also LiDAR data from flooded 22 

forests, which has a greater frequency of larger area disturbance, presumably fluvially-23 
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induced although the effect of human disturbance cannot be categorically eliminated 1 

because the region studied is affected by extensive largely unregulated placer gold 2 

mining. For small and large area disturbances, we did not differentiate geomorphic 3 

regimes because they were not apparent in the data. 4 
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Table 1. Summary of Amazon forest disturbance simulator results and statistical 1 
significance of simulated mean aboveground biomass gains for a range of scenarios. We 2 
vary (1) occurrence of large-disturbance blow-downs22,23, i.e. the large-end tail of the 3 
disturbance frequency distribution, and (2) age of intermediate-range disturbances. For 4 
(1) we distinguish three cases: (i) no large-disturbance blow-downs22,23, blow-downs as 5 
observed (ii) only in central Amazon (~20% of the Amazon region), (iii) everywhere in 6 
the Amazon with the same frequency of events as in the Central Amazon (i.e. in total 7 
there are 5 times more large-area events). For (2) we distinguish intermediate-range 8 
disturbances occurring across the entire Amazon region distributed according to LiDAR 9 
surveys21 (plots 1,4,5 and 12) of erosional terra firme (ETF) forests (33,196 ha) between 10 
a mean gap age of 1 and 3.6 years based on gap closure observations of a 50 ha plot on 11 
Barro Colorado Island30. We assumed an annual mean mass gain5,8,9 of 2.5 Mg C ha-1 yr-1 12 
in areas of terra firme forests. The simulator of forest mortality is based on the frequency 13 
distribution of disturbance area. To convert area losses to biomass losses we assumed a 14 
forest mass density of 170 Mg C ha-1 for all simulations, a high value and nearly 50% 15 
greater than the LiDAR landscape used to estimated intermediate disturbance 16 
dynamics5,8. Assessment of each scenario is based on a set of 109 annual equivalent 17 
samples. Significance is assessed with a t-test considering tsim = (dM/dt)/(σ/sqrt(N)) 18 
where dM/dt is ensemble mean mass gain (Mg C ha-1 y-1), σ the standard deviation of the 19 
mass gain distribution and N the number of observations. For N we use either 20 
conservatively N =135 the total number of observational plots or N =1545, the total 21 
number of plot census years reflecting the stochastic nature of disturbance and therefore 22 
the near independence of plot results from year-to-year. Gain results are statistically 23 
significant at the 95% level if tsim  t{0.975,N=135} ≈ t{0.975,N=1545}=1.96 and at the 99% level 24 
if tsim  t{0.995,N=135} ≈ t{0.995,N=1545} = 2.58. The most credible results are highlighted in 25 
bold. 26 

Assumed annual mean mass gains5,8,9: 2.5 Mg C ha-1 yr-1 and intermediate-scale 27 
disturbances12,13 modeled with:  28 

Intermediate-Scale Disturbances Large-Scale Blow-downs22,23 

LiDAR data21 from terra firme 
 (gaps age30 ~ 1 yr old) 

None Central 
Amazon 

All Amazon 
Region 

dM/dt* - 0.85 - 
σ* - 4.40 - 
tobs(N=135) - 2.24 - 
tobs(N=1545) - 7.59 - 

LiDAR data21 from terra firme 
(gaps age30 ~ 3.6 yr old) 

   

dM/dt* 0.94 0.94 0.94 
σ* 2.19 3.77 12.4 
tobs(N=135) 4.99 2.90 0.88 
tobs(N=1545) 16.9 9.80 2.98 
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Figure Captions 1 

 2 

Figure 1. Amazon Basin-wide data of natural forest disturbances. Spatial distribution 3 

of RAINFOR forest census plots9 (n=135), inspected Landsat images (n=137) with 4 

occurrences of large blow-down disturbances ≥ 30 ha22 (n=330 blow-downs) and ≥ 5 ha21 5 

(n=279 blow-downs) underlain by an aboveground biomass map of the Amazon (a). 6 

Large forest inventory plot of 114 ha19 with canopy gaps (n=55) overlain on a high 7 

resolution IKONOS-2 image acquired in 2008 in the Eastern Amazon (b). Large plot of 8 

53 ha19 with canopy gaps (n=51) over a second high resolution IKONOS-2 image 9 

acquired in 2009 (c). Digitally classified blow-downs in an East-West mosaic of Landsat 10 

images from central Amazon (d). Representation of disturbance size areas found in all 11 

Landsat images - blow-downs disturbances ≥ 30 ha areas are proportional to the size of 12 

the circles (e). Location of the LiDAR airborne campaigns in the Southern Peruvian 13 

Amazon20 (f). LiDAR data collections in 5 large transects of tropical forest (48,374 ha, 14 

n=30,130 gaps > 20 m2 in erosional terra-firme and depositional forests) (g). Details of 15 

the detection of gaps in LiDAR canopy height model (CHM) - 2 m height threshold30 16 

were used to detect tree-fall gaps in CHM (h). White, blue, black and red lines on the 17 

map (a) indicates Brazilian border, the mosaic of Landsat images in Central Amazon21, 18 

Landsat scenes in all Brazilian Amazon22 and the LiDAR airborne campaigns in Peru20, 19 

respectively. 20 

 21 

Figure 2. Spatial distribution of large disturbances in the Brazilian Amazon. Cluster 22 

map of blow-downs of Brazilian Amazon using a Gaussian smoothing kernel25 with 23 

bandwidth of 200 km modeled from 330 large disturbances ≥ 30 ha detected in 137 24 

