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Abstract

This paper examines efficiency and growth patterns in the production of output and ideas in the US. We

employ frontier techniques and jointly estimate the production of output and the production of ideas. We

find states to be particularly efficient in the use of their inputs in the production of output process, whereas

there is more waste in the use of innovation resources to produce new knowledge. Our results do not

lend support to the common perception that richer (more innovative) states are more efficient than less

richer (less innovative) states for every dollar spent. Furthermore, an efficient in producing knowledge

state is not necessarily efficient in producing goods and services. Finally, a consistent finding is that input

accumulation is an important source of growth both for output and for the knowledge.
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1. Introduction

Investing in R&D activities to update technological capabilities is an important driver of economic

growth and a means for firms, regions, and countries, in general, to face domestic and international com-

petition. Many governments around the world have supported extensive R&D promotion activity of one

form or another, ranging from government-sponsored R&D consortia and national R&D laboratories to
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various fiscal incentives (e.g., subsidies, tax cuts).1 Innovation activities further affect the marginal pro-

ductivity of physical capital and labor and therefore shape the production of real output. It becomes even

more important for countries’ growth when a country is on or approaches the world technology frontier,

as there is less room for imitating (copying) already existing technologies.

Nonetheless, additional spending on R&D may be of little, if any, help in enhancing technological

progress, if innovation resources which are limited, are used inefficiently. Consequently, the efficient use

of resources is of utmost importance in the design of effective policies. In addition, the production of in-

novation (technological knowledge/ideas) also shapes the production of output (goods and services). For

instance, more-(less-) efficient production of knowledge could be associated with more-(less-) efficient pro-

duction of output as research-oriented firms allocate their resources into the research sector and production

of final goods sector (Romer, 1990).

This paper accounts for efficiency in the production of technological knowledge (ideas) as well as in

the production of output (goods and services) and apply stochastic frontier analysis; a flexible modeling

approach that avoids strong assumptions (e.g. efficient use of resources, etc) of the literature. This modeling

strategy adds structure to the unexplained residual and, under reasonable assumptions, disentangles the

residual into inefficiency and measurement error. To capture the "jointness in production" of output and

ideas - as decisions about knowledge and output productions are simultaneous and, therefore, statistical

errors are unlikely to be orthogonal - we estimate jointly the two production frontiers of output and ideas.

Our modeling approach further allows for the decomposition of output and knowledge change into

three components, namely technical change, efficiency change, and input change. We aim to assess their

individual role in the growth process and discuss important questions in the literature, among others,

whether there is any waste in the production of output and ideas, or whether efficient in production of

output regions are also efficient in producing ideas.

Consequently, the contribution of this paper is twofold: first, the joint estimation of a production and

knowledge function within the stochastic frontier framework, and second, the disentanglement of the

drivers of output and knowledge change.

Our paper relates and further adds to large strands of economic literature. For example, the empirical

1R&D subsidies have been an important tool to support technology policy in the OECD countries. On average, roughly one third
of funds for R&D are provided by the government (http://www.nsf.gov/statistics/seind14/). More specifically, public support for
university research grant programs has increased dramatically in the US since 2009, as a response to the financial crisis. For example,
the American Recovery and Reinvestment Act of 2009 (ARRA) has allocated 3 billion dollars to the National Science Foundation
(NSF), representing an increase of 50% over the NSF’s annual budget to 6 billion. Similarly, the ARRA has allocated 10 billion to the
National Institute of Health, representing an increase of more than 30% of the NIH’s annual budget to 30 Billion (Whalley and Hicks,
2014). The Israeli experience is also of interest because of its boomed high-tech sector and considerable government-financed R&D
activity (Trajtenberg, 2002).
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testing of growth models has typically examined output (or productivity) growth ignoring any waste in

the use of resources.2 A growing body of empirical literature has conducted efficiency analyses along lines

similar to that proposed in this paper, but used different modeling approaches. For instance, Färe et al.

(1994) and Henderson and Zelenyuk (2007) use data envelopment analysis, while Koop et al. (1999, 2000)

and Limam and Miller (2004) use stochastic frontier analysis to examine country-specific inefficiency in a

number of developed and developing countries.3 Furthermore, the standard approach in the economics

of innovation literature, so far, has been the use of a knowledge (innovation) production function, where

the innovative output, the counts of patents, is produced analogously to the production of real output,

employing existed knowledge and human capital allowing no waste in their use (Griliches, 1979, 1992; Jaffe,

1989; Feldman, 1994). A still small, body of empirical studies carries out innovation efficiency analyses. For

example, the studies of Rousseau and Rousseau (1997, 1998) are among the few attempts, which consider

efficiency in innovation process. These studies evaluate innovation performance of a number of, mainly

OECD, countries and rank them according to their efficiency scores. A number of subsequent studies,

perform similar analysis controlling also for socio-economic factors, institutions, and regulations (Wang,

2007; Wang and Huang, 2007; Cullmann et al., 2012; Franco et al., 2016).4 The literature, thus far, has

studied separately the production of output and ideas and the possible waste in the use of their inputs. In

this paper, we consider the interaction of the two processes and estimate a system of two stochastic frontier

productions.

We apply our modeling approach for the case of the US. The latter, has been one of the leading and

most prolific nations in innovation research, production of new ideas, which are patented, and also among

the most developed countries in terms of output production. Extant cross-country research on either pro-

duction or knowledge efficiency has considered the US as a homogeneous entity and has not focused on

the sub-national level (Koop et al., 1999; Henderson and Zelenyuk, 2007; Wang and Huang, 2007; Cull-

mann et al., 2012), there is no study hitherto that performs regional (state-level) analysis for the US. While

cross-country efficiency analyses have their relevance, the study of efficiency performance at regional level

offers valuable insights. Recently an emerging line of research performs efficiency analysis at regional level

with the vast majority to focus on innovation efficiency in Germany (Broekel and Schlump, 2009; Brenner

and Broekel, 2011; Fritsch and Slavtchevc, 2011; Broekel, 2012; Broekel et al., 2013) and China (Altvater-

2See, for instance, Jones (1995), Coe and Helpman (1995), Aghion and Howitt (1998), Griffith et al. (2004a), Zachariadis (2003),
Bottazzi and Peri (2003), Bottazzi and Peri (2007), and Mancusi (2008) among others.

3Various studies also investigate the role of efficiency in explaining growth differentials for a panel of manufacturing industries in
the OECD countries. See, for instance, Koop (2001) and Kneller and Stevens (2006).

4See Cruz-Cázaresa et al. (2013) for an updated review on innovation efficiency studies.
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Mackensen et al., 2005; Chen et al., 2009; Bai, 2013; Franco and Leoncini, 2013).5 The study of Thomas

et al. (2011) has been the only attempt so far to assess innovation efficiency for the US states for the period

2004-2008. The authors, however, measure innovation efficiency based on the ratio of R&D outputs (e.g.

patents granted or scientific publications) to R&D inputs (e.g. R&D expenditure) concluding that only 14

out of 51 states show modest improvements in innovation efficiency. As states belong in the same country

and, therefore, share common institutions, among other things, an interesting issue that arises is whether

small differences in states’ policies could have different growth implications. Our study consists the first

attempt that performs regional analysis and jointly estimates the production of output and knowledge for

the states in the US.

Although this paper examines efficiency and growth patterns across states in the US, from the outset of

this study, we would like to mention that we do not investigate the sources of states’ in(efficiency). The role

of institutions and regulations, the cooperation between universities and industry, state-policies related to

innovation (taxation, subsidies, noncompetes, etc) are important in shaping efficiency and growth patterns,

but a thorough investigation of their impact is beyond the scope of this study.

We, therefore, apply our modeling approach to fifty US states over the period 1993-2006, aiming at

answering two key questions: (i) Are the US states efficient in the use of their production inputs? (ii) What

drives output and knowledge change in the US?

We find that the states of the US are particularly efficient in the use of their inputs in the production

of output process and less efficient in the use of their innovation resources to produce new knowledge;

this finding does not come as a surprise as the production of new knowledge is subtler and riskier that the

production of goods and services. While the dispersion of output efficiency is smaller than that of knowl-

edge efficiency, the levels of states’ efficiency in both types of productions stays pretty much stable during

our sample period with a small inclination to decline. Furthermore, an efficient in producing knowledge

state is not necessarily efficient in producing goods and services. Finally, a consistent finding is that input

accumulation is an important source of growth both for output - a finding we share with related literature

(Koop et al., 1999, 2000) - and for the knowledge.

Overall, our efficiency estimates do not lend support to the common perception that wealthier, in terms

of state-level gross domestic product, (or more innovative, in terms of R&D spending) states are more

efficient than less wealthier (less innovative) states. In fact, it is often the case that being wealthier (or

innovative) still allows some room for efficiency improvement. A policy implication that can be derived is

5For an extensive exposition of related literature, see Appendix, section A1.
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that government efforts (e.g. state subsidization of R&D) should not only be directed toward states with

high R&D, but also to states with modest R&D, but which are capable to produce more output or ideas for

every dollar spent.

