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Abstract 

Ionospheric scintillation originates from the scattering of electromagnetic waves through 

spatial gradients in the plasma density distribution, drifting across a given propagation 

direction. Ionospheric scintillation represents a disruptive manifestation of adverse space 

weather conditions through degradation of the reliability and continuity of satellite 

telecommunication and navigation systems and services (e.g. EGNOS). The purpose of the 

experiment presented here was to determine the contribution of auroral ionisation structures 

to GPS scintillation.  EISCAT measurements were obtained along the same line of sight of a 

given GPS satellite observed from Tromso and followed by means of the ESCAT UHF radar 

to causally identify plasma structures that give rise to scintillation on the co-aligned GPS 

radio link. Large-scale structures associated with the northern edge of the ionospheric trough, 

with auroral arcs in the nightside auroral oval and with particle precipitation at the onset of a 

substorm were indeed identified as responsible for enhanced phase scintillation at L band. For 

the first time it was observed that the observed large-scale structures did not cascade into 

smaller-scale structures, leading to enhanced phase scintillation without amplitude 

scintillation. More measurements and theory are necessary to understand the mechanism 

responsible for the inhibition of large-to-small scale energy cascade and to reproduce the 

observations. This aspect is fundamental to model the scattering of radio waves propagating 

through these ionisation structures. New insights from this experiment allow a better 

characterisation of the impact that space weather can have on satellite telecommunications 

and navigation services.   

 

Index Terms: 

Auroral ionosphere (2704), Radio wave propagation (6964), Space and satellite 

communication (6979), Ionospheric effects on radio waves (7944) 
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Introduction 

The propagation of radio waves through drifting inhomogeneties in the spatial distribution of 

electron density may lead to degradation of the overall signal manifesting itself as 

fluctuations of the phase and amplitude components of the radio waves, a phenomena known 

as scintillation [Yeh and Liu, 1982, Aarons, 1982; Basu et al., 1999; Basu et al., 2001; 

Fremouw et al, 1978]. Scintillation represents a serious threat to satellite telecommunication 

as well as satellite navigation systems as it can disrupt a service entirely, resulting in 

increased errors and outages [Seo et al, 2011; Kintner et al., 2007;Skone et al,2001; Skone 

and de Jong, 2000, Skone, 2001].  

In the presence of scintillation the energy received at the antenna is lower than in the absence 

of scintillation, a consequence of the scattering by electron density inhomogeneities in the 

ionosphere. When radio waves scatter through electron density structures the wave energy is 

scattered away from the original propagation direction, leading to a lower signal being 

recorded at the receiving antenna.  

The scattering of radio waves that leads to ionospheric scintillation is often classified into 

three distinct regimes: (a) weak scattering, (b) moderate-to-strong scattering and (c) strong 

scattering [Yeh and Liu, 1982; Booker and MajidiAhi, 1981].  

In the case of weak scattering the propagation problem can often be approximated by means 

of a single phase changing screen containing a distribution of phase changes (as a 

consequence of variations onto the spatial distribution of the refractive index) to be 

superimposed on the incident wave front [Booker and MajidiAhi, 1981; Rino, 1979]. In the 

case of moderate-to-strong scattering the use of multiple phase screens becomes necessary to 
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accommodate larger and cumulative phase variations in response to propagation through 

electron density structures with greater extent [Knepp, 1983; Uscinski, 1968; Carrano et al., 

2011]. However, multiple phase screens should be placed with separations no more than the 

correlation length of the electron density structures, to properly reproduce strong scattering 

(i.e. as opposite to the distance effect).  

The correlation length of plasma structures that gives rise to strong and saturating 

scintillation is hard to establish. Previous studies at low latitudes demonstrated that strong 

scintillation occurs in the vicinity of plasma bubbles walls as well as in the presence of 

plumes of ionisation [Rodrigues et al, 2004 Sripathi et al, 2008; Lee et al. 2009; Costa et al, 

2011; Carrano et al., 2012; Patra et al., 2014]. At high latitudes strong scintillation is caused 

by the presence of plasma patches and particle precipitation [Skone et al, 2001; Mitchell et al, 

2005; Forte, 2005; Smith et al., 2008; Prikryl et al., 2010; Kinrade et al., 2012; Kinrade et al., 

2013; van der Meeren et al., 2014; van der Meeren et al., 2015]. In the case of satellite signals 

the propagation geometry is to be properly accounted for in the propagation problem together 

with the aspect ratio of electron density structures which signals need to traverse. In the case 

of GPS signals at high latitudes the propagation occurs at a significant angle to the magnetic 

field lines, along which plasma structures tend to elongate [Forte and Radicella, 2004].  

