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Abstract

Incomplete preferences displaying ‘mildly sweetened’ structure are common, yet theoretically

problematic. This paper examines the properties of the rankings induced by the set of all coher-

ent completions of the mildly sweetened partial preference structure. Building on these proper-

ties, I propose an ensemble-based refinement of Hare’s (Analysis 70:237–247, 2010) prospectism

criterion for rational choice when preferences are incomplete. Importantly, this ensemble-based

refinement is immune to Peterson’s (Theory & Decision 78:451–456, 2015) weak money pump

argument. Hence, ensemble prospectism ensures outcome rationality. Furthermore, by recog-

nizing the structural isomorphism between mildly sweetened preference structures and Cover’s

splitting rule in Blackwell’s Pick the Largest Number problem (Ann Math Stat 22:393–399,

1951), ensemble prospectism can be shown to yield better-than-even odds of selecting the ex-

post higher-utility option – despite the absence of all-things-considered preferences ex ante.
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1 Introduction

Along with reflexivity and transitivity, completeness is widely and routinely invoked as a neces-

sary condition of preference-relation rationality. Yet far from being fundamental to rationality,

the completeness axiom’s function is to ensure tractability. Moreover, its descriptive and nor-

mative validity is questioned, even among theorists.

Hare (2010) introduces an approach to decision making under incomplete preferences la-

belled prospectism. Informally, an action is permissible under prospectism if and only if, for

some particular completion of negatively transitive preferences which respects existing partial

preference structure, no alternative action yields higher utility. Prospectism thus offers guidance

for action when a decision maker is confronted by the ‘mildly sweetened’ configuration of incom-

plete preferences where strict preference holds between the mildly sweetened option A+ and its

unsweetened form A (A+ ≻ A) but no preference holds between options A+ and B, nor between

options A and B. Importantly however, the permissible choice is not identified uniquely.

Peterson (2015) shows that this non-uniqueness characteristic renders the decision maker

susceptible to a weak money pump in which she is permitted to make a series of choices that

lead to a sure loss of utility. Peterson (2015) argues that this possibility – and the decision

maker’s advance knowledge that she may make such a utility-diminishing sequence of choices –

precludes prospectism from being a plausible theory of rational decision making. “A possible

conclusion is that the very idea of trying to find decision rules for decision makers who lack

complete preferences ... is problematic (Peterson, 2015).”

Although the problem is difficult, it is not insoluble. Moreover, it is soluble precisely by

building upon Hare’s (2010) central concept of a ‘coherent completion’ of preferences consis-

tent with existing partial preference structure. Just as refinements of game-theoretic solution

concepts narrow the number of candidate solutions and eliminate implausible equilibria, here

we develop a refinement of prospectism that addresses the multiplicity of permissible choices

under prospectism. This refinement is based on the entire ensemble of coherent completions of

preferences consistent with existing partial preference structure.

We characterize the properties of the set of rankings induced by the ensemble of coherent

completions of the mildly sweetened partial preference structure. The strict preference A+ ≻ A

places a constraint on the number and nature of possible coherent completions. The ensemble

of coherent completions inherits this structure, which is reflected in the associated ensemble of

rankings.

The results obtained here are facilitated by two crucial insights.

First, that the rankings ensemble is equivalent to a truncated variant of the set of inequalities
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exploited in Cover’s ‘splitting rule’ that delivers better-than-even odds of selecting the larger

(unknown) number in the problem known as Pick the Largest Number (Blackwell, 1951; Cover,

1987; Samet et al., 2004). We show that the Cover-rule solution applies equally to the problem

in which a decision maker must choose between options whose utilities are unknown ex ante.

Second, that ensemble-based methods – which we formalize through an ensemble voting pro-

cedure – constitute a suitable procedure for rationally selecting a choice option under incomplete

preferences. Aggregation of individual preferences to inform collective decision making has been

studied extensively, for centuries, in the social-choice literature. Here we draw on this literature

in formalizing ensemble voting rules. Furthermore ensemble methods are used extensively in

diverse areas where a single decision maker seeks to improve predictive or inferential perfor-

mance by aggregating across diversiform models, hypotheses, or inferences. Ensemble methods

are also used in areas where the information to be aggregated is supplied by diverse individuals

or forecasters. Surowiecki (2004) provides numerous illustrations of, and a shortlist of neces-

sary preconditions for, successful aggregation across individuals, now popularly known as ‘the

wisdom of crowds’.1

Ensemble prospectism, which implements a voting procedure, delivers a unique ranking

that aggregates across the entire ensemble of rankings. Consequently ensemble prospectism is

immune to weak money pumps. In turn, it also satisfies outcome rationality.2 Moreover, due

to the structure of rankings and relative option frequencies picked up in the ensemble voting

procedure, by Cover’s (1987) splitting rule ensemble prospectism achieves better-than-even odds

of selecting the option with the larger ex-post utility, despite these utilities being unknown ex

ante.

