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ABSTRACT  9 

Lake Malawi is the third largest lake in Africa and plays an important role in water 10 

supply, hydropower generation, agriculture and fisheries in the region. Lake level 11 

observations started in the 1890s and anecdotal evidence of variations dates back to the 12 

early 1800s. A chronology of lake level and outflow variations is presented together 13 

with updated estimates for the net inflow to the lake. The inflow series and selected 14 

rainfall records were also analysed using an Unobserved Component approach and, 15 

although there was little evidence of long-term trends, there was some indication of 16 

increasing inter-annual variability in recent decades. A weak quasi-periodic behaviour 17 

was also noted with a period of approximately 4-8 years. The results provide useful 18 

insights into the severity of drought and flood events in the region since the 1890s and 19 

the potential for seasonal forecasting of lake levels and outflows.  20 
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INTRODUCTION 24 

Lake Malawi – with a mean surface area of approximately 28,760 km
2
 - is the third 25 

largest lake in Africa and occupies approximately 20% of the land area of Malawi. The 26 

lake is used for water supply, fisheries and navigation and is a major tourist attraction. 27 

The river Shire, which is the sole outflow from the lake, supports extensive areas of 28 

irrigation in the Lower Shire valley together with the water supply to Malawi’s second 29 

largest city, Blantyre, as well as being a major tributary of the Zambezi. The 30 

hydropower schemes in the middle reaches of the Shire supply more than 90% of the 31 

national electricity output.  32 

There have been several studies of the water balance of the lake and much of the 33 

early work was linked to investigations of the potential for water supply, irrigation and 34 

hydropower. Drayton (1984) provides a useful summary of historical developments up 35 

to the 1980s which included landmark studies by Cochrane (1956), Pike (1964) and 36 

WMO (1976). The latter study was subsequently updated and extended in the early 37 

1980s (WMO 1983) and subsequent research and operational studies include those by 38 

Neuland (1984), Calder et al. (1994), Spigel and Coulter (1996), Shela (2000), MoIWD 39 

(2001), Jury and Gwazantini (2002), Kumambala and Ervine (2010) and Lyons et al. 40 

(2011).  41 

The methods used have varied widely in terms of record lengths, simulation intervals 42 

(daily, monthly, annual), and approaches to infilling and extending rainfall and tributary 43 

flow records and estimating lake evaporation. Typically, the tributary inflow terms are 44 

estimated from records for key flow gauging stations and where necessary scaled up to 45 

the full catchment area using regression relationships. Similarly, lake rainfall estimates 46 

are normally derived from an area average of raingauge values from around the 47 
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lakeshore and the lake evaporation by averaging Penman estimates of open water 48 

evaporation from lakeshore meteorological stations. Some studies have included 49 

additional terms in the water balance such as a groundwater component (e.g. WMO, 50 

1983, Lyons et al., 2011) or investigated individual components such as the lake rainfall 51 

and evaporation in more detail (e.g. Nicholson and Yin 2002). Several have also used 52 

rainfall-runoff models to explore the sensitivity of lake levels and outflows to factors 53 

such as land-use changes (Calder et al.,1994) and climate variations (e.g. WMO,1983, 54 

Kumambala, 2009).  55 

An important finding throughout has been the extreme sensitivity of lake levels and 56 

outflows to changes in the net inflow or net basin supply to the lake, which is often 57 

called the ‘free-water’ in studies of Lake Malawi. On account of its length, this record 58 

also provides useful insights into climate variability in the region, particularly in the 59 

early 1900s before raingauge networks were first established (e.g. WMO 1983, MIWD 60 

2001).  Here, we use a stochastic signal extraction technique (Young et al. 1999) to 61 

explore the trends and interannual variations in this record in more detail. For 62 

comparison, the same technique is applied to indicative updates to previous estimates 63 

for the lake rainfall (WMO 1983). The findings are also compared with the results from 64 

several other studies regarding the variability in lake levels and rainfall in Malawi and 65 

other parts of southern and eastern Africa. 66 

67 
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THE STUDY AREA 68 

The lake catchment (Fig. 1) has a land-surface area of nearly 100,000 km
2
 of which 69 

approximately 67% is in Malawi, 27% in Tanzania and 6% in Mozambique. The main 70 

inflows arise from the rivers Bua, South Rukuru, Dwangwa and Linthipe in Malawi, the 71 

Ruhuhu and Kiwira in Tanzania, and the Songwe, which forms the border between 72 

Malawi and Tanzania. These mainly originate in the highland areas surrounding the lake 73 

which reach elevations of 2500-3000m before dropping down the rift valley escarpment 74 

to the lakeshore, which is typically at an elevation of about 500m. In the Malawi section 75 

of the catchment there are also extensive areas of plateau above the escarpment, which 76 

are typically at an elevation of 1000-1500m. 77 

In Malawi the predominant climate-type is temperate (dry winters, hot summers), 78 

with regions of arid savannah and arid steppe in the south (Peel et al. 2007). Variations 79 

in both rainfall and river flows are linked to the passage of the Inter-Tropical 80 

Convergence Zone (ITCZ) and intrusions of Atlantic air via the Congo basin. 81 

Additional influences sometimes include the remnants from tropical cyclones in the 82 

Indian Ocean and local convectively driven rainfall associated with the annual arrival of 83 

the ITCZ and the onset of the southeasterly trade winds as it departs towards the north. 84 

These various influences result in a main rainfall season from November to April or 85 

