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This paper outlines our ongoing work towards developing a system for extracting patterns 
embedded in heterogeneous data streams that contain people’s recorded movements in both 
physical and virtual spaces. Examples of such spatial data sources are satellite-based 
sensors (GPS), ultrasound acoustic trackers, radio frequency (WLAN, Bluetooth, UWB) and 
infrared-based sensors. The core work on pattern extraction relies on the spatial data fusion 
component aiming to bring various data types to a common format. The additional benefit of 
this system will consist in the graphical interface that will enable interactive visualisation of 
the extracted patterns. The rationale of this work is outlined through the relevance of location 
aware system in the context of ubiquitous computing, which so far have received limited 
benefits from fields such as Human Computer Interaction (HCI) and interactive visualisation.  
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1. INTRODUCTION 

Location awareness is a key quality of a ubiquitous computing environment. In addition to other 
information such as identities of relevant people, places and objects, schedules, activities, and so on, 
location and other spatial information constitutes a large part of the context of each ubiquitous computing 
device and system. The notion of context is a subject of intensive studies in this area, particularly in the 
more flexible view of context-as-process rather than the simpler context-as-state [1]. Viewing context as a 
process allows the system to base its actions on the emergence of information and cooperation rather 
than the static situation at each moment. 
 
Studies of user location dynamics in virtual environments [2][3][4][5] have confirmed that much useful 
information can be gained from trajectory analysis [6]. Extending these studies into real environments can 
be a valuable contribution to the ubiquitous computing research. In a typical ubiquitous system, location 
data comes from many different sources—from dedicated location sensors such as GPS to logical 
reasoning (for instance, if the system knows that Alice just logged onto her desktop computer, it can infer 
her location). Effective use of location and other spatial data (such as trajectories) requires its fusion into 
a consistent whole. 
 
The development of spatial data fusion algorithms can be greatly assisted by visualising the raw and 
processed data, as well as additional features related to the dynamic aspects of this data, which can be 
obtained, for instance, through trajectory analysis. We propose a method for interactive investigation of 
spatial data fusion techniques through a visual feedback loop, and discuss the issues involved in the 
ubiquitous computing context. 

2. LOCATION IN UBIQUITOUS COMPUTING 

The notion of location is extremely multi-faceted. Location can be absolute or relative, numeric or 
symbolic, static or dynamic, continuous or discrete, dependent on or independent of other context 
variables, etc. Without any claim to exhaustiveness, Dobson [7] has identified eighteen recognisably 
different conceptual models of location, for example: absolute geocentric coordinates (latitude and 
longitude); named space (e.g., room A1.15 in the Computer Science building); dynamic space (“in his 
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car”); on a path (e.g., on the way from home to work); near another object; in one place out of a discrete 
set (“either in the lab or in the coffee area”); and so on. 
 
Adding to the mix are secondary spatial features, which can be obtained by analysing the dynamics of 
suitable data streams. In our previous work, we approximated user trajectories with high order Bézier 
curves (Figure 1) to derive the following quantitative indicators:    

 goodness of fit of the actual trajectory to the Bézier curve approximating it; this indicator quantifies 
the intuitive notion of trajectory “smoothness”; 

 curvature of the Bézier curve (as most real life trajectory data only represents piecewise-linear 
trajectories, computing their curvature directly would be meaningless); 

 the number of inflexion points on the Bézier curve (the points where the direction of turning 
changes). 

 

 
FIGURE 1:  Trajectory analysis with Bézier curves 

 
Additionally, we also computed lengths of straight line segments and the area covered by the convex hull 
of trajectory points. These indicators were instrumental in deriving higher-level context knowledge such 
as spatial type (ability) of the users. 
 
An alternative to Bézier curves are B-splines, which are mathematically similar to piecewise Bézier 
curves, whose degree is typically chosen to be around 3. In addition to reducing the degree, B-splines 
also have the local control property, whereby changing a single control point only affects its 
neighbourhood, but not the entire curve (as it is with Bézier). Therefore, a similar analysis can also be 
conducted with B-splines. 

3. SPATIAL DATA FUSION 

Two notable definitions of data fusion are [7]:  
 
Data fusion is a formal framework in which are expressed the means and tools for the alliance of data 
originating from different sources. It aims at obtaining information of greater quality; the exact definition of 
‘greater quality’ will depend upon the application. 
 
Data fusion is a multilevel, multifaceted process dealing with the automatic detection, association, correlation, 
estimation, and combination of data and information from single and multiple sources. 
 