2 Incomplete preferences

2.1 Provenance

The completeness axiom simplifies rational choice theory, and it is present in the most widely

known variants of revealed preference theory (Sen, 1973). Nevertheless completeness is neither a

requirement for, nor an implication of, rationality or revealed preference. Within the specialist

literature, a consistent view concerning the universal applicability of the completeness axiom

prevails among a large fraction of the authors responsible for developing rational choice theory:

that its appropriateness and convenience is dubious, that it is perhaps the most questionable of

all the axioms of utility theory, that it is without adequate justification, and that it is without

1after the title of his best-selling book
2i.e. ‘making choices that do not lower welfare’ (Gilboa et al., 2010)
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reason (see Table 1).

Although completeness, together with transitivity, is often advanced as a minimal require-

ment for consistency-based rationality – e.g. as in Savage’s first postulate (Savage, 1954) – recent

work has shown that completeness of psychological preferences is not a necessary requirement

for rationality when rationality is conceived as ‘outcome rationality’ (Mandler, 2005) or ‘making

choices that do not lower welfare’ (Gilboa et al., 2010). Only choices violating psychological

preferences – whether complete or incomplete – would, under this view, be viewed as violations

of rationality (Sen, 1973; Mandler, 2005).

Table 1: The completeness axiom’s provenance among theorists.

von Neumann & “It is very dubious, whether the realization of reality which treats this
Morgenstern (1944) [completeness] postulate as a valid one, is appropriate or even convenient.”

Herman Chernoff (1954) “...this assumption is too much to make if one wants to determine whether
a rational approach exists via the decision function formulation.”

Robert Aumann (1962) “Of all the axioms of utility theory, the completeness axiom is perhaps the
most questionable.... ...we find it hard to accept even from the normative
viewpoint.”

Robert Sugden (1991) “There is no adequate justification for the requirement that preferences are
complete.”

Michael Mandler (2004) “...even for standard consumption goods there is no reason why agents
should always be able to judge which bundles leave them better off.”

2.2 Prospectism

Here we present prospectism following Hare (2010) except insofar as our context of application

permits simplification. Notably, the choice options in the mildly sweetened partial preference

structure – generically denoted oi ∈ O – are neither explicitly nor implicitly defined as being

risky or uncertain. For this reason we collapse Hare’s (2010) expected-utility formulation into

an ordinal utility-under-certainty formulation. An incomplete strict partial order ≻ cannot be

represented by a real-valued function in the usual manner.3 However it is possible to associate

a function u∗ : O → R, unique up to an affine transformation, such that for any comparable

pairs in ≻ , oi ≻ oj implies u∗(oi) > u∗(oj) for all oi, oj ∈ O. u∗ constitutes a coherent

completion of ≻ over the set of all choice options O. The real-valued function u∗ imposes a

complete order on O. There is more than one possible u∗ consistent with a specific partial order

3Although Hare (2010) posits the existence of such a real-valued function, labelling it u, his subsequent
development of prospectism does not crucially hinge upon u as distinct from ≻.
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≻ . Let L(O,≻) = U∗
O,≻ denote the set of all coherent completions of ≻ , the existence of

which is guaranteed by Szpilrajn’s (1930) theorem.4 In turn, the original partial order may be

recovered as the intersection of all coherent completions:

≻ =
⋂

u∗∈U∗
O,≻

u∗ . (2.1)

Definition 2.1 (Prospectism). It is permissible to choose an option iff, for some utility func-

tion u∗ that represents a coherent completion of (partial, incomplete) preferences ≻ , no other

option yields greater u∗-utility.