Landsat images over the Amazon region22. Color bar is the intensity of large disturbances 25 

in the Amazon (number of blow-downs per km2). 26 

 27 

Figure 3. Estimated frequency distributions of natural forest disturbances in the 28 

Amazon. Number of disturbances per year obtained by scaling observed events to the full 29 

Amazon region by multiplication with the inverse of observed area fraction (a), Number 30 

of disturbances per year and per histogram bin-width, with bin-widths chosen such as to 31 



19 
 

include at least one event; this distribution is linearly proportional to p(x) of Δlog 1 

(number of occurrences)/Δlog (disturbance size) ≈ -2.5, and (b), return times versus 2 

severity of events calculated using the inverse of the cumulative PDF (see Methods) for 3 

various combinations of the data from repeated plot measurements, LiDAR surveys and 4 

Landsat imagery. For panels (a) and (b) largest blow-downs (those detected by Landsat 5 

imagery) are scaled to the region by multiplication of Amazon area fraction with large 6 

blow-downs. Panels (c) and (d) are similar to (a) and (b) but with respect to disturbance 7 

biomass loss instead of disturbance area. In panels (b, d) solid lines correspond to the 8 

case where large blow-downs are included only in the Central Amazon while the dashed 9 

lines correspond to the case where largest blow-downs are assumed to occur everywhere 10 

in the region (as a sensitivity study) and similarly the dashed light blue line corresponds 11 

to the case where also floodplain LiDAR data with river-driven disturbances are included 12 

(note that the forest plot network is based overwhelmingly on non-floodplain plots). 13 
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1. Amazon natural disturbance data We quantified the frequency distribution of 1 

small1–4 and large disturbances5–8 from several sources of data. Our data ranges from 2 

permanent tree plots9–13 to satellite5,6 or airborne LiDAR14 images (Supplementary Tab. 3 

S1). We quantify not only data of disturbance area, but also the aboveground biomass 4 

loss in Mg C associated with these events. 5 

Table S1. Statistical summary of all data sets used to estimate the full frequency 6 
spectrum of disturbance over the Amazon. 484 censuses of 135 ~1ha plots distributed 7 
over the Amazon9–12, 48,374 ha tropical forest sampled in Southern of Peru by airborne 8 
LiDAR14, 96 tree-fall gaps of 167 ha plot in East central Amazon13, 279 blow-downs ≥ 5 9 
ha detected in 27 Landsat scenes6 and 330 large disturbances ≥ 30 ha inspected in 137 10 
Landsat images5. Minus sign denotes mass losses for biomass losses.  11 

Statistic summary  
RAINFOR  

(484 censuses)  
167 ha 

plot 
Airborne 
LiDAR 

Blow-downs 
in 27 images 

Blow-downs 
in 136 images 

Disturbances Class Size Small Small  Intermediate Large Large 
Raw data for modeling 484 96 30,130 279 330 
Min. disturbance area (ha) 0.0003 0.003 0.002 5 30 
Max disturbance area (ha) 0.09 0.13 9.48 2,223 2,651 
Mean disturbance area (ha) 0.016 0.026 0.009 79 213 
Median disturbance area (ha) 0.013 0.022 0.003 37 123 
SD of disturbance area (ha) 0.012 0.018 0.079 179 279 
Sum of disturbance area (ha) 7.53 2.51 294.50 21,931 70,421 
Min. biomass loss (Mg C) -0.055 -0.061 -0.1 -324.9 -3,068 
Max biomass loss (Mg C) -11.69 -19.90 -1,162 -389,131 -463,876 
Mean biomass loss (Mg C) -2.32 -3.05 -1.04 -12,091 -30,198 
Median biomass loss (Mg C) -1.99 -1.63 -0.29 -5,239 -17,672 
SD of biomass loss (Mg C) -1.61 -3.61 -9.75 -31,347 -42,893 
Sum of biomass loss (Mg C) -1,126 -293.67 -31,474 -3,373,601 -9,965,230 

 12 

1.1. Data integration A flowchart summarizes all processing steps used to harmonize the 13 

data of natural disturbances over the entire Amazon region (Supplementary Fig. S1). Five 14 

data sources were used to estimate disturbances: at small-scale (1) data set from two large 15 

plots13 (167 ha) in Tapajós region, and (2) 484 repeat censuses of the tropical forest 16 

network9,11,12,15; at intermediate: (3) LiDAR from Southern Peruvian Amazon14 (48,374 17 

ha); and at large-scale: (4) blow-downs > 30 ha (n=330) covering the entire Brazilian 18 

Amazon, and (5) fine resolution blow-downs > 5 ha (n=279) covering a East-West 19 

Amazon forest region transect. Because each data source was collected and produced in 20 

different ways, we applied several intermediate steeps to estimate and normalize the data. 21 

Our final goal was to use the probability distribution of (i) area and (ii) biomass loss of 22 

natural disturbances to understand the trajectory of the Amazon forest carbon balance. 23 
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 1 
Supplementary Figure S1. Schematic outline. Main processing steps carried out to 2 
integrate several sources of disturbance data over the Amazon region. 3 

