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Abstract

An important issue in the manufacturing and supply chain literature concerns the
optimization of inventory decisions. Single-product inventory problems are widely stud-
ied and have been optimally solved under a variety of assumptions and settings. How-
ever, as systems become more complex, inventory decisions become more complicated
for which the methods/approaches for optimizing single inventory systems are inca-
pable of deriving optimal policies. Manufacturing process flexibility provides an exam-
ple of such a complex application area. Decisions involving the interrelated product
inventories and production facilities form a highly multidimensional, non-decomposable
system for which optimal policies cannot be readily obtained. We propose the method-
ology of Approximate Dynamic Programming (ADP) to overcome the computational
challenge imposed by this multidimensionality. Incorporating a sample backup simula-
tion approach, ADP develops policies by utilizing only a fraction of the computations
required by classical Dynamic Programming. However, there are few studies in the lit-
erature that optimize production decisions in a stochastic, multi-factory, multi-product
inventory system of this complexity. This paper aims to explore the feasibility and rel-
evancy of ADP algorithms for this application. We present the results from numerical
experiments that establish the strong performance of policies developed via temporal
difference ADP algorithms in comparison to optimal policies and to policies derived
from a deterministic approximation of the problem.

Keywords: approximate dynamic programming; machine learning, dynamic program-
ming, flexible manufacturing; process flexibility; inventory control

1 Introduction

Manufacturing flexibility is a widely used practice to cope with environmental uncertainty.
Technological developments and evolving market requirements over time have resulted in a
long history of research in flexibility that is broad and varied (see, for example, Gustavsson
(1984); Sethi and Sethi (1990)). Many manufacturing flexibility applications have been
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Figure 1: Example system designs for a 5-product, 5-factory system. From left to right:
dedicated design, 2-chain design, 3-chain design and full flexibility design.

studied including routing inventory, training labour, contracting, pricing and machinery.
For a recent review see Jain et al. (2013). The focus of this paper is process flexibility. This
can be categorized as a type of machine flexibility with the ability to produce more than
one product in a single factory. Best practice, in terms of production capacity utilization, is
having full flexibility where each factory can produce all products. However, full flexibility
requires a large degree of investment that includes machinery, training, spare parts, raw
materials, etc. Early studies focussed on having either a dedicated system (no flexibility)
or full flexibility. A key development by Jordan and Graves (1995) showed that a fraction
of this investment, through limited flexibility, could be almost as beneficial as full flexibility
when the system is designed appropriately. They suggest a chaining design, which links
every product and factory with each other by forming a chain of production abilities across
the system (Figure 1). Hence, production can be moved along the chain to match excess
demand with unutilised capacity. Limited flexibility via 2- or 3-chain designs are shown to
provide the majority of the benefits of full flexibility in terms of demand coverage.

The study of Jordan and Graves increased the interest in this field from both the aca-
demic and practical point of view and a significant literature on the benefits and outcomes
of limited process flexibility has emerged since 1995. See Chou et al. (2008) for a review of
the process flexibility literature. More recently see, for example, Francas et al. (2009); He
et al. (2012); Tanrisever et al. (2012); Deng and Shen (2013); Simchi-Levi and Wei (2015);
Rafiei et al. (2016); Soysal (2016a). Despite the interest in limited process flexibility, little
attention is given to the challenge of optimizing production decisions over time in such sys-
tems. Although providing the ability to handle demand variation more efficiently, process
flexibility substantially complicates production decisions made in response to inventory levels
and ongoing demands. The indirect and direct linkage of all factories and products requires
production decisions to be made with respect to the overall production of the system. The
interrelated nature of inventory levels to production decisions results in a complex, non-
decomposable decision problem, which cannot be solved by classical Dynamic Programming
(DP) methods due to the associated computational limitations. A proposition is Approxi-
mate Dynamic Programming (ADP) algorithms for optimizing production decisions in this
complex production-inventory problem (see Sutton and Barto (1998); Powell (2007)).

The progress of an ADP algorithm is similar to DP in that it is based on the concept
of recursively updating the value function of each state in each stage of the algorithm.
However, rather than evaluating all possible actions in all states and stepping backwards in
time, ADP simulates the system by moving forward in time updating the value functions
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of only a fraction of states based on past events in the simulation. ADP methods have
been applied to various inventory problems and settings. Van Roy et al. (1997) introduced
an “online temporal-difference method” with approximated policy values, to optimize a
two-echelon inventory system. Topaloglu and Kunnumkal (2006) studied a single-product,
multi-location inventory system with multiple production plants. Kunnumkal and Topaloglu
(2008) introduced ADP methods to find optimal base-stock levels for newsvendor problems
and also an inventory purchasing problem assuming that price is unknown, and concluded
that using these methods guarantee that iterations will converge to the optimal solution.
Wu et al. (2016) consider a multi-product, multi-machine two-stage production system with
value function estimation via Artificial Neural Networks (ANN).