The remaining of the paper proceeds as follows. Section 2 introduces the methodology of the paper.

Section 2 presents the data. Section 3 discusses the results. Finally, Section 4 summarizes the findings and

concludes.

2. Methodology

In this section, we introduce a model of production, which accounts for inefficient use of inputs. The

outcome of the production can be either output (goods and services) or new innovations (ideas/technological

knowledge). In doing so, we employ stochastic frontier analysis and estimate the production of output and

production of ideas simultaneously, as a system, to account for possible interactions between them, mean-

while, controlling for input endogeneity. At a second stage, we decompose output (knowledge) change into

three components: input change, technical change and efficiency change to discuss important questions in

the growth literature.

2.1. Stochastic Frontier Model of Production

We model the performance of states’ production (of output or new knowledge) by means of a stochastic

frontier model.6 A frontier production function defines the maximum outcome attainable, given the current

production technology and available inputs.

If all states produce output (or knowledge), denoted by Y, on the boundary of a common production set

(see point A of Figure 1, below) that consists of an input vector with two arguments, capital stock, Capital,

and labor, Labor, then this process can be described as:

Y∗it = f (Capitalit, Laborit, t; β) exp{νit} (1)

where, Y∗it is the frontier (maximum) level of output (or knowledge) in state i at time t, f and parameter

vector β characterize the production technology, t is a time trend variable that captures neutral technical

change, and νit is an i.i.d. error term distributed as N(0, σ2
ν ), which reflects the stochastic character of the

frontier.

6Stochastic frontier analysis (SFA) was introduced by Aigner et al. (1977), Battese and Corra (1977), and Meeusen and van den
Broeck (1977).

5



Some states, however, may lack the ability to employ existing resources efficiently and, therefore, pro-

duce less than the frontier output (knowledge). As Figure 1 below shows, for a given technology and set of

inputs, there are states that produce at points (B) and (D); in other words their actual output (knowledge)

is less than the maximum (frontier) attainable output (knowledge).

Figure 1: A Stochastic Frontier Model

frontierA

B

D

output

input

If the difference between maximum attainable (frontier) and actual (observable) output (knowledge)

is represented by an exponential factor, exp{−uit}, then the actual output (knowledge), Yit, produced in

each state i at time t can be expressed as a function of the stochastic frontier output (knowledge), Yit =

Y∗it exp{−uit}, or equivalently:

Yit = f (Capitalit, Laborit, t; β) exp{νit} exp{−uit}, (2)

where, uit ≥ 0 is assumed to be i.i.d., with a half-normal distribution truncated at zero |N(0, σ2
u)| and

independent from the noise term, νit.7 Technical efficiency, exp{−uit}, is measured as the ratio of actual

over frontier output (knowledge) that is, exp{−uit} = Ẏit
Ẏit
∗ such that 0 ≤ exp{−uit} ≤ 1 and exp{−uit} = 1

implies full efficiency.8

Two aspects of equation (2) are important. First, the frontier, as it is defined, represents a set of maxi-

mum outputs (knowledge) for a range of input vectors. Therefore, at any moment in time, it is defined by

7We decompose the composite residual in equation (2), exp{εit} = exp{νit} exp{−uit}, and identify its components, exp{νit} and
exp{−uit}, by re-parameterizing λ in the maximum likelihood procedure, where λ (= σu/σv), the ratio of the standard deviation of
efficiency over the standard deviation of the noise term, and σ (= (σ2

u + σ2
v )

1/2) is the composite standard deviation. The frontier is
identified by the λ for which the log-likelihood is maximized (see Kumbhakar and Lovell, 2000).

8States may also be inefficient if they use an input mix at which marginal returns to inputs do not equalize with true factor market
prices. We do not consider this ’allocative’ efficiency, because input prices are not available for the disaggregated data we use in our
analysis. Therefore, in this paper, the term ’efficiency’ refers purely to technical efficiency.
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the observations from a number of states and not just from one. A state is inefficient, if it fails to absorb

the best-practice technology. Second, our modeling approach treats the frontier as stochastic through the

inclusion of the error term νit, which accommodates noise in the data and, therefore, allows for statistical

inference. In this respect, it fundamentally differs from other (non-parametric) frontier analyses (Wang,

2007; Cullmann et al., 2012) that do not allow for random shocks around the frontier.9

To operationalize equation (2), one needs to specify the functional form of the production frontier. We

employ a translog production function and, therefore, equation (2) can be expressed as:10

ln Yit = β0 + β1 ln Capitalit + β2 ln Laborit +
1
2 β11(ln Capitalit)2 + 1

2 β22(ln Laborit)
2

+ β12 ln Capitalit ln Laborit + γtt + δCapital t ln Capitalitt + δLabor t ln Laboritt + vit − uit,
(3)

where, t a time trend that captures neutral technical change.

The generic equation (2), and consequently its functional expression in (3), can describe the process

of either production of goods and services or the evolution of technological knowledge creation (ideas).

The production of goods and services is more straight-forwardly defined. In the R&D-based endogenous

growth models, the production of knowledge is a function of labor force in the research sector and of

the available stock of knowledge (Romer, 1990; Kortum, 1993; Grossman and Helpman, 1994; Abdih and

Joutz, 2006). As innovation outcome, we use patents, which is a good proxy for economically profitable

ideas (Bottazzi and Peri, 2003).11 Knowledge and innovation, however, are a much broader concept than

the count of patented blueprints. In spite of their obvious caveats - not all inventions are patented and

neither do they have the same economic impact (Griliches, 1990), equally not all patents are commercially

exploitable innovations, they do present the minimal standards of novelty, originality and potential eco-

nomic profits.12

Therefore, depending on how output and inputs are defined each time, equation (3) can describe either

the production of output or knowledge.

In this paper, we want to capture "jointness in production" of output and ideas in a statistical way. The

reason is that the statistical error terms are unlikely to be orthogonal as decisions about knowledge and

9For comprehensive reviews of frontier methodologies, see Kumbhakar and Lovell (2000) and Coelli et al. (2005).
10We prefer to use a translog production function, which is a general specification, as the Cobb-Douglas (C-D) and CES are nested

in it. Specification tests (not presented in the paper) rejected C-D or CES.
11The idea of using patents as a metric for innovation output to examine R&D productivity dates at least back to Hausman et al.

(1984). For a more extensive review of early work of using patent counts consult Hall et al. (2001).
12Bibliographic data could be also used as an alternative indicator of innovative output. In this paper, we restrict ourself only to

patents, which are a proxy of industrially applicable innovation, and leave alternative aspects of innovative output for future research.

7



goods productions, in most of firms, are simultaneous. Therefore, the two production functions, output

and knowledge, are jointly estimated.

Therefore, our model consists of the following two production functions:

The stochastic frontier production of output,

ln Outputit = αi + α1 ln Kit + α2 ln Nit +
1
2 α11(ln Kit)

2 + 1
2 α22(ln Nit)

2

+ α12 ln Kit ln Nit + γt,1t + δK t ln Kitt + δN t ln Nitt + vit,1 − uit,1,
(4)

where, Output is gross state product (GSP) in state i, K, state’s i level of gross capital stock, and N

number of workers in state i.

The stochastic frontier production of knowledge (ideas):

ln Patentsit = βi + β1 ln R&Dit + β2 ln Sit +
1
2 β11(ln R&Dit)

2 + 1
2 β22(ln Sit)

2

+ β12 ln R&Dit ln Sit + γt,2t + δR&D t ln R&Ditt + δS t ln Sitt + vit,2 − uit,2,
(5)

where, Patents is patents weighted by their citations in state i, R&D is state’s i level of business (indus-

try) R&D stock, and S number of scientists and engineers in state i.

Now, the inputs in the two production functions can be endogenous and bias our estimates. To account

for potential endogeneity of inputs in the production of output, we rely on the innovation effort of states

and, therefore, express capital stock (K) and number of workers (N) as functions of state level business

R&D stock. The literature has identified various channels through which R&D affects technology and,

therefore, the production of output. It has been argued that R&D embodies the factor productivity of

labor and capital (Gordon et al., 1987; Hall and Mairesse, 1995; Griliches, 1998; Hercowitz, 1998; Link and

Siegel, 2003, 2007) and, thereby, affects the technology parameters βk and βl .13 Consequently, R&D affects

the marginal productivities of the production function inputs, the state of art of technology as well as the

production efficiency.14

13There is a large literature on the ’dual’ role of R&D spending or ’old knowledge’ (captured by the R&D stock). According to
innovation-driven growth models (Grossman and Helpman, 1991; Aghion and Howitt, 1998), R&D has two roles or ’faces’. The first
role, stimulating innovation, has received the most attention in the existing empirical literature. The second role is in facilitating the
imitation of others’ discoveries. Rigorous econometric work assessing the statistical significance and quantitative importance of the
’two faces of R&D’ has been provided by (among others) Hall and Mairesse (1995), Griliches (1998), Griffith et al. (2004b), Cameron
et al. (2005), and Kneller and Stevens (2006) who find evidence that R&D is statistically and economically important in the catch up
process as well as in directly stimulating innovation.