2.3 ‘Mildly sweetened’ partial preference structure

Consider the choice options oi, oj , ok ∈ O (i 6= j 6= k), for which we also have the more intuitive

labels oi = A+, oj = A, and ok = B. The absence of all-things-considered preferences is

sometimes illustrated as insensitivity to mild sweetening. That is, knowing that a decision maker

has no preference between A and B, even the introduction of a discrete improvement over A –

a mild sweetening of A, which we label A+, and for which A ≺ A+ is apparent – nevertheless

does not suffice for preferences of any sort to materialize between A+ and B. In other words,

the absence of preference between A and B, sometimes described as incommensurability, is

so fundamental that it is robust to the mild sweetening of A to A+. The mildly sweetened

partial-preference structure is illustrated in Figure 1.

Figure 1: Mild sweetening.
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2.4 Weak money pump

Peterson (2015) considers preference structures that are insensitive to mild sweetening (see

Section 2.3 above). As the definition of prospectism stipulates the permissibility of choosing in

4The symbol L(·, ·) refers to the set of all linear orders, i.e. the set of all complete orders, which in keeping
with Hare’s (2010) terminology we refer to as the set of all ‘coherent completions’.
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accordance with any coherent completion u∗ of the underlying incomplete preferences, the weak

money pump is simple to construct.

At time t1 a decision maker with preferences illustrated in Figure 1 is offered a swap in which

she may give up A+ in exchange for B. Although she has no preferences between A+ and B,

there is a coherent completion of her preferences u∗ in which B ≻∗ A+. Hence, according to the

definition of prospectism, she is permitted to swap A+ for B at time t1, although she is under

no obligation to do so. At the later date t2 she faces a choice situation in which she is offered a

swap in which she may give up B in exchange for A. Again, as she has no preferences between

B and A, she is not compelled by her preferences to choose either. But among the coherent

completions of her incomplete preferences there is a u∗ – different from that which permitted

choice at time t1 – in which A ≻∗ B. Hence, according to prospectism, she is permitted to swap

B for A. At a yet-later date t3 she faces a choice situation in which she is asked to pay a small

amount of money in order to swap A in exchange for A+. As she does have explicit preference

for the latter A ≺ A+, she increases her utility by accepting this swap – as long as the cost of

doing so is sufficiently small. Hence, it is also permissible under prospectism.

Taken together, this sequence of trades – each of which is permissible under prospectism –

leads to a sure monetary loss. The decision maker is not obligated by prospectism to participate

in these trades, but prospectism explicitly permits this sure-monetary-loss sequence. Peterson

(2015) asks the question, “How could rationality permit you to carry out a sequence of acts

that you know in advance will lead to a sure loss?” His answer is that a rational theory cannot

permit such a sure-loss-making sequence, and hence prospectism should be rejected as a theory

of rationality.

3 Cover’s random-threshold rule

3.1 Pick the largest number

Consider the following problem, a variant of which was originally introduced by David Blackwell

(1951).

Problem 1 (Pick the largest number ). Two slips of paper i = (1, 2), each inscribed with a

real number xi ∈ R, lie face down. One of the two slips is chosen at random, and the number xi

on it is shown to you. You have to guess whether your number is the larger of the two. How can

you guarantee that the probability of your guess being correct is strictly greater than one-half?

Solution (Cover, 1987) The idea is to pick a random splitting number T according to a

density f(t), f(t) > 0, for t ∈ (−∞,∞). If the number in hand is less than the realization t,
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decide that it is the smaller; if greater than t, decide that it is the larger.

Regardless of the specific form of the density f(t), its cdf F (t) is monotonically strictly

increasing in t, given that f(t) > 0 ∀ t ∈ (−∞,∞). Following Cover’s random-threshold

rule, the Guesser concludes that the unobserved number is larger than the observed number

xi according to a monotonically strictly decreasing function of the observed number xi, as

P (t− xi > 0) = 1− F (xi).

Let Nature determine the numbers (x1, x2) as the realization of a pair of random variables

(X1,X2), the support of each being the entire real line R. Nothing further is stipulated regarding

the specific distributions of X1 and X2. They may be viewed as arbitrary. It follows that

P (X1 6= X2) = 1, whereby it must hold that either x1 < x2 or x1 > x2. The following claims

(notation adapted) are proven by Samet et al. (2004).

Claim 1. If the Guesser plays an arbitrary threshold strategy against any realization (x1, x2),

then she

• wins with probability 1/2 when either x1, x2 < t or x1, x2 > t;

• wins for sure when either x1 < t ≤ x2 or x2 < t ≤ x1.

Consider the random-threshold strategy T such that P (t ∈ (x1, x2]) > 0 whenever x1 < x2

and similarly P (t ∈ (x2, x1]) > 0 whenever x2 < x1.