The aim of this paper is to investigate the feasibility of ADP algorithms in developing
effective policies for optimizing production decisions in process flexibility systems. This
requires the tuning of the parameter settings required for ADP algorithms in this complex
inventory optimization problem. To this end, we will consider tractable inventory problems
which are small enough to be solved by DP value iteration, yet are rich enough to retain
the flexibility challenges of large-scale problems. The paper is organized as follows. In
Section 2, we describe the process flexibility inventory problem. In Section 3, the ADP
approaches utilised are introduced and the parameter settings of the ADP algorithms are
explained. Section 4 presents the results of the numerical experiments conducted under
different ADP parameter settings and compares the performance of these derived policies
to the performance of an optimal policy. The ADP algorithm performance is additionally
compared to that of a policy derived from a deterministic approximation of the problem.
Finally, in Section 5, a conclusion of the study is provided and directions for future research
are outlined.

2 A production-inventory control problem with pro-

cess flexibility

We focus upon a single-echelon, periodic review, capacitated stochastic inventory problem
under assumed process flexibility operations. This problem design corresponds to continuous
production systems in which multiple products may be produced at each of the available fa-
cilities. Given that we shall establish process flexibility operations in a continuous production
environment, set-up costs and lead times are assumed to be negligible. A frequently cited
example of such systems arises in the automotive industry. However, this can be adapted
to other industries which utilise process flexibility in their production systems such as the
textile industry, the semiconductor/electronics industry or in service industries such as call
centres. See, for example, Chou et al. (2010).

The production-inventory system comprises P products and F factories. Inventory stor-
age and factory production capacities limit the amount of products stocked in each warehouse
and produced at each factory respectively. Each factory is assumed to have a total produc-
tion capacity, Cf , 1 ≤ f ≤ F , and the inventory capacities of each product is given by
Ip, 1 ≤ p ≤ P . The ability of factory f to produce product p is described as a link between
f and p; and is defined as lf,p = 1 (conversely, lf,p = 0 implies no production capability).
The set of states for product p is Ωp = {0, . . . , Ip} with the set of system states given by
I = XPp=1Ωp.

The decision at the beginning of each period is to determine how much to produce for
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each product across all factories. The state of the system at the beginning of a period is
denoted i ∈ I where i = (i1, i2, ..., iP ) and ip ∈ Ωp is the inventory level of product p. In
state i, the set of feasible actions, A, comprises all allowable factory production capacity
allocation combinations. Each element of set A is given by

a =

{
qf,p;

P∑
p=1

qf,p
Cf
≤ 1; 1 ≤ f ≤ F ; 1 ≤ p ≤ P

}

where qf,p are the units of total production capacity allocated to product p at factory f .
Clearly, qf,p = 0 when lf,p = 0.

Production is make to stock and stochastic demand, Dp, for product p is assumed to
be Poisson with mean ηp each period. Any stock held at the end of a period generates
holding cost hp per item. In a stock-out situation, excess demand will be lost with penalty
cost θp per item. The unit factory production cost of a product is denoted uf,p. We ignore
production lead times and assume that holding inventory does not induce holding costs until
the end of the period which are common assumptions in inventory literature (e.g., Tarim
and Kingsman, 2004; Soysal, 2016b). Under action a in inventory state i the expected
(one-period) production-inventory costs are given by

Ra
i =

P∑
p=1

F∑
f=1

uf,pqf,p

+
P∑
p=1

ip+
∑F

f=1 qf,p∑
dp=0

P (Dp = dp)

{
hp

(
ip +

F∑
f=1

qf,p − dp

)}

+
P∑
p=1

∞∑
dp=ip+

∑F
f=1 qf,p

P (Dp = dp)

{
θp

(
dp − ip −

F∑
f=1

qf,p

)}
. (1)

The three terms on the r.h.s. of (1) represent the production costs under action a, the
expected holding costs paid for any outstanding stock held at the end of the period and the
expected penalty costs paid for any unmet demand, respectively.

The optimization objective is to determine a stationary policy π ∈ Π governing the
actions taken that minimizes the expected long-run discounted inventory costs over an infinite
horizon,

min
π∈Π

Eπ
{
∞∑
t=0

γtRa
i

}
,

where γ is a discount rate. This optimization problem presents a considerable challenge. The
non-decomposable nature of the system means that state and action spaces are highly mul-
tidimensional. For a system with P products, with each product having I units of inventory
capacity, the state space comprises (I + 1)P states. The action space grows exponentially
with the number of links. In a X-flexibility design there are

F∏
f=1

(
Cf +X

X

)

possible system production capacity allocation decisions. In addition, each decision will
require the stochastic outcomes to be evaluated. Even for relatively small problems the
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so-called curse of dimensionality renders classical DP infeasible. This motives a requirement
for the development of approaches that can produce strongly performing heuristics for the
problem.