May over much of the lake catchment. Approximately 95% of the annual rainfall 86 

typically falls in that period although there is some evidence of a transition to a mid-87 

latitude rainfall regime during February at many locations, resulting in a temporary 88 

reduction in rainfall intensity during that month (Nicholson et al. 2014). The lake is 89 

large enough to have a local influence on the diurnal atmospheric circulation and 90 

differential heating of the water and land surfaces often results in onshore winds in the 91 
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afternoon and offshore winds in the morning, with lake rainfall tending to occur in the 92 

late night and/or early morning (e.g. WMO 1983, Nicholson and Yin 2002). 93 

Due to topographic influences, the annual rainfall is often greater at the lakeshore 94 

and escarpment (1500-2000mm typically) than over the higher elevation plateau areas 95 

(700-1000mm typically) and can exceed 3000mm near the northwestern part of the lake 96 

due to wind funnelling effects in lakeside valleys (UNDP 1986). Further north and to 97 

the east, in the Tanzanian and Mozambique portions of the catchment, the annual 98 

rainfall is typically in the range 1000-2500mm. The lakeshore and/or escarpment, 99 

plateau areas, highlands and lower Shire rift valley are therefore often considered as 100 

distinct climatic zones in Malawi, although the boundaries and names used differ 101 

between individual studies (e.g. Fry et al. 2004, Nicholson et al. 2014).  102 

The tributary inflows to Lake Malawi follow a similar seasonal pattern to the rainfall, 103 

typically reaching a peak in February or March and then reducing to low or zero values 104 

by the end of the dry season. Several studies have shown that due to these distinct wet 105 

and dry seasons – with little over-year storage - there is a strong correlation between 106 

rainfall and runoff on an annual basis (e.g. WMO, 1983, Drayton, 1984); also that, due 107 

both to the higher rainfall and topographic influences, the contribution to inflows from 108 

the smaller Tanzanian portion of the catchment exceeds that from areas in Malawi and 109 

is typically slightly more than half of the total tributary inflow to the lake (WMO, 1983, 110 

UNDP, 1986). 111 

Lake levels have been recorded since the 1890s and some notable events since then 112 

(Table 2) include the near cessation of outflows for more than twenty years up to 1935, 113 

unusually high levels and outflows in the late 1970s and in 1980 which caused flooding 114 
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of lakeshore communities and areas immediately downstream, and unusually low levels 115 

and outflows associated with a widespread regional drought in the early 1990s. Since 116 

1965, the lake outflows have been controlled at a barrage – the Kamuzu Barrage – 117 

which is situated near Liwonde about 83km downstream from the lake outlet. Some 118 

estimates suggest that by the 1990s the cumulative influence of the temporary bunds 119 

built during construction of the barrage and then during subsequent operations led to 120 

lake levels being up to 0.4-0.8m higher than they would have been otherwise (Drayton, 121 

1984, Shela, 2000). 122 

METHODOLOGY 123 

Lake water balance 124 

Fig. 1 shows the main catchment area for Lake Malawi. For a given time interval the 125 

water balance for the lake can be expressed as: 126 

ΔS = P – E + Qin + QGW – Qout     (1) 127 

where ΔS is the change in storage, P is the lake rainfall, E the lake evaporation, Qin and 128 

QGW  are the catchment and groundwater inflows, and Qout is the lake outflow to the 129 

Shire. Here, all flow terms are expressed in terms of a depth per unit lake area and a 130 

constant area is assumed. This assumption is an approximation but a reasonable one 131 

since based on level-area estimates presented in Lyons et al. (2011) at current levels the 132 

area varies by less than 1% per metre rise or fall.   133 

Eq. (1) can be rewritten in the form: 134 

N = ΔS + Qout = P – E + Qin + QGW     (2) 135 
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where N is the net inflow, net basin supply or free-water. This expresses the balance 136 

between two terms of which the first is based on levels and outflows whilst the second 137 

is based on quantities which are more difficult to estimate or observe. For example 138 

some observational challenges include the small number of long-term meteorological 139 

stations around the lake, a lack of groundwater observations, the large number of lake 140 

tributaries – some of which are ungauged - and the large spatial variations in rainfall 141 

around the lake catchment.  142 

Table 1 illustrates the range of mean values suggested for the terms in the right hand 143 

side of Eq. (1).  As might be expected, these types of study usually also show that 144 

estimates for the lake evaporation vary least both seasonally and from year to year. For 145 

example, based on the values presented in WMO (1983), the annual lake evaporation 146 

typically varies over a range within about 4-5% of the mean value, but the 147 

corresponding value for lake rainfall is about 24-25%; likewise the coefficients of 148 

variation for annual values are about 0.02 and 0.14 respectively. However, as can be 149 

seen from the table, the mean values across these studies typically span a wide range, 150 

although this in part reflects the different averaging periods and datasets used. 151 

Derivation of the net inflows 152 

Given these difficulties, for this study the net inflow was estimated from the lake level 153 

and outflow terms in the water balance. These calculations were performed using 154 

published data up to the 1980s (WMO 1983, UNDP 1986) and more recent records 155 

provided by the Ministry of Irrigation and Water Development (MIWD) in Malawi. 156 

Until 1915, levels were only documented twice per year and for a single gauge, with 157 

monthly values obtained by interpolation; however since then measurements have been 158 
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made daily at three gauges (Chilumba, Monkey Bay, Nkhata Bay) and an average value 159 

computed, representing the mean lake level (Shela, 2000). 160 

Outflows from the lake are usually recorded at the Liwonde gauge which is situated 161 

close to the Kamuzu Barrage. This river gauge – established in 1948 - was the first in 162 

