Figures:

Figure 1 Neptunium extraction flowsheet being simulated (primary extract-scrub section of an advanced PUREX process)^[11]

Figure 2 Evaluation of various nitrous acid distribution coefficient models

Figure 3 Single-stage test flowsheet^[11]

Figure 4 Simulation of single-stage experiments with new developed redox kinetics

Figure 5 Deviations of simulations to experiments with variable neptunium redox kinetics

Figure 6 Deviations of simulations to experiments with and without disproportionation reactions

Figure 7 Calculated concentrations of neptunium species present in aqueous and organic phases,

based on simulation of single-stage experiment 12 in ref. [11]

Figure 8 Deviations of simulations to experiments with and without radiolysis

Figure 9 Flowsheet simulation results using various descriptions of Np(V) oxidation kinetics

Figure 10 Aqueous HNO₂ profiles with different HNO₂ distribution coefficient models compared to experimental results

Figure 11 Organic HNO₂ profiles with different HNO₂ distribution coefficient models

Figure 12 Simulated neptunium aqueous profiles with different HNO₂ distribution coefficient models

Figure 13 Simulated neptunium organic profiles with different HNO₂ distribution coefficient models

Figure 14 Radiation output power in hot test simulation results

Figure 15 Hot test simulation results, (a) nitrous acid profile and (b) neptunium profile

Improvements of Np Extraction Simulation

Figure 1 Neptunium extraction flowsheet being simulated (primary extract-scrub section of an advanced PUREX process)^[11]

Figure 2 Evaluation of various nitrous acid distribution coefficient models

CC: centrifugal contactor; SP: sample analysis point

Figure 3 Single-stage test flowsheet^[11]

(a) variable HNO₃ concentration at 20°C, 10 mmol/L HNO₂; (b) variable temperature with 5 mol/L HNO₃, 10 mmol/L HNO₂; (c) variable HNO₂ concentration at 20°C, 5 mol/L HNO₃; (d) variable HNO₂ concentration at

50°C, 5 mol/L HNO₃

Figure 4 Simulation of single-stage experiments with new developed redox kinetics

Figure 5 Deviations of simulations to experiments with variable neptunium redox kinetics

Figure 6 Deviations of simulations to experiments with and without disproportionation reactions

Improvements of Np Extraction Simulation

Figure 7 Calculated concentrations of neptunium species present in aqueous and organic phases, based on simulation of single-stage experiment 12 in ref. [11]

Figure 8 Deviations of simulations to experiments with and without radiolysis

Figure 9 Flowsheet simulation results using various descriptions of Np(V) oxidation kinetics

Figure 10 Aqueous HNO₂ profiles with different HNO₂ distribution coefficient models compared to experimental results

Figure 11 Organic HNO₂ profiles with different HNO₂ distribution coefficient models

Figure 12 Simulated neptunium aqueous profiles with different HNO₂ distribution coefficient models

Figure 13 Simulated neptunium organic profiles with different HNO₂ distribution coefficient models

Figure 14 Radiation output power in hot test simulation results

(b)

Figure 15 Hot test simulation results, (a) nitrous acid profile and (b) neptunium profile