3 Approximate dynamic programming algorithms

DP and ADP algorithms utilise the value function (or cost-to-go function), V (i), representing
the minimum expected long-run discounted costs for a system starting in state i. In classical
DP value iteration, value function estimates are stored in a so-called look-up table for use in
the DP recursion

V (i) = min
a∈A

{
Ra

i + γ
∑
i′

βai,i′V (i′)

}
, (2)

where Ra
i is the expected one-period cost defined in (1) and βai,i′ =

∏P
p=1 β

a
ip,i′p

is a transition

probability from state i to successor state i′ under action a, where

βaip,i′p =



∑∞
dp=ip+

∑F
f=1 qf,p

P (Dp = dp), i′p = 0,

P (Dp = ip +
∑F

f=1 qf,p − i′p), 0 < i′p < Ip ≤ ip +
∑F

f=1 qf,p,

∑ip+
∑F

f=1 qf,p−Ip
dp=0 P (Dp = dp), i′p = Ip ≤ ip +

∑F
f=1 qf,p,

P (Dp = ip +
∑F

f=1 qf,p − i′p), 0 < i′p ≤ ip +
∑F

f=1 qf,p < Ip,

0, otherwise.

A classical DP value iteration algorithm requires the enumeration of the entire state space,
a minimisation over all feasible actions for each state and, for each action, an expectation
is calculated. This process, called full backup, continues iteratively until the value functions
converge which, for the problem described in Section 2, becomes computationally burden-
some for even small problems.

Look-up table ADP algorithms use the same storage of value function estimates and the
functions are updated iteratively. However, rather than a full backup via backward iteration,
ADP uses a sample backup approach with forward iteration. Starting from an initial state
(or states), a typical ADP approach is to simulate the system and observe realizations of the
random outcomes. The simulated information is used to learn about and improve estimates
of the value functions, here denoted V̂ (i). The benefit of ADP algorithms in this setting
is to be able to develop strongly performing heuristic production policies with significant
reductions in the computation time over classical DP.

Algorithm 1 introduces the basic idea behind the approach, maintaining the notation
already developed. In Step 1 the value functions are initialized (commonly set to zero)
and a starting state for the simulation is identified. The simulation of the system is then
conducted through taking actions in each state encountered, observing the outcomes of these
actions and using that information to improve the estimates of the value functions. At each
iteration of the simulation the following steps are required. In Step 2 an action, â, needs to
be selected. A range of action selection strategies are available. Common strategies include,
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Algorithm 1 ADP Pseudo-algorithm

1: STEP 1: Initialization
2: Initialize value functions V̂ (i) ∀ i ∈ I
3: Choose an initial state i ∈ I
4:

5: for (each iteration of the simulation) do
6: STEP 2: Action Selection
7: Choose action â ∈ A
8:

9: STEP 3: Observe System Feedback
10: Observe exogenous information dp ∀ p ∈ P
11: Observe successor state i′ ∈ I and immediate return r̂
12:

13: STEP 4: Value Function Update and Learning
14: Update V̂ (i) by

15: V̂ (i)← α
(
r̂ + γV̂ (i′)

)
+ (1− α)V̂ (i)

16:

17: STEP 5: Move to Next Iteration
18: i← i′

19:

20: end for

selecting an action greedily by substituting the current estimates of the value functions V̂ (i)
in (2) and taking the minimising action; or selecting the action randomly using a probability
function over the action space A in state i that accords a higher selection probability to
actions promising lower expected future costs. In Step 3 we observe the results of taking
action â in state i. As a result of the exogenous information, a sample realisation of the
stochastic demand for products, dp, and action â the system will evolve to a new inventory
state i′ and a return

r̂ =
P∑
p=1

F∑
f=1

uf,pqf,p +
P∑
p=1

hp

(
ip +

F∑
f=1

qf,p − dp

)+

+
P∑
p=1

θp

(
dp − ip −

F∑
f=1

qf,p

)+

(3)

from the system is generated. Where in (3) (x)+ = max[0, x]. In Step 4 the system feedback
is incorporated by updating the current value function estimate with the new information
gained. Again, as with other aspects of developing ADP algorithms, a range of approaches
are available. Here the observed return from the system along with the current estimate of
ongoing returns from the successor state is combined with the current estimate of the value
function via a learning rate (or step-size) parameter α. A common choice is for a dynamic
step-size, for example, indexing to the number of visits, n, made to a state in the simulation
such as α = 1/n. Value function estimates are then the average of the observed returns from
that state throughout the simulation. An alternative is for a static α ∈ (0, 1] which results in
new information having a continuing influence on value function estimates and hence do not
converge, but are practical in non-stationary problems. From Step 5 we continue iteratively
until some stopping criterion is observed or time limit reached.

In our approach we employ the widely used temporal difference (TD) learning due to its
generality and convergence properties (see Sutton and Barto, 1998, Chapter 6). Note that,
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our purpose in this study is not revealing the convergence properties of ADP algorithms,
but investigating the effects of various settings for ADP algorithms on the costs of resultant
policies. For a broad discussion on the convergence of ADP algorithms in general please refer
to, for instance, Lewis and Liu (2013); Nascimento and Powell (2013); Liu et al. (2013); Yang
et al. (2014); Ni et al. (2015) or Sharaf (2016). We now expand upon our brief overview of
an ADP algorithm to develop the settings and parameter choices for a TD ADP algorithm
application. Specifically we discuss Step 1, the initialization of the algorithm, in Section
3.1. In Section 3.2 we overview algorithm choices of simulation length and policies for
action selection in Step 2. Sections 3.3 and 3.4 describe step-size parameter choices and
the use of eligibility traces in value function updating for Step 4 respectively. In Section
3.5 we detail the control methods that determine the policy learning approach across Steps
2 and 4. We conclude this section with an exemplar Q-learning TD(λ) ADP algorithm
with ε-greedy exploration and exploring starts, applications of which are considered in the
numerical study of Section 4 and described below. While specific to its particular application
of TD ADP algorithms, it general enough to support the following discussion of algorithmic
and parameter settings.