 4 

2. RAINFOR plots We used the extensive historical data set of the RAINFOR plots9–5 
12,15–18 based on net changes in biomass (Mg C ha-1 yr-1) which include two aboveground 6 

biomass flux terms19,20: biomass gains (from tree growth and recruitment) and biomass 7 

losses (from tree mortality). The biomass losses from these plots were assessed to provide 8 

information of tree mortality across the Amazon region. Those plots are typically 1 ha in 9 

size and measurement details have been described elsewhere9,11,12,17,18. The available, 10 

published RAINFOR data (135 plots12) cover a total area of 226.2 ha with a mean total 11 

monitoring period of 11.3 years. Aboveground biomass was estimated from tree diameter 12 

and wood density (based on species identity) by allometric equations21. Mortality rates 13 

have been corrected for census-interval effects22. 14 

 15 

2.1. Translating biomass loss measured in RAINFOR plots to disturbance area The 16 

RAINFOR network does not record data for disturbance area - only biomass losses by 17 

mortality events – so we estimated the area of those disturbances associated with the 18 

biomass loss as gap area of a given plot = {plot mortality or mean biomass loss (ha-1)} ÷ 19 

{total stock of biomass (ha-1)}. We caution that this approach assumes that all biomass 20 

disturbances are linearly correlated with area of the disturbances which is a rough 21 
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approximation23. Moreover, ground data of tree-fall gap disturbance areas and biomass 1 

losses from two large plots in Tapajós National Forest (54 and 114 ha, n=96 gaps) 2 

suggests that this relation is not linear (Supplementary Fig. S3). However, although not 3 

universal, we used your allometric equation of biomass losses based on disturbance areas 4 

to assess the mean losses of biomass over a several landscape-scale areas of Amazon.  5 

 6 

3. Large forest inventory plots data RAINFOR data9 do not account for biomass losses 7 

(disturbances) that do not result in complete tree mortality (e.g. coarse woody debris 8 

(CWD) produced by partial crown-falls). To evaluate carbon losses including both 9 

complete and partial mortality, we installed and surveyed two large forest inventory 10 

plots13 of 114 and 53 ha, in unmanaged forest area in the eastern central Amazon, 11 

Tapajós National Forest (TNF) (Fig. 1 and Supplementary Fig. S3). The first plot was 12 

installed in 2008 and the second in 2009. The methodology to assess the biomass losses 13 

(CWD) inside of the gaps areas has been described elsewhere13, with the main steps listed 14 

here:  15 

1) We mapped all gaps in both large plots using the Runkle gap definition24;  16 

2) We defined the modes of gap-formation1–4,24 based on the type of disturbance (partial 17 

or complete crown-fall, snapped bole-fall, and uprooted tree-fall);  18 

3) We classified all gaps within two age classes (< 1 and ≥ 1 year old);  19 

4) We measured the volume of all CWD for each gap identified in the field;  20 

5) We used an allometric equation25 to estimate woody biomass losses by fresh tree–falls 21 

and snapped bole falls while for gaps with partial crown-fall we recorded the diameters of 22 

all wood pieces greater than 10 cm and length of the woody material;  23 

6) We classified the decomposition status26–28 of all CWD into five decay classes - from 24 

freshest (class 1) to most rotten (class 5) material;  25 

7) We used an average of CWD density measured for each decay class specifically 26 

developed for this site27–29; 27 

8) We calculated the sectional volume of each segment of CWD; and 28 
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9) We estimated the mass of CWD from the product of the volume of material and the 1 

respective density for the material class27–29. 2 

 3 

3.1. Biomass losses measured at the large forest inventory plots In the two large 4 

plots13 (167 ha total area) we found 96 gaps. In TNF the mean tree mortality was 2.38 5 

stems ha-1 year-1. CWD amounts depended on the type of gap formation, crown-falls 6 

contained 0.11 Mg C ha-1 of CWD, snapped tree-falls 0.65 Mg C ha-1 and uprooted tree-7 

falls 0.70 Mg C ha-1. The flux of CWD caused by the gaps was 0.76 Mg C ha-1 year-1. 8 

The average mortality of trees (DBH ≥ 10 cm) per gap was 6.5, resulting in a total of 596 9 

dead individual trees (3.57 trees ha-1; > 10 cm DBH) for the total surveyed area of 167 10 

ha. From the total dead trees contained in the gaps of all ages, we estimated a mean 11 

annual tree mortality of 2.38 trees ha-1 year-1. 12 

 13 

4. Airborne LiDAR data To estimate the distribution of intermediate scale sized 14 

disturbances30,31 (between 0.01 and 5 ha of opened area) we used a large collection of 15 

airborne LiDAR14 images. LiDAR (Light Detection and Ranging) is a remote sensing 16 

technology that measures distances by illuminating a target with a laser and analyzing the 17 

reflected light32. Recently, airborne LiDAR has been used to distinguish canopy gaps at 18 

large spatial scales14,33,34, providing a unique opportunity to understand the frequency 19 

distribution of natural disturbances or tree-fall gaps.  20 

 21 

We used LiDAR data collected by the Carnegie Airborne Observatory (CAO) Alpha 22 

System35 (July 2009) in the Southern Peruvian Amazon14. The study was undertaken in 23 

the Madre de Dios watershed, in a region of well-known geologic and topographic 24 

variation in lowland forest close to the base of the Andes in Peru14. Briefly, the flights 25 

were conducted at 2000 m aboveground level at a speed of <95 knots. The LiDAR was 26 

operated with a 38-degree field of view and 50 kHz pulse repetition frequency, resulting 27 

in 1.1 m laser spot spacing14. We processed 4 blocks (Fig. 1g) covering a total of 48,374 28 

ha. To compare gap-size frequency distributions among forests in the lowland Peruvian 29 
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Amazon, LiDAR data was classified in each block by its geologic composition and an 1 

