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Abstract 

The exploring and understanding the electronic properties of molecules connected to 

metallic leads is a vital part of nanoscience if molecule is to have a future. This thesis 

documents a study for various families of organic and organometallic molecules, which 

offer unique concepts and new insights into the electronic properties of molecular 

junctions. Different families of molecules were studied using a combination of density 

functional theory (DFT) and non-equilibrium Green’s function formalism of transport 

theory. The main results of this thesis are as follows: 

 

A quantum circuit rule for combining quantum interference effects in the conductive 

properties of oligo(phenyleneethynylene) (OPE)-type molecules possessing three 

aromatic rings was investigated both theoretically and experimentally. Molecules were 

of the type X-Y-X, where X represents pyridyl anchors with para (p), meta (m) or ortho 

(o) connectivities and Y represents a phenyl ring with p and m connectivities. The 

conductances Gxmx (Gxpx) of molecules of the form X-m-X (X-p-X), with meta (para) 

connections in the central ring, were predominantly lower (higher), irrespective of the 

meta, para or ortho nature of the anchor groups X, demonstrating that conductance is 

controlled by the nature of quantum interference in the central ring Y. The single-

molecule conductances were found to satisfy the quantum circuit rule 

Gppp/Gpmp=Gmpm/Gmmm. This demonstrates that the contribution to the 

conductance from the central ring is independent of the para versus meta nature of the 

anchor groups. 
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The conductance and the decay of conductance as a function of molecular length within 

a homologous series of oligoynes, Me3Si― (C≡C)n―SiMe3 (n = 2, 3, 4, or 5), is shown 

to depend strongly on the solvent medium. Single molecule junction conductance 

measurements have been made with the I(s) method for each member of the series 

Me3Si―(C≡C)n―SiMe3 (n = 2, 3, 4, and 5) in mesitylene (MES), 1,2,4-

trichlorobenzene (TCB), and propylene carbonate (PC). In mesitylene, a lower 

conductance is obtained across the whole series with a higher length decay (β ≈ 1 

nm−1). In contrast, measurements in 1,2,4-trichlorobenzene and propylene carbonate 

give higher conductance values with lower length decay (β ≈ 0.1 and 0.5 nm−1 

respectively). This behaviour is rationalized through theoretical investigations, where β 

values are found to be higher when the contact Fermi energies are close to the middle 

of the HOMO−LUMO gap but decrease as the Fermi energies approach resonance with 

either the occupied or unoccupied frontier orbitals. The different conductance and β 

values between MES, PC, and TCB have been further explored using DFT-based 

models of the molecular junction, which include solvent molecules interacting with the 

oligoyne backbone. Good agreement between the experimental results and these 

“solvated” junction models is achieved, giving new insights into how solvent can 

influence charge transport in oligoyne-based single molecule junctions.  

 

The single molecule conductances of a series of bis-2,2′:6′,2″-terpyridine complexes 

featuring Ru(II), Fe(II), and Co(II) metal ions and trimethylsilylethynyl (Me3SiC≡C−) 

or thiomethyl (MeS-) surface contact groups have been determined theoretically and 

experimentally.  
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The single molecule conductance of metal complexes of general form trans-

Ru(CCArCCY)2(dppe)2 and trans-Pt(CCArCCY)2(PPh3)2 (Ar = 1,4-C6H2-2,5-

(OC6H13)2; Y = 4-C5H4N, 4-C6H4SMe) have been determined theoretically and 

experimentally. The complexes display high conductance (Y = 4-C5H4N, M = Ru 

(0.40.18 nS), Pt (0.80.5  nS); Y = 4-C6H5SMe, M = Ru (1.40.4  nS), Pt (1.80.6  

nS)) for molecular structures of ca. 3 nm in length, which has been attributed to transport 

processes arising from tunneling through the tails of LUMO states. 
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Chapter 1 

 

Introduction  

 

 

 
1.1. General 

Nanoscale science and engineering offer the possibility for revolutionary advances in 

both fundamental science and technology and may have an impact on our life. It is 

comparable in scale and scope to transistor based electronics. At its most basic level, 

nanoscale science is the study of novel phenomena and properties of materials that occur 

at extremely small length scales, at the nanoscale this is the size of atoms and molecules 

[1]. The nanoscience revolution has created an urgent need for a more robust 

quantitative understanding of matter at the nanoscale by modeling and simulation, since 

the absence of quantitative models that describe newly observed phenomena 

increasingly limits the progress in the field.  

Recently, new insights in the field of nanoscience have been obtained from the 

application of fundamental modeling techniques such as density functional theory 

(DFT), and molecular dynamics [2]. Advances in computer technology have led to an 

increase in computational capability which has made possible the modeling and 

simulation of complex systems with millions of degrees of freedom. However, the full 

potential of novel theoretical and modeling tools has not been reached yet. 
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1.2. Molecular Electronics 

Molecular electronics is presented as the field of science that investigates the electronic 

transport properties of systems in which individual molecules are used as a basic 

building block. The dimensions of some molecular systems are a few nanometers, and 

therefore molecular electronic should be viewed as a subfield of nanotechnology [3]. In 

terms of a potential technology, molecular electronics is based on the bottom-up 

approach where the idea is to assemble specific and designed molecules to form more 

complex structures, active components and connecting wires.  

The remarkable predictions of Gordon Moore in 1965, that the number of transistors 

per square centimetre on a silicon chip doubles every 18 months [4], has encouraged 

the constant quest for new technologies that could complement the silicon-based 

electronics, and molecular electronics is one such technology. 

Many decades ago, there were many fundamental questions such as how does the 

electrical current flow through a single molecule? [5, 6]. The concept of electrons 

passing through a single molecule comes via two different approaches [7]. The first is 

electron transfer, which involves charge moving from one end of the molecule to the 

other. The second one is the charge transport, which involves current passing through a 

single molecule that is connected between electrodes [8]. The two are closely related, 

because both of them attempt to answer the previous question. From the point of view 

of fundamental science, molecular electronics could provide an answer for previous 

inquiry, and perhaps be an ideal way to explore the electronic and thermal conductance 

through the smallest molecular circuits, where quantum mechanical effects completely 

dominate [9]. 
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The variety of molecules (both organic and organometallic molecules), together with 

their various properties could lead to the discovery of new physical phenomena. In 

addition, molecular junctions could also be promising systems to investigate the basic 

principles of electron transfer mechanisms. However, there are also other motivations 

in terms of a technological viewpoint which is the use of molecules as electronically 

active elements for many applications. One of these reasons is the size, since the typical 

size of molecules (between 1 and 10 nm) could lead to a higher packing density on a 

device with subsequent advantages in cost, efficiency and power dissipation [10]. These 

concepts and many others make molecular electronics an attractive field of science. 

This thesis involves theoretical and experimental studies on a range of organic and 

organometallic molecules. Theoretically, two main techniques have been used to study 

the systems in this thesis; the first is density functional theory (DFT), which is 

implemented in the SIESTA code [11], and the nonequilibrium Green’s function 

formalism of transport theory, which is implemented in the GOLLUM code [12]. 

Experimentally, scanning tunnelling microscopy break junction (STM-BJ), 

mechanically controllable break-junction (MCBJ) [13], and the current-distance (I(s)) 

technique [14], have been used to study the transport characteristics of the molecules 

that are the subject of investigation. 
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1.3. Thesis Outline 

The outline of this thesis can be summarized as follows; this chapter is followed by 

chapter 2 which presents a brief overview of density functional theory (DFT), which is 

one of the main theoretical techniques that has been used in this thesis to study and 

understand the electronic properties of single-molecule junctions. Chapter 3 describes 

the single particle transport theory. This chapter involves a Green’s function scattering 

formalism and all related topics such as the Landauer formula, Green’s function of 

infinite leads, some of examples of scattering and a general approach to solving the 

surface lead Green’s function.  

 

The main goal of this work is to explore and understand novel fundamentals of different 

molecular junctions, which is the link between the chapters of this thesis, since these 

studies aim to provide a model of the electronic properties of 

𝐀𝐮 |
𝐨𝐫𝐠𝐚𝐧𝐢𝐜 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬

𝐎𝐑
𝐨𝐫𝐠𝐚𝐧𝐨𝐦𝐞𝐭𝐚𝐥𝐥𝐢𝐜 𝐦𝐨𝐥𝐞𝐜𝐮𝐥𝐞𝐬

| 𝐀𝐮 molecular junctions. In other words, chapters 4 and 5 

focus on organic molecules to explore some novel principles such as the quantum 

transport rule (chapter 4), and the influence of different environments surrounding 

Oligoyne-based molecular wires on their electronic properties (chapter 5).  
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Chapters 6 and 7 are focused on organometallic molecules, to probe and obtain a deeper 

understanding of the electronic properties of this kind of molecule. In what follows, 

chapter 6 seeks to extend the former studies and arrive at a more detailed understanding 

of the role of the anchor unit and metal complex fragment on the electrical behaviour 

of bis-2,2′:6′,2″-terpyridine based complexes.  

 

The results in chapter 7 provide more insight into the transport mechanisms that have 

been reported in chapter 6, and open new avenues for the design of metal-complex based 

molecular wires. Finally, chapter 8 presents conclusions and future works. 
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Chapter 2 

 

Density Functional Theory  

 

 

2.1. Introduction 

In an attempt to explore and understand the electronic properties of molecules, many 

theories have emerged; one of the most important of these theories and most common 

is density functional theory (DFT). Nowadays, DFT can be presented as a powerful tool 

for computations of the quantum state of atoms, molecules and solids, and of ab-initio 

molecular dynamics. In 1927, immediately after the foundation of quantum mechanics, 

an initial and approximate version of density functional theory was conceived by 

Thomas and Fermi [1]. Later, using the basics of quantum mechanics, Hohenberg, 

Kohn, and Sham, developed density functional theory of the quantum ground state to 

be superior to both Thomas-Fermi and Hartree-Fock theories, which opened a wide 

door to applications for realistic physical systems [2, 3]. From that time on, density 

functional theory (DFT) has grown vastly, and it has become one of the main tools in 

theoretical physics and molecular chemistry.  

This chapter presents a brief summary of DFT and SIESTA (Spanish Initiative for 

Electronic Simulations with Thousands of Atoms) code [4], which has been used to 

study the electronic properties of the molecules that are the subject of research in this 

thesis. SIESTA is an implementation of DFT that can be used to perform calculations 

to investigate the characteristics of systems that involve a huge number of atoms ~ 1000.  



Chapter 2: Density Functional Theory 

8 
 

 2.2. The Many-Body Problem 

This is an approach which aims to solve any system consisting of a large number of 

interacting particles. In a microscopic system consisting of charged nuclei surrounded 

by electron clouds these interactions such as electron-nuclei, electron-electron, nuclei-

nuclei and electron correlations are described via Schrödinger equation. 

The full Hamiltonian operator of a general system describing these interactions is 

 

𝐻 =∑−
ℏ2

2𝑚𝑒
∇𝑟𝑛
2

𝑛

+
1

8𝜋𝜀0
∑

𝑒2

|𝑟𝑛 − 𝑟𝑚|
𝑛≠𝑚

 

                 −∑
ℏ2

2𝑚𝑛
𝑛

∇𝑅𝑛
2 +

1

8𝜋𝜀0
∑

𝑍𝑛𝑍𝑚𝑒
2

|𝑅𝑛 − 𝑅𝑚|
𝑛≠𝑚

−
1

4𝜋𝜀0
∑

𝑍𝑚𝑒
2

|𝑟𝑛 − 𝑅𝑚|
𝑛𝑚

                 (2.1) 

 

Here, 𝑚𝑛, 𝑍𝑛 and 𝑅𝑛  represent the mass, atomic number and position of the n-th atom 

in the solid respectively. The position of n-th electron is denoted by the symbols 

𝑟𝑛,𝑟𝑚 and 𝑚𝑒 is the mass of a single electron. This Hamiltonian consists of five parts; 

the electron kinetic energy, electron-electron interactions, the nucleons kinetic energy, 

nucleon-nucleon interactions and electron-nucleon interactions respectively.  

Approximately, the mass of nucleons is a few orders of magnitude higher than that of 

electron, and in terms of their velocities, the nuclei could be considered as a classical 

particle which creates an external potential, and the electrons as quantum particles are 

subjected to this potential.  
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This concept is known as the Born-Oppenheimer approximation [5], together with an 

assumption that the nucleon wavefunction is independent of the electron position, 

equation (2.1) can then be written as follows:  

𝐻 = 𝑇𝑒 + 𝑈𝑒−𝑒 + 𝑉𝑒−𝑛𝑢𝑐                                                                                                    (2.2) 

The first part of equation (2.2) presents the kinetic energy of all electrons, which is 

described by; 

𝑇𝑒 =∑
ℏ2

2𝑚𝑒
𝑛

∇𝑛
2                                                                                                                    (2.3) 

The electron-electron interaction is represented in the second part of equation (2.2), 

which is given by; 

𝑈𝑒−𝑒 = ∑
𝑒2

4𝜋𝜀0
𝑛,𝑚,𝑛≠𝑚

1

|𝑟𝑛 − 𝑟𝑚|
                                                                                       (2.4) 

𝑈𝑒−𝑒 describes the sum of all potentials acting on a given electron at position 𝑟𝑛 by all 

other electrons at position 𝑟𝑚 .  

The third part of equation (2.2) describes the interactions between electrons and nuclei, 

which is expressed by; 

𝑉𝑒−𝑛𝑢𝑐 =∑∑𝑣𝑛𝑢𝑐(𝑟𝑛 − 𝑅𝑁)

𝑛𝑁

                                                                                   (2.5) 

𝑉𝑒−𝑛𝑢𝑐 is the interaction between electrons and nuclei; it depends on the positions of 

electrons 𝑟𝑛 and nuclei 𝑅𝑁 . 

The employment of a Born-Oppenheimer approximation [5], allows the electron and 

nucleon degrees of freedom to be decoupled.  
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2.3. The Hohenberg-Kohen theorems 

Essentially, density functional theory (DFT) evolved significantly depending on two 

ingeniously simple theorems put forward and proved by Hohenberg and Kohn in 1964 

[2]. These theorems are two powerful statements:  

Theorem I: For any system of interacting particles in an external potential 𝑉𝑒𝑥𝑡, the 

density is uniquely determined. In other words, the external potential is a unique 

functional of the density. 

To prove this theorem, assume that there are two external potentials 𝑉𝑒𝑥𝑡
(1)

 and 𝑉𝑒𝑥𝑡
(2)

 

differing by more than a constant, and giving rise to the same ground state density, 

𝜌0 (𝑟). It is clear that these potentials belong to different Hamiltonians, which are 

denoted 𝐻(1) and 𝐻(2), and they give rise to distinct ground-state wavefunctions 𝛹(1) 

and 𝛹(2). Since 𝛹(2) is not a ground state of 𝐻(1), so: 

 

𝐸(1) = 〈𝛹(1)|𝐻(1)|𝛹(1)〉 < 〈𝛹(2)|𝐻(1)|𝛹(2)〉                                                            (2.6) 

 

and, similarly: 

 

𝐸(2) = 〈𝛹(2)|𝐻(2)|𝛹(2)〉 < 〈𝛹(1)|𝐻(2)|𝛹(1)〉                                                            (2.7) 

 

Assuming that the ground states are non-degenerate [6, 7], one could rewrite equation 

(2.6) as follows: 

 

〈𝛹(2)|𝐻(1)|𝛹(2)〉 = 〈𝛹(2)|𝐻(2)|𝛹(2)〉 + 〈𝛹(2)|𝐻(1) − 𝐻(2)|𝛹(2)〉

= 𝐸(2) +∫𝑑𝑟 (𝑉𝑒𝑥𝑡
(1)(𝑟) − 𝑉𝑒𝑥𝑡

(2)(𝑟)) 𝜌0(𝑟)                                        (2.8) 
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and assuming that |𝛹(1)⟩ has the same density 𝜌0(𝑟) as |𝛹(2)⟩: 

〈𝛹(1)|𝐻(2)|𝛹(1)〉 = 𝐸(1) +∫𝑑𝑟 (𝑉𝑒𝑥𝑡
(2)(𝑟) − 𝑉𝑒𝑥𝑡

(1)(𝑟)) 𝜌0(𝑟)                                (2.9) 

 

Combining of equations (2.8) and (2.9) leads to, 

 

𝐸(1) + 𝐸(2) < 𝐸(1) + 𝐸(2)                                                                                             (2.10) 

 

This equation proves the two different external potentials cannot produce the same 

ground-state density. 

 

 

Theorem II: A universal functional 𝐹[𝜌] for the energy 𝐸[𝜌] could be defined in terms 

of the density. The exact ground state is the global minimum value of this functional. 

In other words, the ground state energy of the system is given by the functional 𝐹[𝜌]. If 

the input density and ground-state density are the same, the functional 𝐹[𝜌] would 

deliver the lowest energy. Hence, the functional could be minimised by varying the 

density to obtain the ground-state energy for the external potential.  

The second theorem could be proven by considering the expression for the total energy, 

E, of the system with density ρ. 

 

𝐸[𝜌] = 𝑇[𝜌] + 𝐸𝑖𝑛𝑡[𝜌] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟)                                                             (2.11) 

 

The kinetic term, T, and internal interaction of the electrons, 𝐸𝑖𝑛𝑡, depend only on the 

charge density, and so are universal. 
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The first theorem reported that the ground-state density 𝜌0 for a system with external 

potential 𝑉𝑒𝑥𝑡 and wavefunction 𝛹0, determines the Hamiltonian of that system, so for 

any density, ρ, and wavefunction, Ψ, other than the ground state, it could be found: 

 

 𝐸0 = 〈𝛹0|𝐻|𝛹0〉 < 〈𝛹|𝐻|𝛹〉 = 𝐸                                                                            (2.12) 

 

Hence, the ground-state density, 𝜌0, minimizes the functional (equation 2.11). If the 

functional 𝑇[𝜌] + 𝐸𝑖𝑛𝑡[𝜌] is known, then by minimizing equation 2.11, the ground-state 

of the system could be obtained, and then all ground-state characteristics could be 

calculated, which are the subject of the interest. 

 

 

2.4. The Kohn-Sham Method 

The Kohn-Sham method has been used in solid state physics for about fifty years. By 

now, largely due to the development of increasingly accurate density functionals, the 

method has also gained a large popularity among physicist and chemists, especially as 

it allows in many cases, accurate treatments of molecular systems unattainable by the 

more traditional quantum mechanical methods [8, 9]. 

It has been reported in the previous section that obtaining the ground-state density leads 

to calculating the ground-state energy. However, the precise form of the functional 

shown in equation (2.11) is not known. Generally, the kinetic term and internal energies 

of the interacting particles cannot be expressed as functionals of the density.  
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Kohn and Sham in 1965 [3], came up with the idea, that it possible to replace the original 

Hamiltonian of the system by an effective Hamiltonian of non-interacting particles in 

an effective external potential, which gives rise to the same ground state density as the 

original system [10, 11].  

The form of energy functional of the Kohn-Sham ansatz is: 

 

 𝐸𝐾𝑆[𝜌] = 𝑇𝐾𝑆[𝜌] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟) + 𝐸𝐻[𝜌] + 𝐸𝑥𝑐[𝜌]                                    (2.13) 

 

Here, 𝑇𝐾𝑆  is the kinetic energy of the non-interacting system. The kinetic energy, T, in 

equation (2.11) has been used for the interacting system. This discrimination is due to 

the exchange correlation, 𝐸𝑥𝑐, functional, which is described in equation (2.15). 𝐸𝐻 is 

the Hartree functional, which describes the electron-electron interaction using the 

Hartree-Fock method [12 – 16], and it is given by: 

 

𝐸𝐻[𝜌] =
1

2
∬

𝜌(𝑟)𝜌(𝑟 ′)

|𝑟 − 𝑟 ′|
𝑑𝑟𝑑𝑟′                                                                                  (2.14) 

 

 

This is an approximated version of the internal interaction of the electrons, 𝐸𝑖𝑛𝑡, as 

defined previously. Again, the difference referred to the exchange correlation, 𝐸𝑥𝑐. 

Therefore, the differences between the exact and approximate solutions for the kinetic 

energy, and electron-electron interaction terms were represented via 𝐸𝑥𝑐, which is 

expressed by: 

 

 

𝐸𝑥𝑐[𝜌] = (𝐸𝑖𝑛𝑡[𝜌] − 𝐸𝐻[𝜌]) + (𝑇[𝜌] − 𝑇𝐾𝑆[𝜌])                                                  (2.15) 

 

 

Consequently, the Kohn-Sham method could be a powerful approach to obtain an 

accurate ground-state density if the exchange correlation, 𝐸𝑥𝑐, is known precisely.   
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 2.5. The Exchange Correlation Functionals 

The biggest challenge of Kohn-Sham DFT is the finding of accurate approximations to 

the exchange correlation energy, 𝐸𝑥𝑐. The best understanding of exact functional could 

be obtained by the best approximation could be designed it [17]. Many efforts have been 

spent to find the best approximation for the exchange-correlation functional, and 

numerous forms have been proposed. This section presents a brief summary of two of 

the most popular approximation forms. The first one is the local density approximation 

(LDA) [18]. Secondly, the generalized gradient approximation (GGA) [19]. The 

comparison in terms of the accuracy between LDA and GGA, reported that the GGA is 

more accurate approximation, because it is designed based on density and the density 

gradients, while LDA is the simplest, because it is based on the local density. 

 

2.5.1. Local Density Approximation 

The simplest approximation is to assume that the density can be treated as a uniform 

electron gas. Based on this approximation, which was initially proposed by Kohn and 

Sham [3], the exchange-correlation energy for a density ρ is given by: 

 

𝐸𝑥𝑐
𝐿𝐷𝐴[𝜌] = ∫𝑑𝑟𝜌(𝑟) (∈𝑥

ℎ𝑜𝑚 (𝜌(𝑟)) +∈𝑐
ℎ𝑜𝑚 (𝜌(𝑟)))                                         (2.16) 

 

Here, the terms  ∈𝑥
ℎ𝑜𝑚 and ∈𝑐

ℎ𝑜𝑚 are the exchange and correlation energy densities for 

the homogeneous electron gas. The analytical exchange energy, ∈𝑥
ℎ𝑜𝑚 , can be found in 

the literature [20]: 

 

∈𝑥
ℎ𝑜𝑚= −

3

4𝜋
√3𝜋2𝜌
3

                                                                                                  (2.17) 
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Ceperley and Alder [21] calculated numerically the correlation energy ∈𝑐
ℎ𝑜𝑚 using the 

quantum Monte-Carlo method, then Perdew and Zunger [22] fitted the numerical data 

to analytical expressions, and found: 

 

∈𝑐
ℎ𝑜𝑚=

{
 

 
−0.048 + 0.031𝑙𝑛𝑟(𝑠) − 0.0116𝑟𝑠 + 0.002𝑟𝑠 ln(𝑟𝑠)      𝑟𝑠 < 1

−

−
0.1423

(1 + 1.9529√𝑟𝑠 + 0.3334𝑟𝑠)
                                            𝑟𝑠 > 1

           (2.18) 

 

Here, 𝑟𝑠 = (
3

4𝜋𝜌
)
1
3⁄

 is the radius of a sphere in a homogeneous electron gas of density, 

ρ that contains one electron. 

The LDA is often surprisingly accurate and for systems such as graphene and carbon 

nanotubes or where the electron density slowly varies, generally gives very good results. 

Despite the remarkable success [23, 24], of the LDA, care should be taken in its 

application. For example, LDA predicts a wrong ground state for the titanium atom and 

it gave a very poor description for hydrogen bonding [25, 26], as well as it gives an 

incorrect value of the band gap in semiconductors and insulators [27, 28]. 

 

2.5.2. Generalized Gradient Approximation 

The pitfalls of the local density approximation (LDA) and a fact that real systems are 

inhomogeneous, means that there is a need to find an alternative approximation, which 

is the generalized gradient approximation (GGA).  

Basically, there is no analytical form for the exchange energy in GGA, and therefore it 

has been calculated along with the correlation term, numerically. Nowadays, there are 

various parameterizations which are used in this approximation; one of the most popular 
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and most reliable is the PBE functional form, which was proposed in 1996 by Perdew, 

Burke and Ernzherhof [29]: 

 

𝐸𝑥𝑐
𝐺𝐺𝐴 = 𝐸𝑥

𝐺𝐺𝐴[𝜌] + 𝐸𝑐
𝐺𝐺𝐴[𝜌]                                                                                         (2.19) 

 

The exchange part is given by: 

 

𝐸𝑥
𝐺𝐺𝐴[𝜌] = ∫ ∈𝑥 (𝜌(𝑟)) 𝑉𝑥(𝜌(𝑟) ∇𝜌(𝑟))𝜌(𝑟)𝑑𝑟                                                   (2.20) 

𝑉𝑥(𝜌, ∇ρ) = 1 + 𝑘 −
𝑘

1 +
𝜇𝑠2

𝑘

 

Here, k = 0.804, μ = 0.21951 and 𝑠 =
|∇𝜌|

2𝑘𝐹𝜌
 is the dimensionless density gradient and 

𝑘𝐹 is the Fermi wavelength and 𝑉𝑥(𝜌, 𝛻𝜌) represents the enhancement factor.  

The correlation energy form is given by: 

 

𝐸𝑐
𝐺𝐺𝐴[𝜌] = ∫𝜌(𝑟)[∈𝑐 (𝜌(𝑟)) + 𝐹(𝜌(𝑟), ∇ρ(r))] 𝑑𝑟                                          (2.21) 

𝐹(𝜌, ∇𝜌) =
𝛾𝑒2

𝑎0
𝑙𝑛 [1 +

𝛽𝑡2

𝛾
(

1+𝐴𝑡2

1+𝐴𝑡2+𝐴2𝑡4
)],          𝐴 =

𝛽

𝛾

1

(𝑒−∈𝑐(𝜌)/𝛾−1)
 

 

β = 0.066725, 𝛾 =
(1−𝑙𝑛2)

𝜋2
γ, 𝑎0 =

ℏ

𝑚2, and the dimensionless gradient is =
|∇𝜌|

2𝑘𝑇𝐹𝜌
 , where 

𝐾𝑇𝐹 = √12/𝜋
3

√𝑟𝑠⁄  is known as the Thomas-Fermi screening wavelength and 𝑟𝑠 is 

defined as the local Seitz radius. The PBE-GGA functional has been extremely 

influential, both for performing actual calculations and as the basis for functionals 

involving higher derivatives and exact exchange [30]. It has been used in all studies of 

this thesis, and it gives a good agreement with experiment [31 – 33].  
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2.6. SIESTA 

SIESTA is an acronym derived from the Spanish Initiative for Electronic Simulations 

with Thousands of Atoms [4] is both a method and computer program implementation, 

to perform electronic structure calculations and ab initio molecular dynamics 

simulations of molecules and solids. One of the main characteristics of SIESTA, that it 

uses the standard Kohn-Sham self-consistent density functional method in the local 

density (LDA) and, or generalized gradient (GGA) approximations. In addition, it 

utilizes norm-conserving pseudopotentials in their fully nonlocal form, and a linear 

combination of atomic orbital basis set to achieve efficient calculations [4].  

In this thesis, the SIESTA code has been used to perform all DFT calculations. It is used 

to obtain the optimized geometries of the molecules which are the subject of this 

research, and a Hamiltonian describing their electronic properties.  