3.1 Value function initialization

The ADP algorithm begins with the initialization of the value function estimates (Step 1,
Algorithm 1). Best practice involves finding a good approximation of the value functions
and using these for initialization. With good initial estimates, ADP algorithms will derive
good policies more quickly and build on these initial values more accurately. However, for
large problems, finding a good quality approximation may be difficult and require significant
time to be practically evaluated. The approximation itself may be sufficient as a solution to
the problem.

A simpler initialization of the value function estimates is to assign a fixed value k to
each (k = 0, say). However, this results in a longer learning phase which may cause early
convergence of the value functions. Setting a higher value of k may reduce the gap between
initial estimates, V̂ , and true value functions, V . Algorithm 2 presents an application of
fixed value initialization. Three cases of fixed value initialization (k = 0; 0 < k < V ; and
V < k) are considered in our numerical experiments.

3.2 Path and policy selection

The production-inventory control problem is not episodic in nature and hence consideration
must be made with respect to employing a single simulation episode of length T or M
episodes of length N (where M ×N = T ). i.e., a single-start or exploring-starts algorithm.
The former is natural to the problem but may result in visiting a limited number of states,
depending upon other parameter settings. The latter is appropriate to problems with a
defined termination but may aid with exploring the state space. TD algorithms are amenable
to both approaches and are evaluated in the numerical study of Section 4 with an exploring-
starts version presented in Algorithm 2.

The action selection strategy (Step 2, Algorithm 1) in combination with the exogenous
demand sampling impacts the sample path followed by the algorithm. Selecting the min-
imising action based on current value function estimates could limit the extent to which
the state space is sampled and actions evaluated. This may result in (highly) suboptimal
policies by not considering potentially beneficial states and actions by (greedily) exploiting
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current value function estimates, restricting the simulation to a subset of states and actions.
Soft policies include an element of random action exploration which force consideration of
alternative actions and visits to less frequently visited states as a result. ε-greedy policies
are widely used examples of soft policies in the ADP literature. A greedy action is selected
with probability 1 − ε and, with probability ε, an action is chosen randomly from all feasi-
ble actions. This policy selection will prevent (up to some point) having a myopic control
procedure where an early selected action can dominate the system preventing the algorithm
utilising actions that may reduce costs in the long run. The appropriate choice of soft policy
is not straightforward due to the exploration-exploitation trade-off. Higher ε implies more
exploration of the action space which may be useful for discovering undervalued actions (or
states). However, this also means less exploitation which can lead to slower convergence of
value functions. An application of ε-greedy action selection is presented in Algorithm 2.

3.3 Learning rate

After the action is taken and immediate cost r̂ and successor state i′ are determined, this
new information is utilised to update value function estimates. In classical TD learning,
the impact of simulated outcomes on value function estimates is governed by the step-size
parameter α as follows

V̂ (i)← α
[
r̂ + γV̂ (i′)

]
+ (1− α)V̂ (i). (4)

The resulting value function estimate represents a weighted average of past information.
Re-arranging (4) highlights the naming of the approach. The current estimate is changed
towards the new information by a fraction of the temporal difference between the new infor-
mation and the current estimate

V̂ (i)← V̂ (i) + α
[
r̂ + γV̂ (i′)− V̂ (i)

]
. (5)

Note that we shall refer to the temporal difference as δ =
[
r̂ + γV̂ (i′)− V̂ (i)

]
in Algorithm 2.

The choice of α ∈ (0, 1] is problem dependent with respect to the transience of the learning
phase and if the problem is stationary or non-stationary. We consider both constant and
dynamic step sizes in our evaluation.

Constant step-sizes are appropriate to non-stationary problems where recent observations
carry more information about value functions, but can be deployed in stationary problems
using a small α. Large α would result in the most recent (noisy) simulation observation
having constant weight over estimates and cause fluctuations in the updates. Small α suffer
less from this but require a longer convergence of estimates. Dynamic step-sizes are usually
preferred, for example, setting α = 1/n. The potential issue in the dynamic step-size setting
lies in problems with a long transient learning phase resulting in early convergence of the
value function estimates before reaching near-optimal levels. A review of setting the step-size
parameter α may be found in George and Powell (2006).

3.4 Value function update

A value function estimate is a result of all states, actions and costs following from the initial
visit to a state. Eligibility traces, e(i), provide a temporary record of events through the
simulation that can then be incorporated in the value function updates of all previously
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visited states. In TD(λ) algorithms eligibility traces determine the states for which value
function estimates should be updated with the newly observed immediate cost information,
r̂, and by how much this information should affect each estimate. In current state i∗ the
eligibility traces are updated in the replacing traces method by

e(i)←

{
1, i = i∗,

γλe(i), i 6= i∗,
(6)

where λ ∈ [0, 1] is the trace-decay parameter which reduces the impact of the new information
for states visited earlier in the simulation. Hence, the e(i) reduce by a factor of γ and λ
if they were not the most recently visited state. The trace value for a state that has not
been visited for a long time will fade gradually, while more frequently visited states will have
higher eligibility values. An alternative method is accumulated traces given by

e(i)←

{
γλe(i) + 1, i = i∗,

γλe(i), i 6= i∗.
(7)

Under this method trace values are not bounded above by 1. Rather than updating a single
value function estimate as in (5), the estimates of all states are updated in each iteration
using

V̂ (i)← V̂ (i) + αδe(i).