14Physical and human capital could also be functions of other variables (e.g., past output), but the intention is to identify the
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Similarly, we instrument for the inputs in the knowledge production by relying on innovation efforts

of the academic institutions. The latter mounts to about 13% of total R&D for the US and the period

under examination, 1993-2006. Furthermore, up to 70% of the US academic R&D is sponsored by US

government agencies (National Science Board, 2012), rendering thus academic R&D an interesting policy

related instrument. Most importantly, studies have shown that academic research has significant positive

effects in regional industry R&D and economic growth (Jaffe, 1989; Acosta et al., 2009). Further, Adams

(1990) links academic knowledge with productivity growth and finds a significant positive contribution

and Mansfield (1991), in an influential survey, finds that approximately 10% of industry innovations could

not have happened without academic research.15 Therefore, we instrument for the inputs in the knowledge

production by relying on innovation efforts of the academic institutions.

Following the literature, we express the inputs in both production processes as follows:

lnKit = g1(totalR&Dit−1, t) + vit,3, lnNit = g2(totalR&Dit−1, t) + vit,4 (6)

and

R&Dit = h1 (academicR&Di,t−1, t) + vit,5, Sit = h2 (academicR&Di,t−1, t) + vit,6 (7)

where, totalR&D and academicR&D are total and academic R&D stocks in state i, respectively, functions

g and h are linear and include state-fixed effects, and vit,k where k=3, 4, 5, and 6 are error terms.

An important question of this paper is whether the productions of output and ideas have been effi-

cient in the US. We model technical efficiency, uit, in both production functions by following Cornwell

et al. (1990) (1990, CSS hereafter), who introduced a flexible (quadratic) function of time, with coefficients

varying over time and units, without invoking strong distributional assumptions about technical efficiency

or random noise. We, therefore, estimate time-varying efficiency levels for individual states as described

below:

underlying exogenous factors (output is endogenous) to keep our model ergonomic and efficient, avoiding meanwhile endogeneity
issues. Such factors could be culture, endowments, type of government, natural resources but are not examined in our study; as
we explore different regions within the same country these factors could vary, but the variations would be far more greater in case
we studies different countries. The literature has also identify a number of policy related factors (e.g., state tax policies, labor laws,
R&D tax credits, non-competition contracts (’non-competes’), which may affect the level of technology via their impact on R&D
stock and human capital, see (Mamuneas and Nadiri, 1996; Bloom et al., 2002; Wu, 2005; Palazzi, 2011; Saxenian, 1994; Marx et al.,
2009; Belenzon and Schankerman, 2013)). Therefore, we have also instrumented physical capital and human capital as function of
state marginal income tax, marginal corporate tax, R&D tax credits, and non-competes, but instrumentation results were weak and
volatile. Estimates of regressions have also shown that all these factors affect the R&D (stock).

15For a recent discussion on the contribution of academic R&D in the economy-wide innovation, see Berman (2012).

9



uit,Output = ai0 + ai1t + ai2t2 (8)

where, uit,Output is technical efficiency in the production of output, and

uit,Knowledge = bi0 + bi1t + bi2t2 (9)

where, uit,Knowledge is technical efficiency in the knowledge production function.

Both equations (8) and (9) are linear in the elements of aij and bij (j= 1, 2, 3) and allow for state-specific

and state effects. State-specific and time-varying estimates of efficiency can be recovered as follows:

ûit,Output = max
j

(
ũjt,Output

)
− ũit,Output (10)

ûit,Knowledge = max
j

(
ũjt,Knowledge

)
− ũit,Knowledge (11)

where, ũit,Output and ũit,Knowledge represent the fitted values from (8) and (9).16

The system of equations (4)-(7) is estimated by a Continuously-Updated-Estimation (CUE) version of

Generalized Method of Moments (GMM), where the instruments include lagged values of Kit, Nit, R&Dit,

Sit, academicR&Dit, and industryR&D as well as their squares and cross-products.17 A more technical

presentation of our estimation strategy is presented in the Appendix (section A2).

2.2. Decomposing Output and Knowledge Change

Next, we decompose output (knowledge) change into three components: input change, which repre-

sents movements along the frontier; technical change, which reflects shifts of the frontier; and efficiency

change, which captures movements towards (or away from) the frontier as states absorb and implement

best practice technologies and reduce (or increase) technical inefficiencies.

In doing so, we take logs and totally differentiate the deterministic part of equation (2) with respect to

time, which yields a convenient expression of output change:

16In CSS this is accomplished by considering a production function: yit = f (zit) + αit where, αit = θi0 + θi,1tit + θi,2t2
it. Suppose,

α̃it = θ̃i0 + θ̃i1tit + θ̃i2t2
it represents the fitted values. Then, technical inefficiency is estimated by ûit = maxj

(
α̃jt
)
− α̃it.

17We have experimented with various versions; lagged values of the inputs of the two productions, in (4) and (5) and present-
time values of instruments appear in (6) and (7), which gives rise to a triangular simultaneous equations model, but the results were
qualitatively and quantitatively very close to the results reported here.
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Ẏit
Yit

=
∂ ln fit

∂t
− ∂uit

∂t
+ ε

Capital
it

˙Capitalit
Capitalit

+ εLabor
it

˙Laborit
Laborit

(12)

where εCapital and εLabor denote the partial elasticity of stochastic frontier output with respect to the inputs,

capital and labor, respectively and dotted variables refer to time derivatives.

Equation (12) indicates that output (knowledge) growth can be broken down into three components.

The first term, ∂ ln fit
∂t , corresponds to technical change (TC), where ∂ ln fit

∂t > 0, represents an upward

shift of the frontier (technical progress). The second term corresponds to efficiency change (EC), − ∂uit
∂t ,

where − ∂uit
∂t > 0 represents a reduction of inefficiency. Finally, the last two terms capture the scale

changes (SC), εCapital ˙Capital
Capital and εLabor ˙Labor

Labor due to input accumulation in capital (βCapitalCapitalit) and labor

(βLaborLaborit), respectively.

Table 1 below summarizes the decomposition of output and knowledge changes.

Table 1: Decomposition of Output (Ideas) Change

Ẏit
Yit

= TCit + ECit + SCit

TCit = ∂ ln f (Capital,Labor,t;β)
∂t

ECit = ∂υit
∂t

SCit = (ε
Capital
it

˙Capitalit
Capitalit

+ εLabor
it

˙Laborit
Laborit

)

Decomposition of output (knowledge) changes into their various components, allows one to assess the

individual contribution of each of the components to the growth process of either output or knowledge.

2.3. Data

Our empirical analysis is based on a sample of 50 US states over the period 1993-2006, the longest period

for which data is available for the variables employed in our analysis.18 Data are retrieved from various

sources. Analytical description of the variables and sources can be found in the Appendix (see section A2.2:

Variables and Sources).

Table 2 below provides summary statistics of the variables in our analysis.

18The state of D.C. is excluded from the analysis as it produces almost zero patents.

11



Table 2: Descriptive Statistics

variables Observations Mean St. Dev. Min Max

Output 700 188.3523 223.614 14.71788 1538.082
K 700 196233.5 244716.1 13826.23 1557929
N 700 2657644 2835773 230580 1.73E+07
Patents 700 576.7667 1261.345 0.800 10080.2
R&D 700 14998.27 27046.76 24.18379 210846.8
S 700 11925.95 14426.04 730 99060
academicR&D 700 2549.487 3112.389 95.76921 23453
totalR&D 700 19898.2 33393.62 250.6079 263371.4

Note: Information on all variables is provided at the state level. Output is real gross
state product (GSP), K is gross fixed capital, N are thousands of employees (fte), Patents
is patents filled per state weighted by their citations, R&D is industry (business) R&D
stock, S is number of doctoral scientists and engineers, academicR&D is the R&D stock
of universities and research institutions, and totalR&D stock is total R&D stock in a
state. All monetary variables are expressed in million (2000 US) dollars.

Table 2, in combination with Table A.1 in the Appendix, shows that states, on average, produce annually

real GSP of 188 million US dollars, with California, New York State, Texas, Illinois and Florida to report the

highest GSP in the US, whereas the Dakotas, Wyoming, Vermont and Minnesota the lowest. Further, the

average state appears to be quite productive in terms of patents weighted by their citations. However, as

the standard deviation shows, the distribution of patent production is skewed with a few states to account

for a disproportionate large share. Particularly, intense patenting activity is concentrated mainly in East

(New York State, New Jersey) and West (California) Coasts along with some states around the Great Lakes

(e.g. Illinois) and in Texas. The lowest patent production is recorded in Alaska, Hawaii, the Dakotas (ND

& SD), Wyoming, Montana and Vermont. States have developed, on average, a stock of knowledge in their

industry sector of about 15 billion (2000 US) dollars. Accumulated knowledge, proxied by business R&D

stock, as well as scientists are also concentrated in the top performer states (including Massachusetts and

Pensilvania), while Alaska, Wyoming and the Dakotas score low in both. Finally, academic and total stock

of knowledge per state worths of approximately 2.5 and 20 billion (2000 US) dollars. Industry R&D stock

accounts for three quarters of total R&D stock, while academic R&D stock accounts for, roughly, 12%.

