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Short Title: Effect of phytase exudation on the composition of phosphorus in the rhizosphere 

ABSTRACT  

Root exudation of phytase could improve the ability of plants to access organic forms of soil 

phosphorus (P), thereby minimizing fertilizer requirements and improving P use efficiency in 

agroecosystems. After 75 days growth in a high available P soil, shoot biomass and P accumulation, 

soil pH, and rhizosphere P depletion were investigated in Nicotiana tabacum wild-type and 

transgenic plant-lines expressing and exuding Aspergillus niger phytase (ex::phyA), or a null-vector 

control.  Solution 31P NMR analysis revealed a 7% to 11% increase in orthophosphate and a 

comparable depletion of undefined monoester P compounds (-13 to -18%) in the rhizosphere of 

tobacco plants relative to the unplanted soil control. Wild-type plants had the greatest impact on 

the composition of rhizosphere P based on the depletion of other monoester P, polyphosphate, and 

phosphonate species. The depletion of phytase-labile P by ex::phyA plants was associated with 

decreased proportions of other monoester P, rather than myo-InsP6 as expected. Rhizosphere pH 

increased from 6.0 to 6.5-6.7 in transgenic plant soils, beyond the pH optimum for A. niger phyA 

activity (pH=5), and may explain the limited specificity of ex::phyA plants for phytate in this soil. The 

efficacy of single exudation traits (e.g., phytase) therefore appear to be limited in P-replete soil 

conditions and may be improved where soil pH matches the functional requirements of the enzyme 

or trait of interest. 

KEYWORDS phosphorus, phytate, phytase, tobacco, 31P NMR spectroscopy, pH 



INTRODUCTION 

Organic phosphorus (Po) represents a large proportion of the total P in agricultural soils, which if 

made more accessible to plants, could promote the sustainable use of inorganic fertilizers and global 

crop productivity (Stutter et al. 2012). In order for plants to utilize Po, it must first be hydrolysed to 

orthophosphate. Phosphatase enzymes of plant or microbial origin catalyse the hydrolysis of Po in 

soils (Richardson et al. 2011). Phytate (myo-inositol hexakisphosphate, myo-InsP6) is among the 

most abundant and well-studied forms of Po in soils and is specifically hydrolysed by phytases (EC 

3.1.3.8, EC 3.1.3.26) (Greiner 2007). However, phytate is poorly hydrolysed in soil, which may explain 

its high abundance in most soils. One approach to overcoming the limited availability of phytate in 

soils has been to develop plants that overexpress fungal phytase genes (i.e., Aspergillus niger PhyA 

in: Nicotiana tabacum (George et al. 2005b); Arabidopsis thaliana (Richardson et al. 2001); Trifolium 

subterraneum (George et al. 2005a)) and release extracellular enzymes in the rhizosphere of plants 

to ‘mine’ soil Po (Stutter et al. 2012). Whilst these and other studies have demonstrated gains in 

growth and P acquisition by phytase-exuding plants supplied with phytate in controlled laboratory 

studies, such gains have not translated widely to plants grown in soils (George et al. 2005a; George 

et al. 2005b). Therefore, further study is needed to understand the limits of manipulating single 

traits (i.e., phytase) with regard to plant P acquisition and P availability in the rhizosphere.  

Abiotic (e.g., sorption, precipitation) and biotic (e.g., incorporation into microbial biomass) factors in 

soil influence the interaction of Po substrates and phytase and ultimately, the release of plant 

available orthophosphate. Due to its abundance in most soils and strong association with the soil 

solid phase, phytate has been used widely to investigate mechanisms of Po hydrolysis in soils and in 

particular for understanding limitations to mineralisation. Transgenic tobacco serves as a model for 

the potential improvements that could be gained through the manipulation of single exudation 

traits. Tobacco plant lines expressing the A. thaliana Frd3 gene showed increased citrate efflux and 

utilization of phosphate sorbed to synthetic goethite (Giles et al. 2012), and tobacco that expressed 

the A. niger PhyA gene (ex::phyA), which accessed a greater amount of P from calcium-phytate in 

comparison to wild-type plants (Giles et al. 2014). However, when provided with phytate sorbed to 

goethite, the growth advantage of the ex::phyA plant lines was only observed when the amount of 

phytate in the growth media exceeded the sorption capacity of the goethite (Giles et al. 2014). In 

soil-based experiments, plant lines that exuded phytase accumulated more P than control plants, 

but only when substrate availability was improved by the addition of lime or when soils were directly 

amended with phytate (George et al. 2005b). Collectively, these studies indicate that the benefit of 

phytase exudation in plants is controlled by various abiotic factors including pH and soil mineralogy, 



which may impact substrate availability and the efficacy of substrate-enzyme interactions (George et 

al. 2005b; Giles et al. 2014).  

Implicit to the study of phytase-exuding plants is the hypothesis that an increased presence of 

phytase in the rhizosphere will lead to the greater mineralization of soil Po and generation of plant-

available orthophosphate. However, if phytase is similarly limited by immobilization to the solid 

phase, as has been demonstrated widely for phytate (George et al. 2007a), then the conditions 

necessary for mineralization will be severely limited. Phytase acts non-specifically on a wide range of 

orthophosphate monoester compounds with hydrolysis requiring that both the substrate and 

enzyme be in soluble forms (Giaveno et al. 2010; Tang et al. 2006). In the presence of different 

minerals (e.g., goethite, montmorillonite), however, the sorption of phytate and partitioning of 

phytase activity to the solid phase may restrict mineralization (Celi and Barberis 2007; Giaveno et al. 