Malawi and the observations are important both for operation of the barrage and for 163 

management of the hydropower and irrigation schemes further downstream. The flow 164 

record is generally considered to be of good quality and the few periods of missing data 165 

were infilled by linear interpolation in the present study. The gauge record is also a 166 

good surrogate for the outflow from the lake since this reach of the Shire is very flat, 167 

only dropping by 1-2m between the lake outlet and the barrage and with only a few 168 

minor tributary inflows, although possibly with some losses due to seepage and 169 

evaporation in Lake Malombe which lies between the lake outlet and Liwonde.  An 170 

investigation of these influences (WMO 1983) suggested that on an annual basis they 171 

tend to cancel out and that even the largest seasonal differences have a negligible 172 

influence on flows at Liwonde. 173 

For the period before the Liwonde gauge was established, an alternative approach 174 

needs to be used to estimate the lake outflows. Regarding the cessation of flows, some 175 

studies (e.g. WMO 1983) have suggested that outflows first stopped in 1915 but – in 176 

perhaps the most detailed review to date of historical accounts - MIWD (2001) suggest 177 

that this began in 1908. The blockage was possibly caused by sediment washed in 178 

during floods from tributaries downstream from the lake outlet and theories vary 179 

regarding its nature; for example ranging from a distinct sandbar formed at the lake 180 

outlet to more extensive sediment deposition in the river channel further downstream. 181 
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Lake levels then rose by 3-4m over the following 2-3 decades until outflows resumed in 182 

1935, with the blockage cleared by 1938.  183 

This time sequence of events has also been adopted here, re-computing the outflows 184 

in the periods 1899-1908 and 1935-1948 using a weir formula based on the channel bed 185 

(or sill) levels assumed by MIWD (2001). The outflows were assumed to be zero in the 186 

intervening years and the observed values were used from 1948 until 2010, which was 187 

the latest year for which records were available in this study. Comparisons suggested 188 

that, on an annual basis, the results were similar to those reported previously for 189 

1899/00 to 1989/99 in MIWD (2001) and from 1954/55 to 1979/80 in WMO (1983). 190 

Here the notation 1979/80 etc. refers to the Malawi hydrological year which extends 191 

from November to October. 192 

To help to assess the sensitivity of the results to these assumptions, for some of the 193 

analyses a second version of the record was used which omitted the period up to 1915 - 194 

when only two lake level readings were made per year - and from 1935 to 1947 when 195 

outflows were estimated from the weir formula. This record is called the partial net 196 

inflow series in the following text. It is also worth noting that, during the time that the 197 

blockage was present, there may have been some flood flows due to overtopping of the 198 

sandbar and/or outflows due to seepage through or beneath it; however these effects 199 

could not be quantified and are therefore an additional source of uncertainty in the 200 

analyses.  201 

Lake rainfall estimates 202 

Whilst the focus in this paper is on the long-term net inflow record, it was also 203 

considered useful to make some comparisons with previous estimates for the lake 204 
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rainfall. However, as noted earlier there are many challenges in deriving these values; in 205 

particular due to the sparse raingauge coverage in early years and the influence of the 206 

lake on local rainfall.  207 

Perhaps some of the most detailed studies to date are those reported by WMO 208 

(1983), which was one of the final outputs from more than a decade of 209 

hydrometeorological studies in Malawi. In that study, the following two long-term 210 

rainfall records were derived: 211 

 Lake rainfall - monthly values for the period November 1954 to October 1980 212 

derived on the basis of a weighted average of 17 raingauge records from around the 213 

lakeshore, including 4 stations in Tanzania and one on an island in the lake 214 

 Climate index series - annual values for the years 1920/21 to 1979/90 based on a 215 

weighted average of 10 long-term raingauge records which was derived to provide 216 

an indication of the long-term variability in catchment and lake rainfall 217 

Due to limitations on the raingauge data available before the 1950s, the index series was 218 

based only on records from Malawi and, of necessity, made use of records for several 219 

more distant gauges which were not used in the lake rainfall estimation procedure. 220 

Regarding the lake rainfall series, some limitations that were noted included the sparse 221 

nature of the raingauge network in the middle section of the lake due to lakeshore 222 

access difficulties, and the logistical challenges in obtaining rainfall data from islands in 223 

the lake. 224 

As part of the present study, the feasibility of extending these records using the same 225 

methodology was investigated based on raingauge records obtained from more recent 226 

studies (e.g. IFAD, 2001) and from the Department of Climate Change and 227 
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Meteorological Services in Malawi. However, this proved not to be possible; for 228 

example for the climate index series only five of the ten gauges used in the original 229 

study appeared to have more recent data and of those records were only available for 230 

two gauges before the 1950s: Nkhota Kota and Mzimba (Table 3).  231 

Instead alternative estimates were derived based on this smaller number of 232 

raingauges and the net inflow record itself. Table 4 summarises the approaches that 233 

were used which were as follows: 234 

 WMO 1983 climate index (present study) – monthly rainfall values estimated 235 

from the WMO (1983) annual series using a typical seasonal profile 236 

 Raingauge regression model – a multiple regression relationship between the 237 

WMO (1983) monthly lake rainfall and the records for the Nkhota Kota and 238 

Mzimba gauges 239 

 Net inflow regression model – a linear regression relationship between the net 240 

inflows and the WMO (1983) monthly lake rainfall record 241 

As part of this work double mass and time series comparisons were also made of the 242 

two raingauge records versus that for the only other gauge in the lake catchment with 243 

records dating from the 1920s, at Kasungu, and these checks showed no obvious major 244 

discrepancies.  245 

For the regression analyses a Dynamic Linear Regression technique was used (Young et 246 

al. 1999) which is closely linked to the stochastic techniques described in the following 247 

section. For the purpose of estimating annual rainfall values some minor infilling of 248 

monthly values was also performed based on records for nearby gauges, where 249 

available, or long-term mean values. 250 
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Based on these analyses the mean values for the individual series ranged from about 251 