The purpose of the experiment reported here was to provide insights into the type of 

structures that originate scintillation on GPS signals at auroral latitudes. In particular, the 

identification and characterisation of plasma gradients responsible for certain levels of 

scintillation was attempted by maintaining the EISCAT UHF radar along the same line of 

sight as a given GPS satellite (the signal recorded by means of a GPS scintillation monitor 

co-located with EISCAT UHF transmitter at Tromso). The measurements described here 

were also utilised in a companion paper [Chartier et al., 2016], which focussed on the 

modelling of the scintillation observations by means of a propagation model based on 3-D 
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modelling of the propagation medium according to EISCAT electron density profiles. 

Optimum values of ionisations structures (e.g. outer scale and axial ratios) which provided 

the best fit to the observed scintillation were identified [Chartier et al., 2016]. Here, the 

identification and quantification of the contribution from E and F region irregularities to the 

observed L-band scintillation is provided through the combination of EISCAT and GPS 

observations under different circumstances.  

 

Data and methodology 

The measurement campaign took place in October 2013 (see Table 1 for details), when 

different GPS satellites were followed with the EISCAT UHF radar during these 

measurements. Here, events from 16 October 2013 and 17 October 2013 only are reported. 

 

The positions of GPS satellites to be followed were determined in advance on the basis of the 

projection of the ephemeris in the future by using a SP3 file 

(http://igscb.jpl.nasa.gov/igscb/data/format/sp3_docu.txt) released the day before each of the 

days during the measurement campaign. Those positions were determined at 5 minute 

intervals to cover the entire duration of the measurement [Forte et al., 2013].  

The EISCAT UHF radar was pointed towards the selected satellite by remaining fixed in a 

given position (defined in terms of azimuth and elevation) for 5 minutes, then re-positioning 

into the new direction in the next interval, and so on (see Figure 1). At each fixed position the 

GPS satellite line of sight was moving and traversing the radar line of sight in each 5-minute 

interval. During each 5-minute interval the radar was measuring and collecting backscattered 

power which was then converted into electron density profiles by using the typical GUISDAP 

analysis toolbox (http://www.eiscat.com/groups/Documentation/UserGuides/GUISDAP/) 

[Huuskonen and Lehtinen, 1996]. EISCAT electron density profiles were subsequently 
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calibrated following standard procedure (see Forte et al. (2013) for further details). The 

spatial resolution of the EISCAT radar measurements is of the order of 2 km in range. 

 

Co-located with the EISCAT radar was a Novatel GNSS Ionospheric Scintillation and TEC 

Monitor (GPStation-6, http://www.novatel.com/products/scintillation-tec-monitor/) capable 

of measuring ionospheric parameters (i.e. TEC, rate of change of TEC, scintillation indices 

   and   ) at 1-minute intervals as well as signals phase and amplitude components at 50 Hz 

rate [Van Dierendonck et al., 1993].  

 

Figure 2 shows measurements for the event on 17 October 2013, while Figure 3 shows 

measurements for the event on and 16 October 2013. Figures 2 and 3 show electron density 

altitude profiles measured by EISCAT; scintillation indices corresponding to the GPS 

satellites followed by the EISCAT UHF radar, measured by means of the GPS scintillation 

monitor along a co-aligned direction; altitude profiles of the electric field calculated from the 

ion temperature and velocity following Banks and Kockarts (1973); altitude profiles of the 

ion temperature; power spectral densities (PSD) for de-trended carrier phase and for the 

normalised intensity of the GPS signals. PSDs were calculated over 3000 values at time 

covering an entire minute interval at 50 Hz sampling rate. Red stripes along the phase PSDs 

originated because of glitches generated by the GPS monitor clock.  