2010). Furthermore, the optimal phytase activity and isoelectric point of specific proteins occur at 

specific pH values, which may further influence the efficacy of enzyme-substrate interactions in soil 

(George et al. 2007a; George et al. 2007b). A. niger phyA has a maximum activity and isoelectric 

point at pH 5.0 (George et al. 2007b; Menezes-Blackburn et al. 2015). Soil conditions below or above 

pH 5 could therefore limit the potential gains in soil phytate hydrolysis afforded by the phytase 

exudation trait. 

George et al. (2005b) reported expression of PhyA in transgenic tobacco lines, which allowed plants 

to accumulate 3.7-fold more P from soluble phytate when grown on agar. Whilst direct amendment 

of phytate to low P soils improved dry weight and P accumulation of phytase-exuding plants (George 

et al. 2005b), similar studies in high available P soils have not been conducted. Arable soils receiving 

continuous phosphate application may be so replete with available P that belowground strategies 

for soil P recovery may not work (Stutter et al. 2012). Therefore, the evaluation of genotypic and 

phenotypic traits expected to improve soil P scavenging should be conducted in soils of differing Pi 

and Po contents (George et al. 2005a). Specifically, it will be necessary to determine the effect of the 

phytase exudation trait on plant growth and rhizosphere characteristics including pH and P species 

composition under P sufficiency (George et al. 2006).  

We hypothesize that when grown under non-limiting P conditions, tobacco lines with phyA 

expression will differentially influence the composition and depletion of P in the rhizosphere when 

compared to wild type plants, and that compositional differences in the acquisition of soil P may 

occur irrespective of changes in plant growth or total P uptake. To test these hypotheses, a plant 

growth study was conducted in an arable soil with high ‘plant-available P’ to (1) assess biomass 

production and P acquisition by wild-type tobacco plants and transgenic lines that express the fungal 



phyA gene or contain only the null-vector control, (2) analyse rhizosphere soils for pH, extractable 

inorganic and organic P and phytase-labile P and (3) determine the P composition of the rhizosphere 

soils using solution 31P NMR spectroscopy. 

EXPERIMENTAL 

Plant Lines. Nicotiana tabacum wild-type (var. Wisconsin-38), and transgenic plant lines (ex::phyA-1, 

ex::phyA-2, ex::phyA-3) and a null-vector control (vector) line were obtained from CSIRO Agriculture 

(Canberra ACT). The transformation of tobacco plants with the A. niger phytase gene (phyA) was 

carried out as described previously (George et al. 2005b). Briefly, phyA was fused 5’ with the carrot 

extension gene extracellular targeting sequence (ex) and expressed under the control of a 35S 

promoter from cauliflower mosaic virus and ocs terminator (Richardson et al. 2001). The pPLEX502 

vector (Schünmann et al. 2003) was used for all transformed plant-lines. Phytase activity is negligible 

in root exudate solutions from N. tabacum wild-type and vector control plants, whereas ex::phyA-1, 

ex::phyA-2, and ex::phyA-3 produce 66.8, 66.7, and 24.2 nKat g-1 root dry weight d-1, respectively 

(George et al. 2005b).  

Soil. Topsoil (0-10 cm depth) used for the plant growth experiments was collected from a field site 

near the James Hutton Institute (Dundee, Scotland; 56o42'33.03"N -2o88'75.16"W). The ‘Tayport’ soil 

is a freely drained Cambisol (FAO 2014) and is typically under cultivation with winter barley. Stutter 

et al. (2015) reported the chemical properties of the soil to be slightly acidic (pH 5.95 in CaCl2) with a 

degree of P saturation of 50%. The soil contains 1475 mg kg-1 total P (determined by NaOH fusion) 

and relatively high Olsen extractable P (84.5 mg kg-1). Solution 31P NMR analysis of the Tayport soil 

showed 765 mg kg-1 total inorganic P and 410 mg kg-1 orthophosphate monoester P (including 

degradation products of diester P)(Stutter et al. 2015).  Soil was air-dried and sieved to 4 mm prior 

to use in plant growth experiments.  

Plant Growth and Phosphorus Uptake. Plants were grown in controlled glasshouse conditions at the 

James Hutton Institute for 75 d (22oC/14oC day/night, 16 h light, 200 W m-2). Tobacco seeds were 

pre-germinated on 0.1% distilled water agar and transferred to growth pots containing 60 g of field 

moist soil. Soil moisture was maintained at ~80% water holding capacity (30 g water per 100 g dry 

soil) with distilled water. Five mL of P-free nutrient solution was added to each pot weekly (3 mM 

NH4Cl, 4 mM Ca(NO3)2, 4 mM KNO3, 3 mM MgSO4, 0.1 mM Fe-EDTA, micronutrients: 6 mM MnCl2, 23 

mM H3BO3, 0.6 mM ZnCl2, 1.6 mM CuSO4, 1.0 mM Na2MoO4, 1.0 mM CoCl2; pH 5.5). Five replicate pots 

were prepared for each plant line (wild-type, vector, ex::phyA-1, ex::phyA-2, ex::phyA-3) and a plant-

free soil control (no-plant). Shoot and root materials were harvested at the end of the growth period 



for the determination of dry weights and shoot P content. Soil adhering to roots was removed with 

gentle shaking and either stored at 4oC for pH measurements or dried (30oC, 2 weeks) and sieved (2 

mm) for soil analyses. Roots were rinsed thoroughly and roots and shoots were dried at 70oC for 3 d. 

Shoot P was determined on approximately 50 mg of dried and milled material by sulphuric acid-

peroxide digestion (Heffernan 1985) followed by malachite green (MG) colorimetry (Irving and 

McLaughlin 1990) as described previously (George et al. 2011). For rhizosphere pH, 2 g fresh sieved 

(2 mm) soil was mixed with 6 mL distilled water plus 0.85 mL 0.1M CaCl2 and allowed to settle prior 

to measurement of the supernatant fluid with a glass pH electrode (Mettler Toledo, Ltd., Leicester 

UK).  