1414 to 1573mm for the period in common (1954/55 to 1979/80).  When compared to 252 

the monthly lake rainfall series, the Nash-Sutcliffe efficiencies were about 0.90 and 0.86 253 

respectively for the raingauge and net inflow regression models and 0.86 for the WMO 254 

1983 climate index series. 255 

Investigations of trend and variability 256 

There are many approaches to estimating the temporal characteristics of hydrological 257 

records and some commonly used techniques include linear regression (with time), tests 258 

based on sign (e.g. the Mann-Kendall test), subtracting an assumed cyclical component, 259 

and comparisons of mean values for different averaging periods. Some typical 260 

challenges include the limitations of short record lengths, dealing with missing data 261 

values, and the identification of statistically significant behaviour. 262 

An approach which avoids many of these problems is to adopt methods based on the 263 

unobserved component signal extraction techniques developed for the analysis of non-264 

stationary observations. For the analyses of the net inflow and lake rainfall records 265 

derived in this study, the Dynamic Harmonic Regression technique (UC-DHR) of 266 

Young et al. (1999) was used and can be considered as an extension of the classical 267 

Fourier series approach which in addition allows for time-varying parameters. This 268 

provides a powerful and computationally efficient technique for data exploration with 269 

few prior assumptions required about the nature or magnitude of any trends or quasi-270 

periodic behaviour. The method has been used for trend identification, interpolation of 271 

missing data and forecasting for a wide range of environmental and economic 272 
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applications, including investigations of the impacts of land use change on runoff in the 273 

UK and Malaysia (Chappell et al. 2012).   274 

The methodology is described in detail in the papers cited so only key details are 275 

provided. In essence though the approach used is to assume a functional form for the 276 

time varying nature of a series involving estimating changing coefficients of a harmonic 277 

regressive model by optimal filtering/smoothing operations using a combination of 278 

Kalman Filter and a Fixed Interval Smoother (KF/FIS). A recursive formulation - 279 

essentially time stepping through the data in both directions – provides both a 280 

mathematically elegant and computationally efficient approach accommodating any 281 

missing data and outliers within the methodological framework. Measures of 282 

uncertainty of the estimation results are an inherent part of the stochastic nature of this 283 

model.  284 

In addition to correlation coefficients, additional more complicated performance 285 

measures known as information criteria are used to help identify optimum model 286 

metrics. Other important elements of the method include the assumed variance 287 

parameters of the stochastic model (Noise Variance Ratios in the KF/FIS formulation); 288 

these parameters define the time scale of the parametric variation.  289 

Regarding the model formulation, various forms are available and the version used 290 

for this study had the following form: 291 

yt = Tt + St + et      (3) 292 

where yt is the observed time series, Tt is a stochastic trend or low frequency 293 

component, St is a seasonal component, and et is an ‘irregular’ component, arising from 294 
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factors such as the observation error. This approach is sometimes referred to as spectral 295 

decomposition, as the signal is split into the following three components: 296 

 A very slow, low frequency trend component Tt 297 

 The specific periodicity or periodicities (seasonal, diurnal, cyclic – as required in 298 

the model, and their harmonics in St) 299 

 An unmodelled component et  covering the rest of the spectrum, interpreted as 300 

the model residual 301 

The seasonal component is represented by a combination of sine and cosine 302 

functions: 303 

St = ∑ {𝑁
𝑖=1 ai,t cost (ωit) + bi,t sin(ωit)}   (4) 304 

where ai,t and bi,t are stochastic time-varying amplitude parameters and ωi, i=1,2,..N are 305 

the fundamental and harmonic frequencies associated with the periodicity in the series, 306 

in this case on an annual or sub-annual basis. Other possibilities – not required here – 307 

include the options to specify a longer-term quasi-cyclical (extra-annual) component 308 

and/or a vector of external input (i.e. exogenous) variables. 309 

The extent, if any, to which each term in Eq. (3) is statistically significant is then 310 

assessed using confidence intervals computed as an inherent part of the estimation 311 

procedure, thus providing the vital model/data uncertainty information and allowing for 312 

assessment of the significance of any or all of the components of the model. The input 313 

data can include missing values if required and can be analysed for any desired time 314 

interval, including daily, monthly or annual values. 315 

 316 
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RESULTS 317 

Annual variations in net inflows 318 

Fig. 2 shows the estimated values for the annual net inflows using the full record from 319 

1899 to 2010, with the years with the greatest uncertainties in lake levels and outflows 320 

highlighted. Values are expressed as an equivalent depth over the lake surface assuming 321 

a mean surface area of 28760km
2
; as noted previously the change in area per metre rise 322 

or fall is thought to be small (less than 1%). Over this period, the estimated mean annual 323 

inflow value was approximately 0.3m but in some years dropped below zero, most 324 

probably when the losses exceeded the combined rainfall and runoff into the lake. Also, 325 

it can be seen that two of the key events in recent times – the low flows of the early 326 

1990s and the 1979/80 floods – were some of the most extreme in this record, with 327 

comparable dry periods only occurring in 1900/01 and 1948/49, and the high flow 328 

period unmatched.  329 

Table 3 summarises these events and a number of others in the history of Lake 330 