empirical LiDAR digital terrain model of ~15 m tree height14, resulting in two major 2 

types of forest areas14: “depositional-floodplain” (DFP) in 15,178 ha and erosional “terra 3 

firme” (ETF) in 33,196 ha (following the abbreviations in Asner et al14). Terra firme 4 

forests dominate Amazonia (RAINFOR9,10,12,18,36), we used the DFP data only for a 5 

sensitivity analysis of our forest simulator results to different forms of the Amazon 6 

disturbance frequency distribution.  7 

 8 

To quantify all types of natural disturbances at landscape scale with LiDAR (i.e. from 9 

small 0.01 ha to intermediate scales 5 ha), the original LiDAR laser data points were 10 

processed14 to generate raster images (pixel resolution = 1 m) of the digital canopy 11 

surface model (DSM) and digital terrain model (DTM). The DSM was based on 12 

interpolations of all first return points of the cloud data, where elevation is relative to a 13 

reference ellipsoid. The DTM was based on a 30 m x 30 m filter passed over each flight 14 

block and the lowest elevation estimate in each kernel was assumed to be the ground. 15 

Canopy heights (DCM) were estimated as the difference between the canopy surface 16 

model and the digital terrain model, i.e. as DCM=DSM-DTM14 (Supplementary Fig. S2).  17 

 18 

Because LiDAR data analyses permit detection of all gaps extending from the top of the 19 

canopy to different heights aboveground14,33,34 (i.e. 1-2 m tree height), we defined gaps in 20 

our LiDAR data using the ecological definition of Brokaw2: gaps in LiDAR digital 21 

canopy model are openings in the forest canopy extending down to an average height 2 m 22 

aboveground (Supplementary Fig. S2c,d). The minimum gap size considered was 20 m2 23 

(Supplementary Fig. S2e). 24 
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 1 

Supplementary Figure S2. Example of image processing to extract and detect tree-fall 2 
gaps in LiDAR images. Digital canopy surface model (a) and digital terrain model (b) 3 
were extracted from LiDAR cloud laser points to produce the digital canopy model or 4 
tree height (c). Forest sunflecks37 (in this case 52 in number) detected by LiDAR (d) were 5 
separated from tree-fall gaps (in this case 3) using a minimum gap-size threshold of 20 6 
m2 (e). LiDAR grid image of 200 m by 200 m (4 ha). 7 
 8 

4.1. Biomass loss associated with intermediate-scale disturbances To estimate 9 

biomass loss due to intermediate-size disturbance detected by LiDAR images (4 transects 10 

with a total of 48,343 ha, n=30,130 gaps) we used an allometric equation of biomass loss 11 

(Mg C) based on gap size of disturbances (ha) collected on the ground in two large forest 12 

inventories13 (Supplemental Fig. S3). We used a minimum gap size area threshold of 20 13 

m2 of disturbance area to estimate CWD or biomass loss inside of tree-fall gaps areas 14 

detected by LiDAR. There are two reasons for using this approach: (1) based on our 15 

previous analysis, measurable carbon loss was associated with a minimum gap area of 16 

~20 m2 or bigger (see Espírito-Santo et al., 201313) whereas (2) very small gaps (i.e. ~1 17 

m2) - where most of the sunflecks37 occur - are probably more related with tree crown 18 

spacing37 than with biomass carbon dynamics. 19 

 20 
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We estimated the necromass of small-intermediate disturbance areas detected by 1 

LiDAR14 using a linear regression model of aboveground biomass loss (Mg C) as a 2 

function of gap-size area (ha) of central Amazon13 (167 ha plot, n=96) (Supplemental 3 

Fig. S3). The resulting equation to estimate necromass from tree-fall gaps13 does not 4 

represent all of the Amazon and may slightly overestimate carbon loss in Peru where 5 

wood density tends to be lower than in the Central Amazon23.  6 

 7 

Finally, the LiDAR datasets available currently are not repeat surveys so only permit a 8 

snapshot of forest structure to be taken. To use these data to inform forest biomass 9 

dynamics evidently requires making a number of important assumptions about how these 10 

maps of gaps translate into forest disturbance rates. To ensure that our test of the 11 

hypothesis that the plot network effectively measures biomass change is conservative, our 12 

assumptions deliberately err on the generous side to the magnitude and frequency of 13 

intermediate area disturbance. Our assumptions will tend to overestimate the rate of 14 

formation of intermediate-sized gaps, and therefore should overestimate their 15 

contribution to Amazon biomass dynamics. Notably, we assume 16 

(1) That the region surveyed is representative of Amazonia. In fact we know from our 17 

ground work that forests in western Amazonia have much faster biomass turnover 18 

and a greater proportion of tree death caused by exogenous disturbance than 19 

elsewhere (e.g., Phillips et al. 2004, Galbraith et al. 2013)38,39. 20 

(2) That gap recovery rates are fast, with 50% closure within 3.6 years. This estimate 21 

is based on a transition matrix from Hubbell and Foster (1986)40, indicating that at 22 