Extractable- and Phytase-labile Phosphorus. Extractions were carried out by shaking (100 rpm) 2 g 

air-dried soils from the rhizosphere and unplanted soil treatments with distilled water (1:4 w/v) or 

50 mM citrate (pH 5.0, 1:2 w/v) for 1 h (Stutter et al. 2015). Extracts were centrifuged (4,000g, 15 

min), filtered (0.45 mm polyethersulfone), and stored at 4oC prior to analysis. Water and citrate-

extractable inorganic P (WEPi, CEPi) concentrations were based on reactive P concentrations 

determined by MG colorimetry, whereas total water- and citrate-extractable P (WEPtot, CEPtot) were 

determined by Inductively-Coupled-Plasma-Optical Emission-Spectroscopy (ICP-OES). Unreactive 

fractions (WEPo, CEPo) were determined by the difference between total and reactive phosphate 

concentrations. In this study, unreactive and reactive P are considered analogous to organic and 

inorganic fractions in soil, respectively. 

Phytase-labile P was determined in citrate extracts as described previously (Giles et al. 2016). Briefly, 

Natuphos (3-Phytase, EC 3.1.3.8; BASF SE, Ludwigshafen Germany) was added to citrate extracts 

(100 mL) at an excess final activity of 10 nkat mL-1 and combined with 30 mL of MES buffer (150 mM 

MES, 10 mM EDTA, pH 5.5) to a final incubation volume of 300 mL  (37oC, 48 h). Reactions were 

stopped with an equal volume of cold (4oC) trichloroacetic acid (10% w/v) and phosphate release 

was measured by MG colorimetry (Irving and McLaughlin 1990).  

Solution 
31

P Nuclear Magnetic Resonance Spectroscopy. The initial soil, no-plant control soil 

(receiving nutrient additions for 75 d), and rhizosphere soils collected from the wild-type, vector, 

and ex::phyA-1 plant lines were analysed using solution 31P NMR spectroscopy. Rhizosphere soil from 

the ex::phyA-1 plant line (as opposed to ex::phyA-2 and ex::phyA-3) was selected for NMR analysis 

based on its similarity to the vector control in terms of shoot growth and soil pH (see results). Soils 

were bulked across replicates (~1 g per pot) and extracted in 0.25 M NaOH + 0.05 M EDTA (1:20 w/v, 

16 h, 200 rpm, 20oC) followed by centrifugation (3500g, 40 min) and filtration (Whatman No. 42 

paper; Whatman Filters, GE Healthcare Life Sciences, Buckinghamshire, UK) as described previously 



(Stutter et al. 2015). A 10 mL aliquot of extract was collected for the determination of total P, Fe, 

and Mn by ICP-OES and the remaining extract (~80 mL) freeze-dried for 31P NMR analysis. Extraction 

efficiencies were calculated based on total P in NaOH-EDTA extracts relative to total soil P 

determined by aqua regia digestion (Yara International, Analytical Services, Pocklington, York, UK). 

Immediately prior to NMR analysis, 150 mg of freeze-dried extract was dissolved in 1.5 mL of 1 M 

NaOH containing 10% D2O (v/v) and 0.2 mM methylene diphosphonic acid (MDPA; M9508, Sigma-

Aldrich, Inc., Dorset UK) as an internal standard (17.3 ppm). NMR analysis was carried out using a 

Bruker Avance 500 II instrument (Bruker, Germany) operating at 202.458 MHz with decoupling, with 

a 5 mm probe, 90o pulse angle, and internal temperature maintained at 25oC. The T1 value for the 

orthophosphate peak (1.154 s) was determined by inversion-recovery experiments. Cade-Menun 

and Liu (2014) recommended using delay times of 5xT1 to achieve 99% signal equilibrium for 

experiments operating with 90o pulse angle. We used a pulse time of 4 ms with a 6 s pulse delay 

(Actual 5xT1 = 5.772 s), an acquisition time of 0.41 s, 5 Hz line-broadening, and 5000 scans (8.9 h). 

Spiking experiments were carried out by adding 0.1 mL of known Po compound solutions (50 mg 

each in 5 mL distilled water) to blank extract samples, prepared in the same manner as all other soil 

extracts. Compounds from Sigma-Aldrich included phytic acid dodecasodium salt hydrate (myo-

InsP6; P3168), D-glucose-6-phosphate sodium salt (G6P; G7879), DL-a-glycerol phosphate 

magnesium salt hydrate (a -glyc; 17766), and b-glycerophosphate disodium salt hydrate (b-glyc; 

G5422). Chemical shift (ppm) assignments were determined based on values reported in the 

literature (Cade-Menun and Liu 2014; Cade-Menun 2015; Stutter et al. 2015; Turner et al. 2003b) 

and those confirmed by spiking experiments: inorganic orthophosphate (6.0), polyphosphate (-4.23), 

phosphonates (10-20), total orthophosphate monoester (3.5-7.0), G6P (5.00), a -glyc (5.28), b-glyc 

(4.71), myo-InsP6 (5.76, 4.86, 4.49, 4.35), scyllo-InsP6 (4.02), other monoesters (3.5-5.9), 

orthophosphate diesters (2.5 – -3.0). Alkaline conditions in the NaOH-EDTA extract are known to 

promote phospholipid degradation resulting in the accumulation of a-glyc and b-glyc in 31P NMR 

samples (Schneider et al. 2016). We assumed complete degradation of phospholipids would occur 

during the nearly 9 h NMR experiment. The full proportions of a-glyc and b-glyc are therefore added 

to the estimates of total diester P.  