Malawi, based on the observational record and earlier traveller’s reports of variations in 331 

lake levels during the 19
th
 century (UNDP, 1986, Nicholson and Yin, 2001). 332 

Interestingly, there is evidence that lake levels were also exceptionally low in the early 333 

part of the 19
th

 century and Nicholson (1998) notes that a drought – defined as 334 

unusually low rainfall – prevailed for most of the period from the start of the century to 335 

the 1860s and was particularly intense in the 1820s and 1830s, affecting major lakes 336 

throughout Africa.  337 

More generally, the drought of the early 1990s was widespread in southern Africa 338 

and has been linked to El Niño Southern Oscillation (ENSO) events in the period 1991-339 
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1995 (e.g. Jury and Mwafulirwa, 2002). By contrast, the increase in levels in 1997/98 is 340 

thought to have been due to increased rainfall in the eastern catchments of Lake Malawi 341 

and in eastern Africa, which caused increases in lake levels as far north as Ethiopia and 342 

Sudan (Birkett et al., 1999). Again there may have been an El Niño influence since this 343 

tends to cause above normal rainfall in East Africa but droughts in southern Africa 344 

(Nicholson and Selato 2000). Indeed, studies based on reanalyses from atmospheric 345 

models have shown that this event was linked to both ENSO and the Indian Ocean 346 

dipole (e.g. Reason and Jagadheesha 2005). 347 

The years 1961 and 1962 also saw exceptional rainfall in East Africa with significant 348 

rises in the levels of lakes such as Lake Victoria; however, although there was also an 349 

increase in the net inflow series for Lake Malawi, this was significantly less than for the 350 

1979/80 event. During the years 2002 and 2005 there were also major droughts in 351 

Malawi (World Bank, 2009) but in terms of the net inflow do not appear particularly 352 

abnormal on an annual basis, although this may mask seasonal variations. It is also 353 

worth noting that, during the 2001/02 growing season, crop damage from short-lived 354 

heavy rainfall events may also have been a factor in the food shortages which occurred.   355 

Trends and variability in net inflows 356 

The long-term variations in flows are also of interest and a first step in applying Eq. (4) 357 

was to select the fundamental frequency and harmonic periods to use. Following 358 

inspection of the autoregressive spectrum, intervals of 1 year and 6, 4, 3 and 2.4 months 359 

were identified. The Nash-Sutcliffe efficiency of the resulting model was about 0.87 for 360 

the full series and 0.89 for the partial series and the corresponding values for the 361 

coefficient of determination were about 0.89 and 0.90. 362 
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From the annual time series of net inflows (Fig. 2) there is the visual impression of 363 

an increasing trend, although perhaps with a return towards average values since the 364 

unusually dry period in the 1990s. However, when using monthly values, for the full 365 

series the model (Eq. 3) suggested a sustained positive trend until the 1930s and then 366 

another increase in the period leading up to the unusually wet years of the late-1970s. 367 

This was then followed by a precipitous fall to the 1990s and then a subsequent increase 368 

in the following years. The partial record showed similar variations. However in neither 369 

case were the changes significant when compared with 95% confidence intervals. The 370 

estimates for the trend slope, shown for the full series in Fig. 3, illustrate an additional 371 

point, which is that the rate-of-change in the trend is rarely stable and sustained changes 372 

can occur over periods of years or even decades, reflecting the long periods of drought 373 

and above average rainfall which occur in this region. Again the partial series had a 374 

similar response.  375 

The model also provides estimates for the seasonal components in net inflows and 376 

Fig. 4 shows the estimated amplitudes for the three largest terms (Annual and 6 and 4 377 

months) based on the full net inflow series. As might be expected, given the distinct wet 378 

and dry seasons around the lake, the response is dominated by the annual component. 379 

For the parts of the record in which there is most confidence (i.e. based on the partial 380 

record) the model suggests that the calendar years with the largest annual amplitudes 381 

were 1950, 1963, 1979, 1989 and 2001 whilst the lowest values were in 1953, 1966, 382 

1967 and 1991.  383 

Although there is always a danger of seeing periodic behaviour when there is none, 384 

the annual amplitudes do sometimes seem to alternate between high and low periods, 385 

with increasing variability since the 1940s.  For example, considering the main turning 386 
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points in the record, the highest ‘peaks’ and ‘dips’ seem to be clustered around intervals 387 

of around 4-8 years, as shown later. In comparison, in a study of storage variations 388 

alone for Lake Malawi, Jury and Gwazantini (2002) found a biennial oscillation of 2-2.6 389 

years and a weaker oscillation of around 5.6 years. These periods are typical of those 390 

often reported for the El Niño Southern Oscillation although northern Malawi is thought 391 

to lie near a transition zone between the separate regions of influence in southern and 392 

eastern Africa mentioned earlier (e.g. Jury and Mwafulirwa 2002). There are also 393 

indications that cold (La Niña) events affect rainfall in southern Africa (e.g. Nicholson 394 

and Selato 2000) together with influences from the Indian Ocean (e.g. Saji et al. 1999, 395 

Nicholson 2007, Manatsa et al. 2011, Jury 2013) although the interactions between 396 

these various mechanisms remain an active area for research.  397 

Trends and variability in lake rainfall 398 

Similar techniques were used to analyse the long-term lake rainfall records. Again 399 

monthly values were considered and for convenience a logarithmic transformation was 400 

used in the analyses.  401 

Since combining the series might mask underlying signals, the records derived in the 402 

present study were initially analysed separately, with similar results for all three series. 403 

For the amplitudes, the annual component was again by far the largest and again there 404 

seemed to be little evidence of an increasing or decreasing trend in the periods of record 405 

either from the trend slope results or the trend values. As for the net inflows, the late 406 

1970s again appear as a high rainfall period and the early 1990s as a low rainfall period.  407 

The lack of any definite trend has also been found in other studies of rainfall in 408 