3. Empirical Results

3.1. How Efficient is the Productions of Output and Ideas?

Table 3 reports estimates of the system of equations (4)-(7), where the technology parameters, i.e., the

coefficients for capital, labor and time, and level of efficiency for both production functions, i.e., output and

knowledge/ideas, are estimated simultaneously.19

19The estimates of the instrumented inputs, in both production processes, are reported in Table A.2 in the Appendix.
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Table 3: System Estimates

Frontier Estimates
Output Knowledge

coeff. st.dev. coeff. st.dev.
lnCapital 0.425*** 0.035 0.658*** 0.061
lnLabor 0.577*** 0.052 0.424** 0.190
t 0.045*** 0.002 0.104*** 0.018
1/2lnCapital2 0.282** 0.126 0.056 0.048
1/2lnLabor2 0.210 0.145 0.120 0.265
lnLabor ∗ lnCapital -0.242* 0.132 -0.090 0.096
t ∗ lnCapital -0.002 0.002 -0.006 0.005
t ∗ lnLabor -0.001 0.002 -0.007 0.009
1/2t2 0.000 0.001 0.002 0.022
Constant 5.203*** 0.089 1.886*** 0.363

σ 0.300*** 0.020 0.315*** 0.022
λ 1.182*** 0.256 0.021*** 0.002

ρ (correlation between output and knowledge functions): 0.751

Efficiency scores
mean st.dev. mean st.dev.
0.905 0.024 0.851 0.027

Note: (*/**/***): significance at the 10/5/1 % level; the generic term Capital
denotes tangible (physical) capital stock (K) and R&D stock (R&D) in the
production of output and knowledge/ideas, respectively; the generic term
Labor denotes workers (L) and scientists (S) in the production of output and
knowledge/ideas, respectively; λ and σ are efficiency parameters, where λ
(= σu/σv), the ratio of the standard deviation of efficiency over the stan-
dard deviation of the noise term, and σ (= (σ2

u + σ2
v )

1/2), the composite stan-
dard deviation; BIC=-4.234; ρ: correlation between production of output and
knowledge is computed as ρ = σ12/

√
σ11 ∗ σ22) and is derived from the 2x2

covariance matrix for the errors of the output and knowledge functions.

Beginning with the production of output (GSP), our estimation of marginal products of capital and

labor of 0.226 and 0.762, respectively, is in line with existing empirical literature (Barro and Sala-i-Martin,

1995; Koop, 2001; Bos et al., 2010a). States produce output at about constant returns to scale, as is often

reported in the literature (Barro and Sala-i-Martin, 1995; Mankiw et al., 1992). The inclusion of a time trend,

t, allows us to measure the technical growth. We find that technical growth is positive and significant at

approximately 0.8% per year. However, the latter finding does not necessarily imply that all states benefit

from 0.8% technical growth, as technical growth is measured at the frontier. We also need to consider the

efficiency of the states.

States appear to be very efficient in the production of their output and operate very close to their fron-

tier, as the average efficiency in the states is almost 91% and is not that dispersed. This is also confirmed

by the parameters σ and λ, which measure the total variance and the relative magnitude of variance that is

attributed to inefficiency, respectively. A positive and significant λ shows that much of this variance indeed
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consists of inefficiency.20 In Table A.2 in the Appendix, one can see that there is minimum waste in the pro-

duction of output for the period of our analysis in the states of Iowa, North Carolina and Delaware, while

the states of Hawaii, Alaska and Vermont are the most wasteful states in the use of their production inputs.

The top contributor states to the US GDP, California, New York State and Texas, exhibit an average per-

formance in terms of efficiency and rank at 39, 18 and 24 position, respectively. Based on efficiency scores,

there is, for example, more waste in producing output for every dollar spent, for instance in California,

than in New York State.

Proceeding with the production of ideas, we find the marginal products of R&D stock and scientists to

be 0.287 and 0.687, respectively. Although cross-study comparisons are even harder in knowledge produc-

tion literature, due to different level of aggregation,input definition, and often omission of efficiency of the

innovation inputs, we can still recover some findings that can be compared with ours; for instance, the effect

of knowledge stock on innovative output, ideas (Porter and Stern, 2000; Ulku, 2004). Our estimates con-

firm that the stock of existing knowledge (proxied by R&D stock) has a positive effect on innovation. This

supports the "standing on shoulders" assumption, to the extent that the accumulation of past knowledge

increases the creation of new knowledge. Compared to the production of output, the marginal productivity

of a unit of knowledge stock in the production of ideas is higher than that of physical capital stock in the

production of output, while the opposite holds for the marginal productivity of labor. The marginal rate of

technical substitution (MRTS) in the knowledge (output) production is 0.418 (0.297), demonstrating the rate

at which labor can be substituted for capital, while holding output constant, is lower for the production of

output. Further, the production of knowledge in the states exhibits about constant returns.

Technological knowledge expands, on average, every year by approximately 0.6% as the estimate of

technical change indicates. States are not fully efficient in the production of output or knowledge, but

mean efficiency in both productions is pretty high. To examine the presence of inefficiency in our data, we

decompose the composite residual of equation (2), exp{εit} = exp{νit} exp{−uit}, and identify its com-

ponents, exp{νit} and exp{−uit}, by re-parameterizing λ in the maximum likelihood procedure, where λ

(= σu/σv), the ratio of the standard deviation of efficiency over the standard deviation of the noise term,

and σ (= (σ2
u + σ2

v )
1/2) is the composite standard deviation. The frontier is identified by the λ for which the

log-likelihood is maximized (Kumbhakar2000). Consequently, the parameters σ and λ measure the total

variance and the relative magnitude of variance that is attributed to inefficiency, respectively. A positive

20This result reflects an important advantage of our stochastic frontier approach to a comparable data envelopment analysis. If
λ - the efficiency to noise ratio - is statistically insignificant, then almost all of the unexplained variance is indeed noise, while a
statistically significant λ is an indication of inefficiency rather than noise. This is clearly something that a DEA model would fail to
capture.
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and significant λ shows that much of this variance indeed consists of inefficiency. This result reflects an

important advantage of our stochastic frontier approach to a comparable data envelopment analysis. If λ

- the efficiency to noise ratio - is statistically insignificant, then almost all of the unexplained variance is

indeed noise, while a statistically significant λ is an indication of inefficiency rather than noise.21

Consequently states are about 85% efficient in producing new knowledge and 91% in producing output;

therefore, there is more waste in the production of ideas. This should not come as a surprise. Although

innovation is one of the most crucial elements in economic growth is by nature uncertain and risky, which

relies upon scarcely available resources. Also, best practices may derive from the learning associated with

research failures and successes, or arise with the entry into the market of high-tech start-up. We further

find that there is no large dispersion across states’ efficiencies as the small standard deviation of knowl-

edge efficiency indicates. Among the most efficient states in the production of new knowledge, as Table

A.2 in the Appendix shows, are the states of Maine, Oklahoma, Hawaii and Mississippi. These states are

at the bottom of the ranking in terms of business R&D and patent production; however, they appear to

manage their innovation inputs, i.e., R&D stock and scientists, in a rather efficient manner, so they are able

to produce more patents for every dollar spent. The study of Thomas et al. (2011) also finds Mississippi

and Oklahoma (among other twelve) states to be the ones that show improvements in innovation efficiency

during 2004-2008. As they authors argue, certain high tech firms located in these states (e.g., IBM, Intel,

Honeywell, AT&T, Lexmark, Halliburton, Microsoft, Boeing and Micron Technologies) have experienced

moderate to sharp increases in patent granted during 2004-2008. Among the least efficient states are Col-

orado, New Jersey, Ohio and Massachusetts. As before, California together with New York State, Illinois

and Texas, which spend the largest sums in R&D and produce the largest number of patents, perform fair in

terms of knowledge efficiency. In particular, California ranks at 26, New York State at 44, Illinois at 31 and

Texas at 10 place among the 50 states in terms of efficiency in producing new technological knowledge.22

As to why these efficiency differentials exist and, in particularly, why wealthier states, on average, ap-

pear to be less efficient compared to the rest of the states, a possible explanation could be that wealthier

state can ’afford’ to go for riskier innovation projects that not all of them eventually turn into commer-

cialised ideas or attracts more research sources (e.g., researchers and R&D) in their production of inno-

vation process that their quality might considerably range compared to a less wealthier state. A number

21This is clearly something that an alternative frontier methodology, for instance Data Envelop Analysis (DEA) would fail to cap-
ture. Therefore, the values of λ and σ in particular confirm the presence of inefficiency in our data.

22As an exercise, we calculate efficiency scores following the approach of Thomas et al. (2011). That is, we calculate the ratio of
the average number of patents to industry R&D stock (or spending) per period for each state. Efficiency scores (mildly) vary, but the
main conclusion holds: large and wealthy states do not score at the top of the efficiency score ranking. For example, California ranks
16th and Texas17th. With our SFA approach these two big states rank 26th and 10th, respectively.
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of mechanisms could be responsible for that. State-specific policies such as personal, corporate and R&D

taxes, labor and market regulations and institutions could make the production of innovation in a state

more (or less) efficient by attracting specific capital (human or physical) and affecting their productivities.