Claim 2. The strategy T guarantees that the Guesser wins with probability higher than 1/2

against any realization (x1, x2).

Let us examine the x1 < x2 case first. Here the realization t splits the two numbers x1 < t <

x2 with probability P (t ∈ (x1, x2]) > 0, whereby the Guesser correctly opts for the unobserved

number. If the realization t does not split the two numbers, the Guesser succeeds with prob-

ability 1/2. Overall, then, the Guesser succeeds with probability 1/2 + P (t ∈ (x1, x2]) > 1/2.

Similarly in the x1 > x2 case the Guesser succeeds with probability 1/2+P (t ∈ (x2, x1]) > 1/2.

Together, these two cases are exhaustive. Either way, the Guesser’s random-threshold splitting

strategy succeeds with probability greater than 1/2.

3.2 Application to mildly sweetened preference structure

The problem of choosing between A+ and B in the mildly sweetened partial preference structure

is formally equivalent to a truncated variant of the problem of sticking or switching in Pick The

Largest Number.
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Recall that in Pick The Largest Number, the Guesser has to choose between two initially

unknown real numbers x1, x2 ∈ R, one of which is revealed to be greater-than or less-than the

realization of a third real-valued t ∈ R random-threshold splitting number T . In the event

that the realized value of the third real number t is less than x1, it is possible to conclude that

P (x1 > x2) > 1/2 by an mount 1/2 ≥ P (t ∈ (x2, x1]) > 0.

Similarly, the decision maker’s task in the mildly sweetened preference structure is to choose

between two options yielding unknown real-valued utility u∗(A+), u∗(B) ∈ R, the utility of one

of which (A+) is revealed to be greater than the otherwise-unknown real-valued utility of a third

choice option (A); that is, u∗(A+) > u∗(A) ∀u∗(·) ∈ UO,≻. If in addition u∗(B) > u∗(A), then

P (u∗(A+) > u∗(B)) = 1/2. If however P (u∗(A+) > u∗(A) > u∗(B)) > 0 then P (u∗(A+) >

u∗(B)) > 1/2.

Proof. Although the magnitude of the attribute increment(s) between A and A+ is (are)

known, the associated increment in utility is not known, due to the underlying incompleteness

of preferences. If the utility difference can take any strictly positive (but arbitrarily small) value

u∗(A+)− u∗(A) ∈ R++, then P (u∗(A+) > u∗(A) > u∗(B)) > 0 no matter how close the spacing

u∗(A+) − u∗(B) ∈ R++, and thus P (u∗(A+) > u∗(B)) > 1/2. Let us assert the contrary, that

is u∗(A+) − u∗(A) ∈ {R++ \D} where D ⊂ R++ and D 6= ∅. However if D 6= ∅ we would

know the lower bound of the marginal utility (utilities) of the attribute(s) upon which A+ and

A differ, thereby contradicting the absence of all-things-considered preferences.

4 Ensemble prospectism

Section 3.2 shows that choosing A+ over B is not only consistent with some coherent comple-

tion of ≻, u∗, but that it is outcome rational to do so. Meanwhile, Peterson’s (2015) weak

money pump argument shows that Hare’s (2010) prospectism criterion does not ensure outcome

rationality on its own. Nevertheless, prospectism can be reconciled with outcome rationality

by bringing more of the information contained in the set of coherent completions U∗
O,≻ to bear

upon the choice between A+ and B. Specifically, this can be accomplished with the ensemble

of rankings consistent with U∗
O,≻.

4.1 Preliminaries

Knowing only that A+ ≻ A, three strict rank orderings are possible, and these correspond to

the set of rank-order equivalence classes within the set of all coherent completions of ≻ , U∗
O,≻.
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Label this set S (the ensemble of possible rank orderings):

S =
{

(A+, B,A), (B,A+, A), (A+, A,B)
}

(4.1)

Properties 4.1 (Ensemble of rankings).

(i) The subset of first-ranked options is S1 = {A+, B,A+}, and

|S1|A+

|S1|
= 2/3 ,

|S1|B
|S1|

= 1/3 .

(ii) The subset of first- or second-ranked options is S1,2 = {A+, B,B,A+, A+, A}, and

|S1,2|A+

|S1,2|
= 1/2 ,

|S1,2|B
|S1,2|

= 1/3 ,
|S1,2|A
|S1,2|

= 1/6 .