If λ is set to 0, the algorithm will be a simple one-step TD algorithm, as only the one-step
return will be incorporated. If λ is set to 1, the above formulation will be a more general
way of implementing a Monte Carlo ADP approach. Any λ value between 0 and 1 will form
a complex n-step return algorithm (see Sutton and Barto (1998) for an in-depth discussion).

3.5 Control method

ADP algorithms gather information about the system by simulation. In each iteration,
actions are decided based on the value functions, and value functions are updated based on
the actions selected. The questions of which information will be used while the action is
selected and value functions are updated is answered by the chosen control method.

Although various control methods are available in the literature, here we will mention
two frequently cited approaches: Q-learning and SARSA. Q-learning is an off-policy method,
which means that the information is not gathered by directly following a policy; only the
greedy actions suggested by the estimates of most recent value functions are used. Let Q(i, a)
be the value function estimate of a system starting in state i, assuming action a is taken.
Then, following the previous formulation, we have that

V̂ (i) = min
a∈A
{Q(i, a)}.

Hence, in Step 2 of Algorithm 1, we can employ

â = argmin
a∈A

{Q(i, a)} (8)

for selecting the greedy action based on the current value functions. The value function
update (Step 4) then becomes

Q(i, a)← α[r̂ + γmin
a′

Q(i′, a′)] + (1− α)Q(i, a). (9)
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Note that in (8), the greedy action is selected based on the latest value function estimates,
and in (9), the expected cost-to-go of the successor state is calculated by mina′ Q(i′, a′), the
value of the greedy action suggested by the current value function estimates. In the successor
iteration, a greedy or ε-greedy action will be selected based on the updated value functions,
independently of the policy used in the current iteration as a result of off-policy control.

On-policy control methods learn about the policy being followed. In contrast with off-
policy control, on-policy control requires value function updates to be calculated based on
the current policy,

Q(i, a)← α[r̂ + γQ(i′, a′)] + (1− α)Q(i, a),

where a′ is the actual action to be taken in the successor iteration. Note that on-policy
control chooses a′ using the current policy, and takes that action into account for the value
function update, rather than the greedy action that current value functions suggest. Based
on the current policy, a′ may be the greedy action suggested by the current value functions,
or a randomly chosen action suggested by an ε-greedy policy. Either way, the action to be
taken in the successor state has to be selected before updating the value function estimates
of the current state. This requires that Step 2 in Algorithm 1 is placed between observing
system feedback and value function update (Steps 3 and 4 currently), now calculating the
action to be taken in the successor state rather than current state. This approach, called
SARSA, ensures that the information processed (i.e., both immediate cost observed, and
cost-to-go of successor state) is a result of current policy while continuously improving that
policy.

These two control methods are defined for Q-functions in the literature, as described
above. Use of such Q-functions in place of V -functions results in a state space expansion
to include both state and action information. The corresponding memory requirement for a
multidimensional problem as considered here is infeasible. Hence, we introduce equivalent
formulations using V -functions for SARSA and Q-learning methods given by

V (i)← α [r̂ + γ (r̂′ + γV (i′′))] + (1− α)V (i) (10)

and
V (i)← α[r̂ + γV (i′)] + (1− α)V (i), (11)

respectively. Where, in (10), V (i′′) is the successor state of the successor iteration and hence
the term r̂′+γV (i′′) represents the cost-to-go of taking action a′ in the successor state. Note
that, (11) is the same as the update procedures stated in Algorithm 1 and Algorithm 2 (with
the addition of eligibility traces). Hence, they present implementations of V -functions in a
Q-Learning method. An exemplar algorithm for a V -function implementation of the SARSA
control method is available from the authors on request.

4 Numerical study

We now present a summary of the key findings from an investigation into the selection
and tuning of the options and parameters discussed in the previous section. For stochastic
process flexibility problems, optimal policies can be calculated only in small-sized problems.
Hence, the problems chosen are such that policies can feasibly be evaluated by DP value
iteration for a performance comparison with policies derived from ADP algorithms and still
allow for differing levels of production flexibility. Figure 2 provides a collection of 3-factory
(circles), 3-product (squares) set-ups with dedicated, 2-chain, full and asymmetric flexibility
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settings. Within each flexibility design setting four problems are considered, each defined by
the production capacities of factories, Cf , given in each circle and the inventory capacities of
products, Ip, given in each square. The one-period expected demand, ηp, is set equal to Ip.
Holding costs and penalty costs are set to hp = 1 and θp = 7, respectively, for 1 ≤ p ≤ P .
Unit factory production costs production costs are set to

uf,p =

 1.0 1.1 1.21

1.21 1.0 1.1

1.1 1.21 1.0

 . (12)