Barro Colorado Island, Panama, the 1-year transition probability for 5*5m gaps to 23 

non-gaps was 0.177. Alternatively, a study from French Guiana suggests a half-24 

life of between 5 and 6 years (Fig 7 in Van de Meer and Bongers, 199641), and 25 

with all gaps closing after about 15 years. 26 

(3) That gap recovery rates are independent of size within the ‘intermediate’ part of 27 

the spectrum. In practice, bigger gaps will take longer than small gaps to close so 28 

our approach is likely to overestimate the frequency of larger gap formation 29 
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(4) Our estimated gap formation rates are translated into biomass dynamics estimates 1 

assuming an AGB value of 170 Mg C ha-1. In fact, in 16 * one-hectare plots in the 2 

same region where the LiDAR imagery were taken, mean AGB is 119 Mg C ha-1. 3 

This assumption alone therefore results in overestimating the impact of 4 

intermediate biomass disturbances in south-western Amazonia by more than 40%. 5 

 6 

Supplementary Figure S3. Relation between disturbance area and loss in aboveground 7 
biomass in the Amazon. Data sets are from several studies of disturbances across the 8 
Amazon, from branch and tree falls to landscape scale blow-downs. Small disturbances: 9 
(1) in red, forest plot inventories (n=484 censuses of 135 * 1ha plots12) distributed over 10 
the Amazon and (2) in black, 96 tree-fall gaps from two large forest inventory plots (total 11 
area 167 ha) in the Tapajós National Forest13. Intermediate disturbances: (3) in orange, 12 
small and intermediate disturbances from 48,374 ha of LiDAR14 images. Large 13 
disturbances: (4) in blue, 279 blow-downs bigger than 5 ha from an East-West mosaic of 14 
27 Landsat scenes of the Amazon5; and (5) in green, 330 blow-downs greater than 30 ha 15 
from 136 Landsat scenes in the Brazilian Amazon6. A relation between area and biomass 16 
loss (Mg C) was tested from 96 tree-fall gaps (0.003 - 0.13 ha) where both area and 17 
aboveground biomass were measured. The linear regression fit is Biomass Loss = -18 
0.1528 + 122.5073 (Disturbance Area) (n=96, r=0.37), in units of Mg C and ha for loss 19 
biomass and disturbance area, respectively. 20 
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5. Amazon intact forest area To scale up our results of natural forest disturbances from 1 

forest inventory plots9,12,13, LiDAR14 and satellite images5,6, to the entire intact forest area 2 

of the Amazon, we used a land cover map with 250 m spatial resolution for all countries 3 

that are part of the Amazon tropical forest biome42 (Supplemental Fig. S4). For the 4 

Brazilian Amazon region (approximately 60% of the entire Amazon) we used the land 5 

use map from the annual deforestation monitoring project (PRODES) of the National 6 

Institute for Space Research (INPE)42 to separate old-growth forest from non-forest areas 7 

or recently deforested areas. PRODES has monitored tropical deforestation in Brazil over 8 

the last 30 years using historical Landsat images43 using visual interpretation and digital 9 

image processing44. To expand the land use map to South America (Pan-Amazon Project, 10 

unpublished data42), multi-temporal MODIS images of 250 m resolution were processed 11 

by the INPE Pan Amazon project42 for the others regions and integrated to the PRODES 12 

database43. The land use map (Supplementary Fig. S4) has the following categories: 13 

undisturbed forest, deforestation (general category of bare soils, secondary forests and 14 

burned areas), and other types of vegetation (savannas and grasses). According to this 15 

map the total area of undisturbed forest in northern South America is 6.8 x 106 km2 16 

covering the Amazon drainage region and the contiguous Andes and Guyana’s regions45 - 17 

the entire forested Brazilian Amazon is 3.5 × 106 km2.  18 

 19 
Supplementary Figure S4. Amazonia land cover map. Map using historical Landsat and 20 
MODIS images (a) from the Pan-Amazon project for the year 2010. Undisturbed forests 21 
of tropical regions (b), excluding other types of land cover. Map colors represent the 22 
following categories: undisturbed forest (dark green), deforestation (yellow), savannas 23 
or/and grass vegetation (pink), secondary forest (light green) and water (blue). 24 
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We used the entire Amazon region (6.8 x 106 km2) to scale up all natural disturbances 1 

(Supplementary Tab. S1) recorded in our data. Considering that most of the blow-downs 2 

are concentrated in Central Amazon, we assumed that large disturbances cover 1/5 of the 3 

total area of our entire domain of Amazon forests (see also Tab. 1 for more details). 4 

 5 

6. Basin-wide large disturbance data We developed a spatially explicit analysis of large 6 

disturbances (blow-downs) in the Brazilian Amazon tropical forest biome based on 7 

extensive samples of Landsat satellite images (30 m). We assessed the occurrence and 8 

spatial distribution of 330 events of large disturbances or blow-downs (≥ 30 ha) during 9 

the period from 1986 to 1989 based on 137 Landsat images46,47 (Supplementary Fig. S5) 10 

using the original raw data from the first study that described the occurrence of blow-11 

downs in the Amazon5.  12 

 13 

We also analyzed the occurrence and spatial distribution of 278 large forest disturbances 14 

(≥ 5 ha) from 1999 to 2001 apparently caused by severe storms in a mostly unmanaged 15 

portion of the Brazilian Amazon using 27 Landsat images and digital image processing6.  16 

 17 

 18 
 19 

Supplementary Figure S5. Landsat images and blow-down distribution. Spatial 20 
distribution of 72 Landsat scenes with the occurrence of blow-downs from the total 136 21 
surveyed scenes of the Brazilian Amazon5 (a). The area of blow-down disturbance is 22 
proportional to the size of the circles (b). Landsat images with blow-downs outside of the 23 
Brazilian Amazon border were omitted from the spatial point analysis. 24 
 25 
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6.1. Spatial distribution of large disturbances Previous analyses of large disturbances 1 

showed that blow-downs are extremely rare in Eastern Amazonia5,6. To account for 2 

clustering of large disturbances in the Amazon we reanalyzed the original data of large 3 

natural disturbances from Brazil5 using a spatial point analysis (SPA)6. A SPA consists of 4 

a set of points (s1, s2, …, sN) in a defined study region (R) divided into sub-regions 5 