 

2.6.1. The Pseudopotential Approximation 

In terms of time and computer memory, the investigation of the electronic properties of 

typical systems of molecules consist of a large number of atoms containing complex 

potentials could be expensive.  Although, the splitting of a large interacting problem 

into a large effective non-interacting problem as shown previously simplifies the 

problem; still there is a need for more simplification, which could be obtained by using 

the proposed pseudopotential approximation by Fermi in 1934 [34, 35]. The 

fundamentals of this concept are the removing of the core electrons, which lie within 

filled atomic shells, and replace them by an external potential known as a 
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pseudopotential, while valance electrons are arranged in the partially filled outer shells, 

and they are only contribute in the formation of molecular orbitals. The advantages of 

this kind of approximations could be summarized in two points; first it decreases the 

electrons number of the system significantly, and that lowers the cost (time and 

memory) to perform the calculations of the system. The second benefit is the numerical 

stability, because these pseudopotentials are smooth. 

In this section, a special type of ab-initio pseudopotential is presented, which is used in 

the SIESTA code, a norm-conserving pseudopotential [36]. The calculation of the 

pseudopotential based on the Kohn-Sham formalism to solve the many-electron 

problem for a single atom, could replace the effect of the core electrons. The definition 

of the valance electron wavefunctions is the product of radial and spherical harmonic 

wavefunctions: 

 

𝛹𝑛𝑙𝑚
𝑎𝑒 (𝑟) =

1

𝑟
𝑅𝑛𝑙
𝑎𝑒(𝑟)𝑌𝑙𝑚(𝜑, 𝜗)                                                                                      (2.22) 

Here, n = 1, 2, …, l = 0, …n – 1 and m = – l, …l are quantum numbers, 𝑌𝑙𝑚(𝜑, 𝜗) 

indicates to normalized spherical harmonics and 𝑅𝑛𝑙
𝑎𝑒 is the solution to the radial 

Schrödinger equation (equation 2.23) that contains the all-electron potential , 𝑉𝑛𝑙
𝑎𝑒, 

which includes all core-and valence-electron interactions. 

 

∈𝑛𝑙
𝑎𝑒 𝑅𝑛𝑙

𝑎𝑒(𝑟) = [−
1

2

𝑑2

𝑑𝑟2
+
𝑙(𝑙+1)

2𝑟2
+ 𝑉𝑛𝑙

𝑎𝑒(𝑟)]𝑅𝑛𝑙
𝑎𝑒(𝑟)                                                (2.23)  

To reduce the size of the system, the core electrons were removed and replaced the all-

electron potential with an effective potential: 𝑉𝑛𝑙
𝑒𝑓𝑓
[𝜌](𝑟), where 𝜌(𝑟) is the electron 

density given by the filled Kohn-Sham orbitals: 
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𝜌(𝑟) = 𝜌(𝑟, 𝜑, 𝜗) = ∑𝑓𝑛𝑙𝑚|𝛹𝑛𝑙𝑚(𝑟, 𝜑, 𝜗)|
2

𝑛𝑙𝑚

                                                          (2.24) 

𝑓𝑛𝑙𝑚 = 0, 1, 2 is the occupancy factor indicating whether an orbital is empty, half-filled 

or full. In general, 𝜌(𝑟) is not spherically symmetric, but for an isolated atom, it is 

possible to integrate out the angular dependence: 

 

𝜌(𝑟) = ∫𝜌(𝑟, 𝜑, 𝜗) 𝑟2𝑠𝑖𝑛𝜗𝑑𝜗𝑑𝜑 

          = ∑ 𝑓𝑛𝑙𝑚|𝑅𝑛𝑙(𝑟)|
2 ∫|𝑌𝑙𝑚(𝜑, 𝜗|

2
𝑛𝑙𝑚 𝑠𝑖𝑛𝜗𝑑𝜗𝑑𝜑 = ∑ 𝑓𝑛𝑙𝑚|𝑅𝑛𝑙(𝑟)|

2
𝑛𝑙𝑚            (2.25) 

 

This purely radially-dependent density generates an effective potential that is also only 

radially dependent. Hence, the Kohn-Sham equation takes the form: 

 

∈𝑛𝑙 𝑅𝑛𝑙(𝑟) = [−
1

2

𝑑2

𝑑𝑟2
+
𝑙(𝑙 + 1)

2𝑟2
+ 𝑉𝑛𝑙

𝑒𝑓𝑓
[𝜌](𝑟)] 𝑅𝑛𝑙(𝑟)                                        (2.26) 

 

The attractive nuclear potential is also included into the effective potential. This is the 

Kohn-Sham orbitals and the self-consistent effective potential that involves all of the 

interaction between electrons. The pseudowavefunction, 𝑅𝑛𝑙
𝑝𝑠(𝑟), and eigen-

energies, ∈𝑛𝑙
𝑝𝑠

 are obtained from the solution to equation (2.26), after replacing the 

central potential 𝑉𝑛𝑙
𝑒𝑓𝑓

 by a pseudopotential 𝑉𝑛𝑙
𝑝𝑠

, which is given by: 

 

𝑉𝑛𝑙
𝑝𝑠 =∈𝑛𝑙

𝑝𝑠−
𝑙(𝑙 + 1)

2𝑟2
+

1

2𝑅𝑛𝑙
𝑝𝑠(𝑟)

𝑑2

𝑑𝑟2
𝑅𝑛𝑙
𝑝𝑠(𝑟)                                                                 (2.27) 

 

The formula (2.27) is obtained by inverting the Schrödinger equation for known valence 

wavefunctions (or pseudowavefunction), 𝑅𝑛𝑙
𝑝𝑠(𝑟) , and eigenvalues, ∈𝑛𝑙

𝑝𝑠
. Therefore, the 
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pseudopotential depends on the n and l quantum numbers and are parameterized to be  

smooth and continuous outside the given cut-off radius. 

In this thesis, all DFT calculations were achieved using SIESTA with pseudopotentials 

generated using the Troullier-Martins method [37, 38]. In this method, the radial part of 

the pseudowavefunction described by two formulas and depends on a given cut-off 

radius 𝑟𝑐 as follows: 

 

𝑅𝑛𝑙
𝑝𝑠 = {

𝑅𝑛𝑙  (𝑟)                𝑟 > 𝑟𝑐
𝑟1𝑒𝑝(𝑟)                      𝑟 > 𝑟𝑐

                                                                                        (2.28) 

 

Here, 𝑝(𝑟) is given by: 

 

𝑝(𝑟) = 𝑎0 + 𝑎2𝑟
2 + 𝑎4𝑟

4 + 𝑎6𝑟
6 + 𝑎8𝑟

8 + 𝑎10𝑟
10 + 𝑎12𝑟

12                               (2.29) 

 

The 𝑎𝑖 coefficients are determined by the following conditions: 

1. Norm-conservation refers to the charge in as sphere less than 𝑟𝑐 has to be same 

for the pseudopotential and all valence electron wavefunctions. 

 

∫  |𝑅𝑛𝑙(𝑟)|
2

𝑟𝑐

0

= ∫  |𝑅𝑛𝑙
𝑝𝑠(𝑟)|

2
𝑟𝑐

0

 

 

2. The corresponding valence eigenvalues are the same. 

 

∈𝑛𝑙
𝑝𝑠=∈𝑛𝑙 

 

3. Smoothness of the pseudowavefunction leads to a smooth pseudopotential 

 

𝑅𝑛𝑙(𝑟𝑐) = 𝑅𝑛𝑙
𝑝𝑠(𝑟𝑐), and for i = 1, 2, 3, 4:    [

𝑑𝑖𝑅𝑛𝑙(𝑟)

𝑑𝑟𝑖
]
𝑟=𝑟𝑐

= [
𝑑𝑖𝑅𝑛𝑙

𝑝𝑠(𝑟)

𝑑𝑟𝑖
]
𝑟=𝑟𝑐
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From these conditions, it is possible to parameterize 𝑅𝑛𝑙
𝑝𝑠(𝑟) (equation (2.28)), and then 

substitute this into equation (2.27), to obtain the explicit form of the pseudopotential: 

 

𝑉𝑛𝑙
𝑝𝑠(𝑟) = {

𝑉𝑛𝑙
𝑒𝑓𝑓[𝑛](𝑟)                                                                               𝑟 > 𝑟𝑐

−

∈𝑛𝑙
𝑝𝑠+

(𝑙 + 1)𝑝′(𝑟)

𝑟
+
1

2
(𝑝′(𝑟) + 𝑝′′(𝑟))                          𝑟 > 𝑟𝑐

          (2.30) 

 

The resulting pseudopotential would be smooth and nodeless, if these conditions are 

satisfied [37].  𝑉𝑛𝑙
𝑝𝑠(𝑟) is known as a screened pseudopotential because it involves the 

effects of both core and valence electrons. The employing of this pseudopotential in 

other environment such as molecules, any screening from the valence electrons should 

be removed, which could be performed by subtracting the exchange-correlation and 

Hartree potentials, and that yielded the bare ion potential, 𝑉𝑛𝑙
𝑖𝑜𝑛, which would be 

transferable to different environments. 

 

𝑉𝑛𝑙
𝑖𝑜𝑛(𝑟) = 𝑉𝑛𝑙

𝑝𝑠(𝑟) − 𝑉𝐻[𝑛
𝜐𝑎𝑙(𝑟)] − 𝑉𝑥𝑐[𝑛

𝜐𝑎𝑙(𝑟)]                                                      (2.31) 

 

Here, 𝑛𝜐𝑎𝑙(𝑟) denotes the valence components of the self-consistent charge density. 

A huge number of real-space points is required to calculate the potential matrix directly. 

Secondly, the number of matrix elements per l value is scaled by n(n+1), where n 

represents the orbital number. To optimize this procedure, the pseudopotential could be 

consider in two parts; the first one is called a local potential, 𝑉𝑙𝑜𝑐, which is the same for 

all l components. The second one is called a semi-local potential, 𝑉𝑛
𝑠𝑙 = 𝑉𝑖𝑜𝑛 − 𝑉𝑙𝑜𝑐, 

which differs for each l, and it is constructed inside region less than the given cut-off 

radius, 𝑟𝑐 , otherwise it is zero outside this region.  
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The expression of this potential is given by: 

 

𝑉𝑛
𝑖𝑜𝑛 = 𝑉𝑛

𝑙𝑜𝑐(𝑟) +∑ ∑ 𝛿𝑉𝑛𝑙|𝑌𝑙𝑚⟩⟨𝑌𝑙𝑚|

𝑙

𝑚=−1

𝑛−1

𝑙=0

                                                                (2.32) 

 

𝑉𝑛
𝑠𝑙 is the second part of equation (2.32), where 𝛿𝑉𝑛𝑙 is constructed in a way that it is 

zero beyond the cut-off radius. This is reasonable since, beyond the cut-off radius, the 

pseudopotential is the original effective potential, which is local. 

The semi-local part of equation (2.32) has been represented as a fully non-local potential 

in terms of Kleinmann-Bylander projectors [39]: 

 

𝑉𝑛
𝑠𝑙 =∑

|𝛿𝑉𝑙𝑚𝛹𝑙𝑚
𝑝𝑠⟩⟨𝛹𝑙𝑚

𝑝𝑠𝛿𝑉𝑙𝑚|

⟨𝛹𝑙𝑚
𝑝𝑠|𝛿𝑉𝑙𝑚|𝛹𝑙𝑚

𝑝𝑠⟩
= 𝑉𝐾𝐵                                                                   (2.33) 

Here, |𝛹𝑙𝑚
𝑝𝑠⟩, 𝛿𝑉𝑙𝑚 and |𝛿𝑉𝑙𝑚𝛹𝑙𝑚

𝑝𝑠⟩ are the spherical harmonic, the semi-local part of the 

pseudopotential, and the pseudowavefunction respectively.  

Hence, the non-local parts could be calculated by implementing Kleinmann-Bylander 

projectors, which decreases the number of matrix elements per l from n(n+1) to n [39]. 

In addition, the non-local pseudopotential matrix elements could be calculated in k-

space rather than a real space grid, which dramatically lowers the computational 

expenses for the large systems. 

 

2.6.2. SIESTA Basis Sets 

A basis set is a mathematical description of the orbital within a system used to perform 

the theoretical calculations. One elegant and popular choice of basis sets in periodic 
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system calculations is the plane-wave basis set. However, one of the main reasons for 

applying the SIESTA code for my calculations is that it used localised basis sets (which 

are not implicitly periodic) and therefore can be used to construct a tight-binding 

Hamiltonian, this is not easy to achieve using a plane wave based code.  

The type of basis set is one of the most important aspects for calculations using SIESTA. 

For example, to perform efficient calculations, the Hamiltonian should be sparse, and 

therefor SIESTA utilizes a linear combination of atomic orbital basis sets (LCAOs), 

which are constrained to be zero outside of a certain radius (cut-off radius), and are 

constructed from the orbitals of the atoms. This generates the desired sparse form for 

the Hamiltonian, and it reduces the overlap between basis functions, and therefore a 

minimal size basis set creates characteristics similar to that of the system under 

investigation.   

The simplest basis set for an atom is called a single-ζ basis, which corresponds to a 

single basis function, 𝛹𝑛𝑙𝑚(𝑟), per electron orbital (i.e. 1 for an s-orbital, 3 for a p-

orbital, etc...). In this case each basis function consists of a product of one radial 

wavefunction, 𝜙𝑛𝑙
1 , and one spherical harmonic, 𝑌𝑙𝑚: 

 

𝛹𝑛𝑙𝑚(𝑟) = 𝜙𝑛𝑙
1 (𝑟)𝑌𝑙𝑚(𝜑, 𝜗)                                                                                         (2.34) 

 

The small number of the expected basis function is one, and therefore a single-ζ basis 

uses single atomic orbitals as a basis function. Therefore, the radial part in equation 

(2.34) is found by using the Sankey method [40], because the component of the real 

orbital is described by an infinitely long tail, which is not suitable for a localized basis 

function.   
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This method uses a modified version of the Schrödinger equation, which is solved for 

an atom placed inside a spherical box, and the radial wavefunction equals zero at the 

cut-off radius, 𝑟𝑐 . This restriction yields an energy shift δE within the Schrödinger 

equation such that eigenfunction has a node at the cut-off radius, 𝑟𝑐 : 

 

[−
𝑑2

𝑑𝑟2
+
𝑙(𝑙 + 1)

2𝑟2
+ 𝑉𝑛𝑙

𝑖𝑜𝑛(𝑟)]𝜙𝑛𝑙
1 (𝑟) = (∈𝑛𝑙+ 𝛿𝐸)𝜙𝑛𝑙

1 (𝑟)                                  (2.35) 

 

The energy shift δE satisfies the previous constraint and the corresponding 

pseudopotential is 𝑉𝑛𝑙
𝑖𝑜𝑛(𝑟). To obtain high accuracy basis sets (multiple-ζ), additional 

radial wavefunctions could be included for each electron orbital. The split-valence 

method has been used to calculate the additional radial wavefunctions, 𝜙𝑛𝑙
𝑖 , for i > 1. 

This involves defining a split-valence cut off for each additional wavefunction 𝑟𝑠
𝑖. Thus, 

it is split into two piecewise functions: a polynomial below the cut-off and the former 

wavefunction above it: 

 

𝜙𝑛𝑙
𝑖 (𝑟) = {

𝑟𝑙(𝑎𝑛𝑙 − 𝑏𝑛𝑙𝑟
2)                                            𝑟 > 𝑟𝑠

𝑖

−
𝜙𝑛𝑙
𝑖−1                                                     𝑟𝑠

𝑖 < 𝑟 < 𝑟𝑠
𝑖−1
                            (2.36) 

 

The additional parameters are found at the point 𝑟𝑠
𝑖 where the wavefunction and its 

derivative are assumed continuous. 

The polarization of a real orbital due to the electrical field of the neighbour atoms, is 

taken into account to calculate the basis set function. This kind is called double-ζ 

polarized, which is used to achieve all calculations in this thesis. Table (2.1) shows the 

number of basis of orbitals for a selected number of atoms for single-ζ polarized, 

double-ζ and double-ζ polarized. 
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Table 2.1: Examples of the radial basis functions per atom as used within the SIESTA 

for different degrees of precisions. 

 

 

 

 

 

 

 

 

 

 

2.6.3. The Basis Set Superposition Error Correction (BSSE) and      

Counterpoise Correction (CP) 

 

The employment of DFT to compute the ground state energy of various molecular 

junctions, permits to calculate binding energies and optimal geometries. However, these 

calculations are subject to errors, due to the employing of localized basis sets, which 

are concentrated on the nuclei. At the point when atoms are sufficiently close to each 

other so that their basis functions will overlap. This might cause an artificial 

strengthening of the atomic interaction and an artificial shortening of the atomic 

distances and hence this could influence the aggregate energy of the system.  

The solution of this kind of errors has been demonstrated by the basis set superposition 

error correction (BSSE)23 or the counterpoise correction24. Assuming two molecular 

systems, denoted a and b, the energy of the interaction may be expressed as: 

 

 

Atom/Basis 

Function 

 

Single-ζ  

(SZ) 

 

 

Double-ζ 

(DZ) 

 

Single-ζ  

Polarised 

(SZP) 

 

 

Double-ζ  

Polarised 

(DZP) 

 

 

H1/1s 

 

1 

 

2 

 

4 

 

5 

 

C6/1s 2s 2px 2py 2pz 

 

 

4 

 

8 

 

9 

 

13 

N7/1s 2s 2px 2py 2pz 4 8 9 13 
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∆𝐸(𝑎𝑏) = 𝐸𝑎𝑏 − (𝐸𝑎
𝑎𝑏 + 𝐸𝑏

𝑎𝑏)                                                                                     (1)            

The total energy of the combined a and b system is 𝐸𝑎𝑏, the total energies of isolated 

systems a and b are Ea and Eb respectively with keeping identical basis sets for the three 

energies. To execute these amendments inside SIESTA, ghost states have been used to 

assess the aggregate energy of segregated systems a or b in dimer basis. In terms of 

ghost states, there are two principles; first, the basis should be preserved of one part of 

a dimer on atomic centres and disregard its electrons and nuclear charge. Second, the 

other part of dimer should be kept without neglecting of anything. Precise results [43, 

44] have been obtained by using this method, which will be shown in chapters 5, 6 and 

8 of this thesis.                  

 

2.6.4. The Electron Hamiltonian 

The electron Hamiltonian created by SIESTA follows the Kohn-Sham formalism and 

incorporates the local and non-local parts of pseudopotential: 

 

𝐻 = �̂� +∑𝑉𝑖
𝐾𝐵(𝑟)

𝑖

+∑𝑉𝑖
𝑙𝑜𝑐(𝑟)

𝑖

+ 𝑉𝐻(𝑟) + 𝑉𝑥𝑐(𝑟)                                          (2.38) 

 

Here, T is the kinetic energy operator, 𝑉𝑖
𝑙𝑜𝑐 and 𝑉𝑖

𝐾𝐵 are the local and non-local parts of 

the pseudopotential for atom 𝑖, and 𝑉𝐻and 𝑉𝑥𝑐 are Hartree and exchange-correlation 

potentials. By using two centre integrals in k-space, the first two terms of equation 

(2.38) have been calculated, which are expressed as follows: 

 

⟨𝛹1|�̂�|𝛹2⟩ = ∫𝛹1
∗(𝑘) �̂�𝛹1(𝑘)𝑒

−𝑖𝑘.𝑅𝑑𝑘                                                                 (2.39) 
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These are found by taking the Fourier transforms in k-space with 𝛹𝛼 corresponding to 

either the basis orbitals (for �̂� = �̂�) or the Kleinmann-Bylander pseudopotential 

projects (for �̂� = 𝑉𝑖
𝐾𝐵). The last three terms of equation (2.38) are calculated on a three-

dimensional real space grid with a fineness ∆𝑥 controlled a grid cut off energy, ∈𝑐, 

which is equivalent to a plane-wave cut off  𝜖𝑐 =
𝜋2

2∆𝑥
 . A cut-off energy of 250 Ry has 

been used in all calculations of this thesis. 

 

2.7. Calculation in Practice 

In view of previous sections, everything is obtained to start the computation. After 

building the atomic structure of the system, suitable pseudopotentials are required for 

every component, which can be distinctive for each exchange-correlation functional. 

Additionally, a reasonable choice of the basis set must be made for every element 

present in calculation. In terms of time and memory, it is well known that more precise 

calculations are more computationally expensive. For example, the larger basis set gives 

an accurate calculation, but it takes a longer time and uses a larger memory. 

The creation of the initial charge density based on an assuming that there is no 

interaction between atoms could be the next step. This step is simple and the sum of 

charge densities is the total charge density, because the pseudopotentials are known.  

Figure 2.1 shows the self-consistent calculation, which begins by calculating the Hartree 

potential and exchange-correlation potential. Since the density is represented in real 

space, the Hartree potential is obtained by solving the Poisson equation with the multi-

grid [45, 46] or fast Fourier-transform [45, 47] method, and the exchange-correlation 

potential is obtained by performing the integrals shown in section 2.5. 
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Figure 2.1: Schematic of the self-consistency process within SIESTA. 

 

The next iteration as shown in figure 2.1 starts after solving the Kohn-Sham equations 

and obtaining a new density 𝜌(𝑟). The reaching of the necessary convergence criteria 

is the end of this iteration. Consequently, the ground state Kohn-Sham orbitals and the 

ground state energy for a given atomic configuration are obtained. For geometrical 

optimization, the conjugate gradient method [45, 48] is used to obtain the minimal 

ground state and the corresponding atomic configuration. Finally, if the self-consistency 

is performed, the Hamiltonian and overlap matrices could be extracted.  
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Chapter 3 

 

Single Particle Transport 

 

 

3.1. Introduction 

Essentially, the aim of molecular electronics is to explore and understand the electrical 

behaviour and properties of molecular junctions; where a molecule of a few nanometers 

is attached to bulk electrodes so that the ballistic transport can happen through its energy 

levels. Indeed, there are some of fundamentals, which should be considered as a first 

step to understand the electronic properties of the molecular junctions, such as the 

scattering process of electrode|molecule|electrode structure. One of the most powerful 

approaches to understand the scattering process in the electrode junction and the 

molecular bridge is the Green’s function formalism. 

The first section of this chapter presents a brief overview of the Landauer formula. The 

retarded Green’s function for a one-dimensional tight binding chain will be introduced 

in the second section. Following this, a break in the periodicity of this lattice at a single 

connection would be shown, and the Green’s function is related directly to the 

transmission coefficient across the scattering region. Then, the methods that have been 

used to calculate the transmission coefficient of mesoscopic conductors with complex 

geometries would be presented. In this chapter, the method assumes the negligible 

interaction between carriers, the absence of inelastic processes and zero temperature. 
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 3.2. The Landauer Formula 

The Landauer formula [1, 2] has become the standard theoretical model to describe the 

transport phenomena in phase coherent, ballistic mesoscopic systems. The main 

principle of this approach is the assumption that the system under investigation is 

coupled to large reservoirs as shown in figure 3.1, where all inelastic processes take 

place [3]. Consequently, the transport through the systems can be formulated as a 

quantum mechanical scattering problem. Another important assumption is that the 

system is connected to reservoirs by ideal quantum wires, which behave as waveguides 

for the electron waves. 

 

 

Figure 3.1: A mesoscopic scatterer connected to contacts by ballistic leads. The 

chemical potential in the contacts is μL and μR respectively. If an incident wave packet 

hits the scatterer from the left, it will be transmitted with probability T= tt* and 

reflected with probability R = rr*. Charge conservation requires T+ R = 1. 
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Figure 3.1, shows a mesoscopic scatterer connected between two large electron 

reservoirs, by means of two ideal ballistic leads; all inelastic relaxation processes are 

limited to the reservoirs [3]. The assumption that the reservoirs have a small chemical 

potential difference 𝜇𝐿 − 𝜇𝑅 = 𝛿𝐸 > 0, allows the movement of electrons from the left 

to the right reservoir.  For one open channel, the incident electrical current, δI, is given 

by: 

𝛿𝐼 = 𝑒𝜐𝑔
𝜕𝑛

𝜕𝐸
𝛿𝐸 = 𝑒𝜐𝑔

𝜕𝑛

𝜕𝐸
(𝜇𝐿 − 𝜇𝑅)                                                                  (3.1) 

Here, e is the electronic charge, 𝜐𝑔 is the group velocity – i.e. the velocity of electron, 

and 
𝜕𝑛

𝜕𝐸
 is the density of states per unit length in the lead in the energy window given by 

the chemical potential of the contacts: 

𝜕𝑛

𝜕𝐸
=
𝜕𝑛

𝜕𝑘

𝜕𝑘

𝜕𝐸
=
𝜕𝑛

𝜕𝑘

1

𝜐𝑔ℏ
                                                                                           (3.2) 

In one dimension, after including a factor of 2 for spin dependency, 
𝜕𝑛

𝜕𝑘
=

1

𝜋
. Substituting 

this into equation (3.2), finds that, 
𝜕𝑛

𝜕𝐸
=

1

𝜐𝑔ℎ 
. This simplifies equation (3.1) to: 

𝜕𝐼 =
2𝑒

ℎ
(𝜇𝐿 − 𝜇𝑅) =

2𝑒2

ℎ
𝜕𝑉                                                                               (3.3) 

Here, 𝜕𝑉 is the voltage generated by the potential mismatch. From equation (3.3), it is 

obvious that in the absence of a scattering region, the conductance of a quantum wire 

with one open channel is 
𝑒2

ℎ
, which is approximately 77.5μS or a resistance of 12.9kΩ. 

If a scattering region is considered, the current collected in the right contact would be: 
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𝛿𝐼 =
2𝑒2

ℎ
T𝛿𝑉 ⇒

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
T                                                                          (3.4) 

This is the well-known Landauer formula, relating the conductance, G, of a mesoscopic 

scatterer to the transmission probability, T, of the electrons traveling through it. It 

describes the linear response conductance, hence it only holds for small bias 

voltages, 𝛿𝑉 ≈ 0.  

Büttiker [2] has generalised the Landauer formula for more than one open channel. In 

view of that, the total of all transmission amplitudes, instead of transmission coefficient 

has been used to describe the transport of electrons from left contact to the right. Hence, 

the Landauer formula for more than one open channel is given by: 

𝛿𝐼

𝛿𝑉
= 𝐺 =

2𝑒2

ℎ
∑|𝑡𝑖,𝑗|

2

𝑖,𝑗

=
2𝑒2

ℎ
𝑇𝑟(𝑡𝑡† )                                                   (3.5) 

Here, 𝑡𝑖,𝑗 is the transmission amplitude describing scattering from the jth channel of the 

left lead to ith channel of the right lead. Based on the definition of transmission 

amplitudes, the reflection amplitudes, 𝑟𝑖,𝑗, can be introduced, which describe scattering 

processes, where the particle is scattered from the jth channel of the left lead to the ith 

channel of the same lead. The definition of the S matrix can be obtained via combination 

of the transmission and reflection amplitudes. The S matrix, which connects the states 

coming from the left lead to the right and vice versa, is given by: 

𝑆 = (
𝑟               𝑡′

𝑡               𝑟′
)                                                                                        (3.6) 

Here, r and t describe the electrons transferring from the left, while r' and t' describe the 

electrons transferring from the right. Equation (3.5) suggests that r, t, r' and t' are 

matrices for more than one open channel, and in presence of magnetic field they could 
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be complex. The S matrix is useful not only in describing linear transport, but also in   

other problems, such as adiabatic pumping [4].  