In this experiment, the integration time of 60 seconds was chosen for the comparison with 

GPS scintillation indices (estimated over a 60-sec time interval) as well as to enhance 

sensitivity to smaller-scale electron density structures responsible for scintillation.  

An integration time of 60 sec gave 5 different electron density profiles (one every 60 sec) 

along the same direction. The 5 different 60-sec profiles provided information on the 
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temporal evolution (e.g. energy cascade, drift, recombination) of the plasma structures 

detected (Figures 2 and 3). 

An integration time of 60 sec implies a maximum spatial distance, between the radar 

direction and the offset satellite ray path at the beginning and end of a given 5-minute 

interval, of the order of 10 km in a direction transversal to the beam direction at about 200 

km in altitude (and more at higher altitudes), assuming a GPS signal scan velocity of the 

order of 80 m/s at 200 km in altitude [Kaplan and Hegarty, 2006]. This provides an upper 

limit for the transversal spatial scales sampled by the GPS satellite signal, which together 

with electron density profiles provide information on the volume of ionisation structures 

originating particular scintillation signatures. 

Components of the magnetic field are shown in Figure 4 (17 October 2013) and Figure 5 (16 

October 2013) for the magnetometers at Ny Alesund (NAL), Hornsund (HOR), Bear Island 

(BJN), Tromso (TRO), Abisko (ABK), and Jackvik (JCK), part of the IMAGE network 

[Tanskanen, 2009]. 

 

Results 

17 October 2013 PRN23 18 – 21 UT 

In the case of the measurements taken on 17 October 2013 (Figure 2), the EISCAT UHF 

radar detected several structures in the electron density profiles, some of which originating a 

corresponding signature on scintillation indices. Throughout the measurements, a peak in 

ionisation was around 300 km in altitude, with values of the order of                 on 

average and higher values between 18:50 and 19:30 UT and between 20:45 and 21:00 UT.  

Between 18:00 and 18:30 UT some structures in the electron density profiles were detected 

below 200 km in altitude (extending less than 100 km in altitude each) with values of 

                on average. These structures did not cause any remarkable signatures 
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neither on    nor   , although a minor feature on    could be noticed at about 18:20 UT; no 

signatures could be identified on the intensity and phase PSDs (although phase PSDs were 

heavily masked by cycle slips in that time interval – Figure 2).  

Between 18:30 and 19:00 UT another feature in the electron density profile (similar to those 

observed between 18:00 and 18:30) could be noticed (around 18:50 UT) which did not 

correspond to any signature on scintillation indices. The intensity PSDs did not show any 

modification while the phase PSDs showed an enhancement at lower temporal frequencies 

corresponding to the feature at 18:50 UT.  

Between 19:00 and 19:30 UT three distinct electron density structures were detected with 

values of the order of                , extending between 100 km and 200 km in altitude 

and within 10 km along the apparent GPS satellite direction across the radar line of sight 

(assuming an apparent satellite ray path scan velocity of 80 m/s at 200 km of altitude) over a 

background ionisation below              . Around 300 km in altitude, the electron 

density intensified to about                 as well. Enhancements on phase PSDs at 

lower temporal frequencies were noticed in correspondence of these electron density 

structures, although only the first two of them originated a signature on    (about 0.1 rad), 

leaving intensity PSDs and    unmodified. The spectral modifications noticed on the phase 

PSDs implied an enhancement at lower temporal frequencies and spectral broadening up to 

0.6 Hz.  

Between 19:30 and 20:00 UT no particular structures were detected by the radar and no 

particular signatures were observed either on the scintillation indices or on the PSDs.  

Between 20:00 and 20:30 UT a first structure in electron density of about                 

was detected followed by a more intense one of about                 on average, fading 

onto lower values afterwards. A volume of ionisation of about                 on 

average, extending between 100 km and 200 km in altitude and within 10 km along the 
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apparent GPS satellite direction across the radar line of sight over a background ionisation 

below               was responsible for enhancing    up to 0.45 rad (Figure 2). Spectral 

modifications were observed on the phase PSDs, with enhancement at lower temporal 

frequencies and spectral broadening up to 1 Hz. The intensity PSDs showed some 

enhancement above the Fresnel frequency as well as an increase in the Fresnel temporal 

frequency. After the most intense structure a sporadic E layer (diffuse aurora) established 

itself until 21:00 UT. Some structures in the electron density profiles of about     

            and extending about 100 km in altitude were detected without any 

corresponding signature on either scintillation indices or PSDs.  