Delving deeper into regional micro data, Fritsch and Slavtchevc (2011) and Broekel (2015), in studying the

innovation efficiency in Germany, have examined a number of regional factors such as knowledge network-

ings and collaboration among regional organizations. For example, Fritsch and Slavtchevc (2011) consider

a number of factors, namely the density and industrial composition of regional actors, region’s accessi-

bility, the technological, industrial and institutional infrastructure (networks) of a region that may shape

the innovation efficiency differentials across regions. The study concludes that spillovers from private as

well as from universities and other public institutions have a positive effect on the innovation efficiency,

and regions that are dominated by large establishments tend to be less efficient compared to regions with

a lower average establishment size. Further, Broekel (2015) uses a rich panel dataset, covering 270 Ger-

man labour market regions and four industries to examine whether subsidies for R&D cooperation are a

suitable policy measure for stimulating the innovation efficiency of regions. The study shows that cooper-

ation among regional firms and subsidized links to non-regional public research institutes benefit regions

with low innovation capacities while subsidization of cooperation with non-regional universities is more

important for regions with large innovation capacities.

Therefore, these factors, if coupled with certain institutional settings, may influence conditions under

which research inputs are managed. As a result, very different innovation outcomes may be achieved

even when a similar amount of resources is devoted to R&D. Consequently, identifying the ’right’ mecha-

nism requires thorough and comprehensive analysis with detailed regional data. Due to lack of state level

information on some regional factors, such investigation is left for future research.

Thus far, our analysis was based on patent counts by assignees and each patent was assigned to the first

assignee in case of multiple assignees. For robustness purposes, we re-estimate our system considering

patent counts by inventor, controlling for patents with multiple inventors. We have also removed outliers

(i.e., states with exceptional high and low patent production or gross state product) and applied various

weighting schemes (e.g. weighting by the size of population in a state). Results, overall, have remained

robust and do not alter in any significant way.23

To visualize our findings, Figure 2 below plots mean efficiency in the production of output versus mean

efficiency in the production of knowledge.
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As Figure 2 shows there is little variation in the mean efficiency in the production of output, as most

states appear to be quite efficient, and more variation in the mean efficiency in the production of knowl-

edge. On average, Idaho, Missouri, Oklahoma and Wyoming use their production inputs with minimum

waste, while the states of New Jersey, Michigan, Pennsylvania and Arizona produce output and ideas in

a rather wasteful manner. The leader states, California, New York State, Illinois and Texas demonstrate,

compared to the rest of the states, an average performance in both types of efficiency, with Texas to show

the highest correlation between output and knowledge efficiency and New York State the lowest in their

own group.

Overall, our results do not lend support to the common perception that richer (most innovative) states

are more efficient than less richer (less innovative) states. Being ’rich’ in terms of resources, does not

necessarily imply that you are also efficient in the sense of full exploitation of endowed resources. In fact,

it is often the case that being rich still allows some room for efficiency improvement. Furthermore, as

the graph above shows, an efficient in producing knowledge state is not necessarily efficient in producing

goods and services.

Finally, relating our findings to broader evidence that emerges from countries’ innovation assessment,

a similar picture arises. Countries with high GDP output or innovation effort (R&D spending) are not

23Sensitivity analysis results are available upon request.
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necessarily the most efficient ones in terms of knowledge production. In fact, according to the global

innovation index (GII), the US ranks at the 6th position in therms of quality of universities, availability of

micro-finance and venture capital, to gauge innovation capabilities and measurable results, but it is not

rank among the top tier countries in terms of innovation efficiency. Instead, middle-(or even low-) income

countries with low - compared to the US - R&D spending show a higher efficiency score compared to the

US.24 Apparently, the limited available resources to the knowledge production, for instance, were used

with great efficiency in these countries.

3.2. What are the Components of Output and Ideas Growth?

We now can examine how states grow in terms output and ideas. In doing so, we decompose output

and knowledge growth into three components, input change (SC), technical change (TC) and efficiency

change (EC), as shown in Table 4, below.

Table 4: Components of Output and Knowledge Growth

total change input change technical chance efficiency change Obs
Ẏ
Y SC TC EC

Output 0.032 0.025 0.008 -0.001 600
(0.029) (0.018) (0.002) (0.025)

Knowledge 0.028 0.024 0.006 -0.002 600
(0.306) (0.282) (0.004) (0.030)

During our sample period, gross state product grew by 3.2%; a rate which is consistent to the figures

reported from the Bureau of Economic Analysis about the growth in the US during 90s and mid 2000.

This growth was mainly attributed to the accumulation of inputs, 2.5%, and to technical change, 0.8%.

Efficiency, in the use of production inputs, remained pretty much unaltered, exhibiting a small decline of

0.1%.

Similar picture emerges for the production of new ideas, as patents weighted by their citations, on

average, grew by 2.8% and this growth was primarily driven from the growth in the innovation inputs

(R&D and scientists), which was 2.4% and to a lesser extent from the technical change, which contributed

by 0.6%. During the same period, there was no improvement in the innovation efficiency, which actually

decreased by 0.2%.

24The GII measures 142 countries, using 84 indicators, which include the quality of universities, availabil-
ity of micro-finance and venture capital, to gauge innovation capabilities and measurable results. Read more at
http://knowledge.insead.edu/entrepreneurship-innovation/global-innovation index-2930#5CwzK0lz9oqX6jy8.99. About countries’
rankings, see https://www.globalinnovationindex.org/userfiles/file/blog/GII_DB_Bali_03.pdf
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The important role of input growth in the output and innovation growth process is also consistent with

findings in the related literature (Koop et al., 1999; Koop, 2001; Kumar and Russell, 2002).

At this point, it is interesting to consider how changes in the inputs of both production processes relate

to changes in the instruments. More specifically, physical capital and workers are related to the changes in

total R&D and similarly the changes in business R&D stock and scientists to the changes in academic R&D.

Table 5 below, reports these correlations.

Table 5: Correlations

corr(growthK, growth totalR&D) corr(growthN, growth totalR&D)

Output 0.220*** 0.120***

corr(growthR&D, growth academicR&D) corr(growthS, growth academicR&D)

Knowledge 0.040 -0.030

Significance at the 10/5/1 % level (*/**/***).

It is possible that physical capital (R&D stock) and worker (scientist) accumulation may reflect the use

of total (academic) R&D in both functions. In general, we expect the correlations to be positive. However,

a negative association could also be the case. For example, capital with new vintages may be replacing

outdated vintages, and less but more skilled labor may be replacing more but less skilled labor. For the case

of the production of output, inputs’ growth is positively and statistically related with total R&D growth. As

for the knowledge production, although the growth of business R&D stock positively relates with academic

R&D, the growth of scientists is negatively associated with the growth of academic R&D. In the latter case,

this suggests that the remaining scientific force is more skilful, as states may use more academic R&D per

unit of scientist in order to increase the production of patents.

4. Conclusion

This paper examines efficiency and growth patterns in the production of output and ideas in the US.

Employing frontier techniques we jointly estimate the production of output and the production of ideas

controlling meanwhile for the endogeneity of the inputs in both production functions. With our modeling

approach we are able to unfold the roots of output and ideas growth and discuss important questions in the

literature, namely whether there is waste in the production of output and ideas and efficient in production

of output states are also efficient in producing ideas.
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Our results show that the states of the US are particularly efficient in the use of their inputs in producing

output and less efficient in the use of their innovation resources for producing new knowledge. States

appear to vary less in terms of output efficiency and more in knowledge efficiency, as the latter shows

higher dispersion. The level of mean efficiency in either output or ideas production, however, remains

pretty much unaltered throughout our sample period with an even small tendency to decline over time.

Our findings do not support the common perception that richer (most innovative) states are more efficient

than less richer (less innovative) states. A policy implication of our findings is that government efforts

should not only be directed toward states that produce high R&D, but also to states with modest R&D that

are able to produce more output or patents for every dollar spent. Furthermore, an efficient in producing

knowledge state is not necessarily efficient in producing goods and services. Finally, a consistent finding is

that input accumulation is an important source of growth both for output and for the knowledge.

Future research could provide more guidance to regional factors, economic and institutional among

other, responsible for (in)efficiency differentials across regions, both in output and knowledge production.
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APPENDIX

A.1. Brief Literature Review

The conventional empirical testing of growth models has examined output (or productivity) growth
assuming no waste (full efficiency) in the use of resources.25 With the development of frontier methodolo-
gies, a growing body of empirical literature has conducted efficiency analyses using a variety of modeling
approaches. Most of the studies, however, focused on assessing the (in)efficiency of the production pro-
cess and factors that potentially affect it. So far, the attention has largely been at decomposing aggregate
(country-level) output. For instance, Färe et al. (1994) use data envelopment analysis (DEA), while Koop
et al. (1999, 2000), Limam and Miller (2004) and Bos et al. (2010b) use stochastic frontier analysis (SFA) to
examine country-specific inefficiency in a number of developed and developing countries and factors that
shape it. Recently, a number of studies have investigated the role of efficiency in explaining growth differ-
entials for a panel of manufacturing industries in the OECD countries. The study of Koop (2001) explores
the forces of output growth in six manufacturing industries during the 1970s and 1980s, while Kneller and
Stevens (2006) investigate the sources of inefficiency in nine industries over the same period. In similar
vein, Bos et al. (2010a) unfold the drivers of output change in a panel of EU manufacturing industries al-
lowing for inefficient use of resources and differences in the production technology across industries and
discuss output growth, technology spillovers and catch-up issues across industries and countries.