These definitions reflect the fact that in data fusion, information may range from quantitative to qualitative, 
from measurements to verbal reports. This means that in certain scenarios, human involvement 
throughout the entire information processing cycle is inevitable. In ubiquitous systems, however, it has to 
be fully automated. Therefore, in our case human involvement will only be limited to the initial 
investigation and tuning of data fusion algorithms, which will then proceed completely autonomously. An 
overview of applications, requirements, tools and literature on information fusion is given by Valet [9]. 
 
Current research in spatial data fusion has been primarily concerned with image data, such as aerial and 
space photographic images, or security camera footage, with applications in GIS, mapping, surveillance 
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and computer vision [10]. This type of fusion works with static data, where time is not considered. In our 
research, however, time is a very important component of data and must be taken into account during 
data fusion. 
 
In location data fusion, Kalman filtering [11] remains the primary technique, widely used for noise 
reduction in location tracking systems and for merging information from fairly homogeneous sources 
(such as, for instance, GPS and inertial systems). It is dynamic in the sense that timing is accounted for, 
and therefore it is a suitable candidate for this project. Particle filters [12], also known as Sequential 
Monte Carlo methods, are Bayesian model estimation techniques based on simulation and are often used 
as an alternative to Kalman filtering. Other methods such as machine learning (e.g., genetic algorithms) 
have not been studied in this context and present an interesting research direction. 

4. VISUALISATION 

Among the vast array of visualisation techniques, we are particularly interested in addressing two specific 
requirements. 
 
One is the ability to display data from multiple sensors in multiple dimensions. Apart from the four basic 
(three space, one time) dimensions of dynamic spatial data, features such as velocity and curvature 
represent additional dimensions. For instance, on lines showing trajectories these dimensions can be 
displayed using colour, thickness, and style; existing frameworks [13] may be employed. 
 
The other aspect is uncertainty. Many location sensors are capable of estimating the accuracy and 
precision of the data they generate. Displaying this information, when it is available, is important for 
refining the data fusion process. Visualisation of spatio-temporal uncertainty has been particularly studied 
in the context of GPS [14], which is highly relevant to our goals. 

5. VISUAL APPROACH TO LOCATION DATA FUSION 

As opposed to the more common form of spatial data fusion dealing with image data, fusion of location 
and trajectory data from multimodal heterogeneous location sources remains largely unexplored, and is 
the subject of our research. We propose the following approach. 

5.1 Data harmonisation 
Spatial data coming from many different sources will be in diverse formats, coordinate systems, and 
modalities (as explained in section 2 above). It will therefore be first converted to a common 
representation. We have defined a data model that supports a variety of types of raw and post-processed 
spatial data, and a corresponding XML schema for storage and exchange. Its extendibility will allow us to 
annotate the data as it gets processed, and to record feedback from visual analysis. A consideration of 
existing XML formats for spatial data, such as GML [14] or the simpler GPX [15], showed that they could 
not be expanded in a consistent way to address our requirements; therefore we felt that a dedicated XML-
based format was justified. 

5.2 Fusion 
Harmonised data from different sources will be merged together so that these different data streams will 
complement and correct each other. At this stage, algorithms will be chosen and refined following visual 
feedback. As a starting point, a simple weighted average and a Kalman filter will be used. 

5.3 Feature and pattern extraction 
The data will be post-processed to extract simple features, such as velocity, acceleration, and rate of turn, 
as well as more complex features based on Bézier curve analysis [6], such as curvature and goodness of 
fit. This will allow higher-level patterns to emerge. 

5.4 Visualisation 
This project lends itself naturally to exploratory visualisation, which allows the user to interactively 
investigate possibilities and assess the results. Such interaction includes: variation of parameters of data 
fusion and the algorithms used; variation of the visualisation system (types and parameters of 
visualisation); and visual iteration of learning algorithms over repeated observations. Interactive 
visualisation could also involve manipulation of the map representing the space in which movement paths 
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have been tracked. This map, onto which data are projected, can be interactively explored through 
rotation and scaling. 
 
The data will be displayed in a number of ways:  

 separately from each source and together, for instance, using multiple linked views [17]; 

 position of static objects reporting proximity information (RFID sensors, Bluetooth devices, WLAN 
stations, etc.); 

 raw data and/or features and patterns extracted; 

 error ranges reported by data sources (where available); 

 the output of the data fusion algorithm; 

 comparative output from different algorithms and parametric variations; 

 multi-dimensional visualisation of the available location data and computed features (including 
spatial, temporal and feature dimensions). 