Between 20:30 and 21:00 UT a sporadic E layer persisted with an intensification of electron 

density between 300 and 350 km in altitude, with values of the order of                 

developing over apparently narrower layers.  

During the whole interval of measurements, Tromso was situated under the evening side of 

the auroral oval where auroral structures were frequently drifting. Changes in the electric 

field were observed as a consequence of polarisation electric fields [Aikio et al., 1993; de la 

Beaujardiere et al., 1977; Lanchester et al., 1996; Opgenoorth et al., 1990]. The abrupt 

ionisation enhancement detected between 20:00 and 20:30 UT coincided with a substorm 

onset (Figures 2 and 4) which was responsible for the associated particle precipitation. The 

timing of the features observed through co-aligned radar and GPS measurements are 

consistent with signatures observed through magnetometer data [Tanskanen, 2009]. The 

classical negative H (N-S) perturbation is indeed characteristic of auroral substorm onset at 

approximately 20:06 UT and associated energetic electron precipitation in the E region. 
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16 October 2013 PRN32 15-18 UT 

In the case of the measurements taken on 16 October 2013 (Figure 3), the EISCAT UHF 

radar beam detected some structures in the electron density distribution, responsible for 

enhancements in the phase scintillation index. Throughout the measurements, the F-region 

daytime peak in ionisation was noticeable between 200 and 400 km in altitude, with values of 

the order of               on average between 15:00 and 15:45 UT. Then, the radar 

beam traversed a gap in the F region electron density between 15:45 and 16:30 UT, due to the 

transition between day side and night side. Subsequently, more ionisation in the F region was 

encountered with values of the order of                 until the end of that given 

satellite pass (at 18:05 UT). Moreover, a sporadic E layer was noticed after 16:00 UT. 

Between 15:00 and 16:30 UT the radar transited from a daytime peak in the F region to the 

night side in such a time interval. The transition from the F-region daytime ionisation peak 

into the gap in electron density between 15:45 and 16:30 UT did not originate any 

enhancement on    and    (Figure 3). No spectral modifications could be observed on both 

intensity and phase PSDs (Figure 3).  

Between 16:30 and 17:30 UT the radar detected two distinct structures with values of the 

order of                , extending between 100 km and 200 km in altitude and within 

10 km along the apparent GPS satellite direction across the radar line of sight over a 

background ionisation below              . The first of these structures was detected 

between 16:40 and 16:50 UT, while the second occurred between 17:20 and 17:30 UT. The 

first structure did enhance    up to 0.3 rad in the same time interval, while the second 

structure caused a barely noticeable increase above the oscillator noise floor (i.e. 0.07 rad 

[Van Dierendonck et al., 1993]). Both these structures did not cause any appreciable 

signature on   . Phase PSDs were contaminated by clock glitches during this particular 

interval of measurements. Nevertheless, spectral modifications could be appreciated on the 
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phase PSDs, with enhancement at lower temporal frequencies and spectral broadening up to 1 

Hz. The intensity PSDs showed some tenuous higher-frequency enhancement above the 

Fresnel frequency, in relation to these structures.  

Between 17:30 and 18:05 UT the radar detected intensification in the F-region electron 

density at about 18:00 UT, with values increasing up to                 in some cases, 

extending between 200 km and 400 km in range. Scintillation indices were unmodified 

during this time interval.  

Between 16:30 and 17:00 UT the northern edge of the ionospheric trough was passing over 

Tromso, as indicated by the typical magnetic positive bay on the magnetic horizontal H 

component. Changes in the electric field were observed in correspondence of the ionospheric 

trough as a consequence of ionospheric convection [Moffett and Quegan, 1983; Roger et al., 

1992]. After 17:00 UT, Tromso was situated under the evening side of the auroral oval where 

auroral structures were frequently drifting (Figures 3 and 5).  