Production costs differ for each factory-product pair due to different technologies, space
capabilities and employees at each factory and include variations in transportation costs

Algorithm 2 Q-learning TD(λ) ADP algorithm with ε-greedy exploration and exploring
starts

1: STEP 1: Initialization
2: Initialize V̂ (i) = k ∀ i ∈ I
3: Initialize e(i) = 0 ∀ i ∈ I
4:

5: for m = 1 to M do
6: Choose an initial state i
7: for n = 1 to N do
8: STEP 2: Action Selection
9: Generate random number x from Uniform[0, 1]

10: if x < 1− ε then

11: â← argmin
a

{
Ra

i + γ
∑

i′ β
a
i,i′V̂ (i′)

}
12: else
13: â← a random action
14: end if
15:

16: STEP 3: Observe System Feedback
17: Observe random demand, dp ∀ p ∈ P
18: Observe successor state i′ and immediate cost r̂
19:

20: STEP 4: Value Function Update
21: v ← r̂ + γV̂ (i′)
22: δ ← v − V̂ (i)
23: e(i)← 1
24: Update V̂ (i), e(i) ∀ i ∈ I by
25: V̂ (i)← V̂ (i) + αδe(i)
26: e(i)← γλe(i)
27:

28: STEP 5: Move to Next Iteration
29: i← i′ ∀ p ∈ P
30:

31: end for
32: end for
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(a) Dedicated Designs

(b) Asymmetric Flexibility Designs

(c) 2-Chain Designs

(d) Full Flexibility (3-Chain) Designs

Figure 2: Flexibility designs and problem settings used for numerical computations. At each
design level problems are distinguished by their production capacities (circles) and inventory
capacities (squares).

from factories to each product depot or market.
Production policies are derived from DP and ADP algorithms with the objective of

minimizing discounted long-term expected inventory costs, where the discount factor γ is
set to 0.9. The policies are then evaluated via Monte Carlo simulation. Beginning from a
zero-inventory state, a derived policy is applied in a simulation of 10,000 iterations. The
simulation output is used to calculate the discounted long-term costs of each state visited, and
the average of these costs is the reported expected long-term discounted cost of the policy.
The approximate computation time for policy calculation using DP and ADP algorithms
and the resulting optimal long-run expected discounted costs via DP are presented in Table
1. We comment that, from inspection of optimal actions, optimal production policies are
naturally of threshold-type with global production targets aimed to meet these as closely as
possible. We see from Table 1 that the majority of the benefits of flexibility are provided
by the 2-chain design, however one would expect marginal cost differences to increase in
larger problems. Dedicated and asymmetric designs fail to achieve such performance. This
is consistent with the literature in that well chosen designs are more capable to adjust
production schedules to demand variations. This clearly results in lower inventory holding
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Problem Design

C1-C2-C3 I1-I2-I3 Dedicated 2-Chain Full Asymmetric

5-5-5 5-5-5 292.664 278.266 277.820 285.579

5-5-5 6-5-3 294.827 257.737 257.611 280.447

8-3-3 5-5-5 433.580 293.813 293.568 355.562

8-3-3 6-3-4 279.217 243.919 243.895 274.406

Computation times of

DP 0.5 hrs 30 hrs 16 days 20 hrs

ADP 4 - 5 mins 2 - 4 hrs 10 - 14 hrs 2 - 3.5 hrs

Table 1: Optimal costs of each flexibility design for each problem setting with typical com-
putation times for DP and ADP algorithms

requirements and expected lost sales and that, as shown here, optimal production plans can
realise such benefits over time.

In the main part of the study we wish to identify strongly and poorly performing settings
in ADP algorithms. We directly compare the results of the simulated policy performance
against DP using the percentage difference in the expected long-run discounted costs via

100× ADP Cost−DP Cost

DP Cost
.
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(d) Asymmetric Flexibility Design

Figure 3: Boxplots of percentage difference in costs between ADP policies and optimal
policies for three step-size rules α = {0.1, 0.5, 1/n}.
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(d) Asymmetric Flexibility Design

Figure 4: Boxplots of percentage difference in costs between ADP policies and optimal
policies for λ = {0, 0.2, 0.5, 0.8, 1}.

Due to the large number of settings required in the evaluation of the ADP algorithms
we split the following analyses into two sections to better focus on the various settings
considered. To do so effectively we fix certain settings that have been found to perform well
from an earlier study. In the first experiments we fix the initialization of values functions to
zero (k = 0), utilise the Q-learning control method with ε-greedy action selection (ε = 0.05)
and the ADP algorithm runs for 2,000 iterations. With these set we present the results
for choices of the step-size parameter α = {0.1, 0.5, 1/n} (Figure 3); eligibility trace decay
λ = {0, 0.2, 0.5, 0.8, 1} (Figure 4); and eligibility traces update method: accumulating or
replacing traces (Figure 5). A total of 3× 5× 2 = 30 setting combinations applied to the 16
problems.