 

3.3. One Dimension 

The calculation of the scattering matrix for a simple one-dimensional system can be a 

helpful step to clarify the outline of the generalised methodology. A Green’s function 

based approach is used in the derivation. Therefore, the form of the Green’s function 

for a simple one dimensional lattice will be discussed in section (3.3.1), followed by the 

calculation of the scattering matrix for a one-dimensional scatterer in section (3.3.2). 

 

3.3.1. Perfect One-Dimensional Lattice 

This section presents the form of the Green’s function for a simple one-dimensional 

lattice with on-site energies ε0 and real hopping parameters -γ as shown in figure (3.2). 

The tight-binding approximation has been used, which assumes that the wavefunction 

of the system can be described as a superposition of wavefunctions for isolated atoms. 

Another assumption that is taken into account is that only nearest-neighbour coupling 

is non-zero. 
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Figure 3.2: Tight-binding model of a one-dimensional periodic lattice with on-site 

energies ε0 and couplings γ. 

The matrix form of the Hamiltonian can be simply written: 

 

𝐻 = (

⋱ 
−𝛾
0
0

−𝛾 
𝜀0
−𝛾
0

0
−𝛾
𝜀0
−𝛾

0 
0
−𝛾
⋱

)                                                                                   (3.7) 

 

The Schrödinger equation (3.8), can be expanded at a lattice site 𝒵 in terms of the energy 

and wavefunction 𝛹𝒵 (equation (3.9)): 

 

(𝐸 − 𝐻)𝛹 = 0                                                                                               (3.8) 

 

𝜀0𝛹𝒵 − 𝛾𝛹𝒵+1 − 𝛾𝛹𝒵−1 = 𝐸𝛹𝒵                                                               (3.9) 

The wavefunction for this perfect lattice takes the form of propagating Bloch state 

(equation (3.10)), normalised by its group velocity, υg, in order for it to carry unit current 

flux. The substitution of this into equation (3.9) leads to the well-known one dispersion 

relation (equation (3.11)). 

 

𝛹𝒵 =
1

√𝜐𝑔
𝑒𝑖𝑘𝒵                                                                                             (3.10) 

𝐸 = 𝜀0 − 2𝛾𝑐𝑜𝑠𝑘                                                                                       (3.11) 
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Here, k refers to the wavenumber. It is true that the retarded Green’s function, 𝑔(𝒵, 𝒵′), 

is closely related to the wavefunction and is the solution to an equation very similar to 

that of the Schrödinger equation: 

 

(𝐸 − 𝐻)𝑔(𝒵, 𝒵′) = 𝛿𝒵, 𝒵′                                                                        (3.12) 

The retarded Green’s function, 𝑔(𝒵, 𝒵′), describes the response of a system at a point 

𝒵 due to a source at a point 𝒵′. 

Naturally, it can be anticipated that such an excitation to give rise to two waves, 

traveling outwards from a point of the excitation, with amplitudes A and B as shown in 

figure (3.3). 

 

 

 

Figure 3.3: Retarded Green’s function of an infinite one-dimensional lattice. The 

excitation at  𝒵 = 𝒵′ causes waves to propagate left and right with amplitudes A and 

B respectively. 
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These waves can be expressed as: 

 𝑔(𝒵′, 𝒵 ) = 𝐵𝑒𝑖𝑘𝒵                          𝒵 >  𝒵′ 

𝑔(𝒵′, 𝒵 ) = 𝐴𝑒−𝑖𝑘𝒵                        𝒵 <  𝒵′                                                  (3.13) 

This solution satisfies equation (3.12) at every point, but 𝒵 =  𝒵′. To overcome this, 

the Green’s function must be continuous (equation (3.14)), and therefore the two are 

equated at 𝒵 = 𝒵′: 

[𝑔(𝒵, 𝒵′)]𝒵=𝒵′ 𝑙𝑒𝑓𝑡 = [𝑔(𝒵, 𝒵′)]𝒵=𝒵′ 𝑟𝑖𝑔ℎ𝑡                                              (3.14) 

𝐵𝑒𝑖𝑘𝒵
′
= 𝐴𝑒−𝑖𝑘𝒵

′
  ⟹    𝐴 =  𝐵𝑒2𝑖𝑘𝒵

′
                                                    (3.15) 

Substituting equation (3.15) into Green’s function (equation (3.13)) yields: 

𝑔(𝒵′, 𝒵) = 𝐵𝑒𝑖𝑘𝒵                        = 𝐵𝑒𝑖𝑘𝒵
′
𝑒𝑖𝑘(𝒵−𝒵

′)           𝒵 ≥ 𝒵′ 

𝑔(𝒵′, 𝒵) = 𝐵𝑒2𝑖𝑘𝒵
′
𝑒−𝑖𝑘𝒵          = 𝐵𝑒𝑖𝑘𝒵

′
𝑒𝑖𝑘(𝒵

′−𝒵)           𝒵 ≤ 𝒵′          (3.16) 

Equation (3.16) can be rewritten simply as: 

𝑔(𝒵, 𝒵′) = 𝐵𝑒𝑖𝑘𝒵
′
𝑒𝑖𝑘|𝒵−𝒵

′|                                                                            (3.17) 

To define the constant B, the Green’s function (equation (3.12)) must be considered, 

then H can be written as −
ℏ2

2𝑚
∇2 𝑜𝑟 −

ℏ𝜐𝑔

2𝑘
 ∇2 (where 𝜐𝑔 =

ℏ𝑘

𝑚
 is the group velocity), 

and then substituted into the Green’s function (equation (3.17)), so that the equation 

becomes: 

(𝐸 +
ℏ𝜐𝑔

2𝑘

𝜕2

𝜕𝒵2
) (𝐵𝑒𝑖𝑘𝒵

′
𝑒𝑖𝑘|𝒵−𝒵

′|) = 𝛿𝒵,𝒵′                                                  (3.18) 

The integral of this function over a small distance, centred on 𝒵′, of width 2𝜔+ gives: 
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 ∫ (𝐸 +
ℏ𝜐𝑔

2𝑘

𝜕2

𝜕𝒵2
) (𝐵𝑒𝑖𝑘𝒵

′
𝑒𝑖𝑘|𝒵−𝒵

′|)
𝒵′+𝜔+

𝒵′−𝜔+
𝑑𝒵 = ∫ 𝛿𝒵, 𝒵′

𝒵′+𝜔+

𝒵′−𝜔+
𝑑𝒵 

𝐵𝑒𝑖𝑘𝒵
′
(𝐸 ∫ 𝑒𝑖𝑘|𝒵−𝒵

′|
𝒵′+𝜔+

𝒵′−𝜔+
𝑑𝒵 +∫

ℏ𝜐𝑔

2𝑘

𝜕2

𝜕𝒵2

𝒵′+𝜔+

𝒵′−𝜔+
𝑒𝑖𝑘|𝒵−𝒵

′|𝑑𝒵) = 1 

𝐵𝑒𝑖𝑘𝒵
′
(
ℏ𝜐𝑔

2𝑘

𝜕

𝜕𝒵
𝑒𝑖𝑘|𝒵−𝒵

′|)
𝒵′−𝜔+

𝒵′+𝜔+

= 𝐵𝑒𝑖𝑘𝒵
′
(
ℏ𝜐𝑔

2𝑘
𝑖𝑘𝑒𝑖𝑘|𝒵−𝒵

′|)
𝒵′−𝜔+

𝒵′+𝜔+

= 1 

𝐵𝑒𝑖𝑘𝒵
′ ℏ𝜐𝑔

2𝑘
2𝑖𝑘 = 1   ⟹    𝐵𝑒𝑖𝑘𝒵

′
=

1

𝑖ℏ𝜐𝑔
                                                                  (3.19) 

 

Hence, the retarded Green’s function can be written as: 

𝑔𝑅(𝒵 − 𝒵′) =
1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘|𝒵−𝒵

′|                                                                       (3.20) 

The group velocity, which is found from the dispersion relation is: 

𝜐𝑔 =
1

ℏ

𝜕𝐸(𝑘)

𝜕𝑘
= 2𝛾𝑠𝑖𝑛𝑘                                                                               (3.21) 

The retarded Green’s function will be used in this thesis, and for more simplicity, R has 

been excluded from its representation. Therefore, 𝑔𝑅(𝒵 − 𝒵′) = 𝑔(𝒵, 𝒵′); more 

details of this derivation can be found in literature [3, 5, 6]. 
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3.3.2. One-Dimensional Scattering 

This section presents an attempt to obtain the Green’s function of a system, which 

involves two segments of one-dimensional tight binding semi-infinite leads connected 

by a coupling element α, as shown in figure 3.4. 

 

 

 

Figure 3.4: Simple tight-binding model of a one dimensional scatterer attached to one 

dimensional leads. 

The system in figure 3.4 is tricky because, though it seems simple, all one-dimensional 

setups can be reduced back to this topology. Taking this into account, the analytical 

solutions for the transmission and reflection coefficient would be very valuable. The 

definition of the Hamiltonian, which takes the form of an infinite matrix is: 

𝐻 =

(

 
 
 

⋱
−𝛾
0
0
0
0

−𝛾
𝜀0
−𝛾
0
0
0

0
−𝛾
𝜀0
𝛼
0
0

0
0
𝛼
𝜀0
−𝛾
0

0
0
0
−𝛾
𝜀0
−𝛾

0
0
0
0
−𝛾
⋱ )

 
 
 
= (

𝐻𝐿          
−
−

𝑉𝑐
†        

𝑉𝑐
−
−
𝐻𝑅

)                                          (3.22) 

Here, 𝐻𝐿 and 𝐻𝑅 indicate to Hamiltonians of the leads, which are the semi-infinite 

equivalent of the Hamiltonian shown in equation (3.7). 𝑉𝑐 denotes the coupling 

parameter. For real γ, the dispersion relation corresponding to the leads introduced 
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above, are given in equation (3.11), and the group velocity was given in equation (3.21). 

The scattering amplitudes can be obtained by calculating the Green’s function of the 

system. The formal solution to equation (3.12), can be written as: 

𝐺 = (𝐸 − 𝐻)−1                                                                                              (3.23) 

It is singular if the energy E is equal to an eigenvalues of the Hamiltonian H. To 

circumvent this problem, it is practical to consider the limit: 

𝐺∓ = lim
𝜂→0

(𝐸 − 𝐻 ± 𝑖𝜂)−1                                                                          (3.24) 

Here, η is a positive number and G∓  is the retarded (advanced) Green’s function. The 

retarded Green’s function has only been used in this thesis, and therefore the positive 

sign has been chosen. The retarded Green’s function for an infinite one-dimensional 

chain is defined in equation (3.20). 

𝑔𝑗𝑙
∞ =

1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘|𝑗−𝑙|                                                                                       (3.25) 

Here, j and l are the labels of the sites in the chain and adequate boundary conditions 

are needed to obtain the Green’s function of a semi-infinite lead. The lattice is semi-

infinite, and therefore the chain must be terminated at a given point, 𝑖0. In order to 

satisfy the boundary conditions, the source is anticipated at 𝑖0 – i.e. when l = 𝑖0, there 

is no effect on the chain. In other words: 𝑔 = (𝑗, 𝑖0) = 0 for 𝑗 ≤ 𝑙. In addition, it is 

expected that boundary to give rise to a reflected wave, 𝐷𝑒−𝑖𝑘|𝑗−𝑙|: 

𝑔𝑗,𝑖0 =
1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘(𝑖0−𝑗) + 𝐷𝑒−𝑖𝑘(𝑖0−𝑗) = 0    ⟹     𝐷 = −

1

𝑖ℏ𝜐𝑔
𝑒2𝑖𝑘(𝑖0−𝑗)                (3.26) 

Substituting this back into the Green’s function leads to: 
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𝑔𝑗,𝑙 =
1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘(𝑙−𝑗) −

1

𝑖ℏ𝜐𝑔
𝑒2𝑖𝑘(𝑖0−𝑗)𝑒−𝑖𝑘(𝑙−𝑗) 

𝑔𝑗,𝑙 =
1

𝑖ℏ𝜐𝑔
(𝑒𝑖𝑘(𝑙−𝑗) − 𝑒𝑖𝑘(2𝑖0−𝑗−𝑙))                                                                             (3.27) 

It is known that there is no propagation of a wave beyond the boundary, and that means 

at any point beyond 𝑖0 − 1 there is no impact of the source on the chain. Therefore, if 

𝑗 ≥ 𝑙 and 𝑗 ≥ 𝑖0, it is expected 𝑔(𝑖0, 𝑙) = 0. According to this condition: 

𝑔𝑖0,𝑙 =
1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘(𝑖0−𝑙) + 𝐷𝑒−𝑖𝑘(𝑖0−𝑙) = 0  ⟹    𝐷 = −

1

𝑖ℏ𝜐𝑔
𝑒2𝑖𝑘(𝑖0−𝑙)                   (3.28) 

Substituting this back into the Green’s function leads to: 

𝑔𝑗,𝑙 =
1

𝑖ℏ𝜐𝑔
𝑒𝑖𝑘(𝑗−𝑙) −

1

𝑖ℏ𝜐𝑔
𝑒2𝑖𝑘(𝑖0−𝑙)𝑒−𝑖𝑘(𝑗−𝑙) 

𝑔𝑗,𝑙 =
1

𝑖ℏ𝜐𝑔
(𝑒𝑖𝑘(𝑗−𝑙) − 𝑒𝑖𝑘(2𝑖0−𝑗−𝑙))                                                                            (3.29) 

To summarize: 

𝑔𝑗,𝑙 =

{
 
 

 
 

1

𝑖ℏ𝜐𝑔
(𝑒𝑖𝑘(𝑗−𝑙) − 𝑒𝑖𝑘(2𝑖0−𝑗−𝑙)  )             𝑗 ≥ 𝑙                                                              

−   
−                                                                                                                  (3.30)  

 
1

𝑖ℏ𝜐𝑔
(𝑒𝑖𝑘(𝑙−𝑗) − 𝑒𝑖𝑘(2𝑖0−𝑗−𝑙))           𝑗 ≤ 𝑙                                                                  

 

Equation (3.30) can be written as: 

𝑔𝑗,𝑙 =
1

𝑖ℏ𝜐𝑔
(𝑒𝑖𝑘|𝑗−𝑙| − 𝑒𝑖𝑘(2𝑖0−𝑗−𝑙)  ) = 𝑔𝑗,𝑙

∞ +𝛹𝑗,𝑙
𝑖0                                              (3.31) 

Here, 𝑔𝑗,𝑙
∞  is the Green’s function of the infinite lattice and 𝛹𝑗,𝑙

𝑖0 is the mathematical 

representation of the boundary condition: 
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𝛹𝑗,𝑙
𝑖0 = −

𝑒𝑖𝑘(2𝑖0−𝑗−𝑙)

𝑖ℏ𝜐𝑔
                                                                                                  (3.32) 

At the boundary, 𝑗 = 𝑙 = 𝑖0 − 1, the Green’s function will have the simple form: 

𝑔𝑖0−1,𝑖0−1 = −
𝑒𝑖𝑘

𝛾
                                                                                                     (3.33) 

In case of decoupled leads, α = 0, the decoupled Green’s function is given by: 

 

𝑔 =

(

 
 
−
𝑒𝑖𝑘

𝛾
0
0
0

     0
0
0
0

0
0
0
0

0
0
0

−
𝑒𝑖𝑘

𝛾 )

 
 
= (

𝑔𝐿
0
0
0

     0
0
0
0

0
0
0
0

0
0
0
𝑔𝑅

)                                                     (3.34) 

 

In case of coupled leads, Dyson’s equation is required to obtain the Green’s function, 

G, of the system: 

𝐺−1 = (𝑔−1 − 𝑉)                                                                                                  (3.35) 

Here, V is the operator, which describes the interaction between leads: 

𝑉 = (

0
0
0
𝑉𝑐
†

     0
0
0
0

0
0
0
0

𝑉𝑐
0
0
0

) = (

0
0
0
−𝛼∗

     0
0
0
0

0
0
0
0

−𝛼
0
0
0

)                                                                (3.36) 

The solution of Dyson’s equation (equation (3.35)) is: 

𝐺 =
1

𝛼2 − 𝛾2𝑒−2𝑖𝑘
(

𝛾𝑒−𝑖𝑘

0
0
−𝛼∗

     0
0
0
0

0
0
0
0

−𝛼
0
0

𝛾𝑒−𝑖𝑘
)                                                       (3.37) 
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Utilizing the Fisher-Lee relation [3, 7], the transmission, t, and reflection, r, amplitudes 

can be calculated from equation (3.37). It is obvious that the Green’s function contains 

information of the transmission and reflection, since 𝐺𝑗,𝑙 is a response at point j to a 

source at point l. When point j is in the right lead and point l is in the left lead, the source 

emits two waves travelling outwards, one away from the scatterer and one towards the 

scatterer with amplitudes A and B respectively. For the right-going wave to affect point 

j, it has to travel through the scatterer. Therefore, the Green’s function contains 

information on two waves; a left moving wave (𝐴𝑒−𝑖𝑘|𝑗−𝑙| + 𝐵𝑟𝑒𝑖𝑘|𝑗−𝑙|) and the 

transmitted right-moving wave (𝐵𝑡𝑒𝑖𝑘|𝑗−𝑙|). The transmission, t, and reflection, r 

coefficients are introduced. 

The points before and after the scatterer, 𝑖0 − 1 and 𝑖0 respectively, which act as 

boundary states, are defined in equation (3.33). Since 𝐴 = 𝐵 =
1

𝑖ℏ𝜐𝑔
, the equation (3.38) 

gives a definition for the transmission and reflection coefficients, equations (3.39) and 

(3.40): 

𝐺1,1 =
1

𝑖ℏ𝜐𝑔
(1 + 𝑟) 

𝐺2,1 =
1

𝑖ℏ𝜐𝑔
𝑡𝑒𝑖𝑘                                                                                               (3.38) 

1 + 𝑟 = 𝑖ℏ𝜐𝑔𝐺1,1                                                                                              (3.39) 

𝑡 = 𝑖ℏ𝜐𝑔𝐺2,1𝑡𝑒
𝑖𝑘                                                                                               (3.40) 

 

These amplitudes correspond to particles incident from the left. The same expressions 

could be used for the transmission, tꞋ, and reflection, rꞋ, amplitudes for the particles are 

travelling from the right.  
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Based on these coefficients, the probability is defined: T = tt*,  R = rr*. Consequently, 

the transmission probability for this system can be written as: 

T=
σ2

(γ2−α2)2+σ2
                                                                                                (3.41) 

Here, 𝜎 = 2𝛾𝛼𝑠𝑖𝑛𝑘. Now, if α = γ the equation becomes unity, T = 1, which is expected, 

and when α is greater or smaller than γ, it creates a scattering region, which result in a 

transmission probability, T ≤ 1. 

The full scattering matrix has been obtained, and therefore the Landauer formula 

(equation (3.4)) can be used to calculate the zero bias conductance. The procedures by 

which this analytical solution for the conductance of a one-dimensional scatterer was 

found can be generalized for more complex systems, and can be considered as a base 

for the analytical formula of the quantum circuit rule as shown in chapter 4. 

 

3.4. Generalization of the Scattering Formalism 

This section, based on Lambert’s derivation [8, 9] shows a generalized method to 

perform transport calculations. This is analogous to the former approach. It involves 

three parts, first the surface Green’s function of crystalline leads is computed. The 

second one is represented by using of decimation technique to lower the dimensionality 

of the scattering region. Finally, by using a generalization of the Fisher-Lee relation the 

scattering amplitudes will be calculated. 
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3.4.1 Hamiltonian and Green’s Function of the Leads 

The general semi-infinite crystalline electrode of arbitrary complexity will be studied 

here. Because the leads are crystalline, the structure of the Hamiltonian is a 

generalization of the one-dimensional electrode Hamiltonian in equation (3.2).  

 

 

 

Figure 3.5: Schematic representation of a semi-infinite generalized lead. States 

described by the Hamiltonian H0 are connected via generalized hopping H1. The 

direction Z is defined to be parallel to the axis of the chain.  

 

Figure 3.5, shows the general system topology. Instead of single site energies, the 

Hamiltonians for each repeating layer of the bulk electrode are described by H0, and a 

coupling matrix to describe the coupling between these layers is denoted H1. The total 

Hamiltonian for this system is: 

 

𝐻 =

(

 

⋱ 𝐻1
𝐻1

† 𝐻0

0 0
𝐻1 0

0 𝐻1
†

0 0

𝐻0 𝐻1
𝐻1

† ⋱ )

                                                                          (3.42) 

Here, 𝐻0 and 𝐻1 are in general complex matrices and only the restriction is that the full 

Hamiltonian, H, should be Hermitian. The main aim of this section is to calculate the 

 

H0 H0 H0 
H1 H1 

Z 
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Green’s function of such a lead for a general 𝐻1and 𝐻0. Solving the Schrödinger 

equation is the way to calculate the spectrum of the Hamiltonian, and therefore the 

Green’s function can be calculated. 

  

𝐸𝛹𝒵 = 𝐻0𝛹𝒵 + 𝐻1𝛹𝒵+1 + 𝐻1
†𝛹𝒵−1                                                         (3.42)  

Here, 𝛹𝒵 is the wave function describing layer 𝒵, where 𝒵 is an integer measured in 

units of inter-layer distance. The assumption here, that the system is infinitely periodic 

in the 𝒵 direction only, and therefore the on-site wavefunction, 𝛹𝒵, can represented in 

Bloch form; consisting of a product of a propagating plane wave and a wavefunction, 

𝜙𝑘, which is perpendicular to the transport direction, 𝒵. If the layer Hamiltonian, 𝐻0, 

has dimensions M × M  (or in other words consists of M site energies and their respective 

hopping elements), the perpendicular wavefunction, 𝜙𝑘, will have M degrees of 

freedom and take the form of a 1× M dimensional vector. Therefore, the wavefunction, 

𝛹𝒵: 

 

𝛹𝒵 = √𝑛𝑘 𝑒
𝑖𝑘𝒵𝜙𝑘                                                                                      (3.43) 

Here, 𝑛𝑘 is an arbitrary normalization parameter. Substituting this into the Schrödinger 

equation (3.42) gives: 

(𝐻0 + 𝑒
𝑖𝑘𝒵𝐻1 + 𝑒

−𝑖𝑘𝒵𝐻1
† − 𝐸)𝜙𝑘 = 0                                                  (3.44) 

To obtain the band structure for such a problem, the k values should be selected and 

then calculate the eigenvalues at that point, 𝐸 = 𝐸1(𝑘), where l = 1,….M. Here, l 

denotes the band index. For each value of k, there will be M solutions to the 

eigenproblem, and so M energy values. In this way, by selecting multiple values for k, 

it is relatively simple to build up a band structure.  
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In the scattering problem, the values of k have been obtained at a given E, instead of 

finding the E values at a given k, and this is approaching the problem from the opposite 

direction. A root-finding method is typically used to perform this, and therefore a huge 

numerical effort is required, because the wave numbers are in general complex. 

Alternatively, an eigenvalue problem can be written down in which the energy is the 

input and the wave numbers are the results. 

𝜗𝑘 = 𝑒
−𝑖𝑘𝒵𝜙𝑘                                                                                                   (3.45) 

The combining of equations (3.45) and (3.44) gives: 

(𝐻1
−1(𝐸 − 𝐻0) −𝐻1

−1𝐻1
†

𝐼 0
) (
𝜙𝑘
𝜗𝑘
) = 𝑒𝑖𝑘𝒵 (

𝜙𝑘
𝜗𝑘
)                                       (3.46) 

The layer Hamiltonian, 𝐻0, of size M × M,  from equation (3.46) yields 2M eigenvalues, 

𝑒𝑖𝑘𝑙𝒵, and eigenvectors 𝜙𝑘, of size M. These states can be sorted into four categories 

according to whether they are propagating or decaying and whether they are left going 

or right going. A state is propagating if it has a real wave number, 𝑘𝑙, and is decaying 

if it has an imaginary part. If the imaginary part of the wave number is positive then it 

is a left decaying state, while if the imaginary part is negative, then it is a right decaying 

state.  

The propagating states are sorted according to the group velocity of the state: 

𝜗𝑘𝑙 =
1

ℏ

𝜕𝐸𝑘,𝑙

𝜕𝑘
                                                                                                   (3.47)  

If the group velocity, 𝜗𝑘𝑙, of the state is positive, there would be a right propagating 

state. In contrast, if the group velocity is negative, a left propagating state would be 

obtained. 



Chapter 3: Single Particle Transport 

50 
 

Table 3.1: Classification of the eigenstates into left and right propagating or decaying 

states according to the wave number and group velocity. 

 

 

 

  

 

 

For convenience, from now on the 𝑘�̅� refers to the numbers which belong to the left 

propagating/decaying set, and 𝑘𝑙 indicates the numbers which belong to the right 

propagating/decaying set, and therefore 𝜙𝑘𝑙 is a wave function associated to a right 

state, while 𝜙�̅�𝑙 is associated to a left state. If 𝐻1 is invertible, there must be exactly the 

same number, M, of left and right going states. On the other hand, if 𝐻1 is singular, the 

matrix in equation (3.46) cannot be constructed, since it relies of the inversion of 𝐻1. 

However, various methods can be used to overcome this problem. The first one [10] 

uses the decimation method to create an effective non-singular 𝐻1.  

Another solution might be to populate a singular 𝐻1 with small random numbers, hence 

introducing an explicit numerical error. This method is reasonable as the introduced 

numerical error can be as small as the numerical error introduced by decimation. 

Another solution is to re-write equation (3.46), such that 𝐻1 need not be inverted: 

 

(𝐸 − 𝐻0 −𝐻1
†

𝐼  0
) (
𝜙𝑘
𝜗𝑘
) = 𝑒𝑖𝑘𝒵 (

𝐻1 0
0 𝐼

) (
𝜙𝑘
𝜗𝑘
)                                         (3.48) 

 

Category 
 

Left 

 

 

Right 

 

Decaying 

 

Im (kl) > 0 

 

Im (kl) < 0 

 

Propagating 

 

 

Im (kl) = 0, 𝜗𝑘𝑙 < 0   

 

Im (kl) = 0, 𝜗𝑘𝑙 > 0   
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However, solving this generalized eigenproblem is more computationally expensive 

and a singular 𝐻1 continues to disrupt the mathematics further in the theory. The 

solution to the eigenproblem (equation (3.44)) at a given energy, E, will not generally 

form an orthogonal set of states. This is crucial, due to the dealing with non-

orthogonality when constructing the Green’s function, and therefore, it is necessary to 

introduce the duals to 𝜙𝑘𝑙 and 𝜙�̅�𝑙 in such a way that obey: 

 

𝜙𝑘𝑖�̃�𝑘𝑗
† = 𝜙�̅�𝑖�̃��̅�𝑖

† = 𝛿𝑖𝑗                                                                                  (3.49) 

This gives the generalized completeness relation: 

 

∑�̃�𝑘𝑙
†

𝑀

𝑙=1

𝜙𝑘𝑙 =∑�̃��̅�𝑙
†

𝑀

𝑙=1

𝜙�̅�𝑙 = 𝐼                                                                       (3.50) 

Now, the Green’s function can be calculated first for the infinite system and then, by 

satisfying the appropriate boundary conditions, for the semi-infinite leads at their 

surface. Since the Green’s function satisfies the Schrödinger equation when 𝒵 ≠ 𝒵′, 

the Green’s function can be built up from the mixture of the eigenstates 𝜙𝑘𝑙 and 𝜙�̅�𝑙. 