Theory and Calculation 

Data were analysed in JMP Pro 11.2.0 (SAS 2013). One-way analysis of variance was used to 

determine significant differences between plant and soil treatments (Tukey’s Least Squares 

Difference; p<0.05). Variables were checked for normality using the Shapiro-Wilk test and log-



transformed as required. Pearson correlations for extractable soil P fractions and plant 

characteristics were evaluated at the 95% confidence interval. 

31P NMR spectra were aligned by setting the orthophosphate peak to 6 ppm (Cade-Menun and Liu 

2014) followed by manual peak picking and Global Spectral Deconvolution in MestReNova 

(MestReNova 2015). To confirm the quantitative detection of P, calibration curves were generated 

using the peak area and total MDPA P in each sample. The calibration used to calculate the total 

NaOH-EDTA P in each NMR sample was then checked against the actual NaOH-EDTA P concentration 

determined by ICP-OES. NaOH-EDTA P concentrations calculated within 5% of the actual value were 

deemed acceptable for analysis. The concentration of individual P species was calculated using the 

NMR compositional data and total NaOH-EDTA P in extracts.  For comparisons of 31P NMR species 

composition across plant treatments, data was transformed using the isometric log ratio procedure 

(ilr)(Filzmoser and Hron 2009) and sequential binary partition (SBP) as described previously (Abdi et 

al. 2015). Aitchison distances for the P species compositions of the rhizosphere and no-plant soils 

were determined relative the initial soil (Abdi et al. 2015; Egozcue and Pawlowsky-Glahn 2006). 

RESULTS  

Plant Growth and Phosphorus Uptake. Shoot and root dry weights of the tobacco plant lines were 

compared after 75 d growth in the Tayport soil which, based on Olsen extractable P (84.5 mg kg-1), 

would be expected to contain sufficient P to support maximum plant growth. Shoot dry weights of 

phytase-expressing plant lines (ex::phyA-1, -2, -3) were not significantly different from either the 

vector control or wild-type plants (Table 1). Root dry weights of vector control plants (0.18 g) were 

however significantly larger than the wild-type, ex::phyA-1, and ex::phyA-2 plants (p<0.05; Table 1). 

As a result, shoot:root ratios differed significantly across plant lines with the widest ratio in the wild-

type (7.6) followed by ex::phyA-1 (4.7), ex::phyA-2 (4.1), ex::phyA-2 (3.5) and vector (3.5) plants. 

Across all plant lines, this indicates differences in growth patterns and partitioning of resources in 

plants with expression of phytase. Shoot P concentrations were up to 29% greater in ex::phyA-1 and 

ex::phyA-2 as compared to the vector control and wild type plants (p<0.05; Table 1). However, there 

were no significant differences in total shoot P accumulation across any of the plant lines (Table 1). 

Changes in readily extractable soil P and soil pH. The initial soil contained 5 mg kg-1 WEPTOT of which 

75% was inorganic (Table 2). Total WEP and WEPi content did not change over the period of plant 

growth in the no-plant control soil (4.8 mg P kg-1). In contrast, soils obtained from the rhizosphere of 

all plant lines contained significantly larger concentrations of WEPTOT at the end of the growth 

period, which was predominantly WEPo (54-65%; Table 2). Total WEP, WEPi, and WEPo 



concentrations were similar in rhizosphere soils collected from the vector control and wild-type 

plants and the no-plant control soil (4.8 to 7.2 mg P kg-1). Concentrations of WEP were also similar in 

rhizosphere soils from the three ex::phyA plant lines, which contained 1.8 to 2-fold more WEPTOT and 

approximately 2.9-fold more WEPo in comparison to the no-plant soil (p<.05; Table 2). As a result, 

rhizosphere soil from ex::phyA plants contained the largest percentage of WEPo (60-65%) in 

comparison to other soil treatments (Table 2).  

Citrate (50 mM, pH 5.5) extracted 2.4-fold more P from the planted and no-plant control soils in 

comparison to extractions by water. Total CEP in the initial soil (64 mg P kg-1) consisted of 54% CEPi 

and decreased significantly during the growth period in both the no-plant control soil and in the 

rhizosphere of all plant lines (Table 2).  In comparison to the initial soil, CEPTOT in the no-plant soil 

declined approximately 3-fold with the remaining 20.5 mg P kg-1 being 80% CEPi (Table 2). Growth of 

all plant lines resulted in a further ~2 mg P kg-1 reduction of CEPTOT concentrations in comparison to 

no-plant control soils and this was associated with the preferential depletion of CEPi by plants (Table 

2). Soils from ex::phyA plants contained 25-30% less CEPi than soil from the no-plant control. In 

contrast, CEPi concentrations in wild-type soils were 2-fold less than in the no-plant control soil, and 

no significant difference was found between CEPi in no-plant and vector soils (Table 2).  Only in soil 

from the ex::phyA-1 plant line were CEPi concentrations significantly less than the no-plant, wild-

type, and vector control soils (Table 2). Soil from the ex::phyA-1 plant line also contained the largest 

concentration (6.8 mg P kg-1) and proportion (37%) of CEPo in comparison to the other soil and plant 

treatments (Table 2).  

Phytase-labile P in citrate extracts represented 38% of CEPTOT in the initial soil (24.1 mg P kg-1) and 

was 10-fold less in the no-plant soil at the end of the growth period (p<0.05; Table 2). Soils collected 

from wild-type, vector control, and ex::phyA-1 plants contained similar concentrations and 

proportions of phytase-labile P (1.1-1.6 mg P kg-1; Table 2). Wild-type and ex::phyA-1 soils contained 

1.4 to 2-fold less phytase-labile P relative to the no-plant soil (Table 2). In contrast, phytase-labile P 

in soil from ex::phyA-2 and ex::phyA-3 plants was approximately 2-fold greater than the no-plant soil 

and represented 23-25% of the CEPTOT.  