Malawi and surrounding regions using different datasets and techniques. For example, 409 
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for the period 1960-2001, Ngongondo et al. 2011 found a roughly equal split between 410 

an increasing or decreasing trend in annual rainfall for the 42 raingauge records 411 

considered in Malawi, although this was only statistically significant for three of those 412 

stations. Similarly, based on an analysis of records for 71 raingauges in Malawi, 413 

including locations outside the lake catchment, Nicholson et al. (2014) found no long-414 

term trends in the period 1900-2010, although noted that rainfall in the northern 415 

lakeshore and plateau areas was generally below normal in the 1990s and 2000s. Some 416 

differences were also noted in both the interannual variability and spatial coherence in 417 

records between the early and later parts of the rainfall season, which were attributed to 418 

long-term changes in atmospheric circulation.  419 

In contrast, for the southern highlands of Tanzania, including parts of the Lake 420 

Malawi catchment, in an analysis for 16 raingauge records from 1970-2010 Mbululo 421 

and Nyihirani (2012) found that the wettest years were 1977/78, 1978/79, 1984/85, 422 

1988/89 and 1997/98 whilst the driest years were 1976/77, 1987/88, 1990/00, 2002/03 423 

and 2005/06. It therefore appears that there are some differences in high and low rainfall 424 

years when compared to those for Malawi, perhaps indicating a different rainfall 425 

response in this part of the lake catchment; however there were insufficient long-term 426 

records to investigate this aspect further.  427 

As for the net inflow analyses, the annual amplitude values also provided some 428 

useful insights into quasi-cyclical behaviour, and a similar pattern was exhibited in all 429 

three series; in particular there appeared to be unusually low amplitudes (‘dips’) in 430 

hydrological years 1968, 1983, 1991 and 1990 in all three series and high values 431 

(‘peaks’) in 1956 and 1978.   432 
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This effect was less apparent in the individual rainfall records, although there were 433 

some periods with high or low values at two or more raingauges; for example lows were 434 

experienced in 1967 and 1968 and highs in 1979 and lows in 1999 for two of the three 435 

gauges. The irregular components of the rainfall series – as defined by Eq. (3) – also 436 

suggested a change in pattern towards more extreme values in more recent years for the 437 

Nkhota Khota and Kasungu gauges but the results were more mixed for the Mzimba 438 

gauge. So, although there might be some signs of increasing variability in recent 439 

decades, this did not appear to be a general result, based on this small sample of gauge 440 

records. 441 

To provide a more quantitative estimate for this cyclical behaviour, typical turning 442 

points were identified manually and the time intervals between them estimated. A 443 

similar exercise was also performed for the net inflow amplitude series (in Fig. 4) and 444 

Fig. 5 shows the results of these analyses, which cover about 100 turning points in total. 445 

The distributions for the net inflows and lake rainfall were generally similar and the 446 

ranges spanned were 2-6 and 2-7 years for the lake rainfall ‘peaks’ and ‘dips’ 447 

respectively and 2-10 and 3-8 years for the corresponding values for the net inflows. 448 

Although subjective, this again illustrates a possible linkage to phenomena occurring 449 

on timescales of a few years, such as the El Niño Southern Oscillation or Indian Ocean 450 

Dipole. Here, before performing this analysis, the individual lake rainfall series were 451 

combined into a single annual record which, although not a statistically homogenous 452 

series, still provides some information on the relative magnitudes of rainfall in different 453 

periods, and whether dry or wet years tend to occur in succession. This series was 454 

constructed as follows, again using the terminology defined in Table 4 (and shown here 455 

as period – series used): 456 
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 1899/00-1919/20 – Net inflow regression model (present study) 457 

 1920/21-1953/54  - WMO 1983 annual index (present study) 458 

 1954/55-1979/80 - WMO 1983 lake rainfall 459 

 1980/81-2008/09 – Rainfall regression model (present study) 460 

For exploring long-term variations it is also convenient to plot the annual values for this 461 

series (Fig 6). Here Figure 6(a) shows a comparison of this combined record with the 462 

net inflows, standardised in terms of the mean values and standard deviations, and 463 

Figure 6(b) shows the rainfall series itself, in terms of the percentage departures from 464 

the mean.  465 

In general terms Figure 6(a) shows a close correspondence between the standardised 466 

rainfall and net inflow series, although with some notable exceptions, such as in the late 467 

1920s and in 1983/84 and 1992/93. This helps to confirm the value of the net inflow as 468 

an indicator of regional rainfall and at a more basic level, adds confidence in the 469 

underlying records used to calculate these values. The differences that are observed 470 

could be a real-effect and/or related to errors in lake levels, outflows and/or individual 471 

raingauge records; for example, the net inflow also responds to variations in evaporation 472 

and catchment runoff which may vary in different ways to the lake rainfall in some 473 

years. In these comparisons values for the period 1899/00-1919/20 should of course be 474 

ignored since the rainfall estimates are based on the net inflows in those years (and were 475 

also ignored when considering the turning points summarised in Figs. 5(a) and 5(b)). 476 

From Figure 6(b), it is also interesting that some of the most notable events in the 477 

observational records for levels and outflows appear to have been caused by rainfall 478 

shortfalls or excesses that were not extreme in terms of magnitude, but did occur over a 479 

period of years. From the records available it therefore appears that major changes in 480 
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levels and outflows tend to occur from prolonged periods of above or below average 481 

rainfall, rather than single unusually dry or wet years. However there is always the 482 

potential for an extreme rainfall event in an individual year to lead to a rapid rise or fall 483 

in levels. 484 

DISCUSSION AND CONCLUSIONS 485 

These results illustrate a number of interesting features regarding the long-term 486 

variations in the net inflows to Lake Malawi and the rainfall in its catchment area. In 487 

particular, in the 20
th

 century, the most extreme periods in the observational record to 488 

2010 appear to have been the dry years of the early 1990s and the high inflows during 489 

the 1979/80 floods. Some other notably low inflow years were 1900/01 and 1948/49 490 

although it is of interest that the blockage at the lake outlet in the early 1900s seems to 491 

have resulted from a sustained period of low rainfall and inflows rather than from any 492 

one particular event.  493 

Based on the model outputs, overall there seems to have been a slight but statistically 494 

insignificant increasing trend in the net inflows since the start of observations. 495 