 

𝑔(𝒵, 𝒵′) =

{
 
 

 
 ∑ 𝜙𝑘𝑙𝑒

𝑖𝑘𝑙(𝒵− 𝒵
′)𝒲𝑘𝑙

†                                      𝒵 ≥  𝒵′𝑀
𝑙=1

𝑌
𝑌

∑ 𝜙�̅�𝑙𝑒
𝑖�̅�𝑙(𝒵− 𝒵

′)𝒲�̅�𝑙

†                                      𝒵 ≤  𝒵′𝑀
𝑙=1

                 (3.51) 

 

Here the M-component vectors 𝒲𝑘𝑙 and 𝒲�̅�𝑙
 are to be determined. It is important to 

note the structural similarities between this equation and equation (3.13), and also that 

all the degrees of freedom in the transverse direction are contained in the vectors 𝜙𝑘 

and 𝒲𝑘. The priority now is to obtain the 𝒲 vectors. As in section (3.3.1), it is known 
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that equation (3.51) must be continuous at 𝒵 ≠ 𝒵′ and should be achieved for the 

Green’s function (equation (3.12)). The first condition is expressed as: 

 

∑𝜙𝑘𝑙𝒲𝑘𝑙

†   =

𝑀

𝑙=1

∑𝜙�̅�𝑙
𝑙

𝒲�̅�𝑙

†                                                                           (3.52) 

The second condition is expressed as: 

∑[(𝐸 − 𝐻0)𝜙𝑘𝑙𝒲𝑘𝑙

† + 𝐻1𝜙𝑘𝑙𝑒
𝑖𝑘𝑙  𝒲𝑘𝑙

† + 𝐻1
†𝜙�̅�𝑙𝑒

−𝑖�̅�𝑙  𝒲�̅�𝑙

† ]

𝑀

𝑙=1

= 𝐼 

 

∑[(𝐸 − 𝐻0)𝜙𝑘𝑙𝒲𝑘𝑙

† + 𝐻1𝜙𝑘𝑙𝑒
𝑖𝑘𝑙  𝒲𝑘𝑙

† + 𝐻1
†𝜙�̅�𝑙𝑒

−𝑖�̅�𝑙  𝒲�̅�𝑙

† + 𝐻1
†𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙  𝒲𝑘𝑙

† 

𝑀

𝑙=1

+ 𝐻1
†𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙  𝒲𝑘𝑙

† ] = 𝐼 

 

∑[𝐻1
†𝜙−�̅�𝑙

𝑒−𝑖�̅�𝑙  𝒲�̅�𝑙

† + 𝐻1
†𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙  𝒲𝑘𝑙

† ]

𝑀

𝑙=1

+∑[(𝐸 − 𝐻0) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

𝜙𝑘𝑙  𝒲𝑘𝑙

† = 𝐼                          (3.53) 

 

It is known from the Schrödinger equation (equation (3.44)) that: 

 

∑[(𝐸 − 𝐻0) + 𝐻1𝑒
𝑖𝑘𝑙 + 𝐻1

†𝑒−𝑖𝑘𝑙]

𝑀

𝑙=1

= 𝜙𝑘𝑙 = 0                                                            (3.54) 

∑𝐻1
† (𝜙�̅�𝑙𝑒

−𝑖�̅�𝑙  𝒲�̅�𝑙

† − 𝜙𝑘𝑙𝑒
−𝑖𝑘𝑙  𝒲𝑘𝑙

† )

𝑀

𝑙=1

= 𝐼                                                        (3.55) 

The using of dual vectors defined in equation (3.49) and multiplying equation (3.50) by 

�̃�𝑘𝑝 gives: 
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∑�̃�𝑘𝑝
†

𝑀

𝑙=1

𝜙�̅�𝑙𝒲�̅�𝑙

† =  𝒲𝑘𝑝

†                                                                                             (3.56) 

and similarly multiplying by �̃��̅�𝑙 yields: 

 

∑�̃��̅�𝑝
†

𝑀

𝑙=1

𝜙𝑘𝑙𝒲𝑘𝑙

† =  𝒲�̅�𝑝

†                                                                                             (3.57) 

 

Using the continuity equation (3.52) and equations (3.56 and 3.57), the Green’s function 

equation (3.55) becomes: 

 

∑∑𝐻1
† (𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙�̃�𝑘𝑙
† − 𝜙�̅�𝑙𝑒

−𝑖�̅�𝑙�̃��̅�𝑙
† )𝜙�̅�𝑝

𝑀

𝑝=1

𝑀

𝑙=1

𝒲�̅�𝑝

† = 𝐼                                    (3.58) 

 

In what follows: 

 

∑[𝐻1
† (𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙�̃�𝑘𝑙
† − 𝜙�̅�𝑙𝑒

−𝑖�̅�𝑙�̃��̅�𝑙
† )]

−1

=

𝑀

𝑙=1

∑𝜙�̅�𝑝

𝑀

𝑝=1

𝒲�̅�𝑝

† =∑𝜙𝑘𝑝

𝑀

𝑝=1

𝒲𝑘𝑝

†             (3.59) 

 

This immediately gives an expressions for 𝒲𝑘
† 

: 

 

𝒲𝑘
† = �̃�𝑘

†𝒱−1                                                                                                        (3.60) 

 

Here, 𝒱 is defined as: 

𝒱 =∑𝐻1
† (𝜙𝑘𝑙𝑒

−𝑖𝑘𝑙�̃�𝑘𝑙
† − 𝜙�̅�𝑙𝑒

−𝑖�̅�𝑙�̃��̅�𝑙
† )                                                     (3.61)

𝑀

𝑙=1
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The wave number, k, in equation (3.60) indicates both left and right type of states. 

Substituting equation (3.60) into equation (3.51), gives the Green’s function of an 

infinite system: 

 

𝑔𝒵,𝒵′ 
∞ =

{
 
 

 
 ∑ 𝜙𝑘𝑙𝑒

𝑖𝑘𝑙(𝒵− 𝒵
′)�̃�𝑘

†𝒱−1                                   𝒵 ≥  𝒵′𝑀
𝑙=1

𝑌
𝑌

∑ 𝜙�̅�𝑙𝑒
𝑖�̅�𝑙(𝒵− 𝒵

′)�̃��̅�
†𝒱−1                                   𝒵 ≤  𝒵′𝑀

𝑙=1

                (3.62) 

 

In order to get the Green’s function for a semi-infinite lead, a wave function should be 

added to the Green’s function, in order to satisfy the boundary conditions at the edge of 

the lead, as with the one dimensional case. The boundary condition here is that the 

Green’s function must vanish at a given place, 𝒵 = 𝒵0. In order to perform that 

(𝑔 = 𝑔∞ + ∆) has been added to the Green’s function (equation (3.62)). 

 

∆= ∑ 𝜙�̅�𝑙

𝑀

𝑙,𝑝=1

𝑒𝑖�̅�𝑙(𝒵− 𝒵0)�̃��̅�𝑙
† 𝜙𝑘𝑝𝑒

𝑖𝑘𝑝(𝒵− 𝒵0)�̃�𝑘𝑝
† 𝒱−1                                             (3.63) 

 

This gives the surface Green’s function for a semi-infinite lead going left: 

 

𝑔𝐿 = (𝐼 −∑𝜙�̅�𝑙
𝑙,𝑝

𝑒−𝑖�̅�𝑙�̃��̅�𝑙
† 𝜙𝑘𝑝𝑒

𝑖𝑘𝑝�̃�𝑘𝑝
† )𝒱−1                                                  (3.64) 

 

and going right: 

 

 𝑔𝑅 = (𝐼 − ∑ 𝜙�̅�𝑙𝑙,𝑝 𝑒𝑖�̅�𝑙�̃��̅�𝑙
† 𝜙𝑘𝑝𝑒

−𝑖𝑘𝑝�̃�𝑘𝑝
† )𝒱−1                                               (3.65) 
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3.4.2. Effective Hamiltonian of the Scattering Region 

The coupling matrix between the surfaces of the semi-infinite leads has been shown in 

section (3.3.2), as well as the Dyson equation (3.36) can be used to calculate the Green’s 

function of the scatterer. However, the scattering region is not generally described 

simply as a coupling matrix between surfaces. Therefore, it is useful to use the 

decimation method to reduce the Hamiltonian down to such a structure. Other methods 

have been developed [11, 12]. In this thesis, the decimation method has been used. 

Consider again the Schrödinger equation: 

 

∑𝐻𝑖𝑗𝛹𝑗 = 𝐸𝛹𝑖
𝑗

                                                                                               (3.66) 

If we separate the lth degree of freedom in the system: 

𝐻𝑖𝑙𝛹𝑙 +∑𝐻𝑖𝑗𝛹𝑗 = 𝐸𝛹𝑖
𝑗≠𝑙

                                   𝑖 ≠ 𝑙                                  (3.67) 

𝐻𝑙𝑙𝛹𝑙 +∑𝐻𝑙𝑗𝛹𝑗 = 𝐸𝛹𝑙
𝑗≠𝑙

                                   𝑖 = 𝑙                                  (3.68) 

Now, 𝛹𝑙 can be expressed from equation (3.68) as: 

𝛹𝑙 =∑
𝐻𝑙𝑗𝛹𝑗

𝐸 − 𝐻𝑙𝑙
𝑗≠𝑙

                                                                                            (3.69) 

Substituting of equation (3.69) into equation (3.67) yields: 

 

∑[𝐻𝑖𝑗𝛹𝑗 +
𝐻𝑖𝑙𝐻𝑙𝑗𝛹𝑗

𝐸 − 𝐻𝑙𝑙
] = 𝐸𝛹𝑖

𝑗≠𝑙

                        𝑖 ≠ 𝑙                                  (3.70) 

Equation (3.70) can be considered as an effective Schrödinger equation, where the 

number of degree of freedom is lowered by one compared to equation (3.66).  
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Hence, the new effective Hamiltonian, 𝐻′, is given by: 

𝐻𝑖𝑗
′ = 𝐻𝑖𝑗 +

𝐻𝑖𝑙𝐻𝑙𝑗

𝐸 − 𝐻𝑙𝑙
                                                                                      (3.71) 

This Hamiltonian is the decimated Hamiltonian produced by simple Gaussian 

elimination. A notable feature of the decimated Hamiltonian is that it is energy 

dependent, which suits the method presented in former section very well. Without the 

decimation method, the Hamiltonian describing the system in general would take the 

form: 

𝐻 = (

𝐻𝐿 𝑉𝐿 0

𝑉𝐿
† 𝐻𝑠𝑐𝑎𝑡𝑡 𝑉𝑅

0 𝑉𝑅
† 𝐻𝑅

)                                                                            (3.72) 

Here, 𝐻𝐿 and 𝐻𝑅 denote the semi-infinite leads, 𝐻𝑠𝑐𝑎𝑡𝑡  denotes the Hamiltonian of the 

scatterer; 𝑉𝐿 and 𝑉𝑅 are the coupling Hamiltonians, which couple the original scattering 

region to the leads.  

After decimation, an effectively equivalent Hamiltonian has been produced: 

  

𝐻 = (
𝐻𝐿 𝑉𝑐

𝑉𝑐
† 𝐻𝑅

)                                                                                          (3.73) 

Here, 𝑉𝑐 denotes an effective coupling Hamiltonian, which now describes the whole 

scattering process. Now the same steps as with the one-dimensional case can be applied; 

using Dyson’s equation (3.35). Hence, the Green’s function for the whole system is 

described by the surface Green’s function (equations (3.64 and 3.65)), and the effective 

coupling Hamiltonian from equation (3.73). 

 

𝐺 = (
𝑔𝐿
−1 𝑉𝑐

𝑉𝑐
† 𝑔𝑅

−1
)

−1

= (
𝐺00 𝐺01
𝐺10 𝐺11

)                                                      (3.74) 
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Chapter 4 

 

A quantum circuit rule for interference effects in 

single-molecule electrical junctions 

 

 

 
4.1. Introduction 

Studies of the electrical conductance of single molecules attached to metallic electrodes 

not only probe the fundamentals of quantum transport, but also provide the knowledge 

needed to develop future molecular-scale devices and functioning circuits [1 – 9]. 

Owing to their small size (on the scale of angstroms) and the large energy gaps (on the 

scale of eV), transport through single molecules can remain phase coherent even at 

room temperature, and constructive or destructive quantum interference (QI) can be 

utilized to manipulate their room temperature electrical [10 – 13] and thermoelectrical 

[14 – 15] properties. In previous studies, it was reported theoretically and 

experimentally that the conductance of a phenyl ring with meta (m) connectivity is 

lower than the isomer with para (p) connectivity by several orders of magnitude [16 – 

26]. This arises because partial de Broglie waves traversing different paths through the 

ring are perfectly out of phase leading to destructive QI in the case of meta coupling, 

while for para or ortho coupling they are perfectly in phase and exhibit constructive QI. 



Chapter 4: A quantum circuit rule for interference effects in single-molecule electrical 

junctions 

 

59 
 

It is therefore natural to investigate how QI in molecules with multiple aromatic rings 

can be utilized in the design of more complicated networks of interference-controlled 

molecular units. The basic unit for studying QI in single molecules is the phenyl ring, 

with thiol [17, 21], methyl thioether [27], amine [17], or cyanide [19] anchors directly 

connecting the aromatic ring to gold electrodes. Recently, Arroyo et al. [28, 29] studied 

the effect of QI in a central phenyl ring by varying the coupling to various anchor 

groups, including two variants of thienyl anchors. However, the relative importance of 

QI in central rings compared with QI in anchor groups has not been studied 

systematically because the thienyl anchors of Arroyo et al. [28, 29] were five-membered 

rings, which exhibit only constructive interference.  

To study the relative effect of QI in anchors, the molecules were examined with terminal 

groups formed from six-membered pyridyl rings for which constructive and destructive 

interference is possible. It has been reported [30] that pyridyl rings are excellent anchor 

groups for attaching single molecules to metallic electrodes because of their well-

defined binding geometry, in which the nitrogen plays the role of the anchoring site. 

The ability to substitute pyridine either para (p), meta (m) or ortho (o) to the nitrogen 

offers the possibility of systematically investigating the relative importance of QI in this 

anchor group in molecules of the type X-Y-X, where X is a pyridyl ring and Y is a 

central phenyl ring. This question is rather subtle because charge transport from the 

electrode into the pyridyl rings takes place via the N atoms and also via metal–π 

coupling [31] and the interplay between these two mechanisms will determine the 

importance and robustness of QI in the terminal [32] rings.  
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In the present work, the aim is to compare the effects of QI in both the terminal rings X 

and the central ring Y of molecules of the type X-Y-X, and to study the relationship 

between their conductances. The results were found to satisfy the quantum circuit rule 

Gppp/Gpmp = Gmpm/Gmmm, which demonstrates that the contribution to the conductance 

from the central ring is independent of the para versus meta nature of the anchor groups. 

Combinatorial rules for QI in molecules with other geometries including fused rings or 

rings connected in parallel are discussed in refs [33–36].  

The pyridyl-terminated oligo(phenyleneethynylene) (OPE) derivatives shown in figure 

4.1 are studied in this chapter, which possess a variety of connectivities of the central 

ring and locations of the nitrogen in the anchor units. In group 1, the central unit Y is a 

phenyl ring with para connectivity, whereas the central ring of group 2 has meta 

connectivity. The anchor units X are pyridyl rings with their nitrogens located in either 

meta, ortho or para positions. 

 

This chapter presents all theoretical details and experimental conductance 

measurements as a part of a published paper. For more details regarding to experimental 

methods and synthesis details see Manrique D. Z.; Huang C.; Baghernejad M.; Zhao 

X.; Oday A. Al-Owaedi, Sadeghi H.; Kaliginedi V.; Hong W.; Gulcur M.; Wandlowski 

T.; Bryce M. R.; Lambert C. J. A Quantum Circuit Rule for Interference Effects in 

Single-Molecule Electrical Junctions. Nat. Commun. 2015. 6(6389): p. 1-8. 
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Figure 4.1: The molecular structures studied in this work. These are divided into two 

groups, based on the presence of a para (group 1) or meta (group 2) central phenyl 

ring. 

 

 

4.2. Experimental and Theoretical Methods 

4.2.1. Experimental Methods 

The transport characteristics in single-molecule junctions were studied by mechanically 

controllable break junction (MCBJ) and scanning tunnelling microscopy break junction 

(STM-BJ) measurements in solution at room temperature. All details of experimental 

methods are presented in ref. [37]. 
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4.2.2. Theoretical Methods 

The DFT-Landauer approach used in the modeling assumes that on the time scale taken 

by an electron to traverse the molecule, inelastic scattering is negligible. This is known 

to be an accurate assumption for molecules up to several nanometers in length [26]. 

Geometrically optimizations were carried out using the DFT code SIESTA, with a 

generalized gradient approximation [38, 39] (PBE functional), double ζ polarized basis 

set, 0.01 eV/A force tolerance, a real-space grid with a plane wave cut-off energy of 

250 Ry, zero bias voltage and 1 k-point.  

All molecules in this study were initially geometrically relaxed in isolation to yield the 

geometries presented in figure 4.9. To investigate ideal junction geometries, a small 

four-atom gold pyramid was attached to the N atoms of the molecules, with Au–N–C 

angle being 120○ and Au–N bond length being 2.1 Å, as shown in figure 4.2. Many of 

these junction geometries are unlikely to happen in break-junction (BJ) experiments, 

and during the junction elongation typically the gap between the electrodes is shorter 

than the molecular length. Another set of idealized junction geometries were 

constructed, where the gold pyramid is attached to rings from the side, perpendicular to 

the ring. These junction geometries are shown in figure 4.10. For transport calculations, 

the four-atom gold pyramids that are presented in figure 4.10 are extended to a 35-atom 

gold pyramid.  
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Figure 4.2: Various idealized junctions with connected para, meta and ortho aromatic 

rings, illustrating the versatile planar conformations of the three-aromatic ring systems 

as possible components of molecular circuits. 

 

In break-junction (BJ) experiments, more complicated structures are expected. For this 

reason, BJ simulations have been performed. The geometrically optimized molecules 

were inserted between two opposing 35-atom (111) directed pyramids with four 

different tip separations (The tip separation is defined to be the centre to centre distance 

between the apex atoms of the two opposing pyramids).  
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In the initial geometries, the molecules were shifted slightly towards one of the 

pyramids and the initial Au–N distances were ~ 2.5 Å. Then the constructed structure 

was geometrically relaxed such that the base layers of the pyramids were kept fixed 

during the optimizations. The optimized junction geometries are shown in figures 4.3 

and 4.4. 

 

 

Figure 4.3: Junction geometries for group 1 molecules in the BJ simulation. The 

electrode separation (zthe) increases from left to right. For each molecule there are four 

geometries that correspond to the four theoretical conductance points in the simulated 

trace in figure 4.13.  
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Figure 4.4: Junction geometries for group 2 molecules in the BJ simulation. The 

electrode separation (zthe) increases from left to right. For each molecule there are four 

geometries that correspond to the four theoretical conductance points in the simulated 

trace in figure 4.13. 

 

For each relaxed junction geometry, the transmission coefficient, T(E), describing the 

propagation of electrons of energy E from the left to the right electrode was calculated 

by first obtaining the corresponding Hamiltonian and overlap matrices using SIESTA. 

The transmission coefficient for all junction geometries in this study was obtained using 
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wide-band electrodes with Γ = 4.0 eV. The wide-band electrodes were coupled to the 

two base layers of gold atoms of the 35-atom pyramids. A few additional transmission 

coefficient functions have been shown in figure 4.12. To produce the conductance-trace 

curves in figure 4.13, the conductance G/G0 = T(EF) was obtained by evaluating T(E) 

at the Fermi energy EF. To determine EF, the predicted conductance values of all 

molecules have been compared with the experimental values and chose a single 

common value of EF which gave the closest overall agreement. This yielded a value of 

EF – EF
DFT = -0.65 eV, which is used in all theoretical results. This is commonly 

accepted procedure in molecular electronics DFT-based calculations [41].  

To further demonstrate the generality of the product rule, DFT based transport 

calculations (with the exact same methodology that gave the result in figure 4.10) for 

two pyridyl ring systems with para and meta connections have been performed. The 

structures of three molecules studied are shown in figure 4.5. The theoretical derivation 

shown later implies that for two rings Gpp Gmm = G2
pm, Where the Gpp and Gmm are the 

conductances of para-para and meta-meta pyridyl rings, and Gmp is the conductance of 

the molecule for meta and para pyridyl rings. All transmission coefficient curves are 

shown in figure 4.14. 

 

 

Figure 4.5: Structures of two pyridyl rings with para and meta connections. These 

molecules have been studied theoretically. 
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4.3. Results and Discussion 

Nuclear magnetic resonance spectra for these molecules and details of synthesis are 

presented in ref. [37]. In this section experimental single molecule conductance results 

and theoretical, such as transmission coefficient results and the derivation of the 

quantum circuit rule for molecular conductances have been presented. 

 

4.3.1. Experimental Results 

Charge transport characteristics of single-molecule junctions formed from the 

molecules in figure 4.1 were investigated using both the mechanically controllable 

break junction (MCBJ) and scanning tunnelling microscopy break junction (STM-BJ) 

techniques, as reported elsewhere [6, 30, 42, 43].  

Figure 4.6a displays typical traces of the conductance G (in units of the conductance 

quantum G0 = 2e2/h) versus the relative electrode displacement (ΔZ) from measurement 

of the molecule p-p-p (Corresponding results for other molecules are presented in figure 

4.7). ΔZ is defined to be zero when G = 0.7G0. It is related to the electrode separation 

Zexp by Zexp = ΔZ + ΔZcorr, where the correction ΔZcorr = 0.5 ± 0.1 nm accounts for the 

snap-back of the electrodes upon breaking of the gold–gold atomic contact [44]. For 

this molecule, the log(G/G0) versus ΔZ stretching traces possess well-defined plateaus 

in the range of log(G/G0) around -4.5, which is attributed to the conductance of single-

molecule junctions. Two-dimensional (2D) histograms of p-p-p in figure 4.6b show 

features of gold point contacts around G ≥ 1G0 followed by a second accumulation in 

the cloud-like scatter plot in the range (10-5.0G0< G < 10-3.6G0), centred at G = 10-4.5G0. 
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Figure 4.6: (A) Typical individual conductance–distance traces of p-p-p (blue) and pure 

tunnelling traces (black). (B) All-data-point 2D conductance versus relative distance 

(ΔZ) of p-p-p. (C, D) All-data-point 1D conductance histograms constructed from 1000 

MCBJ traces of molecules in group 1 (C) and in group 2 (D). The grey area is the noise 

level. 

 

The latter is attributed to the formation of single-molecule junctions. These clouds of 

conductance data lead to peaks in the corresponding one dimensional (1D) conductance 

histogram. The cloud-like pattern is observed in both MCBJ and STM-BJ 

measurements and the 1D histogram peaks are in good agreement with each other. 

Figure 4.6c,d displays the corresponding 1D conductance histograms of molecules 

belonging to groups 1 and 2 in a semi-logarithmic scale, constructed from 1000 

experimental conductance–distance traces for each compound. 
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The sharp peaks ~ G0 represent the conductance of a single-atom gold–gold contact. 

The prominent peaks between 10-7G < G < 10-4G0 represent molecular conductance 

features. The significant difference of single-molecule conductances is observed from 

the variety of connectivities of the central ring (figure 4.6c) and locations of the nitrogen 

in the anchor units (figure 4.6d), while para connection in both central and terminal 

rings shows the highest conductance in both cases. The statistically most-probable 

conductance values were obtained by fitting Gaussians to the maxima in the 

conductance histograms. The key results are summarized in table 4.1. 

 

Table 4.1: Most-probable experimental conductance, electrode separation ZH
* at the 

end of the high-conductance plateaus and junction formation probability (JFP) of 

pyridyl terminated OPE derivatives from MCBJ and STM-BJ. The origin of differences 

between MCBJ and STM-BJ results could be found in ref. [37]. Error bars were 

determined from the standard derivation in Gaussian fitting of conductance and ΔZH
* 

distribution. Comparison between theoretical lengths and most-probable end-of-

plateau experimental electrode separations ZH
*. The electrode separation ZH

* is closer 

to the theoretical N---N distance LNN than to the theoretical molecular length L. 

 

Molecule 

Conductance (Log (G/G0)) JFP (%) zH* = ∆zH* + ∆zcorr (nm) 
Theoretical 

Lengths 

MCBJ 
STM-BJ MCBJ 

STM

-BJ 
MCBJ STM-BJ 

L 

(nm) 

LNN 

(nm) High Low 

p-p-p 

 
-4.5±0.4 -7.0±0.7 -4.5±0.4 100 100 1.58±0.21 1.80±0.30 1.66 1.66 

m-p-m 

 
-5.5±0.4 -7.1±0.7 -5.5±0.5 100 100 1.50±0.16 1.45±0.17 1.65 1.53 

o-p-o 

 
-5.0±0.3 -6.3±0.7 -4.5±0.4 21 27 1.22±0.25 1.14±0.11 1.65 1.25 

p-m-p 

 
-6.0±0.5 - -5.8±0.2 100 100 1.37±0.21 1.31±0.18 1.38 1.35 

m-m-m 

 
-6.9±0.5 - < -6 100 - 1.36±0.14 - 1.40 1.40 

o-m-o 

 
- - - - - - - 1.40 1.17 
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In anticipation of the theoretical discussion below, it is interesting to note that to within 

experimental error, log(Gppp/G0) + log(Gmmm/G0; (that is, -4.5 to 6.9) is equal to 

log(Gpmp/G0) + log(Gmpm/G0; (that is, -5.5 to 6.0), which suggests that the product of the 

conductances of p-p-p and m-m-m molecules is equal to product the conductances of p-

m-p and m-p-m molecules, and the quantum circuit rule Gppp/Gpmp = Gmpm/Gmmm is 

satisfied.  

Further statistical analysis of conductance versus ΔZ curves provides information about 

the junction formation probability (JFP) and allows us to determine the most-probable 

relative electrode displacement (ΔZH
*) at the end of the high-conductance plateaus. For 

every log(G/G0) versus ΔZ stretching trace, the relative electrode displacement at the 

end of the high-conductance plateau has been determined, ΔZH, which is the largest ΔZ 

value within the range -0.3 > log(G/G0) > log(GH
end/G0), where GH

end is the end of a high-

conductance feature. The most-probable values of ΔZH (denoted ΔZH
*) are obtained by 

constructing a histogram and fitting a Gaussian function to the largest maxima. Taking 

into account the snap-back length, the most-probable electrode separations at the end of 

the high-conductance plateau are ZH
* = ΔZH

* + ΔZcorr. The representative ΔZH 

histograms with Gaussian fitting functions are shown in figure 4.7.  
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Figure 4.7: 1D conductance histograms (A, D), 2D histograms (B, E), and distributions 

of the ‘end-of-high-conductance-plateau displacements’ ΔZH (C, F). The peaks of the 

latter are identified with ΔZH
*. Columns (A-C) were obtained using MCBJ and (D-F) 

using STM-BJ. 
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The JFP is calculated as the ratio of the area under the fitted Gaussian function and the 

total area of the ΔZH histogram. If no distinct peak is observed in the ΔZH histogram, 

then the JFP is considered to be zero. Table 4.1 also summaries the various distances 

obtained from both MCBJ and STM-BJ measurements. As shown in table 4.1, the JFP 

approaches 100% for molecules p-p-p, p-m-p, m-p-m and m-m-m. For molecule o-p-o, 

the JFP decreased sharply to 21% (MCBJ)/27% (STM-BJ) because the N in the terminal 

ortho pyridyl is partially hidden from the electrode surfaces and therefore it is difficult 

to form a bridge between the two gold electrodes [45]. The most-probable end-of-

plateau electrode separations ZH
* follow the trends p-p-p > m-p-m > o-p-o, and p-m-p 

≈ m-m-m that correlate with the molecular N…N distance, demonstrating that the gold-

anchor link is primarily controlled by the gold–nitrogen bonds. Therefore, it is clear that 

changes in the position of the N atom within the anchors affects both the plateau length 

and the JFP, as well as the conductance. 