As would be expected, in Figure 3, constant step-sizes exhibit weaker performance in
general than the dynamic step-size rule. High constant α = 0.5 is the most inappropriate
in this domain with low constant α = 0.1 performing consistently in problems with no flex-
ibility structure. The performance under constant step-sizes highlights the influence of the
most recent demand samples on the value function updates and, ultimately, the resulting
policy. The dynamic step-size rule exhibits the most consistent performance. Strongly per-
forming settings for the eligibility trace decay are for low-medium settings, λ = {0, 0.2, 0.5}
(Figure 4). High settings, λ = {0.8, 1}, exhibit the worst performance. Given the capacity
limitations and no back-ordering, the stochastic demand has a strong influence on the suc-
cessor state compared to earlier states or actions in the simulation. This is caused by state
aggregation in which all negative or excess inventory resolve to the zero inventory or full
inventory state respectively. An observed high or low demand influences the successor state
in such way that states visited further back in the simulation have minimal impact on that
evolution. Hence, lower λ settings which result in greater decay of the eligibility traces are
appropriate. i.e., costs incurred shortly after a visit to a state are more relevant to its value
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(d) Asymmetric Flexibility Design

Figure 5: Boxplots of percentage difference in costs between ADP policies and optimal
policies for two eligibility trace update rules.

function update than costs incurred later in the simulation. This problem consequence also
impacts the choice of eligibility trace update method with the replacing traces method seen
to provide more reliable performance than accumulating traces (Figure 5). Many visits to a
zero inventory position from high demand for products, for accumulating traces, will result
in a high eligibility trace value. If the simulation (randomly) experiences a low cost realisa-
tion in that state a negative temporal difference δ will occur. Compounded with the high
eligibility trace the update significantly reduces the value function estimate for that state.
Greedy action selection will then be attracted to that state which can be accomplished by
producing nothing. Even with ε-greedy action selection an ADP algorithm can struggle move
away from a limited number of actions with accumulated traces.

In the second set of experiments we fix to settings with reliable performance from the first
experiments and explore other setting choices. We fix to the dynamic step-size parameter
α = 1/n, a low-medium eligibility trace decay λ = 0.2 with the replacing traces method.
Again, the ADP Algorithms are run for 2,000 iterations. We present the results for choices
of value function initialization k = {0, 200, 400} (Figure 6); policy selection setting ε =
{0, 0.05, 0.1} (Figure 7); control method: Q-learning or SARSA (Figure 8); and simulation
path choice: single episode or 20 episodes of 100 iterations each (Figure 9). A total of
3× 3× 2× 2 = 36 setting combinations applied to the 16 problems.

From Table 1 the optimal costs of the problems are (generally) between 250-350. Hence,
the positive valued function initializations represent choices close to optimal (k = 200)
and in excess of optimal (k = 400). In Figure 6, choosing k = 200 results in the best
overall performance, however, such a close to optimal value would not be known beforehand.
Without such knowledge, a positive initial value may be higher than the values of optimal
cost-to-go functions. The caveat is in choosing an initialization exceeding the optimal (k =
400). This is an additional effect of the state aggregation within the problem setting. An
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(d) Asymmetric Flexibility Design

Figure 6: Boxplots of percentage difference in costs between ADP policies and optimal
policies for three function initialization choices k = {0, 200, 400}.
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(d) Asymmetric Flexibility Design

Figure 7: Boxplots of percentage difference in costs between ADP policies and optimal
policies for ε = {0, 0.05, 0.1} settings. High value function initialization cases (k = 400)
excluded.

algorithm will visit zero inventory states typically within a few iterations. If the initial value
functions are higher than optimal, the value function estimates of such states will decrease
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Figure 8: Boxplots of percentage difference in costs between ADP policies and optimal
policies for Q-Learning and SARSA control policies. High value function initialization cases
(k = 400) excluded.
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Figure 9: Boxplots of percentage difference in costs between ADP policies and optimal
policies for single path versus exploring starts. High value function initialization cases (k =
400) excluded.
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Problem Myopic Deterministic ADP

C1-C2-C3 I1-I2-I3 Ded. 2-Chain Full Asymm. Ded. 2-Chain Full Asymm.

5-5-5 5-5-5 14.35 20.47 20.43 17.16 0.70 0.14 1.38 0.68

5-5-5 6-5-3 13.17 22.45 22.46 15.96 0.63 0.32 0.26 0.78

8-3-3 5-5-5 5.68 16.67 16.83 11.83 1.30 0.57 1.64 1.93

8-3-3 6-3-4 14.54 22.82 22.84 16.46 0.75 0.23 0.20 0.27

Table 2: Percentage cost suboptimalities of the myopic-deterministic policy and the resultant
policy of the ADP algorithm.

as they move towards their optimal values. Attractive decisions are then to visit such low-
cost estimated states (by producing nothing) restricting action exploration by focussing on
a limited number of actions, which results in poor policies. Hence, although requiring a
longer learning phase, the zero value setting has a more robust performance compared to
the positive valued initializations. Presentation of the remaining results will exclude the
k = 400 setting. In Figure 7 we see that high exploration (ε = 0.1) typically results in higher
costs. We comment here that this setting performs the best comparatively for k = 400
where the need to explore the action space is required to overcome the high value function
intialisation. However, with an appropriately configured initialization the need to explore
actions is lessened. A balanced approach here would be utilise some exploration ε = 0.05
rather than resort to purely greedy actions (ε = 0). Figure 8 shows that the control method
employed in the problems has little impact in the outcome implying that ease or speed of
implementation of the control would be the factor to consider here. Q-learning algorithms,
which require smaller number of computations when V -functions are used, are observed to be
slightly faster in these experiments. Similarly, in Figure 9, single or multiple episodes have
little impact on performance. The impact of the random demand within the capacitated
system, combined with the problem scale, leads to an even distributed state occurrence
frequency minimising the need to employ multiple episodes.