However, this has been swamped by periods of low and high inflows, which can last for 496 

a decade or more in some cases. Other complicating factors may also have played a role 497 

such as changes in land use and water abstractions on the tributaries flowing into the 498 

lake. These are difficult to quantify although it is worth noting the lake catchment area 499 

remains largely rural with few major irrigation or dam schemes to date, although with 500 

widespread clearance of natural vegetation for agricultural and other purposes (e.g. 501 

Chavula et al. 2011). There was also little discernible trend in the rainfall records 502 

although with some evidence of increasing variability in recent decades. 503 
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Regarding the seasonal component of net inflows, as expected the model suggested 504 

that this was dominated by the annual contribution. There was also some evidence that 505 

the highest amplitudes seem to recur at intervals of about 4-8 years. As noted earlier 506 

these are typical of the timescales which are often cited for the El Niño Southern 507 

Oscillation and other quasi-periodic variations in the Pacific and Indian Oceans. This 508 

raises the interesting possibility of improving seasonal forecasts for the net inflows and 509 

hence lake levels and outflows based on ocean and atmospheric conditions or indices 510 

linked to these phenomena, such as the Southern Oscillation Index (e.g. Ropelewski and 511 

Jones, 1987) and the Dipole Mode Index (e.g. Saji et al. 1999). For example, for the 512 

lake storage alone, Jury and Gwazantini (2002) found that a regression approach based 513 

on sea surface temperatures and pressures and upper zonal winds could provide 514 

potentially useful results, and Jury (2014) – in investigations of a naturalized outflow 515 

record - found evidence that it should be possible to anticipate lake level changes by 516 

about two months for some choices of global climate variables. 517 

Although this would be the most direct approach, another possibility would be to 518 

forecast net inflows from estimates for the individual terms in the water balance. This 519 

would entail using downscaled medium- to long-range meteorological forecasts for the 520 

region to estimate the lake rainfall combined with rainfall-runoff models for the 521 

tributary inflows and possibly an energy budget model for the lake evaporation. 522 

However some potential challenges in model calibration include major gaps in the flow 523 

observations for some sub-catchments and the large spatial variations in rainfall and 524 

runoff around the catchment. Previous studies have also suggested some enhancement 525 

of lake rainfall due to local variations in atmospheric circulation resulting from the 526 
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temperature differences between the lake surface and the surrounding land, as has been 527 

observed on some other large lakes, such as Lake Victoria in East Africa.  528 

In contrast, due to the large storage capacity of the lake, the net inflow represents an 529 

accumulation of these factors, helping to integrate or smooth out these effects. The 530 

results presented here also suggest that it varies in a similar way to the lake rainfall, 531 

providing another option for estimating that parameter in the first half of the 20
th

 532 

century, when few raingauge records were available. This then allows insights into the 533 

nature of variations in regional rainfall during the period in which lake outflows ceased, 534 

and for the previous decade. 535 

Regarding forecasting techniques, both statistical and dynamical seasonal forecasting 536 

approaches have been used operationally in southern Africa since the 1990s, particularly 537 

for commercial agriculture operations (e.g. Jury 2013). For Lake Malawi, given the 538 

many uncertainties in observations and models, a probabilistic approach would be 539 

desirable and it could also be useful to update the net inflow estimates using data 540 

assimilation techniques based on near real-time observations of lake levels and 541 

outflows. For shorter-range forecasts, there might also be advantages in using daily or 542 

10-day (decadal) values rather than monthly values, although the flow routing effects of 543 

the lake storage would become more apparent at these timescales. The application of 544 

this approach could then provide a more risk-based basis to decision-making for a 545 

number of applications, including water supply, hydropower, and irrigation operations. 546 
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Table 1 – Examples of estimates for the annual water balance of Lake Malawi 

Reference Period P (mm) E (mm) Qin (mm) QGW (mm) 

WMO (1976) in Drayton (1984) 1953-74 1350 1610 653 - 

WMO (1983) 1954-79 1414 2264 1000 380 

Neuland (1984) 1954-79 1374 1605 693 - 

Spigel and Coulter (1996) Not 
stated 

1350 1610 650 0 

Nicholson and Yin (2002) 1956-80 1350 ~1700-1900 - - 

Kumambala (2009) 1975-90 1272 1695 400 - 

Lyons et al. (2011) 1992-07 955 1665 - Negligible 

 

Table 2 – Some key events which have influenced the levels and outflows for Lake Malawi 

(WMO, 1983, Drayton, 1984, UNDP, 1986, Shela, 2000, MoIWD, 2001 and other sources) 

 

Period Description Period Description 

1800-
1809 

Levels were “…so low 
that local inhabitants 
traversed dry land where 
a deep lake now resides” 
and the Ruhuhu tributary 
“…was completely 
desiccated at some time 
early in the century”. 
Levels may have been 
about 465m at the start of 
the century (Nicholson 
and Yin  2001) 

1900-
1909 

Lake levels dropped with the outflow stopped by a 
sandbar in 1908 (MoIWD 2001) 

1810-
1819 

1910-
1919 

No outflow. Minimum level reached in 1915 after 
which values rose by nearly 1m in the remainder of 
the decade 