According to the quantum circuit rule, the conductance of the o-m-o molecule is 

expected to be 10-6.5G0, which is within the sensitivity limit (~10-8G0) of MCBJ set up. 

However, as shown in figure 4.7, there is no ability to determine the molecular 

conductance feature of o-m-o molecular junction. To confirm this experimental finding, 

the conductance measurements have been repeated more than ten times and the same 

results have been obtained. The further analysis reveals that the absence of conductance 

feature in the break junction measurements is due to the combined effect of the relative 

short N…N length and low conductance, which resulted to the phenomenon that the 

direct tunnelling conductance between the two gold electrodes dominated on the single-

molecule conductance.  
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Figure 4.8: A simple schematic to describe the parallel tunnelling pathway. ΔZ in the 

bottom axis describes the relative distance scale from the break junction measurement 

and Z in the upper axis describes the absolute distance scale between the two gold 

electrodes. The black line describes the direct tunnelling between gold electrodes in the 

absence of the molecule. The red and blue lines describe the expected conductance 

plateaus of p-p-p and o-m-o molecular junctions respectively. Parameters are estimated 

from table 4.1 and figure 4.7. 

 

Figure 4.8 shows a simple schematic of typical G – ΔZ traces in break junction. After 

breaking of the gold-gold contact (shown as step “a” at G0), the tunnelling conductance 

decreases exponentially as the black line and the slope was estimated from the 

experimental data. The grey area indicates to the tunnelling conductance changes within 

the snapback area, which cannot be monitored from the break junction measurements. 

When the molecule is trapped between two gold electrodes, the tunnelling conductance 

through the molecular junction could be higher than that through the solvent.  
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For instance, in case of p-p-p molecules there is an ability to determine a clear molecular 

conductance plateau at around 10-4.5G0 (red curve, the parameter is estimated from data 

shown in table 4.1), which contributed to a clear conductance peak in the conductance 

histogram after statistical analysis. In contrast, for o-m-o, the direct tunnelling 

conductance with the associated N…N distance of the o-m-o molecule (which is 

calculated to be 1.17 nm as shown in table 4.1) is ~10-6G0, which is slightly higher than 

the expected conductance of the o-m-o single-molecule junction (10-6.5G0). In this case, 

the expected molecular conductance plateau (blue line) would be completely dominated 

by direct tunnelling conductance, to the extent that the conductance peak cannot appear 

in the conductance histogram. A similar result was also observed and discussed in ref. 

[46]. 

 

4.3.2. Theoretical Results 

4.3.2.1. Density Functional Theory (DFT) Results 

To gain a deeper insight into the electronic characteristics of these compounds and the 

electrical behaviour of the junctions, the DFT based methods described in chapter 2 

have been used. Before calculating the transport properties, the gas-phase electronic 

structures of all molecules were investigated to explore the distribution and composition 

of the frontier molecular orbitals. Plots of the HOMOs and LUMOs are given in figure 

4.9. This figure shows that the HOMOs and LUMOs are extended across the backbone 

for each molecule as expected from previous studies of OPE-derivatives [47 – 49, 50]. 
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Figure 4.9: The relaxed geometries and iso-surfaces of the HOMOs and LUMOs for all 

molecules. 

 

To elucidate the measured conductance trends, the density functional theory (DFT)-

based optimization has been performed for each molecule using SIESTA and then used 

to carry out electron transport calculations.  
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Unlike the p-p-p molecule, the other molecules possess anchoring nitrogen atoms 

located at meta or ortho positions within the terminal rings that do not naturally bind to 

planar electrode surfaces.  

To study the transport properties of these molecules, the anchor nitrogen atoms were 

attached to the apexes of pyramidal gold electrodes, as shown in figures 4.10 and 4.2. 

The molecules shown in these figures have been geometrically relaxed using SIESTA 

and it is clear that many of these geometries, such as the ma-m-ma conformation in the 

first column of figure 4.2 would not tend to form a bridge between two opposing 

pyramids. It could be noted also that molecular lengths (L), defined as the distance 

between the centres of the furthest non-hydrogen atoms in the molecule, is the same 

distance for these different conformations, whereas the N…N distance, which is the 

distance between the centres of the N atoms, does vary. Therefore, in table 4.1 the 

largest N…N distance (LNN) of each molecule is calculated and compared with the 

most-probable electrode separation at the end of the high-conductance plateau, that is, 

ZH
*. Figure 4.10 demonstrates that for a wide range of Fermi energy choice, the 

theoretical and experimental conductances of the X-p-X molecules of group 1 are 

distinctly higher than those of the molecules in group 2 (figure 4.1), as expected from 

previous studies [27, 28, 32,]. Figure 4.10 also shows that for a wide range of energies 

in the gap between the highest occupied molecular orbital (HOMO) and lowest 

unoccupied molecular orbital (LUMO), the ordering of the transmission coefficients 

follows the experimental conductance ordering. To demonstrate the resilience of the 

circuit rule, dotted lines are plots of (log Tmmm + log Tppp)/2 and (log Tmpm + log Tpmp)/2. 

The similarity of these two curves shows that the product rule is satisfied over a wide 

range of energies within the HOMO-LUMO gap. 



Chapter 4: A quantum circuit rule for interference effects in single-molecule electrical 

junctions 

 

77 
 

 

Figure 4.10: Systematic junction geometries and transmission coefficient functions. The 

top figures show idealized junction geometries for all six molecules with the gold tip 

attached perpendicular to the pyridine ring. The bottom graphs show corresponding 

transmission coefficient curves. For comparison, the coloured and patterned horizontal 

shaded bars show the experimentally measured MCBJ values of log (G/G0) (right-hand 

scale). The thickness of the bars corresponds to the error bar of the experimental log 

(G/G0). These show that both the transmission coefficients around the EF and the 

experimental conductance values are separable into two groups corresponding to X-p-

X and X-m-X connectivities. The green (yellow) dotted line is the average of log Tmmm 

and log Tppp (log Tmpm and log Tpmp). It should be noted that over most of the energy 

range from -0.8 to -0.4 eV, the m-m-m results have the lowest transmission coefficient. 

At these low transmissions, the contribution from the σ channel becomes comparable 

with that of the π channel and therefore in this energy range, the circuit rule is violated. 
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To demonstrate that QI effects associated with variations in the positions of the N atoms 

are suppressed owing to the presence of a parallel conductance path associated with the 

electrode-ring overlap, the transport calculations have been performed, in which every 

Hamiltonian and overlap matrix element that couples carbon and hydrogen atoms to 

gold atoms are artificially set to zero, leaving couplings between the nitrogen atoms and 

gold as the only possible transport path. The resulting transmission coefficients are 

shown as dashed lines in figure 4.11 and demonstrate that without metal-ring 

interactions the meta link in the terminal ring of the m-p-m molecule reduces the 

conductance by orders of magnitude, which is comparable with the effect of a meta link 

in the central ring, whereas in the presence of metal-ring interactions meta coupling in 

the terminal rings has a much smaller effect. 

 

 

 

Figure 4.11: Transmission curves with and without metal-ring coupling. The 

corresponding junction geometries are shown in figure 4.10. Dashed lines are without 

metal-ring coupling, the continuous curves are with metal-ring coupling. 
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The central focus of this section is to understand the relative contribution to the 

conductance from QI in the terminal and central aromatic rings, and to demonstrate that 

the quantum circuit rule is satisfied at the level of DFT. The largest value of ZH
* among 

all the measured molecules (table 4.1) was found to be ZH
* = 1.80 nm for the p-p-p. The 

value of ZH
* for other molecules was typically shorter than this value. Therefore, the 

typical conductances occur when the molecules are not fully stretched and there is a 

possibility of metal-ring overlap between the gold electrode and the pyridyl rings. To 

analyse such events, the junction geometries with two 35-atom gold (111)-directed 

pyramids have been systematically constructed and attached to the N atoms 

perpendicular to the pyridyl rings, as shown in figure 4.10, and then computed the 

transmission coefficient curves T(E) for these geometries. Alternative junction 

geometries are investigated as shown in figures 4.3 and 4.4.  

 

Figure 4.12: Transmission coefficient functions for junction geometries shown at most 

left hand side in figures 4.3 and 4.4 for molecules in group 1 (left pane) and 2 (right 

pane), with ring-gold (continuous) and without ring-gold (dashed) coupling in the 

Hamiltonian matrix. 
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Figure 4.12 shows a comparison between the transmission coefficients of the systems 

with and without metal-ring interactions. Removing the ring-gold coupling generally 

reduces the conductance as the dominant resonances become narrower. The primary 

signature of destructive interference in the cases of meta terminal and central rings is 

the low value of the conductance. The anti-resonance in the π channel is not always 

evident, because it may be masked by parallel sigma-like channels [51, 52]. 

 

Figure 4.13: Computed conductance vs electrode separation. Simulated trace curves 

for the first and second groups of molecules, marked with rectangle and circle markers, 

respectively. The figure shows the logarithm of conductance as a function of the 

theoretical electrode separation Zthe, defined as Zthe=ZAu-Au-0.25 nm, where ZAu-Au is the 

tip separation in the relaxed structure, and 0.25 nm is the value of ZAu-Au when the 

conductance through the two contacting pyramids (in the absence of a molecule) is G0. 

Beyond the last points of the simulated trace curves, the simulated junction (i.e. the Au-

N bond) is broken. Junction configurations for each stage during the stretching can be 

seen in figures 4.3 and 4.4. The green crosses are the experimental most-probable high 

conductance values plotted against the experimental values of ZH
*. The simulated trace 

curves and the experimental conductance values demonstrate a distinct separation 

between groups 1 and 2 (see figure 4.1). 
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Figure 4.13 shows that for any given value of Zthe or ZH
*, both the theoretical and 

experimental conductances of the molecules in group 1 are distinctly higher than those 

of the molecules in group 2. Figure 4.13 also shows that for many values of Zthe (in the 

electrode separation range 1.0 nm < Zthe < 1.4 nm) the theoretical conductances of 

molecules within group 1 are rather similar and therefore it could be concluded that QI 

in the central ring is more important than QI in the anchors. For molecules in group 2, 

the theoretical conductance for m-m-m is larger than for p-m-p, which is in the reverse 

order of the experimental most probable high conductance values. The latter artefact is 

attributed to unrealistically-large metal-ring coupling in the m-m-m simulated 

optimized junction geometries that will rarely occur in room temperature environments. 

 

 

Figure 4.14: Systematic gas-phase geometries and transmission coefficient functions. 

The top figures show idealized geometries for all three molecules. The bottom graphs 

show corresponding transmission coefficient curves.  
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To further demonstrate the generality of the product rule the DFT based transport 

calculations have been performed (with the exact same methodology as gave the result 

in figure 4.10) for two pyridyl ring systems with para and meta connections. The 

structures of three molecules studied are shown in figure 4.14.  

The theoretical derivation shown later implies that for two rings 𝐺𝑝𝑝𝐺𝑚𝑚 = 𝐺𝑝𝑚
2 , 

Where the Gpp and Gmm are the conductances of para-para and meta-meta pyridyl rings, 

and Gmp is the conductance of the molecule for meta and para pyridyl rings. Figure 4.14 

demonstrates that the product rule is satisfied for a wide range of energies (the dotted 

curves match). 

 

 

4.3.2.1.1. Phase averaging in an ensemble of measurements 

Since the experimental conductance values are of statistical origin, a product rule for 

ensemble averaged conductances can arise due to inter-ring phase averaging. To 

illustrate this point, consider two quantum scatterers (labelled 1 and 2) in series, whose 

transmission and reflection coefficients are T1, T2 and R1, R2 respectively. It can be 

shown that the total transmission coefficient for the scatterers in series is  

𝑇 =  
𝑇1𝑇2

1−2√𝑅1𝑅2𝑐𝑜𝑠𝜑+𝑅1𝑅2
 where φ is a quantum phase arising from QI between the 

scatterers [9, 26].  
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It could be noted that the experimental quoted conductance is identified with the most 

probable value of 𝑙𝑜𝑔10
𝐺

𝐺0
 and if this possesses a Gaussian distribution, then it equates 

to the ensemble average of 𝑙𝑜𝑔10
𝐺

𝐺0
 which it is denoted by 𝑙𝑜𝑔10𝑇 . From the above 

expression for T,  𝑙𝑜𝑔10𝑇 = 𝑙𝑜𝑔10𝑇1 + 𝑙𝑜𝑔10𝑇2 − 𝑙𝑜𝑔10(1 − 2√𝑅1𝑅2 𝑐𝑜𝑠𝜑 + 𝑅1𝑅2. 

Although each individual molecule is phase coherent, if the ensemble average involves 

an average over the phase, uniformly distributed between 0 and 2π, then the third term 

on the right hand side averages to zero, because of the mathematical identity 

∫ 𝑑𝜑 𝑙𝑜𝑔10(1 − 2√𝑅1𝑅2)𝑐𝑜𝑠𝜑 + 𝑅1𝑅2
2𝜋

0
= 0. Hence in the ensemble average, all 

information about the inter-scatterer quantum phase is lost and 

 𝑙𝑜𝑔10𝑇 =  𝑙𝑜𝑔10𝑇1 + 𝑙𝑜𝑔10𝑇2, or equivalently   
GTotal

G0
= 

G1

G0
 
G2

G0
.  

For the three-ring OPEs of interest, if inter-ring QI is similarly absent in the ensemble 

average, then one would expect 
𝐺𝑇𝑜𝑡

𝐺0
= 

𝐺𝑡

𝐺0
 
𝐺𝑐

𝐺0
 
𝐺𝑡

𝐺0
 where Gt is the conductance of the 

terminal pyridyl ring and Gc is the conductance of the central phenyl ring. In the absence 

of inter-ring QI, the above expression implies that the ‘quantum circuit rule’ is satisfied. 
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It may seem surprising that phase averaging can lead to decoherence, even though the 

theory describing transport is fully phase coherent. Decoherence is perfectly reconciled 

with the calculations in figures 4.10 and 4.11, because although individual electrons 

remain phase coherent over the whole molecule, a restricted form of decoherence can 

arise in the ensemble averages of transport properties.  

This is important, because all break-junction experiments involve averages over large 

ensembles in a single measurement and the typical conductance associated with a 

compound is the most occurred value of log(G/G0) for several measurements. For a 

complete discussion, it has been shown that the possibility of the conductance product 

rule could arise from not only the intrinsic electronic properties of the individual 

molecules, but from the statistical origin of the experimental conductance values. 

Perhaps the discussion can be made clearer through an analogy. In the NMR literature, 

the phrase ‘decoherence’ is often used to describe two distinct phenomena, which are 

assigned T1 and T2 coherence times. The latter does not require inelastic scattering and 

arises when spins within an ensemble process in the plane perpendicular to the applied 

magnetic field with slightly different frequencies.  

Consequently, even in the absence of inelastic process and even though individual spins 

remain coherent, the ensemble of spins eventually loses coherence. In contrast, T1 

processes involve spin flips. These are inelastic processes and provide a second source 

of decoherence. In this work, all transport is elastic and individual electrons remain 

perfectly coherent. Nevertheless, for an ensemble of measurements on such electrons, 

decoherence in average values can arise from random elastic scattering, just as 

decoherence in NMR experiments arises from T2 processes. 
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4.3.2.2. Derivation of the quantum circuit rule for molecular 

conductance 

 

 

Figure 4.15: Abstract models. (a) An abstract depiction of three coupled quantum 

subsystems. (b) A simple tight-binding model of the three ring system. (In the figure p-

m-p connection is shown to illustrate the connecting sites i, j, m, n, p and q). 

 

Having demonstrated that the effect of QI in a given ring depends on the position of the 

ring within the molecule (that is, whether it is a terminal or a central ring). 

The following quantum circuit rule describing the conductances of different ring 

combinations: 

𝐺𝑝𝑝𝑝  ×  𝐺𝑚𝑚𝑚 = 𝐺𝑝𝑚𝑝  ×  𝐺𝑚𝑝𝑚                                                                    (4.1) 

 

This captures the property that the contribution to the conductance from the ring Y in 

molecules of type p-Y-p and m-Y-m are identical. 
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To derive the circuit rule, consider the simple tight-binding model of figure 4.15b, in 

which three rings (labelled A, B and C) are coupled by nearest neighbour couplings α 

and β. To calculate the transmission coefficient arising when 1D electrodes are 

connected to site i of ring A and q of ring C, the Green’s function Gqi has been calculated 

of the whole structure in the absence of the electrodes. This structure is an example of 

three arbitrary-coupled quantum objects shown schematically in figure 4.15a, whose 

Green’s function is given by 

 

[
 
 
 
 
𝐸 − 𝐻𝐴        − 𝑉𝐴𝐵                   0

0

−𝑉𝐴𝐵
†         𝐸 − 𝐻𝐵          − 𝑉𝐵𝐶

0

0               − 𝑉𝐵𝐶
†            𝐸 − 𝐻𝐶]

 
 
 
 

[
 
 
 
 
𝐺𝐴𝐴            𝐺𝐴𝐵            𝐺𝐴𝐶

0
𝐺𝐵𝐴            𝐺𝐵𝐵           𝐺𝐵𝐶

0
𝐺𝐶𝐴             𝐺𝐶𝐵           𝐺𝐶𝐶]

 
 
 
 

= 𝐼                            (4.2) 

 

Electron propagation from subsystem A to subsystem C is described by the block GCA, 

for which the above equation yields 

 

𝐺𝐶𝐴 = 𝘨𝐶𝑉𝐶
†𝐺𝐵𝐵𝑉𝐴

†𝘨𝐴                                                                                                   (4.3) 

Here, 

𝘨𝑋 = (𝐸 − 𝐻𝑋) (𝑋 = 𝐴 𝑜𝑟 𝐶)   and   𝐺𝐵𝐵 = (𝐸 − 𝐻𝐵 − 𝑉𝐴𝐵𝘨𝐴
†  𝑉𝐴𝐵 − 𝑉𝐵𝐶𝘨𝐶  𝑉𝐵𝐶

† )
−1

 

 

As an example, for the tight-binding model of figure 4.15b, this becomes 

 

𝐺𝑞𝑖 = (𝘨𝐶)𝑞𝑝𝐵𝑛𝑚(𝘨𝐴)𝑗𝑖                                                                                              (4.4)  

Here, 𝐵𝑛𝑚 = 𝛽
(𝘨𝐵)𝑛𝑚

(1−𝜎)
𝛼,    and   𝜎 = 𝛼2(𝘨𝐴)𝑗𝑗(𝘨𝐵)𝑚𝑚 + 𝛽2(𝘨𝐶)𝑝𝑝(𝘨𝐵)𝑛𝑛 +

                                         𝛼2𝛽2(𝘨𝐴)𝑗𝑗(𝘨𝐶)𝑝𝑝[(𝘨𝐵)𝑛𝑚(𝘨𝐵)𝑚𝑛 − (𝘨𝐵)𝑛𝑛(𝘨𝐵)𝑚𝑚]. 
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The crucial point is that Bnm does not depend on the choice of p, q, i and j, due to the 

rotational symmetry, (gA)jj and (gC)pp are independent of j and p for any choice of j and 

p. This means that Bnm does not depend on the choice of meta, ortho or para coupling 

for rings A and C and only depends on the connectivity of ring B. When the rings A and 

C are coupled to the electrodes, this rotational symmetry is broken slightly. However, 

provided EF lies in the HOMO-LUMO gap of A and C and the coupling to the electrodes 

is small (as is usually the case for molecules attached to gold electrodes, where the level 

broadening is much less than the level spacing), then the symmetry breaking is weak 

[26]. Since the electrical conductance is proportional to |Gqi|
2, this means that the 

electrical conductance GXYZ/G0 of molecules of the type X-Y-Z is proportional to a 

product of the form aX × bY × aZ and hence the quantum circuit rule is satisfied. The 

factors aX, bY, aZ are contributions to the overall conductance from the separate rings, 

but it should be noted that they are not themselves individually measureable 

conductances. The above analysis can be easily applied to a molecule with two rings 

yield the circuit rule 𝐺𝑝𝑝𝐺𝑚𝑚 = 𝐺𝑝𝑚
2 , where the Gpp and Gmm are the conductances of 

the molecule with para-para and meta-meta connected rings, and Gpm is the conductance 

of the molecule with meta and para rings (see figure 4.14). 

To check the experimental validity of the circuit rule for the OPEs of figure 4.1, the 

measured conductance values presented in table 4.1 have been examined. For example, 

rearranging equation (1) into the form 𝐺𝑝𝑚𝑝 =
𝐺𝑝𝑝𝑝

𝐺𝑚𝑝𝑚
𝐺𝑚𝑚𝑚 and substituting into the 

right-hand side, the measured values for Gppp, Gmmm and Gmpm yields Gpmp=10-5.9G0, 

which compares well with the measured value of Gpmp=10-5.8G0 shown in table 4.1. 
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4.4. Summary 

In this chapter charge transport studies of pyridyl terminated OPE derivatives have been 

studied, using the MCBJ and STM-BJ techniques, DFT-based theory and analytic 

Green’s functions, and have investigated the interplay between QI effects associated 

with central and terminal rings in molecules of the type X-Y-X. 

The results demonstrated that the contribution to the conductance from the central ring 

is independent of the para or meta nature of the anchor groups and the combined 

conductances satisfy the quantum circuit rule Gppp/Gpmp = Gmpm/Gmmm. For the simpler 

case of a two-ring molecule, the circuit rule 𝐺𝑝𝑝𝐺𝑚𝑚 = 𝐺𝑝𝑚
2  is satisfied (see figure 

4.14). It should be noted that the circuit rule does not imply that the conductance GXYX 

is a product of three measureable conductances associated with rings X, Y and X. 

Indeed, the latter property does not hold for a single molecule. On the other hand, 

provided sample to sample fluctuations lead to a broad distribution of phases within an 

ensemble of measurements, a product rule for ensemble averages of conductances can 

arise.  

The qualitative relationship between the conductances agrees well with the simple QI 

picture of molecular conduction. It has been reported that destructive QI exists in 

benzene with the meta connectivity and is responsible for the observed reduction of 

conductance [16, 20, 28], whereas for para and ortho connectivities, constructive QI 

should be observed [44 – 45, 53 – 56].  
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The transmission coefficient calculations through junctions where the metal-ring 

connection is artificially blocked (figure 4.11) show that the artificially coupled pyridyl 

ring exhibits similar behaviour to the benzene ring, with destructive QI in the case of 

the meta coupling significantly reducing the conductance compared with para and ortho 

connectivities. The dashed curves in the bottom panel in figure 4.11 clearly demonstrate 

that when the conduction is through only the nitrogen atoms, the conductance of the 

meta isomer is much lower than in the para and ortho isomers. More realistically, 

however, in the presence of metal-ring overlap, the effect of varying the positions of the 

nitrogens in the anchors becomes much weaker, and as demonstrated by figure 4.10, the 

major changes in the molecular conductance are caused by the variations in the 

connectivity of the central ring. The dominant influence of the central ring is accounted 

for by the fact that the central ring is not in direct contact with electrodes and therefore 

no parallel conductance paths are present, which could bypass the ethynylene 

connections to the anchors. 

In a sub nanometre scale molecular circuit, as in standard complementary metal-oxide-

semiconductor (CMOS) circuitry, electrical insulation is of crucial importance. 

Destructive interference in a two-terminal device may not be desirable, because of the 

lower conductance. However, for a three-terminal device minimizing the conductance 

of the third terminal is highly desirable, because the third (gate) electrode should be 

placed as close to the molecule as possible, but at the same time, there should be no 

leakage current between the molecule and gate. One way of achieving this may be to 

use an anchor group with built-in destructive interference. Therefore, destructive QI 

may be a vital ingredient in the design of future three-terminal molecular devices and 

more complicated networks of interference-controlled molecular units. 
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Chapter 5 

 

Solvent Dependence of the Single Molecule 

Conductance of Oligoyne-Based Molecular Wires 

 

 

 
5.1. Introduction 

Oligoynes hold particular interest in molecular electronics as the ultimate one-

dimensional molecular wires formed from simple linear strings of sp-hybridized carbon 

atoms [1 – 6]. In contrast to an infinite one-dimensional carbon string, oligoynes are 

terminated at either end by protons (H) or organic, inorganic, or organometallic moieties 

and can be represented by general formula R – (C≡C)n – R. The terminating groups, R, 

can be chosen to aid the formation of metal – molecule – metal junctions, with examples 

including pyridyl, cyano, dihydrobenzo[b]Thienyl, and other anchoring groups [3, 4, 7, 

8]. Oligoynes feature extensive electron delocalization along the sp-hybridized carbon 

backbone, with appreciable bond length alternation evidence in structural studies. The 

presence of delocalized states makes oligoynes attractive targets for both theoretical and 

experimental studies of ultrathin wires for molecular electronics. Single molecule wires 

of oligoynes have been experimentally investigated up to octa-1,3,5,7-tetaynes (n = 4) 

[3, 4], while theoretical evaluations have been made for hypothetical infinitely long 
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chains as well as finite chains [1]. However, it would be wrong to assume that oligoynes 

offer rigid-rod linear geometries; on the contrary, they can be considerably curved and 

flexible offering a surprisingly low bending force [9]. Nevertheless, this structural 

flexibility does not detract from the impressive electronic properties of oligoynes, which 

offer considerable interest for their electronic, optoelectronic, and electrical charge 

transport properties [10]. 

Despite their apparent chemical simplicity, it is a challenge to synthesize long carbon 

chains due to the potential instability of R–(C≡C)x–H intermediates and also instability 

of longer oligoyne products for certain, particularly small R groups. This issue was 

circumvented by Bohlmann, who introduced bulky tertiary butyl (tBu) end groups in an 

n = 7 oligomer (tBu – (C≡C)7 – tBu) [11], and then also by Johnson and Walton, who 

extended the chain to  tBu – (C≡C)12 – tBu [12]. It has been shown that in addition to a 

wider range of other bulky organic capping groups, cyano, aryl, or organometallic 

terminal groups can stabilize oligoyne chains [13]. A recent approach to oligoyne 

stabilization has been “insulation” of the oligoyne by threading through the cavity of a 

macrocycle to give rotaxane [14 – 17]. Metal centres have also been widely used to 

stabilizing end-caps to give complexes with the stoichiometry [{LmM}{μ-

(C≡C)n}{MLm}] 
x+, which have provided interesting test beds for examination of their 

electronic, physical, and chemical properties as a function of metal oxidation state [18]. 