While it is well documented that a large portion of productivity differentials can be ascribed to how
countries (or industries) manage production inputs, and which factors are behind international efficiency
gaps, it remains largely unexplored how countries (or industries) efficiently perform innovation activity.
As acknowledged by R&D-based endogenous growth theories, innovation is one of the most crucial el-
ements in fostering economic growth. Innovation, however, is by nature an uncertain and risky activity,
which relies upon scarcely available resources. Moreover, best practices may derive from the learning as-
sociated with research failures and successes, or arise with the entry into the market of high-tech start-up.
These factors, if coupled with certain institutional settings, may influence conditions under which research
inputs are managed. As a result, very different innovation outcomes may be achieved even when a similar
amount of resources is devoted to R&D. Consequently, if research is performed inefficiently, policies aimed
at fostering investment in an area are unlikely to achieve the expected outcome of encouraging economic
growth over the long run.

Thus far, the standard approach in the economics of innovation literature has been the use of a knowl-
edge (innovation) production function where the innovative output, the counts of patents, is produced
analogously to the production of real output, employing existed knowledge and human capital allowing
no waste in their use (Griliches, 1979, 1992; Jaffe, 1989; Feldman, 1994).

A rising body of studies has examined at the efficiency performance in research and patenting. The
studies of Rousseau and Rousseau (1997, 1998) and Franco et al. (2016) are among the few attempts, which
consider efficiency in innovation process. These studies evaluate innovation performance of a number of,
mainly OECD, countries and rank them according to their efficiency scores.26 A number of subsequent
studies, perform similar analysis controlling also for socio-economic factors, institutions, and regulations.
Among them, Wang (2007) examines technical efficiency in research across 23 OECD and seven non-OECD
countries finding large disparities in R&D efficiency scores. The latter, are largely explained by cross-
country differentials in technology endowments and open-market institutional settings. In a similar vein,
Fu and Yang (2009) find that countries may rank differently in terms of innovation capacity (patenting
frontier) and innovation (in)efficiency. The former is positively correlated with the share of high-tech in-
dustries while innovation efficiency is affected positively by the degree of economic development, the
share of business research and the strength of intellectual property protection. By means of a two-stage
non-parametric DEA approach, Cullmann et al. (2012) study R&D efficiency differences among OECD

25See, for instance, Jones (1995), Coe and Helpman (1995), Aghion and Howitt (1998), Griffith et al. (2004a), Zachariadis (2003),
Bottazzi and Peri (2003), Bottazzi and Peri (2007), and Mancusi (2008) among others.

26See Cruz-Cázaresa et al. (2013) for an updated review on innovation efficiency studies.
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countries focusing on the role of regulatory environment. A more recent study that of Franco et al. (2016)
examines cross-industry (cross-country) efficiency levels in knowledge production focusing on the role
played by the institutional framework regulating the functioning of upstream markets, i.e. how regula-
tion in upstream sectors (services) influences innovation efficiency of downstream (manufacturing) firms
that purchase factor inputs from the former. The key idea under exploration is that if intermediate input
markets are imperfect, due to administrative barriers, licensing, among others, innovating firms are likely
to reach sub-optimal efficiency levels, falling behind the innovation frontier. To test this hypothesis, the
authors carry out a stochastic frontier analysis (SFA) on innovation data for fifteen manufacturing indus-
tries of ten OECD economies between 1990 and 2002 which, as widely documented, was period of intense
market reforms and widespread pro-competition initiatives. Their results show that upstream regulation
does not influence directly innovation efficiency; rather it has second-order effects, i.e., by interacting with
the functioning of the technology, labour and the financial market. Regulation in the product market is as-
sociated with lower levels of efficiency in contexts where intellectual property protection is strong, whilst
seems beneficial in the presence of less regulated financial markets and stringent employment protection.

Global economic forces have raised the profile of regions and the prominence of regional and local busi-
ness clusters as vehicles for global and national economic competitiveness. Regions, especially when they
have developed clusters and appropriate administrative machinery for supporting innovative enterprise,
represent more meaningful communities of economic interest, define genuine flows of economic activi-
ties and can take advantage of true linkages and synergies among economic actors. A newly developed
strand of literature has shifted its attention to regional innovation systems.27. As production becomes more
science-based, developed research infrastructure, a highly qualified workforce and an innovative culture
are becoming more important than natural resources, which means that a supportive environment for in-
novative companies can deliberately be created. Locations differ with regard to the quality or the efficiency
of regional innovation systems (RIS), leading to different levels of innovative output even if the inputs are
identical in quantitative as well as in qualitative terms. However, the available empirical evidence for re-
gional innovation efficiency is rather thin. We still know very little about the conditions that are conducive
or unfavourable for innovation activity and how policy could help improve the functioning of regional
innovation systems.

A handful of regional studies though managed to shed some light. Rich and detailed data on german
regions have allowed the study of regional innovation performance and the evaluation of various policy
measures.28 The studies of Broekel and Schlump (2009), Brenner and Broekel (2011), Fritsch and Slavtchevc
(2011), Broekel (2012) and Broekel et al. (2013), in particular, have studied the efficiency of regional (and
industry) specific innovativeness and the role of regional factors, i.e., knowledge networkings and collab-
oration among regional organizations using (mainly non-parametric) frontier methodologies in measuring
innovation efficiency. For example, Fritsch and Slavtchevc (2011) estimate a knowledge production func-
tion to assess innovation efficiency for 97 planning german regions, documenting considerable differences
in technical efficiency across regions, which are specially divided into different regimes with divergent
level of performance. Overall, regions with similar efficiency scores are found to cluster together. The top
performer regions are found in the south, west and central Germany (particularly in large and densely pop-
ulated areas), while the laggers in innovation efficiency in the north, east and at the borders. Additionally,
the authors consider a number of factors, namely the density and industrial composition of regional actors,
region’s accessibility, the technological, industrial and institutional infrastructure (networks) of a region
that may shape the innovation efficiency differentials across regions. The study concludes that spillovers
from private as well as from universities and other public institutions have a positive effect on the inno-
vation efficiency. Furthermore, regions that are dominated by large establishments tend to be less efficient

27For a systematic account of the idea and content of regional innovation systems, see Cooke (2001), Cooke (2004) and Asheim and
Gertler (2005) among others

28The works of Michael Fritsch, Tom Broekel, Michael Binder and their co-authors, among others, provide a rich line of research
on regional of dynamic aspects of german regional innovativeness. The study of Fritsch (2002) expands to European regional level
analysis to asses the quality of regional innovation systems. Building on data for eleven European regions, estimates, a knowledge
production function employing conventional, non-frontier techniques.
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compared to regions with a lower average establishment size.29 A more recent study of Broekel (2015)
builds on a rich panel dataset, covering 270 German labour market regions and four industries, examines
whether subsidies for R&D cooperation are a suitable policy measure for stimulating the innovation effi-
ciency of regions. Results show that cooperation among regional firms and subsidized links to non-regional
public research institutes benefit regions with low innovation capacities while subsidization of cooperation
with non-regional universities is more important for regions with large innovation capacities.30

To our knowledge, empirical evidence, based at aggregated or disaggregated level analysis of either
production or innovation efficiency in the US, has been extremely thin. Only a handful of studies that have
performed comparative cross-country studies of either production or knowledge efficiency and include the
US (Koop et al., 1999; Henderson and Zelenyuk, 2007; Wang and Huang, 2007; Cullmann et al., 2012). The
study of Thomas et al. (2011) is among the very few attempts that examines innovation efficiency of the US
at the state level for the period 2004-2008. The study, however, measures innovation efficiency based on the
ratio of R&D outputs (e.g. patents granted or scientific publications) to R&D inputs (e.g. R&D expenditure),
concluding that between 2004 and 2008 there has been a marked decrease in R&D efficiency in 37 of the
51 geographic regions of the US and only 14 (i.e., Alaska, Arizona, Georgia, Idaho, Illinois, Kentucky,
Michigan, Mississippi, New York, Ohio, Oklahoma, Vermont, Washington and West Virginia) states shown
modest improvements in innovation efficiency. A closer to ours study is that of Fè-Rodríguez and Hofler
(2013), which proposes a stochastic frontier count model and performs a cross-section analysis to study
innovation efficiency in a number of pharmaceutical firms in the US. As states belong in the same country
and, therefore, share common institutions, among other things, an interesting issue that arises is whether
small institutional and networking differences across regions have different innovation implications.