 

Discussion 

Enhancements on the phase scintillation index    were observed, corresponding to large-

scale ionisation structures present along the GPS signal propagation direction (and co-aligned 

with the EISCAT UHF radar beam within the experiment accuracy). The presence of large-

scale ionisation structures could be inferred from structures on the electron density profiles 

and corresponding enhancement of phase PSDs at lower temporal frequencies. In some cases, 

the enhancement was accompanied by spectral broadening up to 1 Hz (Figures 2 and 3). The 

large scale electron density structures introduced gradients in the refractive index distribution 

which in turn superimposed phase variations on the GPS signal propagating through. In 

general, the intensity scintillation index remained very small and constant throughout all of 
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the measurements and the PSDs of the normalised intensity did not show any distinct spectral 

modifications.  

A possible explanation of these observations may be as follows. The low-frequency spectral 

enhancement on the PSD of the detrended GPS carrier phase, together with enhancements in 

the phase scintillation index   , originate from large-scale auroral ionisation structures in the 

E and F regions. However, these large-scale ionisation structures did not cascade into 

smaller-scale structures (i.e. absence of enhanced amplitude scintillation). The inhibition of 

large-to-small scale energy cascade led to enhancements in phase scintillation without any 

enhancement in amplitude scintillation, when a fixed cut-off frequency is utilised to de-trend 

the carrier phase [Forte and Radicella, 2002]. The absence of an energy cascade to smaller 

scales could be due to higher recombination rates and/or strong conductivity along the field 

lines. Despite the fact that electron thermal diffusion can be a possible instability mechanism 

in the auroral E region plasma [Shalimov and Haldoupis, 1995],  more measurements and 

theory are necessary to understand this issue and reproduce the observations. In particular, 

the observations would be reproduced by an instability mechanism that a) operates in the E-

region of the ionosphere, b) injects free energy at larger scales and c) does not allow for an 

energy cascade to smaller scales. 

From the comparison between electron density profiles and co-aligned scintillation indices it 

is evident that the scintillation was induced by ionisation structures in both E and F regions. 

However, the causal relationship between ionisation structures, and corresponding 

scintillation, is hard to explain on the basis of Figures 2 and 3 alone.  

 

In order to identify and quantify the causal relationship between scintillation and ionisation 

structures in the E and F regions, the model by Booker and MajidiAhi (1981) was invoked 

[Vats, 1981; Forte, 2008; Forte, 2012]. This model enables the estimation of scintillation that 
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develops during propagation through a thick medium characterised by a mean square 

fractional fluctuation of the ionization spatial density  
  

 
 
 

, a mean ionisation density N, and 

a slab thickness D. The propagation through such an ionisation layer introduces mean square 

phase fluctuations described by [Booker, 1981; Booker and MajidiAhi, 1981; Vats et al., 

1981; Forte, 2008; Forte, 2012]: 

 

         
    

  

 
 
 

            (1) 

 

where    is the classical electron radius,    is the outer scale,   is the layer thickness, and   is 

the wavelength of the signal considered.  

An expression similar to (1) was derived by Knepp (1983b) by assuming that the layer 

thickness is greater than the correlation length of the irregularities. Knepp assumed a three-

dimensional ionisation power spectrum of the form    , with irregularities infinitely 

elongated in a direction orthogonal to the propagation direction. In this case, the structure 

function was approximated by a quadratic, whose coefficients were directly related to the 

outer scale, the inner scale, and the electron density fluctuations [Knepp, 1983b]. 

For the current experiment, the scattering model (1) was used to deduce information about 

the plasma density irregularities that cause L-band scintillation. It enables (a) the 

identification of the ionospheric layers which cause scintillation and (b) the estimate of outer 

scale, correlation length, and axial ratio of the irregularities. 

 

(a) Identification of the ionospheric layers that cause L-band scintillation 

Equation (1) can be reinterpreted in terms of the mean square Total Electron Content (TEC) 

fluctuation along a particular ray path       , avoiding assumptions on    and  , by 
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invoking the autocorrelation function     
     for     [Yeh and Liu, 1982; Forte, 2008; 

Forte, 2012] as:  

 

          
     

        
          (2) 

 

From the radar measurements        can be estimated by integrating electron density 

profiles over the E and F regions respectively. Hence, the contribution to the phase 

fluctuations at L band corresponding to the E and F regions can be estimated according to (2). 