In particular, electronic and vibrational spectroscopies of a complex of this type, 

coupled with detailed computational investigations, have enabled electronic structures 

of the all-carbon chain bridged complexes to be assessed [19]. More direct assessment 

of the electrical properties of oligoynes can be achieved by wiring them into electrical 

junctions with metal contacts [3, 4, 20].  
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In particular the influence of the solvents on conductance and β-values has been 

investigated. The molecular wires chosen here represent a strong choice for 

experimental investigations of solvent effects since they would be expected to be less 

affected by the small amounts of water present in even ostensibly well dried organic 

solvents. In this respect, it is mentioned that they have no functional groups in the 

backbone to coordinate the water (cf., the gating by water of thiophene-based molecules 

[21]) and no thiol end groups to be hydrated and thereby adversely affect the 

conductance (cf., ref [22]).  

The experimental measurements of molecular conductance are complemented by 

density functional theory (DFT) computations of charge transport through the molecular 

bridge. Using DFT, changes in the conductance and β values in response to the solvent 

medium are explained by shifts in the Fermi energy of the contact, which impacts both 

the transmission coefficient of the system and the β-value. 

 

This chapter presents all theoretical details and experimental conductance 

measurements of novel molecular wires Me3Si – (C≡C)n – SiMe3 (n = 2, 3, 4, or 5; 

Scheme 5.1), as a part of a published paper. For more details regarding the experimental 

methods and synthesis details see Milan David C.; Oday A. Al-Owaedi, Oerthel Marie-

Christine, Marques-Gonzalez Santiago, Brooke Richard J.; Bryce Martin R.; Cea, 

Pilar, Ferrer Jaime, Higgins Simon J.; Lambert Colin J.; Low Paul J.; Manrique David 

Zsolt, Martin Santiago, Nichols Richard J.; Schwarzacher Walther, Garcia-Suarez 

Victor M. Solvent Dependence of the Single Molecule Conductance of Oligoyne-Based 

Molecular Wires. J. Phys. Chem. C, 2016. 120(29): p. 15666–15674. 
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5.2. Experimental and Theoretical Methods 

5.2.1 Experimental Methods 

The transport characteristics of novel molecular wires Me3Si – (C≡C)n – SiMe3 (n = 

2, 3, 4, or 5) (scheme 5.1), were studied by scanning tunnelling microscopy, using the 

current-distance (I(s)) technique [24 – 26]. All details of experimental methods are 

presented in ref. [23]. 

 

5.2.2. Theoretical Details: Computational Methods 

The DFT-Landauer approach used in the modeling assumes that on the time scale taken 

by an electron to traverse the molecule, inelastic scattering is negligible. This is known 

to be an accurate assumption for molecules up to several nanometers in length [28]. 

Geometrically optimization were carried out using the DFT code SIESTA, with a 

generalized gradient approximation [29, 30] (PBE functional), double ζ polarized basis 

set, 0.01 eV/A force tolerance, a real-space grid with a plane wave cut-off energy of 

250 Ry, zero bias voltage and 1 k points. All molecules in this study were initially 

geometrically relaxed in isolation to yield the geometries presented in figure 5.6. For 

each structure, the transmission coefficient, T(E), describing the propagation of 

electrons of energy E from the left to the right electrode was calculated by first obtaining 

the corresponding Hamiltonian and overlap matrices using SIESTA and then using the 

GOLLUM code [31] to compute T(E) via the relation: 
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𝑇(𝐸) = 𝑇𝑟{𝛤𝑅(𝐸)𝐺
𝑅(𝐸)𝛤𝐿(𝐸)𝐺

𝑅†(𝐸)}                                                     (5.1) 

In this expression, 

𝛤𝐿,𝑅(𝐸) = 𝑖(𝛴𝐿,𝑅(𝐸) − 𝛴𝐿,𝑅
† (𝐸))                                                                (5.2) 

ΓL,R describes the level broadening due to the coupling between left (L) and right (R) 

electrodes and the central scattering region, ΣL,R(E) are the retarded self-energies 

associated with this coupling. 

𝐺𝑅 = (𝐸𝑆 − 𝐻 − 𝛴𝐿 − 𝛴𝑅)
−1                                                                    (5.3) 

GR is the retarded Green’s function, where H is the Hamiltonian and S is the overlap 

matrix (both of them are obtained from SIESTA). Finally the room temperature 

electrical conductance, G, was computed from the formula: 

𝐺 = 𝐺0 ∫ 𝑑𝐸𝑇(𝐸)[−𝑑𝑓(𝐸) 𝑑𝐸⁄ ]
∞

−∞
                                                            (5.4) 

G0 is the quantum of conductance and is given by: 

𝐺0 = (2𝑒2) ℎ⁄                                                                                              (5.5) 

𝑓(𝐸) = [𝑒𝛽(𝐸−𝐸𝐹) + 1]
−1

                                                                           (5.6) 

𝛽 = 1 𝐾𝐵𝑇⁄                                                                                                  (5.7) 

h is the Planck’s constant, e is the electron charge, f(E) is the Fermi-Dirac function, EF 

is the Fermi energy, KB is the Boltzmann constant, T is the temperature.  

Since the quantity df(E)/dE is the a probability distribution peaked at E = EF with a 

width on the order KBT, the previous expression shows that G/G0 is obtained by 
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averaging T(E) over an energy range on the order KBT in the vicinity of E = EF. It is 

well known that the Fermi energy predicted by DFT is not reliable, and therefore, the 

plots G/G0 have been shown later as a function of EF – EF
DFT. To determine EF, the 

predicted conductance values of all molecules have been compared with the 

experimental values and chose a single common value of EF which gave the closest 

overall agreement. This yielded a value of EF – EF
DFT = -0.725 eV, which is used in all 

theoretical results. This is commonly accepted procedure in molecular electronics DFT-

based calculations (cf., ref [32]). 

The binding energies between anchor group and gold electrode for the optimized 

configurations have been calculated. It is well known that SIESTA employs a localized 

basis set and therefore these calculations are subject to errors. Consequently, the 

counterpoise method has been used to obtain accurate energies [33]. This involves 

calculating the total DFT energies for the system ((Molecule plus gold (ES)). The 

molecule alone (EM), but with the same conformation adopted in the presence of gold 

electrode and in the absence of the molecule (EG). For these energy calculations, the 

same basis functions as those generated for the system have been utilized. With these 

data the binding energies Eb have been calculated according to the expression Eb = (ES 

– EM – EG) [34, 35]. 
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5.3. Results and Discussion 

The family of trimethylsilyl (TMS) end-capped oligoynes Me3Si – (C≡C)n – SiMe3 (n 

= 2 – 5) were chosen as the platform upon which to base investigation of molecular 

conductance and solvent effects in wire-like oligoyne derivatives. These compounds are 

readily available syntheses of oligoynes Me3Si – (C≡C)n – SiMe3 (n = 2 – 5) [24, 38] 

being well known. The synthesizing details are presented in ref. [23]. In this section the 

experimental single molecule conductance results and theoretical, such as binding 

energies between the gold cluster and the TMS terminal groups, the calculated 

conductance and the decay constant results have been presented. 

 

5.3.1. Experimental Results 

The single molecule conductance of the oligoynes 2 – 5 (see scheme 5.1) was explored 

in each of three organic solvents (see figure 5.1) of different polarity, namely, 

mesitylene (MES), trichlorobenzene (TCB), and propylene carbonate (PC). Mesitylene 

is a nonpolar solvent with zero dipole moment, and it is commonly used in STM based 

single molecule electrical measurements because of its high boiling point and relatively 

low vapor pressure [33 – 35]. TCB is also frequently used in STM based single molecule 

electrical measurements, and like mesitylene it is a high boiling point and low vapor 

pressure organic solvent. However, it is a slightly polar solvent with a dipole moment 

of 1.35 D [36]. By contrast, propylene carbonate is a strongly dipolar solvent with a 

dipole moment of 4.9 D. 
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Scheme 5.1: The molecules studied in this work. 

 

 

 

Figure 5.1: A pictorial representation of single molecule conductance measurements, 

in (1) MES; (2) PC and (3) TCB solvents. 
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Figure 5.2: I(s) conductance (A) and break-off distance (B) histograms recorded for 

series of oligoynes 2, 3, 4 and 5 in PC. Conductance histograms have been offset 

vertically for clarity. 

 

 

Figure 5.3: I(s) conductance (A) and break-off distance (B) histograms recorded for 

series of oligoynes 2, 3, 4 and 5 in TCB. Conductance histograms have been offset 

vertically for clarity. 



Chapter 5: Solvent Dependence of the Single Molecule Conductance of 

 Oligoyne-Based Molecular Wires 
 

104 
 

Figure 5.2 shows conductance histograms for 2 – 5 recorded in propylene carbonate, 

which had been degassed with argon. As can be seen from figure 5.2, the conductance 

values decrease with the molecular length, and the break-off distance histogram 

distributions shift to longer distance along the series. The diyne, 2 (n = 2), shows a mean 

break-off distance of 1.3 nm, and this increases to 0.2 nm for pentayne (n = 5). Using 

the Si…Si distances computed from molecular modeling and a silicon to gold contact 

distance of 0.31 nm, also estimated from molecular modeling, and gives a theoretical 

Au-to-Au junction separation of 1.4 nm for 2 and 2.1 nm for 5. Figure 5.3 shows data 

recoded in a similar manner in TCB, while figure 5.4 shows data recoded in mesitylene. 

 

 

 

Figure 5.4: I(s) conductance (A) and break-off distance (B) histograms recorded for 

series of oligoynes 2, 3, 4 and 5 in MES. Conductance histograms have been offset 

vertically for clarity. 
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Table 5.1: Theoretical and experimental conductances, and decay constant, in 

nm1(β(nm-1)) and per incremental –(C≡C)– unit, β (–(C≡C)–), in three different 

solvents (MES, TCB, and PC). 

 

n MES TCB PC 

theor 

G/G0  

expt 

G/G0 

theor 

G/G0  

expt 

G/G0 

theor 

G/G0  

expt 

G/G0 

2 2.03×10−5 2.02×10−5 10.3×10−5 11×10−5 14.2×10−5 12.6×10−5 

3 1.35×10−5 1.57×10−5 10.2×10−5 10.8×10−5 13.7×10−5 12.9×10−5 

4 1.16×10−5 1.42×10−5 9.60×10−5 10.5×10−5 12.6×10−5 11.3×10−5 

5 0.94×10−5 0.90×10−5 6.16×10−5 9.95×10−5 10.6×10−5 8.14×10−5 

β (nm-1) 1.003 0.94 0.775 0.13 0.378 0.54 

β (– (C≡C) –) 0.257 0.258 0.17 0.035 0.1 0.145 

 

 

The single molecule conductance data are summarized in table 5.1. A plot of 

ln(conductance) versus junction is given in figure 5.5. The conductance values are 

larger in TCB and PC than those obtained in mesitylene solutions. From this, it is 

apparent that the same molecule can give conductance values that vary significantly 

with the solvent medium. Not only does the conductance change, but different length 

decays are also obtained across the series of oligoynes as quantified by the β values 

(figure 5.5).  
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The β value recorded in mesitylene (0.94 nm-1) is substantially higher than those in TCB 

(0.13 nm-1) and PC (0.54 nm-1); the corresponding experimentally determined β values 

per incremental – (C≡C) – unit are 0.26 (MES), 0.035 (TCB), and 0.145 (PC). 

 

 

 

Figure 5.5: Plots of ln(conductance) versus junction length for the series 2, 3, 4 and 5. 

Data recorded in mesitylene (MES), trichlorobenzene (TCB), and propylene carbonate 

(PC) as labeled. The linear fitting of each plot gives the β value of each solvent series. 
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5.3.2. Theoretical Results 

To gain a deeper insight into the role of the solvent medium and molecular length on 

molecular conductance, the computational modeling has been used. Before computing 

transport properties, all molecules were initially geometrically relaxed in isolation to 

yield the geometries shown in figure 5.6. This figure shows that the HOMOs and 

LUMOs are extended across the backbone for each molecule, with HOMOs showing 

large contributions from the carbon–carbon triple bonds, while the LUMOs have greater 

contributions from carbon–carbon single bonds, as expected from previous studies of 

oligoynes [3, 37, 38, 39]. 

 

 

 

Figure 5.6: The relaxed molecules in a gas phase and iso-surfaces of the HOMOs and 

LUMOs for 2 – 5. 
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Figure 5.7: Definition of the distance (χ) used to describe the various geometries 

representing solvent-oligoyne interaction with 3 by way of an example. χ is the distance 

between carbon (gray), chlorine (green), or oxygen (red) atoms of the solvent molecules 

(MES, TCB, or PC) and the nearest adjacent carbon atom of the backbone. For clarity, 

only two of the six solvent molecules employed to represent the first solvation shell are 

shown in these schematic representations.   

  

To explore how the solvent medium (MES, TCB, or PC) affects the conductance of 

these molecules, six molecules of each solvent were initially placed at a nearest distance 

χ from the oligoyne backbone within the model junction as shown in figure 5.7. In each 

simulation, the molecule plus solvent molecules together with few layers of gold at each 

pyramidal electrode were allowed to relax. These simulation were carried out with 

seven different initial distances χ for each solvent as shown in figure 5.9, resulting in 

seven different relaxed geometries. The relaxed structures are shown in figure 5.8 for 

the three different solvents. 
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Figure 5.8: Relaxed structures of junctions incorporating 2 – 5 in each three different 

solvents (MES, TCB, and PC). 

 

Figure 5.8 and table 5.2 show the relaxed structures and key optimized distances 

associated with the configurations. It could be noted that the interactions between the 

solvent molecules and the backbone affected the structural features of these molecules, 

since all bridges have been bended as shown in figure 5.8, and this leads to different 

molecular lengths as shown in table 5.2. The molecular length of 3 by way of an 

example differs from solvent to another (L = 0.993 nm in MES, 0.995 nm in TCB and 

1.007 nm in PC).      
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Table 5.2: The key optimized distances associated with the conformations; dAu-Au is the 

center-to-center distance of the apex atoms of the two opposing gold pyramids in the 

relaxed structures as shown in figure 5.8. L = dSi-Si is the molecular length, which is the 

optimized distance between the centres of silicon atoms. X is the bond length between 

the top gold atoms of the pyramids and the silicon atoms of the TMS terminal groups. 

 

 

Before calculating the transport properties of these structures, the binding energies were 

computed for the contact formed between gold cluster and the TMS terminal groups for 

each of the different optimized distance χ.  Two points are note-worthy from the binding 

energy plots of figure 5.9. First, for the junctions modelled in figure 5.9 with compound 

3 by way of an example, the optimized distance at which the contact binding energy 

reaches its maximum value is χ = 0.7 nm. Consequently, in what follows, the transport 

properties are calculated for the structures with the optimized distance χ = 0.7 nm. 

Second, the structures with TCB and PC solvation exhibit slightly stronger Au – TMS 

contact binding than for mesitylene solvation (-0.41 eV for the structures with MES and 

-0.44 eV for the structures with TCB and PC). However, the differences in binding 

energies are small and less than or on the order of kBT at room temperature.  

 

 

System 

MES TCB PC 

dAu-Au 

(nm) 

 

L = dSi-Si 

(nm) 

 

X 

(nm) 

 

dAu-Au 

(nm) 

 

L = dSi-Si 

(nm) 

 

X 

(nm) 

 

dAu-Au 

(nm) 

 

L = dSi-Si 

(nm) 

 

X 

(nm) 

 

2 1.332 0.745 0.415 1.357 0.752 0.37 0.89 0.75 0.34 

3 

 

1.630 0.993 0.415 1.574 0.995 0.37 1.317 1.007 0.34 

4 

 

1.904 1.261 0.415 1.766 1.129 0.37 1.367 1.267 0.34 

5 

 

2.205 1.512 0.415 2.008 1.415 0.37 1.605 1.525 0.34 
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Figure 5.9: The binding energy between the gold cluster and the TMS terminal group 

in 3 versus the distance between the solvent molecules and the backbone (χ). 

 

To investigate the electronic properties of these molecules in three different 

environments, SIESTA code has been used, which employs norm-conserving 

pseudopotentials and linear combination of atomic orbitals (LCAO) to span the valance 

states. All systems were initially placed between two pyramidal gold electrodes, and 

then the oligoyne molecule plus solvent molecules and few layers of gold were allowed 

to relax to yield the structures. Then to calculate the transmission coefficient, T(E) using 

the GOLLUM code, the resulting configurations were connected to bulk gold electrodes 

grown along the (111) direction  as shown in figure 5.8 and described in detail elsewhere 

[31].  



Chapter 5: Solvent Dependence of the Single Molecule Conductance of 

 Oligoyne-Based Molecular Wires 
 

112 
 

 

 

Figure 5.10: Room-temperature conductance as a function of the Fermi energy for 3 in 

mesitylene (MES), trichlorobenzene (TCB), and propylene carbonate (PC).  

 

The theoretical and experimental data are summarized in figures 5.10 (illustrated for 3 

by way of an example), 5.11, 5.12, and 5.13 and table 5.1. Figure 5.10 shows the 

calculated room temperature conductances (in G/G0), plotted for energies in the    

HOMO – LUMO gap region, as a function of the Fermi energy (EF) for 3, relative to 

the DFT-predicated Fermi energy (EF
DFT). Figure 5.11 shows all conductance curves. It 

is worth to mention that DFT does not usually predict the correct value of the Fermi 

energy. Therefore, EF has been treated as a free parameter, which it has been determined 

by comparing the calculated conductance with experiment [32].  
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Figure 5.11: The calculated conductances as a function of the Fermi energy for all 

molecules in mesitylene (MES), trichlorobenzene (TCB), and propylene carbonate 

(PC). 
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Figure 5.12: Decay constant β (nm-1) for the molecular series 2, 3, 4, and 5 as a function 

of the Fermi energy in three different solvents (MES, TCB, and PC). 

 

Figure 5.12 shows the Fermi energy dependence of the decay constant (β) for the 

molecular series 2, 3, 4, and 5 in MES, TCB and PC solutions, respectively. The best 

agreement with experimental data as shown in figure 5.13 is obtained at EF = - 0.72 eV, 

which is shifted toward the centre of the HOMO – LUMO gap, compared with DFT-

predicted value. With this choice of EF, both computational (figures 5.10 and 5.11), and 

experimental (figure 5.5) data sets show that the order of the conductance at the chosen 

Fermi energy is PC ≈ TCB > MES. At EF = - 0.72 eV, the computational β values (figure 

5.12) follow the trend βMES > βTCB > βPC, meaning that the experimentally observed β 

value recorded in TCB is not so well reproduced by theory. However, it can be seen 

from figure 5.12 that the β versus Fermi energy curve around the chosen EF value has a 

high slope. This sensitivity to precise Fermi energy value may explain this disparity. 
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Figure 5.13: Conductance versus length for all molecules in three different solvents 

(MES, TCB, and PC) as shown in tables 5.1 and 5.2. Panel A shows the experimental 

conductance (G/G0) versus L (nm), where L is the distance between Si atoms (Si…Si). 

Panel B shows the calculated conductance (G/G0) versus L.  
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Figure 5.13 and table 5.1 summarize and compare the experimental and theoretical 

conductance values versus the molecular length (L). It could be noted here that for both 

experimental and computational data sets the conductance of the structures with PC and 

TCB is higher than that with MES.  

Although oligoynes represent one of the most archetypical molecular wires, the effects 

of solvents on their single molecule conductance has not been considered before. The 

calculations described above show that the solvent surrounding the oligoyne molecule 

bridge has a strong impact on the computed electron transmission curves for the 

junctions. As a result different conductance and length dependence values are obtained 

across the homologous series. This is not the result of covalent interactions between the 

solvent and the bridge, but rather occurs from longer range electrostatic interactions. 

This could be described as a “solvent induced gating of the molecular junction electrical 

properties”. 

Solvent effects have only been examined in detail in the literature for a relatively small 

number of single molecular junctions, which perhaps surprising given that most 

measurements of this kind are performed in a liquid or ambient environment. Li et al. 

found the conductance values of octanedithiol to be independent of solvent (toluene, 

dodecane, and water) [40]. This is perhaps not unexpected given by very large HOMO 

– LUMO gap for this far-off-resonance tunnelling system. On the other hand, Leary et 

al. have demonstrated large solvent dependence for the conductance of Oligothiophene-

containing molecular wires [21]. This was attributed to water molecules directly 

interacting with the thiophene molecular rings and thereby shifting transport resonances 

with the effect of greatly increasing conductance.  
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Water dependence has also been seen in perylene tetracarboxylic diimide (PCTDI)-

containing molecular bridges, with the measured conductance being temperature 

dependent in aqueous solvent but temperature independent in toluene [41]. In a 

theoretical study of this system, the water and temperature dependence was modelled 

through thermal effects on the hydrogen bonding network interacting primarily with the 

carbonyl moieties on PCTDI [42]. 

Other models have considered the effect of the solvent on the gold contact work 

function. In such a study, Fatemi et al. experimentally determined that solvents could 

increase the conductance of 1,4-benzenediamine (BDA) – gold molecular junctions by 

up to 50% [43 – 46]. This was attributed to shifts in the gold contact Fermi energies 

resulting from solvent binding, leading to better alignment to the HOMO of BDA and 

hence higher conductance. These studies collectively show the complexity of solvent 

effects in molecular junctions, which have, depending on the system, been modelled 

through electrostatic interactions between the solvent and molecular bridge, or solvent 

binding to gold contact atoms.  

A present study demonstrates that the longer range solvent–molecular bridge 

interactions alone can describe the experimentally observed solvent effects on oligoyne 

junction conductance. In addition, this study rationalizes the previously unexpected 

differences observed between different studies of oligoyne molecular conductance [3, 

4] which can be now attributed to solvent effects. 
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5.4. Summary 

In this Chapter the electronic properties of oligoyne-based molecular wires in three 

different mediums have investigated experimentally and theoretically. It has been 

demonstrated that the changing of the solvent can lead to changes in both the 

conductance and the attenuation factor of oligoyne molecular bridges.  

DFT computations shown that both the molecular junction conductance and the decay 

constant depend in a very sensitive manner on the position of the contact Fermi energies 

within the HOMO – LUMO gap.  

In addition, it has been shown that the interactions between the solvent molecules and 

the oligoyne-bridges affected the structural features of these molecules, since all bridges 

have been bended, and that leads to different molecular lengths. By way of an example, 

the molecular length of 3 in MES-solvent is 0.993 nm, while in TCB and PC are 0.995 

and 1.007 nm respectively. 

Furthermore, it has been demonstrated that the structures with TCB and PC solvation 

exhibit slightly stronger Au – TMS contact binding than for mesitylene solvation (-0.41 

eV for the structures with MES and -0.44 eV for the structures with TCB and PC). 

Finally, these results shown that the solvent environment is an important variable to 

consider in interpreting conductance measurements and that the environment can give 

rise to dramatic changes in electronic properties of this kind of molecules. 
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Chapter 6 

 

Effects of electrode-molecule binding and junction 

geometry on the single-molecule conductance of 

bis-2,2′:6′,2″-terpyridine based complexes 

 

 
6.1. Introduction 

The development of methods that permit the measurement of the electrical 

characteristics of single molecules under routine laboratory conditions [1, 2] coupled 

with the incentives for technological innovation arising from ever increasing challenges 

facing top-down miniaturisation of solid-state electronic devices, has seen a renaissance 

in the field of molecule electronics over the past decade [3 – 6]. In the context of 

developing molecular components for use in a hybrid solid-state/molecular electronics 

technology, many different molecular structures have been examined within molecular 

junctions, including oligophenylenes, [7] oligoaryleneethynylenes, [8] and oligoynes, 

[9] and arylene–ethynylene based molecular wires up to 8 nm in length [10 – 12]. 

However, whilst the majority of metal|molecule|metal junctions studied to date has been 

derived from organic molecules, the possibility that metal complexes may play a role 

in molecular electronics has been recognized [13], and inorganic and organometallic 

molecular components for electronics are now attracting increasing attention [14 – 18]. 



Chapter 6: Effects of electrode-molecule binding and junction geometry on the single-

molecule conductance of bis-2,2′:6′,2″-terpyridine based complexes 
 

124 
 

Various families of metal complexes have been explored for their wire-like properties 

and higher functionalities [19, 20], including porphyrin oligomers [21] and assemblies, 

[22] and metal alkynyl complexes [23 – 28].  Within the context of exploratory studies, 

bis-2,2′:6′,2″-terpyridine complexes are particularly attractive, being compatible with a 

broad cross-section of the metallic elements of the transition series, and thereby offering 

a wide range of metal d-electron configurations and charges, electro- and photo-

chemical activity, and diverse synthetic approaches which include ‘on surface’ 

strategies that been used in the construction of quite complex surface bound mono-and 

multi-metallic [29, 30 – 32] films with impressive electrical characteristics [33 – 38].  

Within single molecule junctions, the flexibility of the coordination bonds around the 

metal center has led to the opportunity for manipulation of transport properties through 

such Cardan-joint style metal complexes by mechanical stimulus [39, 40].  

 

For assembly, as components in molecular electronics, metal complexes offer the 

potential for finer tuning of the frontier molecular orbitals in metal complexes to match 

the Fermi levels of the electrodes, [41] the possibilities of augmenting electronic 

characteristics through accessing available redox levels [42] and manipulating them 

through electrochemical gating, [43 – 45] the introduction of magnetic effects, [46, 47] 

and high thermoelectric efficiency [48]. These various factors are then expanded further 

by experimental and computational work in which multiple metal centres are introduced 

along a linear wire-like chain, either as an array of metal atoms [14, 49, 50] or in ligand-

linked assemblies [24 – 27]. Whilst there is a body of experimental evidence, such as 

the observation of Kondo effects in transition metal complex based molecular junctions 

[51 – 53] and electrostatically gated spin-blockade effects, [46] which indicates that the 
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metal center is involved directly in the transport mechanism, this is not always the case 

[41]. Recent studies have highlighted the potential role of metal centres as a structural 

element with the surrounding ligands providing the pathway for the through molecule 

current [54]. In such cases, the molecule-electrode contact and electronic structure of 

the ligand framework will play a more significant role in determining the overall 

transport properties of the molecule than the identity of the metal in the complex. 

 

The important role of the molecule-electrode contact in determining transport properties 

of a molecular junction is now widely recognised, [55] and many different functional 

groups have been explored in this regard, with thiols, amines and pyridines being 

particularly widely used [56]. In addition to the chemical nature of the binding group, 

the electrode-molecule contact also depends on the structure of the electrode surface. 

For example, thiolate binds to a wide variety of sites on the gold surface including 

different points on flat terraces (atop surface atoms, in bridging or in hollow sites), 

adjacent step edges or ad-atoms [57, 58]. Each of these different contact types gives rise 

to a different conductance signature, which accounts for the appearance of multiple 

peaks in the conductance histograms of even simple thiolate contacted molecules [59]. 

One possible strategy to limit the range of these possible binding sites, and thereby 

simplifying the conductance profile of the molecular junction, would entail increasing 

the steric bulk around the surface coordinating atom.  
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Thioethers are beginning to attract attention in both studies of self-assembled 

monolayers (SAM) on gold, [60] and as a contact in molecular junctions where they 

often give rise to simpler conductance histograms than analogous thiolates [61 – 66]. 

Recently, the trimethylsilylethynyl moiety has been identified as a possible bulky 

anchoring moiety for use in single molecule electronics [28, 67 – 70]. 