(iii) The subset of last-ranked options is S3 = {A,A,B}, and

|S3|A+

|S3|
= 0 ,

|S3|B
|S3|

= 1/3 ,
|S3|A
|S3|

= 2/3 .

(iv) Two rankings form a mutually off-setting symmetrical pair insofar as A+ and B are ranked

above A: Ssym = {(A+, B,A), (B,A+, A))}. There is one symmetry-breaking ranking

Sn-sym = {(A+, A,B)} in which A splits A+ and B.

In each of the ranking properties (i)–(iii), A+ dominates B by relative frequency.5 This

follows as a direct consequence of the symmetry-breaking ranking Sn-sym = {(A+, A,B)}, which

is detailed in property (iv). This ranking is precisely the splitting ranking that Section 3.2 proves

to occur with strictly positive probability. This symmetry-breaking ranking plays a pivotal role

in the ensemble-based approach, to which we now turn.

4.2 Ensemble approach

Ensemble methods are used extensively in diverse areas in which either (a) multiple individuals’

beliefs, forecasts, or preferences are aggregated for collective action or (b) a single decision-

making entity develops multiple different explanations, hypotheses, or models that it aggregates

for the purpose of making a specific inference. The term ‘ensemble method’ is used in machine

5In (iii), pertaining to last-ranked options, better options have lower relative frequencies. The anti-plurality
voting procedure, discussed in Section 4.2, assigns a single point to each option ranked higher than the lowest-
ranked option. In this sense, the relative frequencies in (iii) pick up performance in the anti-plurality voting
procedure.
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learning and artificial intelligence, while the same collection of aggregation techniques – by

voting or by averaging – are referred to by a variety of labels across the different areas in which

they are employed.

As in the contexts of artificial intelligence, multiple forecasters, and Bayesian model un-

certainty, the problem of choosing an option under incomplete preferences can be partitioned

into two steps, the first of which applies Epicurus’ (c. 342–270 BCE) Principle of Multiple

Explanations: If more than one theory is consistent with the observations, keep all theories.6

Construction of the set of all coherent completions of preferences U∗
O,≻ is the corresponding step

in prospectism. It is in the second step where the presently proposed ‘ensemble prospectism’

departs from Hare’s (2010) seminal formulation. In a manner consistent with ensemble methods

more generally, ensemble prospectism utilizes the full range of coherent completions of the deci-

sion maker’s incomplete, partial preferences as enumerated in U∗
O,≻, rather than any (arbitrary)

individual element of this set, to guide choice. The task of rationally guiding choice in the context

of incomplete preferences can be viewed as a problem of inference about the decision-maker’s

underlying, as-yet unknown preferences. Due to this close parallelism, ensemble methods are

not only a convenient source of apposite terminology, but also a source of apposite solutions.

Because of the sparseness of information in this context, determining tight bounds on the

prior over the ensemble of possible rank orderings is problematic. Approaches based on Bayesian

Model Averaging – or, equally, weighted voting procedures – are therefore not suitable in the

present context. This leaves a large collection of potentially applicable unweighted voting pro-

cedures (Brams and Fishburn, 2002; Brandt et al., 2013). The problem is simplified from that

typically addressed in social choice however, because strategic voting is not a consideration

within the present context.

The second step can be formalized as the application of a voting rule to the ensemble of

rankings S∗
O,≻ associated with7 the set of all coherent extensions of ≻ , U∗

O,≻. Given the number

of choice options |O| and the restriction(s) imposed by the strict preferences (if any) contained

in ≻, the number of different rankings present in the ensemble is given by n = |S∗
O,≻|. The set

of all non-empty subsets of the choice options may be written as F(O), which we will see below

may be understood as the set of feasible voting-rule outcomes. We specialize the definition of a

voting rule to the ensemble of rankings as follows.

Definition 4.1. An ensemble voting rule is a function f : S∗
O,≻ → F(O) .

A voluminous literature has developed a veritable zoo of voting rules, and a decision maker

6Epicurus’ letter to Pythocles: events “have multiple causes of coming into being and a multiple prediction of
what exists, in agreement with the perceptions.”

7ordinally equivalent to
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might in principle employ any one of a large number of different voting rules. For ensemble

prospectism to be immune to weak money pump arguments, the ensemble voting rule must

satisfy additional requirements. First, the decision maker must not have the possibility to

switch from one voting rule to another within a time frame that would make it possible for the

different properties of distinct voting rules to introduce decision-sequence-level intransitivity.