29A related study of Fritsch and Slavtchev (2010) has also analyzed the relationship between the specialization of a region in a panel
of german industries and the efficiency of the region in generating new knowledge. Externalities resulting from high R&D intensity
of the local private sector as well as knowledge from local public research institutions are identified to positively influence regional
innovation efficiency.

30A number of other recent studies such as those ofLi (2009), Chen and Guan (2012), Bai (2013) and Barra and Zotti (2015) have
investigated the innovation performance of Chinese and Italian (the latter study) regions applying various frontier analyses.
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A.2. Methodology

A.2.1. Estimation
Input endogeneity is captured by making K, N, R&D and S functions of TotalRDi, t− 1 or AcademicRDi, t−

1 and, most importantly, by assuming that vit =
[
vit,j, j = 1, . . . , 5

]′ are not necessarily independent. Tech-
nical and knowledge inefficiency are also not assumed necessarily orthogonal to these error terms.

The CUE-GMM criterion that we minimize is the following:

min
θ∈Θ

: F (θ)′Ω (θ)−1 F (θ) (A.1)

where, Ω (θ) is the usual GMM weighting matrix used for the CUE version of GMM. This is given by,

Ω (θ) = (nT)−1 ∑
i,t

[
f (Xit, `) f (Dit, `)′

]
(A.2)

and the sample equivalent of the moment conditions is,

f (Xit,θ) =

[
(nT)−1 ∑

i,t
uit,j (Xit,θ) zit,m = 0, j = 1, . . . , 5, m = 1, . . . , M

]′
(A.3)

where, Xit denotes the data, θ ∈ Θ is the parameter vector, zit,m, m = 1, . . . , M denotes the instru-
ments and uit,j (Xit,θ) denotes deviations of data for dependent variables from the translog specifications
in equations (3) to (7).

For the system as a whole the p-value of Hansen’s J-statistic to test the over-identifying restrictions is
0.26.

An R2 for each equation is computed by considering the square of the correlation coefficient between
actual and predicted values.

To account for heterogeneity we introduce state fixed effects in all equations. CUE-GMM is imple-
mented in two “stages”. First, the fixed effects are wiped out by taking deviations from the means. Suppose
the typical equation in our system is,

yit,j = ai,j + gj (Xit,θ) + εit,j (A.4)

where, εit,j = vit,j − uit,j for j = 1, 2 and εit,j = vit,j otherwise.
The fixed effects are wiped out via the transformation,

yit,j − ȳt,j = gj (Xit,θ)− T−1 ∑
t

gj (Xit,θ) + εit,j − ε̄t,j (A.5)

We ignore any econometric issues introduced by the averaging as our purpose is to obtain good starting
values for θ. Specifically, we impose the restrictions that (i) the production function is monotone and
concave, and (ii) the knowledge function is monotone, at each observed data point. In the second stage, we
implement CUE-GMM in the estimation of (A.4) using as starting values for all parameters (including the
fixed effects ai,j) the final estimates from the first stage. 31

The monotonicity and concavity restrictions in (i) and (ii) can be written as,

θ ∈ R ⇔q (X,θ) ≤ 0 (A.6)

31All computations are performed in Fortran 77 making extensive use of IMSL libraries. Numerical optimization for second-
stage CUE-GMM is performed using subroutine DUMIDH, a quasi-Newton algorithm with a finite-difference Hessian. Numerical
optimization for first-stage CUE-GMM is performed using subroutine DUMPOL, a Nelder-Mead simplex algorithm, to avoid non-
convergence problems due to bad starting values and / or the penalty function. The final results of both optimizations are checked
using a simulated annealing global optimization procedure. The reported results are based on a HAC covariance matrix robust to
heteroskedisiticity and autocorrelation of order two.
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for a vector function q (X,θ) ≤ 0, q : <dX × <k → <dq , where R denotes the feasible region for the
parameter and X ≡ [Xit] vector.

For example, first-order derivatives at each observed point should be positive, and concavity for the
production function imposes restrictions on the Hessian sub-matrices.

In both stages of CUE-GMM we impose the restrictions by modifying the criterion function in (A.1)
using a penalty function, as follows:

min
θ∈Θ

: F (θ)′Ω (θ)−1 F (θ) + λΠ (θ,R) (A.7)

where, λ > 0 is a fixed parameter and the penalty function is,

Π (θ,R) = max
{

q (X,θ) , 0dq

}
(A.8)

Parameter λ is increased from 10 to 10p for p = 2, 3, . . . until we can satisfy 90% of the restrictions in
(A.6). In the first stage for p = 5 we can satisfy 90% of the restrictions but not all of them when p > 5
. In the second stage all restrictions can be satisfied for p = 8. In the second stage, fixed effects ai,j are
jointly estimated with all other parameters. In both stages, when Ω (θ) does not appear to be numerically
invertible we use regularization: Ω (θ) := Ω (θ) + 10−7I . Our criterion for non-invertibility is that the
minimum eigenvalue is below machine precision.

A.2.2. Variables and Sources
Data are retrieved from various sources. Information on real gross state product, GSP (Output), which

is the dependent variable of the production of output function, is extracted from the Regional Accounts of
the Bureau of Economic Analysis.32 Data on gross fixed capital formation to construct physical capital stock
(K) and number of workers (N) - the two inputs of the production function - are obtained from Yamarik
(2013) and the Bureau of Labor Statistics, respectively.

We use patents weighted by their citations (Patents), as measure of innovative output for the knowledge
function.33 We only take into account patents assigned to corporations. Every patent is assigned to an issue
year and technology field. We have 14 years and 37 technology groups; therefore, every patent is classified
in one out of 14x37=518 groups. Each patent in every group is then weighted by the number of citations
it has in the group’s distribution. The weighting scheme is the following one: w1 = 0.1, if citation belongs
to the first quantile, w2 = 0.2 for the second, w3 = 0.3 for the third, and w4 = 0.4 for the fourth. We then
sum these values up for every state and for every year t and calculate our weighted measure of innovation
output.

There is a number of issues raised with patents. In the US only a person can file for a patent application.
Subsequently, when the inventor is an employee to a firm or to an institution, she re-assigns the patent to the
employer (the so-called assignee). Thus, there are two main entities that are involved with a patent. First, it
is the inventor who is the driving force behind the creation and manifestation of the idea into an invention
and second, the firm or institution which supply the framework and resources for inventors to operate, and
reaps the benefits of the innovation and use patents as a means to protect its inventions. Therefore, one
can address the efficiency in the production of patents either way, i.e., patents by inventors or patents by
assignees. In our sample, almost all patents, about 98.5%, have a single assignee. So, if we focus just on the
first (and single, in the vast majority of the cases) assignee and allocate each patent to the (first) assignee’s
state, then we have a very small measurement error; merely 1.5% of the patents disclose more than one
assignee and even in these cases, we miss information only if assignees are located in different states. In

32See http://www.bea.gov/iTable/index_regional.cfm
33A patent grants the patent holder a monopoly right for a given period of time. In the US prior to 1995, a patent was potentially

active for 17 years from issue date. After June 8, 1995 where the the P.L. 103-465 (also referred to as ”Uruguay Round Agreements
Act”) patent life changed to 20 years from first application date (USPTO, 2001). Note that in the case of Pharmaceutical patents, there
is increase in patent life by an additional 5 years due to delays of FDA approvals per Hatch-Waxman Act of 1984.
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our sample, 57% of patents have more than one inventor. Very frequently, inventors are located in different
states. In case a patent has more than inventor, then patent allocation issues are raised. For example, one
could divide the patent by the number of its inventor, say by by 1/n (n is the inventors), and allocate 1/n
to each state. Another way is to n-count that specific patent, i.e., equally allocate it to all (inventors’) states.
However, every weighing scheme has its own pros and cons and there is no theoretical justification as to
what scheme is the optimal one. Therefore, we opted to count patents based on assignee’s location rather
than inventor’s location based one three reasons: first, counting patents based on inventor’s location is a
less ambiguous task.34 Second, the inventor could reside outside the US and we are mainly interested in the
amount of patents corresponding in each state. Third, in all states, the percentage of patents that disclosed
the same state for the lead inventor and assignee was quite high.35 Finally, as our goal is to weight patents
by their citations, we opted to weight them by the citations the owner (assignee) receives rather than the
inventor. In other words, our goal is to measure the value generated to the firm and not to the inventor.

Data on patent counts by assignee (at grant date) is extracted from Hall et al. (2001).36 This database
also provides location information on the patent assignees (individual, firm or government). By extracting
information on the location for the patent assignees, we are able to count the number of patents issued
to applicants within a state within a given year. We only count a patent once; i.e. to the first assignee, in
case there is more than one assignee.37 However, it could well be the case that the headquarters (as well as
the actual research unit) of a firm to be located in a different state and in such a case the assignee address
could be the firm’s headquarters. For robustness purposes, we also count patents by state of inventor.38.
We extract this information from the Patent Network Dataverse constructed by Lai et al. (2011).39 As in the
case of patents counts by assignee, we also rely only on the first inventor’s state. As additional robustness,
we double count patents with more than one inventors.