The pH of the no-plant soil, which received nutrient solution in the glasshouse for 75 d, increased by 

0.53 from an initial pH value of 5.95 to 6.48 (Table 2). On average, pH was significantly higher (+0.05-

0.17 units) in rhizosphere soils compared to the no-plant control soil. Soil pH of the ex::phyA-1 (6.63) 

and the vector control plant lines (6.66) were significantly more alkaline than the wild-type, 

ex::phyA-2, and no-plant control soils (Table 2).  



Depletion of total and NaOH-EDTA extractable phosphorus in soils. The concentration of total P 

ranged from 642 mg kg-1 in the wild-type soil to 1072 mg kg-1 in the initial soil (Table 3). Sodium-

hydroxide-EDTA extractable P concentrations ranged from 418 mg kg-1 in the vector control soil to 

672 mg kg-1 in the initial soil (Table 3). Across all soils NaOH-EDTA extracted 63% to 97% of the total 

P. The assessment of P forms by 31P NMR in this study is therefore considered indicative of the total 

P species composition, though incomplete and selective extraction could have influenced P 

compositions, particularly in soils with low extraction efficiency (i.e., initial, vector control). 

Soil from the no-plant control contained 37% less total P in comparison to the initial soil. Relative to 

the no-plant control, planted soils contained a further 8% (wild-type, vector control) to 13% 

(ex::phyA-1; Table 3) less total soil P. Shoot P accumulation accounted for 19 to 38% of the total P 

loss measured in the planted soils (Table 1). Differences in the recovery of P into shoots by these 

plant lines may be due to the accumulation of P in root materials with contrasting biomass, or 

through greater mobilization and leaching of P from the planted soils.   

Phosphorus species composition of soils determined by 
31

P NMR. Figure 1 shows the solution 31P 

NMR chemical shift spectra and peaks identified in the monoester region relative to the MDPA 

internal standard for the different soils. The concentration and proportion of Pi was greatest in the 

initial soil (477 mg kg-1; 71% of total NaOH-EDTA P) and was substantially less in soils following the 

growth period either without plants (217 mg kg-1; 33%) or in the planted soils (182-252 mg kg-1; 40-

44%; Table 3). Orthophosphate was the primary form of Pi in all soils (>99%). Polyphosphate 

accounted for less than 1% of total P (<1.4 mg P kg-1) in the NaOH-EDTA soil extracts (Table 3). 

Organic P in the initial soil (194 mg P kg-1, 29%) was primarily monoester P, of which myo-InsP6 was 

the most abundant, and G6P the least abundant (7.8 mg kg-1, 1%; Table 3). Total diester P in the 

initial soil (15.3 mg kg-1) was entirely composed of diester degradation products (a-glyc, b-glyc) and 

accounted for 2% of P in the NaOH-EDTA extract (Table 3). Relative to planted and no-plant soils, the 

initial soil contained the smallest proportion of other monoester P (10%; Table 3).  

Soil from the no-plant control contained the largest concentration and proportion of total Po (434 

mg P kg-1, 67% of the total NaOH-EDTA P), which was primarily composed of monoester P (Table 3). 

The no-plant soil contained 70 mg kg-1 
myo-InsP6 (11%) and 19 mg kg-1 

scyllo-InsP6 (3%; Table 3). 

Other monoester P compounds represented 50% (328 mg kg-1) of the P in extracts from the no-plant 

control soil. Glucose-6-phosphate (1%) and total diester P (1%) were the least abundance Po forms in 

the no-plant control soil. The large concentration of Po in the no-plant soil (relative to the initial soil) 

indicates that a considerable transformation of P into Po occurred in the soils during the plant 

growth period and that this was primarily driven by an increase in other monoester P.  



Proportions of Pi in the planted soils (182-252 mg kg-1; 40-44%) were greater than in the no-plant 

control soil (217 mg kg-1; 33%; Table 3). The proportion of Pi in planted soils at the end of the growth 

period was greater for wild-type and vector control plants (44%) compared to soils from ex::phyA-1 

(40%). Absolute concentrations of P in these soils show a decrease in Pi in vector control and 

ex::phyA-1 soils relative to the no-plant soil (Table 3). This is primarily due to small NaOH-EDTA-P 

concentrations in the vector and ex::phyA-1 soils (418-464 mg kg-1) relative to the other soil 

treatments (568-572 mg kg-1; Table 3). Total P was also diminished in the vector and ex::phyA-1 soils 

relative to the no-plant soil and may therefore represent a real decrease in the concentration of 

monoester P during the growth period. 

The concentrations and proportions of total Po were smaller in soils from the wild-type, vector 

control, and ex::phyA-1 plants (236-317 mg kg-1; 56-60%) in comparison to the no-plant control soil 

(434mg kg-1, 67%; Table 3). Myo-InsP6 was greater in the planted soils (15-16%) relative to the no-

plant soil (11%). In contrast, other monoester P was depleted in the planted soils (132-187 mg kg-1; 

32-37%) relative to the no-plant soil (328 mg kg-1, 50%; Table 3). The proportion of total diester P 

was greater in the planted soils (2-4%) relative to the no-plant soil and consisted primarily of 

phospholipid degradation products (a-glyc, b-glyc; Table 3). 