( A ⊆ R ). Y(A) is the number of events in sub-region A. In a spatial context, the number of 6 

points can be estimated by use of their expected value E(Y(A)), and covariance COV 7 

(Y(Ai), Y(Aj)), given that Y is the event number in areas Ai and Aj. The intensity of an 8 

event ( )sλ is the frequency per area of points of a specific location s, where ds is the area 9 

of this region, i.e.λ(s) = lim
ds→0

E(Y (ds))
ds

"
#
$

%
&
'

. Because SPA only requires the spatial location 10 

of each event, we used the center of each classified blow-down in the Landsat images. 11 

We used a Gaussian algorithm (kernel smoothing) with bandwidths between 100 and 250 12 

km to calculate the smooth intensity field from our data. The minimum mean square error 13 

(MSE) of the Gaussian kernel smoothing algorithm46,47 revealed that the bandwidths ~ 14 

200 km (Supplementary Fig. S6) is the most indicated to estimate the intensity of blow-15 

downs in the Amazon. The probability density function k of Ripley46 also suggests that 16 

large-scale disturbance blow-downs in the Amazon are strongly clustered6 for the tested 17 

bandwidths (Supplementary Fig. S7). 18 

 19 

 20 
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 1 
 2 
Supplementary Figure S6. Kernel bandwidth distribution. Mean square error (MSE) of 3 
the Gaussian kernel smoothing algorithm46,47 (a) from the spatial distribution of 330 4 
blow-downs data5. The bandwidth with smaller MSE around 200 km (b) is the less biased 5 
bandwidth for this spatial data. East-West perspective graph of the intensity of blow-6 
downs in the Amazon (c) produced by a smoothing kernel interpolation. 7 

 8 
 9 

 10 
 11 
Supplementary Figure S7. K-function distribution of the spatial patterns of blow-12 
downs. K-function (a) and simulated envelops of the spatial distribution of 330 blow-13 
downs5 (a). Monte Carlo simulation (T=1000) of the K-function46 (b). Color lines in a are 14 
the theoretical Poisson K(pois) of K-function in blue and the border-corrected estimate 15 
K(bord) in green, translational-corrected estimate K(trans) in red and the original Ripley 16 
isotropic correction K(iso) in black. Color lines in b are the original K-function46 in black 17 
and red dash lines with upper and lower envelops in grey. Graph suggests that for all 18 
spatial simulations47 the occurrences of blow-downs are clustered significantly.  19 
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To determine the spatial distribution of blow-down over the entire region of Brazilian 1 

Amazon excluding the regions of intense land-use activities48,49 (i.e. deforestation and 2 

fire) and other types of vegetation (i.e. savannas and sand forests) we used a land-use 3 

map (Pan-Amazon Project, unpublished data42) as described before. We excluded most of 4 

the anthropogenic disturbances caused by fires, but probably we did not remove some 5 

areas of undisturbed forests affected by the natural dynamics of fires (i.e. transitional 6 

regions of forest and savannas). Moreover, natural fires would play similar or stronger 7 

role in tree mortality than blow-downs and future efforts shall attempt to understand the 8 

scale and impact of natural fires on tree mortality in the Amazon23. 9 

 10 

The overlay of our most recent spatial grid of blow-downs (data from Nelson et al. 19945) 11 

modeled with different kernel bandwidth46 (100, 150, 200 and 250 km) from our SPA 12 

model confirmed that most of the large disturbances blow-downs in the Amazon are far 13 

away from the deforestation arc. Spatial patterns of clustering of blow-downs are 14 

influenced by the choice of kernel bandwidth sizes (Supplementary Fig. S8). However, 15 

the bandwidth with smaller MSE46 (200 km, Supplementary Fig. S6) seems to be the 16 

most appropriate to resent the spatial pattern of blow-downs in the Brazilian Amazon. 17 

Yet, independent of the bandwidth choice, the analysis shows the same main spatial 18 

patterns of blow-downs. The density of large-scale blow-downs in the Amazon increases 19 

from East to West and South to North with the epicenter blow-downs around of Purus 20 

River region5,6.  21 
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 1 
Supplementary Figure S8. Clustering of large disturbances blow-downs in the Brazilian 2 
Amazon. Blow-down clusters modeled with Kernel bandwidth of 100 (a), 150 (b), 200 (c) 3 
and 250 (d) km. Spatial patterns of blow-downs overlaid on a land-use and vegetation 4 
map produced by the Brazilian Space Agency INPE42.  5 
 6 

6.2. Biomass loss of large-Scale disturbances For all events of large-scale blow-7 

downs5,6 (n=609, sum of blow-down records of Nelson et. al, 19945 and Espírito-Santo et 8 

al., 20106), we estimated the biomass loss as the product of disturbance area and its 9 

respective mean aboveground biomass extracted from the regional map of biomass stock 10 

of the Amazon50 region with 1 km2 spatial resolution (Fig. 1). We assume 100% mortality 11 

in areas of blow-downs5,6,8,23,51. We anticipate that this mortality rate overestimates 12 

carbon loss23,31,52, and so provides an upper bound estimate of the significance of large 13 

natural disturbances30,52 to old-growth forest carbon accumulation rates. Although not 14 

perfect, we provide the closest estimation of biomass loss by blow-downs based on class 15 

size of large-scale disturbances and the spatial gradient of biomass distribution in the 16 