1820-
1829 

1920-
1929 

No outflow. Levels rose by nearly 2m over the 
decade 

1830-
1839 

1930-
1939 

Levels rose by about 2.5m from 1930 to a peak in 
1937. Outflows resumed from 1935 

1840-
1849 

By mid-century “Lake 
Malawi had risen about 
6m and maintained this 
level throughout the next 
few decades” (Nicholson 
and Yin 2001) 

1940-
1949 

Country-wide drought in 1948/49. The lake level was 
about 1.5m below the 1937 peak 

1850-
1859 

1950-
1959 

Temporary bund in place at the outlet from the lake 
from October 1956 to July 1957 

1860-
1869 

 1960-
1969 

Temporary bund placed across the Shire at Liwonde 
in 1965 during construction of the Kamuzu Barrage, 
which was also commissioned in 1965. Outflows 
regulated from that time 

1870-
1879 

Lake level high in 1873 
(~475m; Pike, in WMO 
1983), but falling in the 
remainder of the decade 

1970-
1979 

Peak annual levels of about 477m reached in the 
years 1978, 1979 and 1980 with inundation of 
lakeshore areas and high flows in the Shire 

1880-
1889 

Lake level high in 1882 
(~474m; Pike, in WMO 
1983) but falling in the 
remainder of decade 

1980-
1989 

 

1890-
1899 

Lake level about 470m in 
1890 but rising to the mid-
1890s then falling again 
(Pike, in WMO 1983)  

1990-
1999 

Levels declined by about 2m from 1989 to 1997 
affecting flows in the Shire and hydropower 
generation, in part through temporary changes to 
the barrage operating rules 

  2000-09 Unusual rainfall patterns in the 2001/02 crop season 
caused both drought and flooding. There was also a 
country-wide drought following rainfall deficits in the 
2004/05 wet season. However, lake levels varied 
within a range of about 1m in this decade 
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Table 3 – Summary of raingauge records used in the analyses  

Name Climate 
zone 

Approximate 
elevation 

(m) 

Period 
selected 

Approximate 
mean 
annual 

rainfall (mm) 

Description 

Kasungu 
Boma 

Plateau 1036 1925-2009 800 Moved to Kasungu airport in 
1983 

Mzimba Plateau 1350 1933-2009 870 Long established gauge in a 
plateau region to the west of 
Lake Malawi 

Nkhota 
Kota  

Lakeshore 500 1922-2009 1500 Long established gauge 
near the lakeshore in the 
northwest part of the lake  
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Table 4 – Summary of lake rainfall and rainfall index series discussed in the text 

Series Hydrological year 
(Nov-Oct) 

Type Basis of approach 

WMO 1983 lake 
rainfall 

1954/55-1979/80 Monthly 
lake 
rainfall 
estimates 

Weighted average of 17 raingauge records 
of which 12 were around the lakeshore in 
Malawi and 4 along the Tanzanian 
lakeshore, with the remaining gauge on 
Likoma Island in the Malawi part of the 
lake. In the weighting scheme used, the 
gauge records from Malawi accounted for 
about 80% of the total 

WMO 1983 
climate index 

1920/21-1979/80 Annual 
index 
series 

Weighted average of 10 raingauge records, 
all from Malawi, of which 4 were used in 
the above estimation procedure and the 
remainder were of necessity from locations 
more distant from the lake, but within or 
near the lake catchment. Approximately 
two-thirds of the contribution to total values 
was from the following 4 gauges: Nkhota 
Kota, Livingstonia, Karonga and Chinteche 

WMO 1983 
climate index 
(present study) 

1920/21-1979/80 Monthly 
index 
series 

The annual WMO (1983) values 
disaggregated to monthly values using a 
seasonal profile. The profile for the Nkhota 
Kota gauge was used since a comparison 
with the WMO 1983 lake rainfall series 
showed this to be the most representative 
record, when compared with those for the 
Mzimba and Kasungu gauges. To help with 
infilling missing periods in the lake rainfall, 
the profile for the period to 1953/54 was 
used   

Raingauge 
regression 
model (present 
study) 

1933/34-2008/09 Monthly 
index 
series  

A fixed parameter multiple regression 
relationship developed between the scaled 
logarithms of the Nkhota Kota and Mzimba 
records and the WMO 1983 lake rainfall 
record 

Net inflow 
regression 
model (present 
study) 

1899/00-2008/09 Monthly 
index 
series 

A fixed parameter linear regression 
relationship between the net inflow record 
and the logarithm of the WMO 1983 lake 
rainfall record, with any negative estimated 
rainfall values set to zero for the purpose of 
this approximate analysis; the net effect of 
this assumption was to change the mean 
lake rainfall estimate by about 2-3-% 
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Figure 1 – Location map 
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Figure 2 – Estimated annual net inflows for 1900-2008; the periods in which the lake 

outflows were estimated and/or levels only recorded twice per year are shown as a 

dotted line 
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Figure 3 – Estimated trend slopes and confidence intervals for the full monthly net 

inflow estimates from 1899-2009 
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Figure 4 – Estimated amplitudes of the annual, 6-monthly and 4-monthly components 

for the full monthly net inflows from 1899-2009  
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Figure 5 – Comparison of the frequencies of occurrence of peaks and dips in the annual 

amplitude series for the lake rainfall and net inflow series (a) lake rainfall (peaks) (b) 

lake rainfall (dips) (c) net inflow (peaks) (d) net inflow (dips) 
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(a) 

 

(b) 

Figure 6 (a) comparison of the standardised net inflow and combined lake rainfall series 

(b) annual percentage departures from the mean for the combined lake rainfall series 
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