Rhizosphere soil from wild-type plants contained the greatest concentration of myo-InsP6 (86 mg kg-

1, 15%) among the plant treatments. Relative to the transgenic soils, wild-type soils contained similar 

proportions of myo-InsP6 (15%), scyllo-InsP6 (4%), and other monoester P (33%), with differences in 

absolute concentration being driven by total and NaOH-EDTA extractable P (Table 3). In terms of 

concentration, the only monoester pools to be depleted by wild-type plants relative to the no-plant 

control were other monoester P (-141 mg kg-1) and G6P (-3 mg kg-1; Table 3). Relative to the no-plant 

control, wild-type soils contained +16 mg kg-1 myo-InsP6, +3 mg kg-1 scyllo-InsP6, and +9 mg kg-1 total 

diester P (Table 3). Phosphonate concentration and proportion was smallest in the wild-type soils 

(0%, 0.1 mg kg-1) as compared to no-plant (0.1%), vector (0.3%) and ex::phyA-1 (0.2%) soils (Table 3). 

Rhizosphere soils from transgenic plants contained 7-11% less Po relative to the no-plant control soil 

with the depletion of Po being greatest in the vector control soil compared to the ex::phyA-1 soil. In 

both the vector control and ex::phyA-1 soils, changes in Po were primarily driven by the depletion of 

other monoester P (132 mg kg-1, 32%; Table 3). Otherwise, the proportions of Po species (myo-InsP6, 

scyllo-InsP6, G6P) in the transgenic soils were found to be greater than or similar to the no-plant soil 

(Table 3). Total diester P was an exception to this due to its elevated proportions in vector (4%; Table 

3) and ex::phyA-1 soils (2%; Table 3) compared to the no-plant soil.  



Major differences in the P composition of soils from the wild-type and transgenic plant lines were 

associated with orthophosphate, other monoester P, polyphosphate, and phosphonates. Although 

the latter two P forms accounted for less than 1% of the P forms identified, these were consistently 

found to be absent or in the lowest abundance in the wild-type soil. Orthophosphate was most 

abundant in the wild-type soil (44%) and other monoester P also occurred in relatively low 

abundance in this soil (33%) compared to the transgenic plants (Table 3). Major differences between 

the transgenic soils include the relatively greater abundance of orthophosphate in the vector soil 

(43%) and lower abundance of other monoester P (32%) relative to the ex::phyA-1 soil (Table 3). 

Collectively, the contrasting compositions of P in wild-type and transgenic rhizosphere soils suggest 

different mechanisms of P turnover in the rhizosphere. 

Aitchison distances were calculated as described by Abdi et al. (2015) to assess differences in P 

composition among the initial soil and planted soil treatments relative to the no-plant control soil. 

The sequential binary partition matrix and ilr values for n minus one P species are provided in the 

appendices (Table A1, Table A2). This analysis provides an unbiased comparison of the P species 

distribution in the soils relative to a soil reference (no-plant). The initial soil (1.85) was most similar 

to the no-plant soil, followed by soils from ex::phyA-1 (1.99), vector control (2.14), and wild-type 

plants (3.73; Table 3). Although the lack of replication in the 31P NMR analysis limits our ability to 

determine the statistical significance of these values, Aitchison distances that differ from zero 

indicate a global change to the composition of all treatments relative to the reference condition 

(Egozcue and Pawlowsky-Glahn 2006). Furthermore, small differences in Aitchison distance between 

treatments indicate the similarity of soil P compositions, whereas larger differences are more 

dissimilar (Abdi et al. 2015). Aitchison distances indicate that the wild-type tobacco had the largest 

impact on the composition of soil P relative to the no-plant soil. Aitchison distances of the transgenic 

plant soils differed by 0.15 and were therefore more similar to one another than to the wild-type soil 

(Table 3). 

DISCUSSION 

Phosphorus transformations in unplanted soil. We observed large differences in the concentration 

and composition of P between the initial soil and the unplanted (no-plant) soil, which was watered, 

received plant nutrients, and was maintained alongside the other plant treatments for the duration 

of the growth experiment. A conversion of orthophosphate to other monoester P during the 75 d 

growth period occurred (Table 2, Table 3). In addition to the incubation of soils, soil rewetting can 

lead to a release of P from the microbial biomass and an increase in concentrations of available P 

(Blackwell et al. 2009; Bünemann et al. 2013; Butterly et al. 2011). Blackwell et al. (2009) found the 



majority of P leached from rewetted soil columns to be organic. However, Butterly et al. (2011) 

found that the ‘pulse’ of P resulting from soil rewetting had stabilized after 49 h in incubation 

experiments, despite evidence of continued soil respiration. Differences in the P composition of soils 

in the current study may not be solely due to differences in rewetting between the initial and 

incubated soils (no-plant and planted), but a combination of P released by the initial rewetting and, 

as shown in other studies, using 32P isotopic dilution (George et al. 2006), the continual microbial 

cycling and stabilisation of P in moist soils during the growth period.  

The generation of inositol phosphates in incubated soils was first observed by Caldwell and Black 

(1958) and Cosgrove (1964). More recently, the similarity of microbial P compositions 

(polyphosphate, phospholipids, nucleic acids) to that of soil has been demonstrated using 31P NMR 

(Makarov et al. 2002; Makarov et al. 2005). In the current study, these changes were primarily 

reflected as larger proportions of other monoester P in the nutrient-amended soils (Table 3). Inositol 

hexaphosphate stereoisomers other than myo- and scyllo-InsP6 were not identified in the current 

study, however neo- and chiro-InsP6 are likely to occur among the peaks identified as other 

monoester as are inositols with fewer than six phosphate moieties (Cade-Menun 2015). In contrast, 

CEPi, CEPo, and CEPphy concentrations were depleted in the no-plant soil relative to the initial soil.  In 

the absence of plant uptake, the reduction of CEP concentrations coupled with increased 

concentrations of NaOH-EDTA extractable P species indicates the possible partitioning of P between 

these fractions during the incubation of the no-plant soils.  