Amazon50. 17 
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7. Disturbance area and biomass loss From tree-fall gaps to landscape blow-downs we 1 

provide the statistics of natural disturbances data for the various data sets in terms of area 2 

and biomass loss (Supplementary Fig. S9).  3 

 4 
Supplementary Figure S9. Frequency distributions of area and biomass loss from five 5 
sources of natural disturbance data sets. Small disturbances: (1) in red, forest plot 6 
inventories (n=484 censuses of 135 * 1ha plots12) distributed over the Amazon (a-b) and 7 
(2) in black, 96 tree-fall gaps from two large forest inventory plots (total area 167 ha) in 8 
the Tapajós National Forest13 (c-d). Intermediate disturbances: (3) in orange, small and 9 
intermediate disturbances from 48,374 ha of LiDAR14 images in southern Peru (e-f). 10 
Large disturbances: (4) in blue, 279 blow-downs bigger than 5 ha from an East-West 11 
mosaic of 27 Landsat scenes of the Amazon5 (g-h); and (5) in green, 330 blow-downs 12 
greater than 30 ha from 136 Landsat scenes in the Brazilian Amazon6 (i-j). 13 

 14 

 15 
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Because several data have the frequency distribution concentrated over small range of the 1 

data (skewed frequency distribution), we also provide the histograms of disturbances in a 2 

log transformation for a better visualization (Supplementary Fig. S10). In general, the 3 

frequency distributions of the different types of disturbances do not overlap completely 4 

(Supplementary Fig. S10) and our data set covers all scales of natural disturbances. 5 

 6 
Supplementary Figure S10. Frequency distributions (in log-scale) of area and biomass 7 
loss from five sources of natural disturbance data sets. Small disturbances: (1) in red, 8 
forest plot inventories (n=484 censuses of 135 * 1ha plots12) distributed over the Amazon 9 
(a-b) and (2) in black, 96 tree-fall gaps from two large forest inventory plots (total area 10 
167 ha) in the Tapajós National Forest13 (c-d). Intermediate disturbances: (3) in orange, 11 
small and intermediate disturbances from 48,374 ha of LiDAR14 images in southern Peru 12 
(e-f). Large disturbances: (4) in blue, 279 blow-downs bigger than 5 ha from an East-13 
West mosaic of 27 Landsat scenes of the Amazon5 (g-h); and (5) in green, 330 blow-14 
downs greater than 30 ha from 136 Landsat scenes in the Brazilian Amazon6 (i-j). 15 
 16 
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8. Assessing uncertainties of the natural disturbance Our general approach to quantify 1 

uncertainties is to use simulation scenarios that bracket the likely range of outcomes 2 

associated with various specific sources of uncertainty.  3 

 4 

Uncertainties of our analysis are associated (i) with combining datasets to obtain a 5 

region-wide disturbance size frequency distribution and (ii) simulation results based on 6 

such distributions. In order to address (i), we note that the methods for detecting 7 

disturbances used in this study are suitable for different spatial scales (e.g. Landsat 8 

suitable to detect large blow-downs) and mostly do not overlap with respect to 9 

disturbance size range. If the datasets do not overlap we scaled them to the full region by 10 

multiplication with Amazon forested area-to-area probed before combining them (forests 11 

censuses, LiDAR imagery, Landsat imagery). In this case there is no need to take into 12 

account uncertainties for the combination (not for assessing uncertainties related to the 13 

simulations though – which we address as explained under the simulation Table 1). 14 

Where there is overlap in the size range covered by different datasets (relevant only to 15 

different plot data) obtained with different methods we combined the data by weighing 16 

inversely with area probed.  17 

 18 

To address (ii) we first briefly recapitulate our data sets and their spatial coverage. For 19 

smallest disturbances monitored by forest censuses (RAINFOR data12) spatial coverage is 20 

very good with plots distributed well along the major axes of variation9 (soil fertility, dry 21 

season length, El Nino influence) (Fig 1a). Largest disturbances are observed with 22 

Landsat imagery5,6 which cover approximately 60 % of the Amazon forest region and the 23 

dataset includes 609 blow-downs (sum of blow-down records of Nelson et. al, 19945 and 24 

Espírito-Santo et al., 20106). As for the census data, spatial coverage is thus also very 25 

representative for the whole Amazon region. In contrast the lower end of the intermediate 26 

range is covered by data from a 114 and a 53 ha plot13 in Tapajós National Forest and 27 

with LiDAR data14 from southern Peru (Madre de Dios region). Thus the observations of 28 

the intermediate range are spatially biased (Fig. 1b,c). 29 

 30 

 31 
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Uncertainties to be addressed with a range of scenarios are thus due to: 1 

(1) Spatial coverage. As mentioned above, in contrast to small scale and largest scale 2 

disturbances LiDAR data14 covering a substantial part of the intermediate range are only 3 

from one part of Western Amazonia and cover only part of the intermediate range. We 4 

address this with a scenario whereby we assume the disturbance size distribution of the 5 

intermediate range to be the one obtained when combining the LiDAR data from terra 6 

firme and floodplains, a dramatic and instructive although unrealistic case;  7 

 8 

(2) Methodological issues. For forest censuses these include uncertainties in allometries 9 

which are quite minor in the big picture (see Feldpausch et al. 201253); a main issue with 10 