  

Results from single molecule junctions indicate that the use of the trimethylsilylethynyl 

moiety as surface contact group leads to current histograms containing only a single 

conductance peak in the measureable current range, although junction formation 

probabilities are low (ca. 5%) [28, 67]. Detailed studies of SAM formed from 

trimethylsilylethynyl functionalised unsaturated hydrocarbons have indicated pit-

etching features, consistent with a surprisingly strong Au-Si interaction [71]. A close 

registry of the silyl molecules with the underlying Au(111) surface and evidence for a 

degree of Si-Au interaction from synchrotron radiation photoelectron spectroscopy led 

to the suggestion of a local surface complex featuring a five-coordinate silicon atom in 

these self-assembled films [72, 73]. Later refinements to the model have shown the 

importance of lateral intermolecular van der Waals interactions in pre-organising the 

silyl head group in such a position as to promote the Si-Au interaction [74, 76, 77].  

However, the nature of the Si-Au interaction in the case of the isolated molecules used 

in single molecule junction studies is an area for further investigation. 
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In what follows, this work seeks to extend these studies and arrive at a more detailed 

understanding of the role of the anchor unit and metal complex fragment on the 

behaviour of these junctions, by studying Fe(II), Ru(II) and Co(II) bis-2,2′:6′,2″-

terpyridine complexes anchored by thiomethyl [60 – 63], and trimethylsilylethynyl [28, 

67, 68 – 70] moieties within molecular junctions, supported by single molecule 

conductance measurements and quantum chemical models.  

 

This chapter presents all theoretical details and experimental conductance 

measurements as a part of a published paper. For more details regarding the 

experimental methods and synthesis details see  Ross D.; Oday A. Al-Owaedi, David C. 

M.; Qiang Z.; Joanne T.; František, H.; Simon J. H.; Richard J. N.; Colin J. L.; Paul J. 

L. Effects of Electrode−Molecule Binding and Junction Geometry on the Single-

Molecule Conductance of bis-2,2′:6′,2″-Terpyridine-based Complexes. Inorg. Chem. 

2016. 55(6): p. 2691 – 2700. 
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6.2. Experimental and Theoretical Methods 

6.2.1. Experimental Methods 

The transport characteristics in single-molecule junctions were studied by scanning 

tunnelling microscopy, using the current-distance (I(s)) technique. All details of 

experimental methods are presented in ref. [75]. 

 

6.2.2. Theoretical Details: Computational Methods 

To avoid duplication, the same computational methods that have been previously 

described to relax the molecules (in a gas phase) in chapter 5, were utilized in this work 

as well.  

To model the effect of an electrochemical environment, two tetrafluoroborate [BF4]¯ or 

hexafluorophosphate [PF6]¯ counterions were initially placed at different distances 

from the backbone (molecule). Two [BF4]¯counterions have been used for the 

complexes containing a Co centre, while two [PF6]¯counterions have been used for the 

complexes containing Ru or Fe centres. Then the molecules plus counterions were 

allowed to relax. In this study, simulations were carried out with ten different initial 

distances χ between the fluorine atoms of the counterions and hydrogen atoms of the 

backbone, resulting in ten different relaxed distances χ, as shown in figure 6.3 

(illustrated by way of an example) and table 6.2.  

In order to compute the electrical conductance of molecules in three different junction 

models, they were each placed between three distinct gold electrodes denoted Type I, 
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Type II and Type III. The complex cations and their associated counterions were 

allowed to relax, to yield the structures shown in figures 6.5, 6.6, and 6.7. For each 

structure, the transmission coefficient, T(E), was calculated by first obtaining the 

corresponding Hamiltonian and overlap matrices using SIESTA [78] and then using the 

GOLLUM code [79].  

To determine EF, the predicted conductance values of all molecules have been 

compared with the experimental values and chose a single common value of EF which 

gave the closest overall agreement. This yielded a value of EF – EF
DFT = -0.14 eV, which 

is used in all theoretical results. This is commonly accepted procedure in molecular 

electronics DFT-based calculations (cf., ref [80]). 

Again, in order to prevent the repetition, the same theoretical method [81, 82] that has 

been employed to calculate the binding energies between anchor group and gold 

electrode for the optimized structures in chapter 5, was used in this work as well.  

 

 

6.3. Results and Discussion 

In this section, the experimental single molecule conductance results and theoretical, 

such as binding energies between the gold cluster and the TMS terminal groups, the 

calculated conductance and electrochemical computational results have been presented. 

Synthesis, spectroelectrochemistry and resonance Raman spectroscopy experimental 

results can be found in ref. [75]. 
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6.3.1. Experimental Single Molecule Conductance Results 

The molecular conductance of the bis-2,2′:6′,2″-terpyridine based complexes [2-M](X)2 

– [3-M](X)2 (M = Fe, Ru, X = PF6¯; M = Co, X = BF4¯) on an Au(111) surface was 

investigated by scanning tunnelling microscopy (STM) under ambient conditions using 

the I(s) technique [1], as shown in figure 6.2 and table 6.1.  

The conductance values, break-off distances and calculated molecular lengths are 

summarised in table 6.1, with conductance histograms obtained from the I(s) data 

shown in figure 6.2. To date, the few compounds featuring trimethylsilylethynyl based 

electrode contacts that have been studied in molecular junctions have been charge-

neutral organic compounds [28, 68, 69, 70] or organometallic complexes [28]. The data 

in table 6.1 is consistent with literature studies of OPEs and oligoynes, whose tunnelling 

conductances decay with increasing numbers of phenyl rings and triple bonds 

respectively. One expects the conductances of [2-M](X)2 to be lower than that of [3-

M](X)2, because each end of [2-M](X)2 contains both a phenylene and a triple bond in 

series, where each end of [3-M](X)2 contain only a single phenylene spacer or a single 

triple bond respectively. There are several competing factors here, including the 

increased molecular length (β for polyphenylene chains is said to be 0.6 A-1) [83] and 

the decreased conjugation brought about by the twisting of the phenylene ring relative 

to the plane of the tpy -system [84, 85]. Whilst for each series [2-M]2+ and [3-M]2+ 

(figure 6.1) the overall span of values is not more than a factor of three (table 6.1, figure 

6.1), the apparent order of conductance is Ru ≥ Fe > Co for the trimethylsilylethynyl 

contacted complexes [2-M]2+, whilst for the MeS derivatives [3-M]2+ a trend of Co ˃ 

Fe ≥ Ru is observed.  

 



Chapter 6: Effects of electrode-molecule binding and junction geometry on the single-

molecule conductance of bis-2,2′:6′,2″-terpyridine based complexes 
 

131 
 

 

 

Figure 6.1: Schematic representation of the series of complexes [2-M](X)2 and [3-

M](X)2. 

 

 

 

 

Figure 6.2: Conductance histograms. (a) -CCSiMe3 contacted complexes [2-

Fe](PF6)2, [2-Co](BF4)2 and [2-Ru](PF6)2. (b) -SMe contacted complexes [3-

Fe](PF6)2, [3-Co](BF4)2 and [3-Ru](PF6)2. 
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Table 6.1: The experimental (Exp. G) and calculated (Th. G) conductances, 

experimental break-off distances, and calculated geometric parameters from the type 

III junction geometries (vide infra), for complexes [2-M]2+ and [3-M]2+. 

 a Experimentally determined conductance G (nS). b Calculated conductance values Th. 

G (nS) at  EF - EF
DFT = –0.14 eV. c experimental break-off distance Z* (nm). d The 

calculated electrode separation in a relaxed type III junction, Z = dAu-Au – 0.25 nm, 

where 0.25 nm is the calculated center-to-center distance of the apex atoms of the two 

opposing gold pyramids when conductance = G0 in the absence of a molecule. e dAu-Au 

is the calculated center-to-center distance of the apex atoms of the two opposing gold 

pyramids in the relaxed type III junctions (vide infra).  f Distance between the centres 

of silicon atoms in the relaxed junction. g Distance between centres of sulfur atoms in 

the relaxed junction. h Bond length between the top gold atoms of the pyramids and the 

anchor atoms in the relaxed junctions. 

 

 

 

 

 

Molecule Exp. G 

/nS (G○)a 

Th. G 

/nS (G○)b 

Z* 

/nmc 

Z 

/nmd 

dAu-Au 

/nme
 

d 

/nmg,h 

X 

/nmh 

[2-Fe](PF6)2 

 

1.9±0.7 

((2.5±0.9)10-5) 

2.67 

(3.4510-5) 

2.2 2.85 3.10 2.71f 0.39 

[2-Ru](PF6)2 

 

2.0±0.7 

((2.6±0.9)10-5) 

2.77 

(3.5810-5) 

2.4 2.88 3.13 2.74f 0.39 

[2-Co](BF4)2 1.4±0.6 

((1.8±0.8)10-5) 

1.95 

(2.5110-5) 

2.7 2.83 3.08 2.69f 0.39 

[3-Fe](PF6)2 

 

2.4±0.6 

((3.1±0.8)10-5) 

3.63 

(4.6910-5) 

2.4 2.21 2.46 2.15g 0.30 

[3-Ru](PF6)2 

 

2.4±0.6 

((3.1±0.8)10-5) 

3.28 

(4.2310-5) 

2.4 2.24 2.49 2.19g 0.30 

[3-Co](BF4)2 

 

4.1±1.0 

((5.3±1.3)10-5) 

5.60 

(7.2310-5) 

2.0 2.20 2.45 2.14g 0.30 
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6.3.2. Theoretical Results 

In seeking to explore the effect of surrounding environment, DFT-electrochemical 

calculations have been performed by using two kinds of counter ions tetrafluoroborate 

[BF4]¯ and hexafluorophosphate [PF6]¯ counterions. Two [BF4]¯counterions were used 

for the molecules containing Co centres, while Two [PF6]¯ were used for the complexes 

containing Ru or Fe centres. Initially these counter ions were placed at different 

distances from the backbone, where simulations carried out with ten different distances 

χ between the fluorine atoms of the counterion and hydrogen atoms of the backbone, 

resulting in ten different relaxed distances χ, as shown in figure 6.3 (illustrated by a way 

of an example) and table 6.2. The calculated conductances of molecular junctions, 

denoted Type III in five different distances χ are shown in figures 6.16 and 6.17. 

 

Figure 6.3: The distance χ between fluorine atoms of counter ions and hydrogen atoms 

of the backbone. C1 is the counterion on one side of the backbone, and  C2 is the 

counterion on the other side. By way of an example, this figure shows complexes 

continuing Fe and Co centres.  
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Table 6.2 and figure 6.4 show that the number of the electrons (Г) transferred from each 

molecule approaches zero for large χ and increases linearly with decreasing χ. In this 

region, the ordering of the electron transfer is [Fe][PF6]2 ≥ [Ru][PF6]2 > [Co][BF4]2, 

which reflects the fact that the electrostatic field associated with [PF6]¯ counterions is 

stronger than that of [BF4]¯. 

At smaller values of χ, the charge transfer Г reaches a plateau between approximately χ 

= 3.4 Aº and χ = 2.4 Aº. At even smaller χ, the overlap between orbitals of the molecule 

and counter ions causes electrons to be shared between the two and reduces charge 

transfer at shorter distances. This chemical feature illustrates a crucial difference 

between electrochemical gating and the electrostatic gating.  

 

 

Figure 6.4: The number of electrons (Г) transferred from each molecule as a function 

of the distance (χ).  
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Table 6.2: Results of the charges on the backbone for ten different initial counterion 

distances χ. QC is the total charge on each backbone when it contacted to the gold 

electrodes in present of counterions. Q is the total charge on the backbone when it is 

contacted to the gold electrodes without counterions. Г = Q - QC is the number of 

electrons transferred from the backbone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System χ (Aº) QC Q Г 

[3-Co][BF4]2-χ1 1.5 259.196  

 

 

 

 

261.00 

1.804 

[3-Co][BF4]2-χ2 2.0 259.099 1.901 

[3-Co][BF4]2-χ3 2.5 259.033 1.967 

[3-Co][BF4]2-χ4 3.0 259.032 1.968 

[3-Co][BF4]2-χ5 3.5 259.015 1.985 

[3-Co][BF4]2-χ6 4.00 259.999 1.501 

[3-Co][BF4]2-χ7 4.50 260.187 0.913 

[3-Co][BF4]2-χ8 5.00 260.355 0.645 

[3-Co][BF4]2-χ9 5.50 260.685 0.315 

[3-Co][BF4]2-χ10 6.00 260.867 0.133    
 

 

[3-Fe][PF6]2-χ1 1.5 258.292  

 

 

 

260.00 

1.708 

[3-Fe][PF6]2-χ2 2.0 257.936 2.064 

[3-Fe][PF6]2-χ3 2.5 257.749 2.251 

[3-Fe][PF6]2-χ4 3.0 257.692 2.308 

[3-Fe][PF6]2-χ5 3.5 257.675 2.325 

[3-Fe][PF6]2-χ6 4.00 258.289 1.913 

[3-Fe][PF6]2-χ7 4.50 258.899 1.501 

[3-Fe][PF6]2-χ8 5.00 259.118 0.982 

[3-Fe][PF6]2-χ9 5.50 259.524 0.576 

[3-Fe][PF6]2-χ10 6.00 259.705 0.295    
 

 

[3-Ru][PF6]2-χ1 1.5 258.338  

 

 

 

260.00 

1.662 

[3-Ru][PF6]2-χ2 2.0 257.981 2.019 

[3-Ru][PF6]2-χ3 2.5 257.785 2.215 

[3-Ru][PF6]2-χ4 3.0 257.705 2.295 

[3-Ru][PF6]2-χ5 3.5 257.701 2.299 

[3-Ru][PF6]2-χ6 4.00 258.191 1.809 

[3-Ru][PF6]2-χ7 4.50 258.999 1.201 

[3-Ru][PF6]2-χ8 5.00 259.181 1.019 

[3-Ru][PF6]2-χ9 5.50 259.601 0.599 

[3-Ru][PF6]2-χ10 6.00 259.812 0.188 
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[2-Co][BF4]2-χ1 1.5 299.501  

 

 

 

 

301.00 

1.499 

[2-Co][BF4]2-χ2 2.0 299.408 1.592 

[2-Co][BF4]2-χ3 2.5 299.347 1.653 

[2-Co][BF4]2-χ4 3.0 299.337 1.663 

[2-Co][BF4]2-χ5 3.5 299.336 1.664 

[2-Co][BF4]2-χ6 4.00 299.889 1.111 

[2-Co][BF4]2-χ7 4.50 300.177 0.823 

[2-Co][BF4]2-χ8 5.00 300.488 0.512 

[2-Co][BF4]2-χ9 5.50 300.773 0.227 

[2-Co][BF4]2-χ10 6.00 300.925 0.075    
 

 

[2-Fe][PF6]2-χ1 1.5 298.784  

 

 

 

300.00 

1.216 

[2-Fe][PF6]2-χ2 2.0 298.338 1.662 

[2-Fe][PF6]2-χ3 2.5 298.133 1.867 

[2-Fe][PF6]2-χ4 3.0 298.049 1.951 

[2-Fe][PF6]2-χ5 3.5 298.046 1.954 

[2-Fe][PF6]2-χ6 4.00 298.389 1.611 

[2-Fe][PF6]2-χ7 4.50 298.767 1.233 

[2-Fe][PF6]2-χ8 5.00 299.134 0.866 

[2-Fe][PF6]2-χ9 5.50 299.681 0.319 

[2-Fe][PF6]2-χ10 6.00 299.798 0.202    
 

 

[2-Ru][PF6]2-χ1 1.5 298.811  

 

 

 

300.00 

1.189 

[2-Ru][PF6]2-χ2 2.0 298.384 1.616 

[2-Ru][PF6]2-χ3 2.5 298.153 1.847 

[2-Ru][PF6]2-χ4 3.0 298.034 1.966 

[2-Ru][PF6]2-χ5 3.5 298.033 1.967 

[2-Ru][PF6]2-χ6 4.00 298.365 1.635 

[2-Ru][PF6]2-χ7 4.50 298.756 1.244 

[2-Ru][PF6]2-χ8 5.00 298.991 1.009 

[2-Ru][PF6]2-χ9 5.50 299.523 0.477 

[2-Ru][PF6]2-χ10 6.00 299.807 0.193 
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To further explore the properties of these molecular junctions, quantum chemical 

modeling of the junctions were undertaken to compare the electrical properties of the 

Fe, Ru and Co molecular pairs [2-M](X)2 and [3-M](X)2 (M = Fe, Ru, X = PF6¯; M = 

Co, X = BF4¯). To compute their transport properties the optimized structures (molecule 

and counterions) have been placed between gold electrodes grown along the (111) 

direction. The complexes and the first few layers of gold were allowed to relax, to yield 

the structures shown in figures 6.5, 6.6, and 6.7. In this study, the three distinct electrode 

geometries were explored, denoted Type I, Type II and Type III. The calculated 

conductances for each series [2-M](X)2 and [3-M](X)2 are shown in figures 6.11 and 

6.12. 

 

 

Figure 6.5:  The relaxed geometries, denoted Type I, illustrated for [2-M](X)2 and [3-

M](X)2 (M = Fe, Ru, X = PF6¯; M = Co, X = BF4¯). 
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Before calculating the electron transport properties, each member of the [2-M](X)2 and 

[3-M](X)2 series was optimized within the junctions. To explore the role of the electrode 

geometry,  three electrode shapes were chosen to represent not only the idealized planar 

surface (Type I), but also surfaces containing a single add atom (Type II) and larger 

surface features modeled as gold pyramids (Type III). 

 

 

 

Figure 6.6:  The relaxed geometries, denoted Type II, illustrated for [2-M](X)2 and [3-

M](X)2 (M = Fe, Ru, X = PF6¯; M = Co, X = BF4¯). 
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Figure 6.7: The relaxed geometries, denoted Type III, illustrated for [2-M](X)2 and [3-

M](X)2 (M = Fe, Ru, X = PF6¯; M = Co, X = BF4¯). 

 

To obtain realistic values of molecular conductance for the Type III junctions with a 

Me3SiCC- anchor group, the binding energies of these structures were computed for a 

range of different molecular orientations within the junction (defined by the angle Θ, 

Cipso-Si-Au) as shown in figure 6.8. 

 

 

[2-Co][BF4]2 [3-Co][BF4]2 

[2-Fe][PF6]2 [3-Fe][PF6]2 

[2-Ru][PF6]2 [3-Ru][PF6]2 
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Figure 6.8: A pictorial representation of the angle Θ used to describe the various 

geometries within Type III junctions for complexes [2-M]2+. 

 

Within this range of different conformations of Type III junctions, the maximum 

binding energy varied by about 0.1 eV from 105º to 125º depending on the metal ion 

involved (figure 6.7). Allowing for room-temperature thermal fluctuations of ~25 meV, 

suggests that the optimal conformation of the angle Θ within the junction may vary 

from as little as 100º for [2-Co] to as much as 130º for [2-Fe] and [2-Ru].  

However, since the results do not depend strongly on the angle, the plot has been chosen 

for the results for the case of Θ = 110º as a representation of the results for a range of 

nearby angles. Results for binding energies (figure 6.9) and transport properties (figures 

6.13, 6.14, and 6.15) (vide infra) are shown for Type III junctions with Θ = 110º. 
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Figure 6.9: Plots illustrating the binding energies as a function of the angle between 

Au-Si-C atoms, Θ, (figure 6.10) for the Type III configurations with the Me3SiCC 

anchored compounds [2-M](X)2. 

 

Figure 6.9 shows that the minimum energy (i.e equilibrium) structures feature angles 

which vary between 105 and 125° for complexes [2-M](X)2. A survey across these 

various structures shows that the calculated G/G0 (figures 6.13, 6.14, and 6.15) does not 

depend strongly on the angle and therefore an angle of 110° has been chosen as a 

representative angle (lying between 105 – 125°). Plots of the conductance G/G0 for 

angles of θ = 90, 95, 100, 105 and 110° that demonstrate this. 
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Figure 6.10: Plots of the binding energy of [2-M](X)2 and [3-M](X)2 for three types of 

junction configurations,  Type I, Type II and Type III. 

 

The calculated binding energies for the various complexes [2-M](X)2 and [3-M](X)2 in 

various junction models I, II, III (Θ = 110º) are plotted in figure 6.10, with  two trends 

immediately apparent. Firstly, the MeS-based structures ([3-M]2+) bind more strongly 

than the Me3SiCC-anchored structures ([2-M]2+). Secondly, the binding energies of 

the Type III electrode geometry are higher than the other junctions. For these Type III 

junctions, the order of the binding energies with Me3SiCC-anchor groups ([2-M](X)2) 

is Ru > Fe > Co, whereas with MeS-anchor groups (i.e. compounds [3-M](X)2), the 

order of binding energies is Co > Fe > Ru, which are broadly consistent with the 

conductance trends (figure 6.12). 
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Figure 6.11: Plots of the theoretical conductances as a function of the Fermi energy for 

[2-M](X)2 with three different molecular junctions (Type I, II, III).  
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Figure 6.12: Plots of the theoretical conductance as a function of the Fermi energy for 

all [3-M](X)2 structures with three different molecular junctions (Type I, II, III). 
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The most stable trimethylsilylethynyl-based configurations in the single-molecule 

junctions formed with complexes [2-M]2+ are not, as might have been expected, based 

on previous proposals drawn from studies of self-assembled monolayers of 

trimethylsilylethynyl functionalized long-chain hydrocarbons on flat Au(111) surfaces 

[71, 72, 74, 86]. Rather than a five-coordinate silicon species chemisorbed to a flat 

terrace, the Type III junctions are most stable, and the silicon centre maintains an 

approximately tetrahedral geometry (table 6.3). It seems that for the single-molecule 

experiments, in the absence of additional dispersion forces present in the self-assembled 

mono-layer films, which might give additional energetic preference to alternative 

contact geometries, [7, 74] the most stable trimethylsilylethynyl | gold contacts are best 

described in terms of a molecule physisorbed at a defect site. 

 

 

Figure 6.13: The calculated conductance as a function of Fermi energy for [2-

Co](BF4)2 structure with θ = 90, 95, 100, 105, 110°.  
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Figures 6.14: The calculated conductance as a function of Fermi energy for [2-

Fe](PF6)2 structure with θ = 90, 95, 100, 105, 110°. 

 

 

Figure 6.15: The calculated conductance as a function of Fermi energy for [2-

Ru](PF6)2 structure with θ = 90, 95, 100, 105, 110°. 
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Table 6.3: Summary of bond lengths (Å) and angles at Si (º) of the dication [2-M]2+ in 

Type III junctions. 

  

Bond Type Type III junction 

 [2-Fe]2+ [2-Ru]2+ [2-Co]2+ 

CC 1.234 1.234 1.234 

Si-C 1.824 1.825 1.819 

Si-Cmethyl 1.907 1.887 1.889 

Cmethyl-Si-Calkyne 109.7 109.1 109.3 

 

Regarding the relaxed geometries of the molecular junctions formed by the SMe 

contacted molecules [3-M](X)2, it has been noted that whilst the thiolate (RS–) to gold 

interaction has been studied extensively, [87, 54 ] the thioether (R2S) to gold interaction 

has been less thoroughly explored. In the Type III contacted thioether systems, the 

compounds [3-M]2+ sit close to the apex of each pyramid-shaped model gold electrode, 

with a Au-S distance of 0.3 Å, and an Au-S-Cipso angle of 103.74º. These geometries 

compare with compounds such as [Ph3PAuSMe2][CF3SO3] (Au-S, 2.323(2) Å; Au-S-

Cmethyl 106.7(2), 104.7(2)º), [88] and as such the sulfur-gold interaction is well 

approximated in terms of a coordination-type interaction (chemisorption) between the 

sulfur donor atom of the thio-ether and the gold atoms near the apex of the pyramid.  

The calculated conductances as a function of the Fermi energy for complexes [2-M](X)2 

and [3-M](X)2 within the three different molecular junctions Type I, II and III with Θ = 

110º, are shown in figures 5.11 and 5.12. For both molecular contacts, it is clear the 

conductances of the structures with the Type III configurations are the highest, which 
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correlates with their more favourable binding energies (figure 6.10). This is consistent 

with the relatively simple conductance histograms observed for trimethylsilylethynyl 

and SMe contacted molecules described here and elsewhere, [28, 61 – 63] and might be 

attributed to molecules bound at surface defects contributing predominantly to the 

conductance histograms. 

Figures 6.16 and 6.17 show that the conductances of [3-M](X)2 series are higher than 

that of [2-M](X)2 for the structures denoted Type III as shown in figure 6.7. To some 

extent, there is a relationship between the distance χ and the conductance, since the 

conductance is raised with increasing of the distance χ. In addition, the conductance 

order of all structures in terms of the junction type is GTypeIII > GTypeI > GTypeII. 

For each of the most energetically favorable Type III structures of [2-M](X)2 and [3-

M](X)2, the room temperature electrical conductance G was calculated as described in 

the computational methods section, and plotted against the Fermi level (EF-EF
DFT) 

(figures 5.11 and 5.12). Since the DFT-predicted value of the Fermi energy is not 

usually reliable it has been treated as a free parameter, and it has been adjusted to 

improve the agreement with experiment.  
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Figure 6.16: The calculated conductances as a function of the Fermi energy for all [2-

M](X)2 junctions (Type III) in five different χ.  
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Figure 6.17: The calculated conductance as a function of the Fermi energy for all [3-

M](X)2 junctions (Type III) in five different χ.  
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Figure 6.18: A comparison between experimental and theoretical conductances G, 

plotted against the relaxed electrode separations Z as shown in table 5.1. 

 

By adjusting this single parameter, better agreement with six experimental conductance 

values is achieved, which gives us confidence that this is a reasonable procedure [80]. 

Given that the adjustment of -0.14 eV is rather small in this case, it could be concluded 

that the DFT-predicted value is actually rather close to the experimental value, and both 

experimental and computational results are close to the LUMO. For EF - EF
DFT = - 0.14 

eV, the conductances follow the small experimental trends with remarkably high degree 

of correlation (table 6.1 and figure 6.18). Thus, despite the changes in metal and surface 

contacting group, the observed conductances of these metal complexes, which span a 

relatively small range of values (from (1.4 ± 0.6) – (4.1 ± 1.0) nS, table 6.1), follow the 
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trends in the edge of the LUMO resonances (figures 6.11, 6.12). In contrast, there is a 

more pronounced variation in the position of the HOMO resonances, but such variations 

are not consistent with the conductance data. LUMO-based conduction mechanisms 

have also recently been noted for a somewhat related Cu(phenanthroline) complex [41]. 

Interestingly, a family of SMe contacted oligo(thiophene-S,S-dioxides) have been 

shown to shift from LUMO to HOMO mediated conductance mechanisms as a function 

of increasing molecular length [62].  

 

6.4. Summary 

In this Chapter the electronic properties of bis(terpyridyl) complexes have been 

investigated experimentally and theoretically. The single-molecule conductance of 

bis(terpyridyl) complexes [2-M](X)2 and [3-M](X)2 display trends that are more closely 

associated with the binding energy and ligand structure than the nature of the metal ion.  

The calculated conductances as a function of the Fermi energy for complexes series 

within the three different molecular junctions Type I, II and III with Θ = 110º illustrated 

that for both molecular contacts, it is clear the conductance of the structures with the 

Type III configurations are the highest, which correlates with their more favourable 

binding energies. The limited role of the metal ion can be traced in part to the LUMO-

based conduction mechanisms that arise from the use of trimethylsilylethynyl and, in 

the geometries adopted here, thiomethyl binding groups.  