Figures 6 and 7 show temporal fluctuations of the radar electron density (i.e.    ) profiles 

integrated  over the E (blue) and F (red) region (top plot).        was used to estimate 

      from a given layer according to equation (2). The normalised contribution to the 

overall phase fluctuations from the E (blue area) and the F (red area) region is shown in 

Figures 6 and 7 (middle plot). Because of co-alignment, the GPS     and phase scintillation 

index can be used to identify the origin of L band scintillation (bottom plot in Figures 6 and 

7).  

 

In the case of 17 October 2013, the radar TEC temporal fluctuations from the E region were 

larger and comparable to the fluctuations from the F region between 19:00-19:30 UT and 

20:00-20:15 UT, with enhancements on the GPS phase scintillation index   , on the low-

frequency phase PSD, and on the GPS TEC temporal fluctuations. This was consistent with 

the fact that Tromso was situated under the nightside of the auroral oval with auroral 

structures frequently traversing the radar beam (and the co-aligned GPS ray path). The 

ionisation in the E region was higher and, hence, the contribution to phase fluctuations from 

the E region was higher. In particular, between 20:00-20:15 UT larger phase fluctuations 
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from both the E and F regions were consistent with particle precipitation occurring on the 

equatorward edge of the auroral oval at the onset of an auroral substorm (Figures 2 and 4). 

The radar TEC temporal fluctuations and the 50-Hz GPS temporal fluctuations (Figure 6) 

indicate the source of phase fluctuations to be large-scale ionisation structures in the E and F 

regions during the periods 19:00 – 19:30 UT and 20:00 – 20:15 UT. After this, only 

structures in the F region have influence, despite the presence of a diffuse-aurora sporadic E 

layer. A loss of lock on L2 semi-codeless was observed between 20:00 – 20:15 UT 

(discontinuity on the GPS TEC temporal fluctuations). 

The sporadic E layer (diffuse aurora) following between 20:15 and 21:00 on 17 October 2013 

as well as the sporadic E layer noticed between 16:00 and 18:05 UT on 16 October 2013 did 

not produce any remarkable signature on TEC temporal fluctuations, phase PSDs, GPS 

carrier phase, or scintillation indices.  

In the case of 16 October 2013, the radar TEC temporal fluctuations between 16:30-17:00 UT 

were dominated by ionisation structures in the F region, hence phase fluctuations were 

mainly arising from the F region. Large-scale structures in the F region caused enhancements 

on the GPS phase scintillation index   , on the low-frequency phase PSD, and on the GPS 

TEC temporal fluctuations. This is consistent with the presence of the trough across the radar 

beam between 16:30-17:00 UT indicated by a positive bay on the magnetic horizontal 

component (Figure 5) and further confirmed through TEC maps (Figure 8) [Mitchell and 

Spencer, 2003]. At around 17:15 UT another enhancement in the radar TEC temporal 

fluctuations with a larger contribution from the E region occurred without a marked signature 

on the GPS signals. This is consistent with the fact that after 17:00 UT, Tromso was situated 

under the evening side of the auroral oval where auroral arcs were frequently passing. Hence, 

ionisation in the E region increased producing more contribution to phase perturbations 

arising from the E region. As opposed to the previous case, this ionisation seemed to attain 
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lower levels and hence it introduced smaller phase fluctuations overall. The radar TEC 

temporal fluctuations and the 50-Hz GPS TEC temporal fluctuations (Figure 7) indicate the 

origin of phase fluctuations from large-scale ionisation structures in the F region (16:30-

17:00 UT), in both the E and F regions (around 17:15 UT), and in the F region only 

afterwards. 

 

(b) Estimate of outer scale, correlation length, and axial ratio 

Assuming the description in (1),       
  

 
 
 

 can be estimated through the radar electron 

density profiles. Moreover, assuming that the phase scintillation index measured through the 

GPS L-band signal is such that   
        and that              (in view of the 

considerations above) then the outer scale along the propagation direction can be found by 

solving (1) for   . Figures 9 and 10 show estimates of various quantities: the measured GPS 

phase scintillation index    (green),     (black), the correlation length of ionisation 

structures (red) obtained from the radar electron density fluctuations, and    (blue).  