Second, the voting rule must not be a member of the class of stochastic (or lottery) voting rules,

as such rules could also introduce decision-sequence-level intransitivity. Third – and for the very

same reason – the voting procedure should be resolute, yielding a unique winner, or else if it is

not resolute, and yields a set of co-winners, the tie-breaking rule applied must not be random.

In the definition below, the second and third requirements above are jointly invoked with the

‘completely non-stochastic’ qualification.

Definition 4.2 (Ensemble prospectism). It is permissible to choose an option iff it is iden-

tified as the winner by the decision-maker’s completely non-stochastic ensemble voting rule f

applied to the ensemble of rankings S∗
O,≻ associated with the set of all coherent extensions of

≻ , U∗
O,≻.

Many voting rules satisfy these requirements, including e.g. simple and common (positional)

scoring rules such as the plurality rule, the anti-plurality rule, and Borda’s rule. Among all

positional scoring procedures, Borda’s rule is least susceptible to paradoxes and other patholog-

ical behavior, including being the only scoring rule that will never award a Condorcet winner

the lowest cumulative score (Brandt et al., 2013). Where Borda’s rule and the other positional

procedures do fall short is in susceptibility to strategic manipulation – which, fortunately, is

not a consideration in the present context, just as it is not a consideration in contexts where

Borda’s rule has been used to combine inferences from diverse methods to improve inferential

performance (Marbach et al., 2012). Under the Borda rule each of the n rankings present in

S∗
O,≻ awards a score (or ‘points’) from a maximum of |O| − 1 to the highest-ranked option,

through to 0 for the lowest-ranked option (|O|−1, |O|−2, ..., 1, 0). Each option’s Borda count is

the sum of its scores across all n ranking profiles, and the Borda rule chooses the option with

the highest Borda count. Indeed all |O| options may be ordered (completely and transitively)

by their respective Borda counts, which here we may denote ≻BC .

In the example below we revisit the ensemble of possible rank orderings S detailed in equation

(4.1). We present its ensemble-prospectism solution, operationalized for illustrative purposes

with a ‘Borda’ ensemble-voting rule.

Example 4.1 (Ensemble-prospectism solution to mildly sweetened partial preferences). Oper-

ationalization of ensemble prospectism with the Borda rule yields the unique, complete, and
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transitive ordering ≻BC = (A+ ≻ B ≻ A) (see Borda scores in Table 2). The Borda-count

ranking ≻BC here is consistent with the relative-ranking properties (i)–(iii) set out in Section 4.1

above. Moreover, the Borda-count ranking ≻BC here is also consistent with the recommendation

derived from Cover’s (1987) splitting-number solution in Section 3.2.

Table 2: Application of Borda rule to mildly sweetened partial preferences.

ranking A+ B A

A+, B,A 2 1 0
B,A+, A 1 2 0
A+, A,B 2 0 1

Borda count 5 3 1

5 Conclusions

This paper develops a refinement of prospectism that reconciles Hare’s (2010) theory of prospec-

tism with Peterson’s (2015) weak money pump. The refinement restricts the range of prospectism-

consistent choices by grafting ensemble methodology upon Hare’s (2010) set of all coherent com-

pletions of the incomplete preference relation. The resulting ensemble-prospectism refinement

is not susceptible to weak money pump arguments. By precluding choices that would lower

individual welfare, ensemble prospectism ensures outcome rationality.

Yet there is also a sense in which the form of rationality embodied in ensemble prospectism

dominates outcome rationality. Ensemble voting rules not only ensure that individual welfare is

not lowered, but also ensure strictly greater-than-even odds of selecting the best option – despite

the absence of all-things-considered preferences. This surprising, counter-intuitive finding is

underpinned by the structural isomorphism between the problem of choice under incomplete

preferences – particularly under ‘mildly sweetened’ incomplete preferences – and the Guesser’s

problem in the game Pick the Largest Number. Whereas Cover’s random-splitting-number

solution ensures greater-than-even odds of guessing the larger (unknown) number in the latter

problem, ensemble voting rules ensure greater-than-even odds of selecting the higher (unknown)

utility option in the former problem. The symmetry-breaking ranking, which is pivotal to the

ensemble-voting result in the mildly sweetened preference structure, corresponds precisely to the

splitting-number case which is pivotal to achieving greater-than-even odds in Pick the Largest

Number.
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