The optimised structures of the molecular junctions and considerations of the calculated 

conductance profiles indicate that the most conductive trimethylsilylethynyl contact to 
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the gold electrodes is best described in terms of physisorption at defect sites, explaining 

the simple conductance profiles observed for compounds contacted through this group. 

The thiomethyl moiety contacts the gold electrodes in a more chemisorbed fashion, 

again at defect sites on the gold electrodes in the most conductive junctions. The 

conductances of [2-M](X)2 are found to be lower than those of [3-M](X)2, which is 

consistent with single phenylene and triple-bond spacers acting as tunnelling barriers. 

Electrochemical computations clarified a crucial difference between electrochemical 

gating and the electrostatic gating. 
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trans-bis(acetylide) complexes 

 

 
7.1. Introduction 

Measurements of the electrical characteristics of a wide variety of saturated, conjugated 

and redox active organic compounds have served to drive the development of concepts 

and techniques in molecular electronics [1 – 3]. However, metal complexes offer several 

potential advantages over organic compounds as components in molecular electronic 

devices, including redox activity at moderate potentials, ready tuning of frontier 

molecular orbital energy levels to better match the Fermi levels of metallic electrodes 

and magnetic properties [4, 5]. Consequently, attention has been turned to the 

construction and study of metal complexes [6 – 14], clusters [15 – 17], extended metal 

atom chains [18 – 20], and organometallic acetylide species [21 – 33] within molecular 

junctions. 

In the case of purely organic oligo(aryleneethynylene)-based compounds with pyridyl 

contacting groups, the molecular conductance, as determined by single molecule STM 
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break junction (STM-BJ) experiments, decreases with length, initially in line with the 

exponential decay expected for a tunneling mechanism before shifting to a shallower 

length dependence more indicative of an incoherent hopping mechanism of charge 

transport for compounds of ca. 3 nm in length [34].  

Conductance values range from 10-4.5G0 (2.45 nS) for the 1.6 nm long ‘3-ring’ 

oligoarylenes NH4C5C≡CC6H2R2C≡CC5H4N (R=OC6H13) decreasing by 

approximately three orders of magnitude for the 3.0 nm long ‘5-ring’ system 

NH4C5C≡C(C6H2R2C≡C)3C5H4N (10-6.7G0, 0.015 nS), and thereafter falling only 

slightly to 10-6.9G0 (0.01 nS) in an analogous 5.8 nm long ‘9-ring’ system. 

In cases where direct comparison is possible, it has generally been found that the 

incorporation of a ruthenium metal centre such as Ru(dppm)2 [33] or Ru(dppe)2 [28] 

within a π-conjugated wire-like structure leads to a 2 – 5 fold increase in conductance 

with the conductance value measured likely also being dependent on the nature of the 

molecule-electrode contacting group (e.g. trans-Ru(C≡CC6H4SAc)2(dppm)2 STM 

break junction 19±7 nS [33]; trans-Ru(C≡CC6H4C≡CSiMe3)2(dppe)2 I(s) method 

(5.1±0.99x10-5G0 / 3.9±0.8 nS) [28]; trans-Ru(C≡C-4-C5H4N)2(dppe)2 STM-BJ 

(2.5±0.4)x10-4G0 / 19±3 nS. In contrast, earlier studies have shown that the Pt(II) 

complex trans-Pt(C≡CC6H4SAc)2(PPh3)2 behaves rather more as an insulating species 

when bound within a mechanically controlled break junction (MCBJ), with resistances 

(5 – 50 GΩ; 0.2 – 0.02 nS) some three orders of magnitude larger than comparable 

organic compounds AcSC6H4C≡CArC≡CC6H4SAc (Ar = 9,10-C14H8, 1,4-C6H2-2-

NH2-5-NO2) being reported [21]. A later study with a range of trans-

Pt(C≡CC6H4SAc)2(PR3)2 complexes (R = Cy, Ph, OEt) revealed little effect of the 

supporting phosphine or phosphite ligand on the through-molecule conductance, 
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although curiously the conductance for these Pt complexes measured in a cross-wire 

junction was reported to be some 2 – 3 fold greater than that of the simple 

oligo(phenyleneethynylene) AcSC6H4C≡CC6H4C≡CC6H4SAc [22]. 

This chapter turns the attention to a family of linearly-conjugated, wire-like 

organometallic complexes featuring trans-Ru(C≡CR)2(dppe)2 and Pt(C≡CR)2(PPh3)2 

moieties embedded within the oligo(aryleneethynylene) backbone of ca. 3 nm 

molecular length, and describes the results of single molecule conductance studies 

based on the I(s) method. These metal complexes are substantially more conductive 

than their purely organic analogs of comparable molecular length, with detailed 

computational investigation indicating that the enhanced conductance arises from 

conductance through the tails of the LUMO resonances. The conductance values 

obtained from the Pt and Ru systems are remarkably similar, suggesting that the readily-

synthesized platinum complexes may have an important role to play in the further 

development of metal complexes for applications in single molecule electronics. 

 

This chapter presents all theoretical details and experimental conductance 

measurements as a part of a published paper. For more details regarding the 

experimental methods and synthesis details see Oday A. Al-Owaedi, David C. Milan, 

Marie-Christine Oerthel, Sören Bock, Dmitry S. Yufit, Judith A. K. Howard, Simon J. 

Higgins, Richard J. Nichols, Colin J. Lambert, Martin R. Bryce, Paul J. Low.  

Experimental and computational studies of the single molecule conductance of Ru(II) 

and Pt(II) trans-bis(acetylide) complexes. Organometallics, 2016, 35(17): p. 2955 – 

2954.  
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7.2. Experimental and Theoretical Methods 

7.2.1 Experimental Methods 

Conductance values of the compounds and the break-off distances were obtained using 

the scanning tunnelling microscopy, (current-distance (I(s)) technique). All details of 

experimental methods are presented in ref. [35]. 

 

7.2.2. Theoretical Methods 

To avoid the duplication, the same computational methods that were used to relax the 

molecules (in a gas phase) in chapter 5, were utilized in this work as well.  

 

To provide further insight into the experimentally observed trends obtained using the 

I(s) technique, and to better evaluate the properties and behavior of these molecular 

junctions, calculations using a combination of DFT and a non-equilibrium Green’s 

function formalism were also carried out. For the transport calculations, eight layers of 

(111)-oriented bulk gold with each layer consisting of 6×6 atoms and a layer spacing of 

0.235 nm were used to create the molecular junctions as shown in figure 7.5, and 

described in detail elsewhere [36]. These layers were then further repeated to yield 

infinitely-long current-carrying gold electrodes. Each molecule was attached to two 

(111) directed gold electrodes; one of these electrodes is pyramidal, representing the 

STM tip, while the other is a planar slab representing the electrode formed by the 

idealized Au(111) substrate in the I(s)-based molecular junction. The molecules and 

first layers of gold atoms within each electrode were then allowed to relax, to yield the 
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optimal junction geometries shown in figure 7.5. From these model junctions the 

transmission coefficient, T(E), was calculated by first obtaining the corresponding 

Hamiltonian and overlap matrices using SIESTA [37, 38] and then using the GOLLUM 

code [36]. To determine EF, we compared the predicted values of all molecules with the 

experimental values and chose a single common value of EF which gave the closest 

overall agreement. This yielded a value of EF – EF
DFT = - 0.07 eV, which is used in all 

theoretical results. 

 

 

7.3. Results and Discussion 

Single-molecule measurements using both organic and organometallic compounds have 

clearly shown that the electronic properties of the prototypical metal | molecule | metal 

junctions are strongly influenced by not only the chemical structure of the molecular 

backbone, but are also critically dependent on the combination of the surface and 

contacting groups [39 – 45]. The pyridyl-terminated compounds 1-Ru and 1-Pt together 

with the analogous methyl thioether-terminated compounds 2-Ru and 2-Pt were chosen 

to explore both the relative effects of the Ru(dppe) vs Pt(PPh3)2 fragments on molecular 

conductance, and the influence of the electrode-molecule contact in a comparable set of 

compounds. The pyridyl and methyl thioether moieties are already established as 

surface contacting groups in single-molecule studies of oligoynes and 

oligo(phenyleneethynylenes) [9, 34, 39, 46 – 49]. 

From analysis of the conductance traces (figure 7.1), break-off distances of 3.1 nm (1-

Ru) and 3.0 nm (1-Pt) can be determined (table 1). These values are in a good agreement 

with the calculated molecular lengths (figure 7.5), which are consistent with the contact 
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of these molecules being almost normal to the electrode surface via the pyridine lone 

pair. In contrast, shorter break off distances are determined for the methyl thioether 

complexes 2-Ru (2.4 nm) and 2-Pt (2.5 nm), which is compatible with rather more tilted 

arrangements of the molecule in the junction as might be expected from the geometry 

of the sulfur lone pairs in the thioether [50]; this interpretation has been supported by 

studies of the DFT-optimized junctions described in more detail below. 

Table 7.1. The frontier orbital energies (eV), experimental (Exp. G/G0) and calculated 

conductances (Th. G/G0) at EF - EF
DFT = – 0.07 eV, experimental 95th percentile break-

off distance Z* (nm), molecular length from the DFT-optimized junctions L = dr…r (nm), 

where r = N or S atoms, bond length between the top gold atoms of gold electrodes and 

the anchor atoms in the relaxed junctions, X (nm).  

 

 

The conductance histograms constructed from 500 molecular junction formation traces 

with characteristic plateaus are shown in figures 7.1 and 7.2. The peak conductance 

values from these histograms together with key data are summarized in table 7.1. These 

conductance histograms reveal pronounced conductance peaks at 0.4±0.18 nS (1-Ru), 

0.8±0.5 nS (1-Pt), 1.4 ±0.4 nS (2-Ru) and 1.8± 0.6 nS (2-Pt), and within each pair of 

Molecule EHOMO 

(eV) 

ELUMO  

(eV) 

Exp. 

G/G0 

 

Th. 

G/G0 

Z* 

(nm) 

L 

(nm) 

X 

(nm) 

Contacting 

Group  

 

1-Ru 

 

 

-4.42 

 

-1.46 

 

4.5×10-6 

 

5.4×10-6 

 

3.1 

 

2.9 

 

0.23 

 

4-C5H4N 

 

1-Pt 

 

 

-4.69 

 

-1.48 

 

9.8×10-6 

 

8.7×10-6 

 

3.0 

 

2.86 

 

 

0.23 

 

4-C5H4N 

 

2-Ru 

 

 

-4.18 

 

-1.07 

 

1.8×10-5 

 

1.8×10-5 

 

2.4 

 

2.65 

 

0.245 

 

4-C6H4SMe 

 

2-Pt 

 

 

-4.40 

 

-1.12 

 

1.8×10-5 

 

1.78×10-5 

 

2.5 

 

2.68 

 

 

0.245 

 

4-C6H4SMe 
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compounds featuring the same contacting group these values are indistinguishable. The 

two- to four-fold increase in conductance values of 2-Ru and 2-Pt compared with 1-Ru 

and 1-Pt further indicates the important role of the contacting group in the electrical 

response of the junction.  

However, in contrast to the thiolate-contacted molecules derived from trans-

Ru(C≡CC6H4SAc)2(dppm)2 (STMBJ) [33] and trans-Pt(C≡CC6H4SAc)2(PPh3)2 

(MCBJ) [21], the differences in conductance as a function of the metallic moiety are 

negligible, and the platinum complexes are as conductive (or resistive) as the ruthenium 

analogs. The values for 1-Ru and 1-Pt whilst low are at least an order of magnitude 

higher that the ‘five-ring’ organic compound NH4C5C≡C(C6H2R2C≡C)3C5H4N (R = 

OC6H13; 10-6.7G0, 0.015 nS) of comparable molecular length (3 nm) (MCBJ data) [34]. 

 

 

Figure 7.1: I(s) conductance histograms of 1-Ru and 1-Pt constructed from 500 traces. 
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Figure 7.2: I(s) conductance histograms of 2-Ru and 2-Pt constructed from 500 traces. 

 

In seeking to better understand these trends in conductance behavior, the electronic 

properties of the molecules and the electrical behavior of the junctions have been 

investigated by using DFT-based methods.  

Plots of the highest occupied and lowest unoccupied molecular orbital (HOMO and 

LUMO, respectively) are given in figure 7.3, and analysis of the energy and distribution 

of the frontier molecular orbitals is summarized in tables 7.1 and 7.2. 
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Figure 7.3. The relaxed molecules in a gas phase and iso-surfaces of the HOMOs and 

LUMOs for 1-Ru, 1-Pt, 2-Ru and 2-Pt 
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Table 7.2: Composition (%) of the HOMOs and LUMOs of 1-Ru, 1-Pt, 2-Ru and 2-Pt. 

 

The HOMOs of the ruthenium complexes display the familiar pattern of dπ-pπ 

interactions along the metal-ethynyl axis [51], and extend along the molecular 

backbone. The nodal pattern of the HOMOs in the Pt complexes is similar, with a 

smaller metal contribution (figure 7.3). The LUMOs are also delocalized over the 

molecular backbones and can largely be described as the π* system of the 

 1-Ru 

 Ru dppe CCC6H4(OC6H13)2CCC5H4N 

LUMO 0 2 98 

HOMO 25 3 72 

 1-Pt 

 Pt PPh3 CCC6H4(OC6H13)2CCC5H4N 

LUMO 2 3 95 

HOMO 6 2 92 

 2-Ru 

 Ru dppe CCC6H4(OC6H13)2CCC6H4SMe 

LUMO 0 2 97 

HOMO 22 3 76 

 2-Pt 

 Pt PPh3 CCC6H4(OC6H13)2CCC6H4SMe 

LUMO 4 10 86 

HOMO 5 1 94 
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diethynylarylene ligands with little (Pt) or no (Ru) metal character. These varying metal 

contributions are reflected in the relative orbital energies, with the significant Ru 

contribution to the HOMO in 1-Ru and 2-Ru resulting in these orbitals lying some ca. 

0.25 eV higher in energy than in the Pt analogues 1-Pt and 2-Pt. The largely organic π* 

based LUMOs lead to less significant differences in LUMO energies, which differ by 

only 0.02 – 0.05 eV (table 7.1). 

However, these frontier orbital distributions per se do not provide evidence relating to 

the mechanisms of conductance, which is instead dominated by the alignment of the 

key molecular orbitals with the Fermi level of the electrodes. As noted by Georgiev and 

McGrady in computational studies of the conductance properties of extended metal 

atom chain complexes, the dominant conductance channel need not necessarily be 

associated with a molecular orbital evenly distributed along the molecular backbone; 

for example, a dominant conduction channel in Cr3(dpa)4(NCS)2 (dpa = 

dipyridylamide) is derived from a non-bonding combination of metal 𝑑𝑧2  orbitals 

directed along the Cr-Cr-Cr axis and localized on the terminal chromium atoms [52]. 

To provide further insight into the experimentally observed trends obtained using the 

I(s) technique, and to better evaluate the properties and behavior of these molecular 

junctions, calculations using a combination of DFT and a non-equilibrium Green’s 

function formalism were also carried out. It is well-known that the Fermi energy 

predicted by DFT is often not reliable, and as such the room temperature electrical 

conductance G was computed for a range of Fermi energies EF; the calculated G is 

plotted as a function of EF – EF
DFT in figure 7.4. A single common value of EF which 

gave the closest overall agreement between theory and experiment has been chosen. 
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Interestingly, a small value of EF – EF
DFT = -0.07 eV (figure 7.4), which has been chosen 

and used in all of the theoretical results described below. Thygesen et al. [53], have 

discussed similar situations for C60 contacted molecular wires, and shown that critical 

molecular orbitals can become pinned close to the Fermi level due to the partial charge 

transfer and leading to good quantitative agreement between calculated and 

experimentally determined conductance. As shown below, the LUMO states of 1-M and 

2-M (M = Ru, Pt) tail near the Fermi level in a manner similar to the Thygesen system, 

and partial charge transfer may also be responsible for the good agreement observed 

here. 

 

Figure 7.4: Plots showing selected comparisons of calculated conductance as a 

function of the Fermi energy for molecular junctions 1-Ru, 1-Pt, 2-Ru and 2-Pt. Black 

dashed lines show the chosen Fermi energy (EF = -0.07 eV). 



Chapter 7: Experimental and computational studies of the single molecule conductance 

of Ru(II) and Pt(II) trans-bis(acetylide) complexes 
 

173 
 

The results of the room temperature conductance calculations are summarized in table 

7.1 and comparisons between pairs of molecules according to contacting group and 

metal complex fragment are illustrated in figure 7.4. It is immediately apparent that the 

conductance of the methyl thioether-contacted molecules 2-M is approximately three to 

four times higher than the analogous pyridine contacted species 1-M, in good agreement 

with the experimental trends (figure 7.4, top row, table 7.1). The greater conductance 

of the methyl thioether-contacted compounds 2-M likely arises from the greater Au-S 

bond strength and the broadening of the LUMO resonances arising from these 

interactions versus the pyridine-contacted analogues 1-M.  

More surprising is the limited influence of the metal-phosphine fragment on the 

molecular conductance (figure 7.4, bottom row), which can be explained by the relative 

energy of the Fermi level and the molecular LUMOs together with a conductance 

mechanism based on a tunneling process through the tails of the respective LUMO 

states. Although tunneling through pyridine-terminated compounds is usually attributed 

to LUMO-based transport [45, 54, 55], the methyl thioether contact has been shown to 

permit both HOMO- and LUMO-based conductance mechanisms, depending on the 

nature of the molecular backbone [56]. Here it appears that the similar conductance 

values obtained from both series of compounds reflects the similar nature, energy and 

composition of the LUMOs, which provide a conductance channel between the 

electrodes. This contrasts with the recently-reported single-molecule conductance 

studies of trans-Ru(C≡CC5H4N)(LL)2 (LL = dppe, dmpe, {P(OMe)3}2) with the shorter 

alkynyl pyridine ligands in which the ligand π* levels are likely to be much higher in 

energy than the extended alkynyl-based ligands in compounds 1-M and 2-M, and a 

HOMO-mediated conductance channel is proposed [27]. 
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Figure 7.5: The relaxed geometries of molecular junctions of 1-Ru, 1-Pt, 2-Ru and 2-

Pt. 

 

The optimized junction geometries conform well to a description of the pyridine 

contacted compounds 1-Ru and 1-Pt forming point contacts between the pyridine 

nitrogen atom and the under-coordinated gold atoms of the gold electrodes.  
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As expected, figure 7.5 shows that the methyl thioether contacted compounds 2-Ru and 

2- Pt are not oriented normal to the idealized, flat electrode surface within the molecular 

junction. Rather, they are tilted within molecular junctions to accommodate the 

directionality of the lone pairs of electrons on the sulfur atoms that bind to the gold 

electrodes [50, 49]. The calculated molecular lengths and experimental break-off 

distances are consistent with these interpretations (table 7.1).  

 

7.4. Summary 

In summary, the single molecule conductance of two pairs of trans-bis(alkynyl) 

organometallic complexes based on Ru(dppe)2 and Pt(PPh3)2 fragments and methyl 

thioether and pyridyl surface contacting groups have been studied theoretically and 

experimentally. Perhaps surprisingly, the nature of the metal moiety is a less significant 

point of chemical control over the electrical properties of the junction, with Pt(PPh3)2 

based complexes being essentially as conductive (or as resistive) as the analogous 

Ru(dppe)2 derivatives. The conductance of these compounds is more dependent on the 

position of the LUMO resonance with respect to the Fermi level of the junction, and 

largely influenced by the electrode-molecule contact. The energy and distribution of the 

molecular LUMOs are qualitatively similar in all of the compounds studied here and 

can be well described as the ethynylarylene ligand π* orbitals. Given the rather straight-

forward synthetic chemistry associated with the preparation of long chain 

ethynylarylene ligands, this work opens new avenues for the design of metal-complex 

based molecular wires, including those based on readily- available trans-bis(alkynyl) 

Pt(II) complexes.  
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Conclusions and Future Works 

 

 
8.1. Conclusions 

 

 
The electronic properties of various molecules (organic and organometallic molecules) 

have been studied in this thesis using density functional theory and the Green’s function 

formalism which are described in chapters 2 and 3 respectively. 

Chapter 4 documented studies of the charge transport of pyridyl terminated OPE 

derivatives using the MCBJ and STM-BJ techniques, DFT-based theory and analytic 

Green’s functions, and investigated the interplay between QI effects associated with 

central and terminal rings in molecules of the type X-Y-X. The results demonstrated 

that the contribution to the conductance from the central ring is independent of the para 

or meta nature of the anchor groups and the combined conductances satisfy the quantum 

circuit rule Gppp/Gpmp = Gmpm/Gmmm. For the simpler case of a two-ring molecule, the 

circuit rule 𝐺𝑝𝑝𝐺𝑚𝑚 = 𝐺𝑝𝑚
2  is satisfied (see figure 4.14). It should be noted that the 

circuit rule does not imply that the conductance GXYX is a product of three measureable 

conductances associated with rings X, Y and X. Indeed the latter property does not hold 
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for a single molecule. On the other hand, provided sample to sample fluctuations lead 

to a broad distribution of phases within an ensemble of measurements, a product rule 

for ensemble averages of conductances can arise. The qualitative relationship between 

the conductances agrees well with the simple QI picture of molecular conduction. It has 

been reported that destructive QI exists in benzene with the meta connectivity and is 

responsible for the observed reduction of conductance, whereas for para and ortho 

connectivities, constructive QI should be observed. The transmission coefficient 

calculations through junctions where the metal-ring connection is artificially blocked 

(figure 4.11) show that the artificially coupled pyridyl ring exhibits similar behaviour 

to the benzene ring, with destructive QI in the case of the meta coupling significantly 

reducing the conductance compared with para and ortho connectivities. The dashed 

curves in the bottom panel in figure 4.11 clearly demonstrate that when the conduction 

is through only the nitrogen atoms, the conductance of the meta isomer is much lower 

than in the para and ortho isomers. More realistically, however, in the presence of metal-

ring overlap, the effect of varying the positions of the nitrogens in the anchors becomes 

much weaker, and as demonstrated by figure 4.10, the major changes in the molecular 

conductance are caused by the variations in the connectivity of the central ring. The 

dominant influence of the central ring is accounted for by the fact that the central ring 

is not in direct contact with electrodes and therefore no parallel conductance paths are 

present, which could bypass the ethynylene connections to the anchors.  

In a sub nanometre scale molecular circuit, as in standard complementary metal-oxide-

semiconductor (CMOS) circuitry, electrical insulation is of crucial importance. 

Destructive interference in a two-terminal device may not be desirable, because of the 

lower conductance. However, for a three-terminal device minimizing the conductance 
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of the third terminal is highly desirable, because the third (gate) electrode should be 

placed as close to the molecule as possible, but at the same time, there should be no 

leakage current between the molecule and gate. One way of achieving this may be to 

use an anchor group with built-in destructive interference. Therefore, destructive QI 

may be a vital ingredient in the design of future three-terminal molecular devices and 

more complicated networks of interference-controlled molecular units. 

Chapter 5 explored and studied the electronic properties of oligoyne-based molecular 

wires in three different mediums, theoretically and experimentally. It has been 

demonstrated that the changing of the solvent can lead to changes in both the 

conductance and the attenuation factor of oligoyne molecular bridges. DFT 

computations shown that both the molecular junction conductance and the decay 

constant depend in a very sensitive manner on the position of the contact Fermi energies 

within the HOMO – LUMO gap. In addition, it has been shown that the interactions 

between the solvent molecules and the oligoyne-bridges affected the structural features 

of these molecules, since all bridges have been bended, and that leads to different 

molecular lengths. By way of an example, the molecular length of 3 in MES-solvent is 

0.993 nm, while in TCB and PC are 0.995 and 1.007 nm respectively. 

Furthermore, it has been demonstrated that the structures with TCB and PC solvation 

exhibit slightly stronger Au – TMS contact binding than for mesitylene solvation (-0.41 

eV for the structures with MES and -0.44 eV for the structures with TCB and PC). 

Finally, these results shown that the solvent environment is an important variable to 

consider in interpreting conductance measurements and that the environment can give 

rise to dramatic changes in electronic properties of this kind of molecules.  
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Chapter 6 presented theoretical and experimental studies of electronic properties of the 

bis(terpyridyl) complexes. The single-molecule conductance of bis(terpyridyl) 

complexes [2-M](X)2 and [3-M](X)2 display trends that are more closely associated 

with the binding energy and ligand structure than the nature of the metal ion.  

The calculated conductance as a function of the Fermi energy for the complex series 

within three different molecular junctions Type I, II and III with Θ = 110º illustrated 

that for both molecular contacts, it is clear the conductance of the structures with the 

Type III configurations are the highest. This correlates with their more favourable 

binding energies. The limited role of the metal ion can be traced in part to the LUMO-

based conduction mechanisms that arise from the use of trimethylsilylethynyl and, in 

the geometries adopted here, thiomethyl binding groups. The optimised structures of 

the molecular junctions and considerations of the calculated conductance profiles 

indicate that the most conductive trimethylsilylethynyl contact to the gold electrodes is 

best described in terms of physisorption at defect sites, explaining the simple 

conductance profiles observed for compounds contacted through this group. The 

thiomethyl moiety contacts the gold electrodes in a more chemisorbed fashion, again at 

defect sites on the gold electrodes in the most conductive junctions. The conductances 

of [2-M](X)2 are found to be lower than those of [3-M](X)2, which is consistent with 

single phenylene and triple-bond spacers acting as tunnelling barriers. 

Chapter 7, probed the single molecule conductance of two pairs of trans-bis(alkynyl) 

organometallic complexes based on Ru(dppe)2 and Pt(PPh3)2 fragments and methyl 

thioether and pyridyl surface contacting groups, theoretically and experimentally. 

Perhaps surprisingly, the nature of the metal moiety is a less significant point of 

chemical control over the electrical properties of the junction, with Pt(PPh3)2 based 
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complexes being essentially as conductive (or as resistive) as the analogous Ru(dppe)2 

derivatives. The conductance of these compounds is more dependent on the position of 

the LUMO resonance with respect to the Fermi level of the junction, and largely 

influenced by the electrode-molecule contact. The energy and distribution of the 

molecular LUMOs are qualitatively similar in all of the compounds studied here and 

can be well described as the ethynylarylene ligand π* orbitals. Given the rather straight-

forward synthetic chemistry associated with the preparation of long chain 

ethynylarylene ligands, this work opens new avenues for the design of metal-complex 

based molecular wires, including those based on readily- available trans-bis(alkynyl) 

Pt(II) complexes. 
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8.2. Future Works 

In this thesis I have concentrated on the electrical conductance of molecular wires 

attached to gold electrodes. For the future, one can envisage extending this work in a 

number of directions. First it would be interesting to examine how results change when 

the gold electrodes are replaced by alternative metals such as platinum, palladium [1, 

2] or iron [3] or combinations of electrode materials [4] . This is particularly important 

for the technological development of molecular electronics, because gold is not 

compatible with CMOS technology. Secondly, it would be of interest to extend my 

study to other transport properties, including thermopower [5 – 8], for which further 

studies of nanoscale and molecular-scale phonon transport will also be needed [9, 10]. 

Finally, during the past few years, graphene has emerged as a new electrode material 

for molecular electronics [11, 12 ] and it is therefore of interest to develop new anchor 

groups for binding to graphene [13], which preserve coherent electron transport across 

the molecule-graphene interface . 
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