LiDAR data is the question how long a gap (or disturbance) is detectable by LiDAR. We 11 

address this issue by running our simulator assuming either (a) a detectability time of 1 12 

year or (b) a detectability time of 3.6 year respectively. The 3.6 years are chosen based 13 

on long-term observation of gap closure in 50 ha plot of Barro Colorado Island from 14 

Hubbell and Foster 198640. Gap closure varies regionally as data from French Guiana 15 

suggest half-lives of small forest gaps in excess of 5 years41. The 1 year detectability 16 

scenario is thus probably biologically unrealistic. 17 

 18 

(3) Dependence of disturbance size frequency distribution on our given data sample. We 19 

have calculated the uncertainties associated with calculating histograms formally and 20 

uncertainties are mostly not large with exception of the largest scales; we analyse the 21 

effect of this source of uncertainty with the following scenarios: (a) assumption of 22 

occurrence of largest scale disturbances throughout the region (i.e. not just in the 23 

Central Amazon), (b) the standard – in our view most likely case - and (c) omission of 24 

largest blow-downs altogether across the entire region. In light of extensive available 25 

data from two studies over two separate time periods using different analysis methods5,6, 26 

we assert that both the full region disturbance and no disturbance scenarios are 27 

exceptionally improbable. 28 

 29 

(4) Dependence on observed growth statistics based on RAINFOR forest censuses. We 30 

address this by centering growth (G) around the Amazon region mean of 2.50 Mg C ha-1 31 
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yr-1 and alternatively the Western Amazon region mean of 2.75 Mg C ha-1 yr-1 (see Gloor 1 

et al., 200912); and 2 

 3 

(5) Central Amazonia (where largest blow-downs are concentrated) versus rest of the 4 

Amazon region. To address this issue we use the same scenarios as described under (3). 5 

 6 

The results of the various simulation scenarios are summarized in Table 1 (see main 7 

manuscript for more details) and Table S2 (an extreme scenario that assumes the largest 8 

blow-downs occurring not only in Central Amazonia but throughout the Amazon regions 9 

and intermediate disturbances occurring at a rate that greatly over-represents the 10 

importance of floodplain forests). Sample trajectories for a range of scenarios are shown 11 

in figure S11 below. !12 

 13 
Supplementary Figure S11. Simulations of the Amazon aboveground biomass change. 14 
Simulations using the full frequency distribution of natural disturbance (small, 15 
intermediate and large-scale disturbances) assuming several scenarios of blow-downs 16 
occurrence and ages of tree-fall gaps from LiDAR images. Prediction examples of (a) the 17 
mean mass balance AGBΔ  for annual time-steps and (b) mass balance trajectory of 18 

AGB(year = N ) = ΔAGB(i)
i=1

N

∑ for a few members of the sample are presented. 19 
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Table S2. Summary of Amazon forest simulator results and statistical significance of 1 
simulated mean aboveground biomass gains for a range of extreme scenarios. We analyze 2 
three cases of large-disturbance blow-downs5,6, (the large-end tail of the disturbance 3 
frequency distribution): observed (i) no large disturbance events , (ii) only in central 4 
Amazon (~20% of the Amazon region), (iii) everywhere in the Amazon with the same 5 
frequency of events as in the Central Amazon (i.e. in total there are 5 times more large-6 
area events). For intermediate-range disturbances occurring across the entire Amazon 7 
region distributed according to LiDAR surveys14 (plots 1,4,5 and 12) of depositional-8 
floodplain (DFP) forests (15,178 ha) we assumed an extreme case of a mean gap age of 9 
only 1 year. We also assumed an annual mean mass gains12,18,36 of 2.75 Mg C ha-1 yr-1. 10 
The simulator of forest mortality is based on the frequency distribution of disturbance 11 
area. To convert area losses to biomass losses we assumed a forest mass density of 170 12 
Mg C ha-1 for all simulations, a high value and nearly 50% greater than the LiDAR 13 
landscape used to estimated intermediate disturbance dynamics18,36. Assessment of each 14 
scenario is based on a set of 109 annual equivalent samples. Significance is assessed with 15 
a t-test considering tsim = (dM/dt)/(σ/sqrt(N)) where dM/dt is ensemble mean mass gain, σ 16 
the standard deviation of the mass gain distribution and N the number of observations. 17 
For N we use either conservatively N =135 the total number of observational plots or N 18 
=1545, the total number of plot census years reflecting the stochastic nature of 19 
disturbance and therefore the near independence of plot results from year-to-year. Gain 20 
results are statistically significant at the 95% level if tsim  t{0.975,N=135} ≈ 21 
t{0.975,N=1545}=1.96 and at the 99% level if tsim  t{0.995,N=135} ≈ t{0.995,N=1545} = 2.58.  22 

 23 

Assumed annual mean mass gains12,18,36: 2.75 Mg C ha-1 yr-1 and intermediate-scale 24 

disturbances30,31 modeled with: 25 

Intermediate-Scale Disturbances Large-Scale Blow-downs5,6 

LiDAR data14 from terra firme and 
floodplains (gaps age40 ~ 1 yr old) 

None Central 
Amazon 

All Amazon 
Region 

dM/dt* 0.66 0.66 0.65 
σ* 9.76 10.89 14.68 
tobs(N=135) 0.79 0.70 0.51 
tobs(N=1545) 2.65 2.38 1.74 

 26 

 27 

 28 

 29 
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