 
Figure 2 illustrates a very simple visualisation example of one of the authors’ recorded trajectories, laid 
over a map of the building. Adding other features such as recorded velocity or extracted trajectory 
patterns allows the user to see how these features highlight accurate and inaccurate data, and assign 
accordingly their weights for the data fusion algorithm. 
 

 
FIGURE 2:  Map of the building with overlaid trajectories on a 10 metre grid 

 
A variety of techniques can be used for visualising multi-dimensional data: geometric projection, parallel 
coordinates, drawing attributes (such as colour and thickness), scatterplot matrices, etc. The selection of 
the appropriate techniques for this type of data is a subject of further investigation. We expect that 
different fusion and pattern extraction algorithms may require different visualisation types, and the user 
should, if possible, be allowed to interactively explore them. 

6. SYSTEM ARCHITECTURE 

The architecture of our system, which is currently under development, is based on a common data model 
for harmonised data. This data model includes the following core objects:  

 coordinate systems: Cartesian, spherical, cellular (0-dimensional), etc., together with their 
parameters such as basis and origin; 

 coordinates, including estimated measurement or processing error if known; 

 objects being tracked; 

 sensors providing location data about objects; a sensor can be fixed to a specific location or 
attached to an object; 

 readings, comprising sensor ID, object ID, timestamp and coordinates. 
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Raw multi-sensor data can be represented and stored alongside post-processed and fused data, which 
can be identified by special sensor IDs corresponding to fusion algorithms. The external storage and 
exchange format is XML-based, with the schema matching the data model. 
 
The overall architecture is shown in Figure 3. Data from multiple sources are harmonised and 
aggregated. The data fusion module provides algorithms for combining and processing these data, 
whereas pattern extraction uses chiefly the post-processed data to extract high-level behavioural 
observations through Bézier curve analysis and similar techniques. Pattern extraction can also be used to 
assist data fusion. Visualisation provides interactive visual access to the aggregated data (raw, processed 
and patterns), and feeds user input back to the system. 
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FIGURE 3:  System architecture 

 

7. EVALUATION APPROACH 

The evaluation of the quality of data fusion depends on the quality of the raw data and the quality of the 
algorithms involved in data pre-processing and fusion. We shall consider each of them in turn, together 
with the ways in which their impact can be measured, understood and potentially used to improve the 
quality of data fusion. 

7.1 Quality of raw data.  
The quality of raw data can be significantly diminished by inaccurate or missing data. In order to address 
these issues and limit their impact on the data fusion, it is important to identify them. For this, both 
statistical descriptors, e.g. outliners, and visualisation methods, e.g. plots will be used. Inaccurate data 
can be also handled through assigning levels of confidence to each data set, according to the technology 
that provided the data: for example, GPS-based data collection is more accurate than Bluetooth sightings.   

7.2 Quality of pre-processing and fusion algorithms. 
Pre-processing algorithms, e.g. interpolation and triangulation, and fusion algorithms, e.g. multi-sensor 
filtering, can be assessed through comparing the output data with the source data. Particularly relevant is 
the identification of the “ground truth data”, i.e. how a person really moved in space, as a yardstick for 
comparison. One possible solution in this direction is video-recording the person being tracked and 
having the fused data projected onto the video stream so that one can simultaneously view and compare 
the fused data and the actual movement in space. The comparison can take place between the latter and 
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each of the recorded data streams. In this way, dynamic visualisation of source data together with fused 
data overlaid on top of a map offers the basis for qualitative assessment of the quality of fused data. 
Apart from the obvious benefits of visualisation, this method of assessing data has high face validity. 
 
In addition, the quality of the pre-processing and fusion algorithms can be assessed both through 
software metrics, e.g. complexity, and through statistical descriptors capturing the similarity between the 
fused data set on the one hand, and the raw data sets and the pre-processed ones on the other hand.  

8. CONCLUSIONS 

The system introduced in this paper is particularly relevant in the current state-of-the-art development of 
location aware systems, ubiquitous computing and interactive visualisation. It builds upon our previous 
work on pattern extraction from spatial data [18][19]. Spatial data fusion depends on the availability of a 
sensor infrastructure that would enable access to live data. Alternatively, simulated data can be used but 
the authenticity will be diminished. The interactive visualisation is the component that will be developed 
through extensive participatory design, since user involvement in the design process will prove highly 
beneficial. 
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