Plant-induced changes to pH and readily extractable phosphorus in the rhizosphere. Water- and 

citrate-extractable P were assessed to monitor plant-induced changes to immediately bioavailable 

and readily extractable P. These pools are expected to change rapidly in response to microbial 

activity, rhizodeposition, and plant uptake processes. Whilst extraction with water essentially targets 

soil solution P, citrate may solubilize adsorbed and precipitated forms of P through competitive 

displacement (ligand exchange) or the chelation of metal cations (e.g., Ca2+, Al3+, Fe3+)(Martin et al. 

2004; Ström et al. 2005). The increased concentration of WEPi and depletion of CEPi beyond that 

observed in the no-plant control soil (Table 2), therefore indicates a plant-induced partitioning of soil 

P into readily available pools and possible preferential uptake of Pi previously sorbed or in complex 

with soil minerals and organic matter.  This is also reflected in the negative relationship of shoot dry 

weight with CEPi (r=-0.491; p=.0159) and CEPTOT (r=-0.507, p=.010; Appendix Table A3).  

The depletion of phytase-labile P concentrations in planted soils indicates the transformation or 

utilization of phytate-like compounds (e.g., inositol phosphates, other monoester P) by the wild-type 

and ex::phyA-1 plants (Table 2, Table 3). Based on the NMR analysis, the pool of CEPo targeted by the 



Natuphos phytase was likely P forms characterized as other monoesters, which were more abundant 

than myo-InsP6 and depleted in the planted soils (Table 3). Phytase-labile P was 2-fold greater in 

rhizosphere soils from ex::phyA-2/-3 plants in comparison to the no-plant soil (Table 2). The inability 

of these plant lines to deplete the phytase-labile P pool may be related to the relatively low rate of 

phytase exudation by ex::phyA-3 (24.2 nKat g-1 root dry weight d-1)(George et al. 2005b) or the small 

root dry weight of ex::phyA-2 plants, though this could not be confirmed. However, ex::phyA-1 had 

the greatest rate of phytase exudation (66.8 nKat g-1 root dry weight d-1)(George et al. 2005b), a 

greater root dry weight, and, in most cases, the greatest effect on extractable P and rhizosphere pH 

relative to vector control and wild-type plants (Table 2).  The relationship between rhizosphere pH 

and phytase-labile P concentrations among the plant lines tested indicates that, holding shoot P 

accumulation constant, small plant-induced increases in pH (<0.2 units) could significantly affect the 

amount and bioavailability of P in the tobacco rhizosphere (Table A3).  

Phosphorus species transformations in the rhizosphere of tobacco. Solution 31P NMR analysis 

revealed the transformation of Pi to Po by tobacco plants grown in a high available P soil. Relative to 

the no-plant soil, there was 7% to 11% more Pi in the soil of wild-type and transgenic plants and a 

proportional decrease in Po, primarily as other monoester P. Depletion of other monoester P relative 

to the no-plant soil followed the order: Vector (-18%), wild-type (-17%), ex::phyA-1 (13%). The 

pattern of P species depletion by the wild-type and transgenic plant lines was contrary to our 

original hypothesis. Based on previous work with tobacco (George et al. 2005b; Giles et al. 2014; 

Giles et al. 2012) and other phytase-exuding plants (George et al. 2008; George et al. 2006; Hayes et 

al. 1999; Richardson et al. 2001), it could be expected that ex::phyA-1 would not only deplete a 

larger proportion of the total soil Po, but would specifically access more myo-InsP6 than vector 

control or wild-type plants.  

Depletion of myo-InsP6 was not apparent in the planted soils. Rather, myo-InsP6 increased relative 

to the no-plant soil and it was other monoester P that was the most depleted. The depletion of other 

monoester P was consistent with changes to the phytase-labile CEP pools as noted above. George et 

al. (2005a) reported the greatest depletion of NaOH-extractable P forms, particularly monoester P, 

by subterranean clover (Trifolium subterraneum L.) expressing phyA in comparison to wild-type 

clover; however, myo-InsP6 was not specifically quantified in that study. Our results show that 

rhizosphere soils from wild-type tobacco contained the smallest proportions and concentrations of 

other monoester P and phytase-labile CEP, and that myo-InsP6 was elevated in all planted soils. 

Therefore, undefined forms of Po in the monoester region were the largest and most dynamic forms 



of P accessible to both the transgenic and wild-type plants and no specificity for the utilisation of 

myo-InsP6 by the phytase-exuding ex::phyA-1 plant line was observed. 

The exudation of a native purple-acid phosphatase (PAP) by tobacco could have contributed to the 

utilisation and transformation of Po in the pH 6-6.5 soils (Lung et al. 2008). Purple-acid-phosphatases 

isolated from tobacco (Lung et al. 2008), sweet potato (Olczak et al. 2003), soybean (Hegeman and 

Grabau 2001), and Arabidopsis (Kuang et al. 2009) have been shown to act non-specifically on 

phytate and other orthophosphate monoester compounds. Wild-type tobacco produces low levels 

of phytase activity in root exudates (0.2 nKat plant-1 d-1) and could acquire 3-10% of P from soluble 

or insoluble sources of phytate in vitro (Giles et al. 2014; Giles et al. 2012). Activity profiles of the N. 

tabacum PAP indicate a slightly higher catalytic efficiency and pH optimum (pH 5.5) than the A. niger 

phyA, which may be impaired above pH 6.5 (Lung et al. 2008). In contrast to the fungal phyA trait, 

which is constitutively expressed in ex::phyA plants, the production of native PAP will be expressed 

based on growth stage, P availability and potentially other environmental cues (Lung et al. 2008). 