As inputs of the knowledge production function we consider industry level R&D stock, as a proxy of
a knowledge stock, and the number of doctoral scientists and engineers as a proxy of human capital. In-
formation at the state level on business R&D expenditure for constructing R&D capital stock (R&D), and
doctoral scientists and engineers (S) is extracted from the National Science Foundation Science and Engi-
neering State Profiles. From the latter, we also derived state level data on academic R&D and total R&D
expenditures to construct academic R&D stock (academicR&D) and total R&D stock (totalR&D), respec-
tively. To calculate physical capital stock and all R&D stocks, we use the perpetual inventory method as in
Guellec and van Pottelsberghe de la Potterie (2004) and Hall et al. (2005).40

Finally, merchandise trade flows at the state level are extracted from the Bureau of Transportation Ser-
vices Commodity Flow Surveys. Data are available only for the years 1993, 1997, and 2002.41

34For robustness purposes, however, we replicated our analysis by counting our dependent variable (patents) by lead inventor’s
location and results did not change in any significant way.

35For instance, for the case of California the percentage was over 90%, for Texas approximately 90%, for Missouri more than 90%
and so forth. Therefore, focusing either on the lead inventor or assignee would make little difference, if any, in terms of ex post
analysis.

36The time span of the Hall et al. (2001) stretches till 2001. A recent update of the data (till year 2006) can be found at
https://sites.google.com/site/patentdataproject/. Assignee names are cleaned and each unique assignee is assigned a unique id
number.

37In our data, only 1.5% of patents are co-assigned, i.e., disclose more than one patent assignee; a result consistent with findings
both from the United States Patent and Trademark Office (USPTO) and European Patent Office (EPO) (Fosfuri et al., 2012). Therefore,
relying solely on the first assignee is not likely to cause any measurement issues. For robustness purposes, however, we also allow
for double counting of patents that are co-assigned. For instance, a patent that has three assignees, for example, two in California and
one in New York, is counted twice for California and once for New York.

38In our data, approximately 200,000 patents have their first inventor in the US, while the first assignee is not located in the US.
Similarly, 80,000 patents have the first assignee located in the US and the first inventor located outside the US. Finally, of the approx-
imately 1,000,000 patents where both the first assignee and inventor are located in the US, for 27% of the cases the first inventor and
first assignee are located in different states.

39http://hdl.handle.net/1902.1/15705 UNF:5:9kQaFvALs6qcuoy9Yd8uOw== V1
40Following the literature, we have tried different depreciation rates, e.g., 15%, and 20%. The resulted stocks, using different

depreciation rates, are highly correlated (around 0.998).
41What is only available is the value of state’s total imports; there is no information, however, by type of (imported) good.
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Table A.1: Summary Statistics and Efficiency Scores per State

Summary Statistics Efficiency Scores
State Output Patents K N R&D S Output Efficiency Knowledge Efficiency

AK 30.99116 2.271429 30575.57 299391.4 79.2154 1295.643 0.901 0.854
AL 116.1839 40.64286 119278.1 2017008 4020.303 7105.214 0.902 0.851
AR 67.31779 17.78572 70791.03 1194604 1345.823 3128.357 0.906 0.852
AZ 152.8057 144.7429 146869.9 2313891 8895.276 7739.429 0.904 0.848
CA 1223.555 7288.136 1276883 1.56E+07 167332.2 84556.93 0.904 0.849
CO 158.2229 262.3429 180745.4 2190529 13131.24 13117.21 0.906 0.848
CT 154.4251 865.8786 156307.9 1677994 17402.83 10257.21 0.907 0.852
DE 39.26646 1217.279 29493.8 388794.4 6987.615 3917.572 0.913 0.848
FL 474.5455 378.2786 432871.6 7264079 18523.29 17484.29 0.906 0.849
GA 271.5889 219.3857 281044.7 3907527 6379.468 12178.5 0.905 0.849
HI 44.20113 4.085714 37907.46 574688.4 659.1832 2794.072 0.899 0.859
IA 90.46287 119.8571 87206.04 1545363 3219.471 4919.214 0.909 0.849
ID 33.79185 458.1071 36005.27 627782.5 3542.033 2499.857 0.908 0.865
IL 452.2365 1453.514 467716.6 5948563 33293.98 23691.57 0.906 0.849
IN 187.1401 314.1214 194584.9 2985235 13012.71 9662.214 0.906 0.850
KS 82.9617 61.20714 89181.02 1338993 3840.226 4306.286 0.905 0.848
KY 111.4007 81.8 116472.8 1826911 2118.31 4914.429 0.905 0.849
LA 146.8658 40.64286 144642.6 1895359 795.5873 5943.571 0.909 0.852
MA 251.3861 960.7214 263638.6 3142044 42785.72 29144.21 0.905 0.848
MD 182.5274 183.5643 165455.6 2695068 10753.89 25256.86 0.903 0.850
ME 35.4286 20.86429 33643.86 638719.9 623.7079 2458.714 0.900 0.855
MI 309.9446 1288.536 333901.6 4698547 63932.98 17645.43 0.903 0.849
MN 177.4107 806.0214 187425.3 2645793 15733.58 11415.07 0.907 0.849
MO 172.6266 159.2429 175887.2 2763049 7896.597 9797.786 0.905 0.849
MS 65.42122 34.36429 63947.28 1208321 565.1187 3375.643 0.906 0.862
MT 22.48844 16.81429 27143.64 443969.7 154.8606 1979.571 0.903 0.853
NC 260.4055 268.9 233290.6 3788597 13803.4 17308.93 0.910 0.849
ND 18.74678 3.914286 21019.01 333285.4 249.7103 1629.429 0.908 0.855
NE 56.16074 39.82143 59832.4 902453 840.4363 2969.928 0.904 0.852
NH 40.62439 92.25714 42185.21 650766 3054.036 2658.143 0.905 0.850
NJ 334.3741 1978.236 333216.7 4005004 47925.43 23378.36 0.903 0.848
NM 51.6931 46.14286 45539.72 793734.5 5201.694 8444.429 0.906 0.851
NV 74.18292 100.6071 73647.97 946756.1 1048.772 2106.572 0.904 0.852
NY 742.3105 4336.814 810810.6 8473489 50725.27 45883.79 0.906 0.848
OH 359.757 1150.6 353494.6 5453330 31919.88 21681.64 0.905 0.848
OK 93.74434 107.3929 119483.3 1567856 2339.058 4956.643 0.904 0.856
OR 105.2072 154.3143 111446.3 1667749 6308.506 8121 0.910 0.849
PA 385.0078 946.6643 418319.9 5735257 36553.5 28078.14 0.904 0.848
RI 33.33106 47.04286 30382.81 500194.2 3204.849 2865.214 0.905 0.849
SC 110.0137 107.3143 101976.7 1843972 3293.413 5502.143 0.904 0.851
SD 23.30956 6.507143 20770.21 391422.7 128.97 1144.286 0.906 0.852
TN 171.7585 150.6929 170128 2677278 5794.982 9607.857 0.905 0.849
TX 720.4307 1582.636 945561.2 9738478 35367.85 34721 0.905 0.853
UT 65.58952 115.8071 65501 1065516 3616.472 5325.143 0.913 0.849
VA 254.6196 239.8786 222346.4 3490540 9605.989 19467.71 0.906 0.852
VT 17.38005 13.86429 18238.95 324263.8 1392.172 1913 0.902 0.852
WA 211.4904 482.9572 209758.7 2849684 30859.67 15551.71 0.902 0.852
WI 169.6502 411.9 172697.4 2819648 8755.62 9228.286 0.905 0.848
WV 42.60871 8.228572 55126.92 753086.8 830.2287 2279.286 0.905 0.854
WY 20.02302 5.635715 27281.87 254870.1 68.30658 889.9286 0.907 0.855
State’s two-letter abbreviation reported in first column; Output is real gross state product, K is gross fixed capital, N are thousands of employees (fte), Patents is patents filled per
state weighted by their citations, R&D is industry (business) R&D stock, S is number of doctoral scientists and engineers, Output E f f iciency is the production of output efficiency
and ranges between zero and one, and Knowledge E f f iciency is the production of knowledge efficiency and ranges between zero and one. All monetary variables are expressed in
million (2000 US) dollars.
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Table A.2: Input Instrumentation

Output Knowledge

lnK lnN lnR&D lnS
lnRDtotal i t−1 0.017*** 0.135***

(0.003) (0.002)
lnRDacademic i t−1 0.472*** 0.145***

(0.021) (0.042)
Dit 0.012*** 0.011*** 0.212*** 0.017***

(0.001) (0.002) (0.007) (0.001)
Constant -2.335*** -1.175*** 0.717*** 5.345***

(0.014) (0.017) (0.046) (0.135)

Observations 650 650 650 650
R2 0.88 0.72 0.85 0.83

All regressions include state fixed effects and time dummies. Standard errors reported in parenthe-
ses; respectively; (***), (**), and (*): significance at 1%, 5%, and 10% level, respectively.
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