The correlation length is confirmed to be always less than the assumed layer thickness, which 

justifies the use of a model such as (1) [Booker and MajidiAhi, 1981; Knepp, 1983a,b]. The 

GPS phase scintillation increased with    , as expected. However, the outer scale values 

varied in response to the combination between     and   : enhancements in    

corresponded to an outer scale of the order of 2 km (with a correlation length of the order of 

20 km) in the case of 17 October 2013 and of the order of up to 8 km (with a correlation 

length of the order of 30 km) in the case of 16 October 2013. This indicates that the 

assumption of infinitely elongated irregularities along a direction transverse to propagation is 

more appropriate in the case of 16 October 2013 (16:30 – 17:00 UT) when F-region large-

scale ionisation was detected: the ionisation showed more structure developed in the 
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transverse plane, which seems to suggest axial ratios of the order of 10:10:1 for the trough. 

On the other hand, the assumption was less appropriate in the case of 16 October 2013 (after 

17:00 UT) and 17 October 2013 (19:00 – 19:30 UT and 20:00 – 20:15 UT) when ionisation 

due to particle precipitation was detected between the E and F regions: the ionisation showed 

more structure field-line elongated than in the transverse direction, with axial ratios of the 

order of 1:1:10.  

In Chartier et al. (2016), the best fit to the observed scintillation required an axial ratio of 1, 

which indicate difficulties in modelling phase-without-amplitude scintillation at auroral 

latitudes. 

 

Conclusions 

The present analysis has identified and quantified for the first time a causal relationship 

between auroral ionisation structures (as measured by the EISCAT UHF radar) and 

scintillation on GPS signals (as measured on GPS radio links co-aligned with the radar 

beam). The EISCAT UHF radar was pointed in the line of sight of a given GPS satellite, the 

satellite signal being recorded by means of a GPS scintillation monitor co-located with 

EISCAT UHF transmitter at Tromso. 

The experiment has provided new insights on the type of structures that cause scintillation on 

GPS L-band signals at auroral latitudes.  

Large-scale ionisation structures extending between the E and F regions cause phase-without-

amplitude scintillation on GPS L-band signals, in response to low-frequency enhancements 

on the PSD of the de-trended GPS carrier phase. The absence of modifications on the PSD of 

the GPS intensity indicate for the first time that these large-scale ionisation structures did not 

cascade into smaller-scale structures. Amongst all known mechanisms, the electron thermal 
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diffusion instability [Shalimov and Haldoupis, 1995] seems possible in the auroral E region 

plasma, but not capable to reproduce the observations.  

The reason for observing phase scintillations without amplitude scintillations is due to an 

instability mechanism that injects free energy at the kilometre or larger scales, but does not 

allow for an inertial sub-range energy cascade down to scales below the Fresnel scale, and to 

the use of a fixed cut-off frequency for de-trending the GPS carrier phase [Forte and 

Radicella, 2002].  

It remains to be understood exactly what physical mechanism is the cause of these 

observations: that is, a new instability mechanism that a) operates in the E-region of the 

ionosphere, b) injects free energy at larger scales and c) does not allow for an energy cascade 

to smaller scales. Hence, more measurements and new theory are necessary to understand this 

issue. 

In this experiment, large-scale ionisation structures were associated with the northern edge of 

the ionospheric trough, with auroral arcs drifting across the radar beam on the nightside 

auroral oval, and with particle precipitation at the onset of a substorm. The experiment 

indicated axial ratios of the order of 10:10:1 for F-region irregularities associated with the 

trough and 1:1:10 for irregularities in the E and F region associated with particle 

precipitation.  

Future experiments of the type described here will provide further information concerning the 

axial ratio of irregularities in the auroral ionosphere as well as on the structure function 

associated with them. These experiments will also provide more details on the mechanisms 

responsible for the inhibition of large-to-small-scale cascade as well as on the modelling of 

propagation conditions leading to phase-without-amplitude scintillation at auroral latitudes. It 

is intended to include additional observations (LOFAR and SuperDARN) in these future 

experiments in order to provide additional data concerning the structure of the ionospheric 
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irregularities. In addition, the improvement of the model for phase-without-amplitude 

scintillation at auroral latitudes, following on Chartier et al. (2016), will be investigated. 
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Table 1: Summary of GPS satellites followed by the radar throughout the measurement 

campaign. 