However, at the pH of wild-type and transgenic soils (pH 6.5-6.7), even a low level of PAP activity 

could explain the decrease in monoester P by plants lacking expression of the A. niger phyA. (Lung et 

al. 2008) 

The interaction and regulation of phosphatase activity by soil microorganisms in the rhizosphere of 

phosphatase-exuding plants may also have a considerable effect on Po utilization by plants 

(Nannipieri et al. 2008). Spohn and Kuzyakov (2013) showed that P fertilization diminished the 

production of plant phosphatases by white lupin (Lupinus albus L.), but did not affect the abundance 

or distribution of acid and alkaline phosphatase activity by soil microorganisms. Thus in addition to 

the exudation of native PAP, the production of microbial phosphatases may have contributed to the 

differential depletion of soil phytate by the wild-type and transgenic plant lines. The measurement 

of soil phosphatase activity in future studies would help to identify the contribution of secondary 

plant phosphatases or responses of the microbial community to single plant exudation traits. 

Factors controlling the utilisation of soil organic phosphorus by tobacco. Nicotiana tabacum was 

used as a model plant to investigate the effects of phytase exudation on the composition and 

depletion of Po in soils. Our results indicate however that although a wider range and concentration 

of Po forms were depleted by the vector control and plants expressing a heterologous phytase from 

A. niger (ex::phyA), wild-type plants had the largest effect on the composition of soil P when grown 

in a high available P soil. Our analysis highlights two factors, rhizosphere pH and root biomass, which 

may explain the differing effects of the wild-type and transgenic plants on the soil Po pool.  



Rhizosphere pH was similar between vector control (6.7) and ex::phyA-1 plant lines (6.6) and greater 

than in the wild-type, initial (6.0), and no-plant soils (6.5; Table 2). The isoelectric point of phyA 

occurs at pH 5 (pI = 5). At this pH, the enzyme is adsorbed to the soil surface, but with minimal 

inhibition to phytase activity associated with the solid phase (George et al. 2007b). At pH 7.5, 

repulsive forces between the negatively charged protein and soil surface lead to greater amounts 

and activities of the enzyme in solution (George et al. 2007b), meaning that phyA should be soluble 

and available in the transgenic rhizosphere at pH 6.5. However, the pH optima of A. niger phyA 

activity in solution occurs at approximately pH 2.5 and 5.0 (George et al. 2007b; Sariyska et al. 2005) 

and can decrease by more than 60% above pH 6 (Mezeli et al. 2015; Naves et al. 2012). Naves et al. 

(2012) reported A. niger phytase activity (y; FTU g-1) to depend on pH (x) following the cubic 

relationship: y = -501.23x3 + 4994.6x2 - 13296x + 10733 (R2 = 0.9684). Based on this analysis, phytase 

activity decreases by 18% from pH 5.0 to 5.5, by 53% from pH 5.5 to 6.0, and by an additional 97% 

from 6.0 to 6.3, where solution activity is expected to go to zero. Whilst a greater amount of the 

enzyme would be expected in the soil solution at the pH of vector and ex::phyA-1 soils, these pH 

conditions could have also limited or even abolished phyA activity beyond pH 6.5.  

Although the composition of P in soils from the vector control and ex::phyA plants were the most 

similar based on Aitchison distances, the abundance and concentration of specific P forms was least 

in soil from the vector control plants. This is largely due to smaller NaOH-EDTA extractable P 

concentrations in vector soils, but is reflected in 31P NMR proportional data as well (Table 3). 

Physiological differences between the vector control and ex::phyA-1 may explain these differences. 

For example, root biomass was 38% larger in the vector control than ex::phyA-1 plant line. Larger 

roots provide plants with greater access to the entire soil volume, which can facilitate root-induced 

changes to soil abiotic (e.g., pH, P solubilisation) and biotic conditions (e.g., plant-microbe 

interactions; Badri and Vivanco 2009). As summarized by Brown et al. (2013), plants respond to P 

deficiency through conservation or active acquisition strategies. Root elongation and branching 

(Hammond and White 2008; Lynch 2011), root hair growth (Bates and Lynch 1996), exudation of 

organic anions (Hoffland et al. 1992), and modification of pH (Hinsinger et al. 2003) pertain to active 

strategies, which promote P availability, whereas altered metabolism and diminished root growth 

are examples of conservation responses (Johnson et al. 1994; Peret et al. 2011). Furthermore, as 

reported for the exudation of other organic anions and enzymes (Badri and Vivanco 2009; Lopez-

Bucio et al. 2000), the metabolic cost of phyA production and transport may have contributed to 

reduced root growth in the ex::phyA plants, though this could not be confirmed in the current study. 

Thus, differences in the root biomass of the vector control and ex::phyA-1 plants may be related to 

(1) a root growth response by the vector control plants to low P availability, (2) root growth 



inhibition in ex::phyA-1 plants due to the cost of phyA production and transport, or (3) the efficient 

acquisition of soil P by phytase-exuding plants leading to reduced root growth by ex::phyA-1 plants.  

In conclusion, the complex multi-genic and multi-trait interactions that occur between plants and P 

limitation in soil may mean that a single gene or ‘root solution’ (Stutter et al. 2012) to improving 

plant P acquisition are difficult to achieve and, at best, unpredictable. Future studies aimed at 

achieving the full potential of single traits such as phyA should consider (1) the nutritional and 

metabolic trade-offs associated with soil P acquisition in wild-type and transgenic plant systems and 

(2) the appropriate selection or modification of rhizosphere chemical conditions (e.g., pH, organic 

anion efflux) to match the functional requirements of the enzyme. Trait-based solutions such as 

these may be best suited to P limited systems where plant P requirements are not already satisfied 

by legacy available P, particularly in non-GM plant systems where trait expression depends on 

nutrient availability and other edaphic factors. 
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