We conclude the study with a comparison of the performance of policies derived from
an ADP algorithm and a simple myopic deterministic policy. From the experiments above
a sensible setting of the ADP algorithm would be a Q-learning algorithm with a replacing
traces update method using a single-start simulation path, with parameters set as α = 1/n,
λ = 0.2, k = 0, ε = 0.05. The myopic deterministic policy is derived by solving a single period
optimization problem with deterministic demand for each product set to its mean, ηp. This
näıve approach therefore does not take into account the stochastic nature of demand nor the
impact of decisions on future costs. While not expected to compete with dynamic policies the
comparison is to determine the value of accounting for these two problem aspects in decision
making. Table 2 provides the percentage difference in the expected long-run discounted
costs of the policies to the optimal costs obtained via simulation. We see that policies
derived from the ADP algorithm are within 2% of optimal. The myopic deterministic policy
performance is comparatively weak with suboptimalities typically in excess of 10% and a
worst case performance of 22.84%. While such a performance may be expected, the scale of
the suboptimalities indicates a need for sophisticated policies that account for stochasticity
and evolving costs as a result of production decisions taken. In addition, a well designed
ADP algorithm is able to achieve a cost performance close to that of an optimal policy.
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5 Conclusions

An important aspect of the investigative study of the previous section is that implications of
problem design and structure greatly affect appropriate settings and choices in the construc-
tion of ADP algorithms. Such findings can drive the extension of ADP algorithms to similar
problems of greater size and complexity. From inspection of optimal policies resulting from
DP value iteration we can confirm that, as one might think naturally, production decisions
are (dynamically) of threshold-type. The capacity requirements of production and inventory
also have a strong influence. The nature of state aggregation this engenders results in re-
generative states at these limits, which implies that an average cost per unit time objective
would also be viable and therefore worthy of consideration.

Our numerical study reveals relations between a number of settings (value function initial-
ization, eligibility trace decay value and eligibility trace update method) and the assumptions
of capacitated production and no back-ordering in our process flexibility problem. This pro-
vides an important insight on how to adjust these settings for any problem size. Without
foreknowledge of optimal value functions a zero-value function initialization (k = 0) is shown
to perform well. Complimentary to that is the use of low eligibility trace settings (λ) and
the application of replacing traces. Inappropriate choices for these settings in any problem
size may result in poorly performing algorithms due to the state aggregation effects.

For the remaining settings investigated, our numerical study provides valuable clues on
how ADP algorithms performed compared to optimal under different parameter settings
and where to search for appropriate settings in larger scale problems. With the stationary
problem setting and implied state aggregation a simple dynamic step-size setting (α = 1/n)
is observed to work well. To balance the issue of ADP algorithms possibly restricting to
a limited number of actions and states some small amount of exploration is recommend
through ε-greedy exploration with ε = 0.05, say. For the tractable look-up table problems
considered here, the choice between using a single-start simulation path and exploring starts
or which policy control method has little impact on the performance of the resulting policy.
Hence, such a decision can be restricted to the ease or speed of implementation.

The ADP look-up table approach still requires allocating memory for the entire state
space and can involve calculating cost-to-go expectations of actions for a given state to
find the best action amongst them. We note that, although requiring less computational
time, allocating memory for the state space and calculating expectations even for a single
action is still not feasible for large multidimensional systems. The challenge to a broader
implementation is in extending to problems for which the memory constraints render a look-
up table approach infeasible. One could clearly adapt the work of Wu et al. (2016) to develop
effective solutions to this problem. The black-box nature ANN results in a functional form
of value function that still requires the optimization of the ADP equivalent of the r.h.s. of
(2) to realise the resulting action. Evaluation of such could require recourse to heuristic
optimization techniques which will add an additional computational burden. An alternative
approach would be to consider a parametric representation of the value functions, utilising
knowledge of the threshold-type optimal policies and the impact of ongoing costs resulting
from high and low inventory states respectively. Design of a parametric form that is tractable
to exact optimization techniques for (greedy) action selection would be valuable due to both
the speed of implementation and transparency of the value function estimations.

Regarding the problem assumptions, possible directions for future studies may involve
incorporating set-up/ordering costs into the cost function (1) alongside other practical mod-
elling aspects. Although transportation costs are typically accounted for in the production
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costs, treating them as separate entities may yield useful managerial insights. Another chal-
lenging progression would be to investigate the effects of positive production lead times and
stochastic production output in process flexibility problems. With respect to the change
in inventory costs, (close to) optimal policies and benefits of investing in process flexibility
could be developed.
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