 

Date 

GPS Satellite Followed by 

the Radar 

Time Interval (UT) 

07 October 2013 

PRN22 14:00 – 15:45 

PRN32 15:50 – 18:45 

PRN23 18:50 – 21:00 

16 October 2013 

PRN19 14:00 – 14:55 

PRN32 15:00 – 18:05 

PRN23 18:10 – 21:00 

17 October 2013 PRN23 18:00 – 21:00 

18 October 2013 

PRN11 14:00 – 15:30 

PRN32 15:35 – 17:55 

PRN23 18:00 – 21:00 
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(a) 17 October 2013 PRN23  

 

 

(b) 16 October 2013 PRN32 
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Figure 1: Trajectories of the GPS satellites (black circles) followed by the radar (red 

crosses), in terms of azimuth and elevation angles. The numbers over each of the black 

circles indicate the subsequent minutes within a given 5-minute interval. It can be seen that 

maximum alignment between nominal GPS line of sight and nominal radar beam occurred 

around minute 3 within each 5-minute interval. 
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Figure 2: The event measured on 17 October 2013, characterised by (from top to bottom) 

electron density profiles, GPS scintillation indices, electric field, ion temperature, PSD for the 

de-trended carrier phase and PSD for the normalised intensity. 
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Figure 3: The event measured on 16 October 2013, characterised by (from top to bottom) 

electron density profiles, GPS scintillation indices, electric field, ion temperature, PSD for the 

de-trended carrier phase and PSD for the normalised intensity. 
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Figure 4: Magnetograms (variations in HDZ components in nT) from the IMAGE network 

(17 October 2013) from stations Ny Alesund (NAL), Hornsund (HOR), Bear Island (BJN), 

Tromso (TRO), Abisko (ABK), Jackvik (JCK). 
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Figure 5: Magnetograms (variations in HDZ components in nT) from the IMAGE network 

(16 October 2013) from stations Ny Alesund (NAL), Hornsund (HOR), Bear Island (BJN), 

Tromso (TRO), Abisko (ABK), Jackvik (JCK).. 
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Figure 6: The event measured on 17 October 2013. Top: temporal fluctuations in the radar 

TEC obtained integrating EISCAT electron profiles for the E region (blue line) and the F 

region (red line), with error bars. Middle: the phase fluctuations originated from the E region 

(blue line) and the F region (red line). Bottom: the 50-Hz TEC temporal fluctuations on 

PRN32. 
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Figure 7: The event measured on 16 October 2013. Top: temporal fluctuations in the radar 

TEC obtained integrating EISCAT electron profiles for the E region (blue line) and the F 

region (red line), with error bars. Middle: the phase fluctuations originated from the E region 

(blue line) and the F region (red line). Bottom: the 50-Hz TEC temporal fluctuations on 

PRN23. 
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(a) 16 October 2013 16:20 UT  

 

 

(b) 16 October 2013 16:40 UT 
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(c) 16 October 2013 17:00 UT  

 

 

(d) 16 October 2013 17:20 UT 
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Figure 8: TEC maps reconstructed by tomographic imaging for 16 October 2013 between 

16:20 and 17:20 UT. The trough forms south of Tromso between 16:40 and 17:20 UT.  The 

location of the EISCAT radar close to Tromso is market as ‘E.’ The trough can be recognised 

by the blue region indicating low TEC values extending across the EISCAT radar site 

between 16:40 and 17:20 UT. 
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Figure 9: Estimate of propagation conditions on 17 October 2013: GPS phase scintillation 

index (green), standard deviation of electron density fluctuations along the line of sigh 

(black), correlation length of ionisation structures (red), outer scale along the propagation 

direction (blue).  
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Figure 10: Estimate of propagation conditions on 16 October 2013: GPS phase scintillation 

index (green), standard deviation of electron density fluctuations along the line of sigh 

(black), correlation length of ionisation structures (red), outer scale along the propagation 

direction (blue). 

 


