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Abstract

In 2012, Dales and Polyakov introduced the concepts of multi-norms and dual multi-norms
based on a Banach space. Particular examples are the lattice multi-norm p} ¨ }

L
nq and the dual

lattice multi-norm p} ¨ }
DL
n q based on a Banach lattice. Here we extend these notions to cover

‘p–multi-norms’ for 1 ď p ď 8, where 8–multi-norms and 1–multi-norms correspond to multi-
norms and dual multi-norms, respectively. We shall prove two representation theorems. First we
modify a theorem of Pisier to show that an arbitrary multi-normed space can be represented as
ppY n, } ¨ }Lnq : n P Nq, where Y is a closed subspace of a Banach lattice; we then give a version for
certain p–multi-norms. Second, we obtain a dual version of this result, showing that an arbitrary
dual multi-normed space can be represented as pppX{Y qn, } ¨ }DL

n q : n P Nq, where Y is a closed
subspace of a Banach lattice X; again we give a version for certain p–multi-norms.

We shall discuss several examples of p–multi-norms, including the weak p–summing norm
and its dual and the canonical lattice p–multi-norm based on a Banach lattice. We shall deter-
mine the Banach spaces E such that the p–sum power-norm based on E is a p–multi-norm. This
relies on a famous theorem of Kwapień; we shall present a simplified proof of this result. We
shall relate p–multi-normed spaces to certain tensor products.

Our representation theorems depend on the notion of ‘strong’ p–multi-norms, and we shall
define these and discuss when p–multi-norms and strong p–multi-norms pass to subspaces, quo-
tients, and duals; we shall also consider whether these multi-norms are preserved when we
interpolate between couples of p–multi-normed spaces. We shall discuss multi-bounded oper-
ators between p–multi-normed spaces, and identify the classes of these spaces in some cases,
in particular for spaces of operators between Banach lattices taken with their canonical lattice
p–multi-norms.
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1. Introduction

1.1. Multi-norms and dual multi-norms. A theory of multi-norms based on a

normed space was introduced by Dales and Polyakov in [20]. The study of multi-norms

and dual multi-norms was continued in [8, 18, 19], and there is a survey in [16]; a recent

contribution is [7]. We recall the basic definitions of this theory.

We write N for the set of natural numbers; for n P N, the collection of permutations of

the set Nn “ t1, . . . , nu is denoted by Sn. The underlying field F of a linear space is either

the real field R or the complex field C. As in the earlier papers, En denotes the n-fold

Cartesian power of a linear space E, taken with the coordinatewise linear operations.

The first definition that we give brings in a new term, ‘power-norm’; the word ‘special-

norm’ was used in [20, §2.2.1] and [52]. Thus a ‘power-norm’ is a sequence of norms defined

on the powers of E.

Definition 1.1. Let E be a linear space over F. A power-norm based on E is a sequence

p} ¨ }n : n P Nq such that } ¨ }n is a norm on En for each n P N and such that the following

Axioms (A1)–(A3) are satisfied for each n P N and x “ px1, . . . , xnq P E
n:

(A1)
›

›pxσp1q, . . . , xσpnqq
›

›

n
“ }x}n pσ P Snq;

(A2) }pα1x1, . . . , αnxnq}n ď pmaxi“1,...,n |αi|q }x}n pα1, . . . , αn P Fq;
(A3) }px1, . . . , xn, 0q}n`1 “ }x}n.

In this case, pEn, } ¨ }nq “ ppE
n, } ¨ }nq : n P Nq is a power-normed space.

The power-norm is a multi-norm and pEn, } ¨ }nq is a multi-normed space if, in addition

to (A1)–(A3), we have

(A4) }px1, . . . , xn´1, xn, xnq}n`1 “ }px1, . . . , xnq}n
for each n P N and x1, . . . , xn P E.

The power-norm is a dual multi-norm and pEn, } ¨ }nq is a dual multi-normed space if, in

addition to (A1)–(A3), we have

(B4) }px1, . . . , xn´1, xn, xnq}n`1 “ }px1, . . . , xn´1, 2xnq}n
for each n P N and x1, . . . , xn P E.

[5]
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Let pEn, } ¨ }nq be a power-normed space. Then, in particular, pE, } ¨ }1q is a normed

space; we shall usually write }x} for }pxq}1 for x P E, so giving the base norm on E.

The power-norm is based on E. In the case where pE, } ¨ }q is a Banach space, each space

pEn, } ¨ }nq is also a Banach space, and pEn, } ¨ }nq is termed a power-Banach space, etc.

Many properties of multi-norms and of dual multi-norms were described in [20];

these properties included some strong connections with the theory of absolutely summing

operators and with the theory of tensor norms.

For example, as in [20] and [18], there are a maximum multi-norm and minimum

multi-norm based on a normed space E; these are denoted by p} ¨ }
max
n : n P Nq and

p} ¨ }
min
n : n P Nq, respectively, and they are defined by the property that

}x}
min
n ď }x}n ď }x}

max
n px P En, n P Nq

for every multi-norm p} ¨ }n : n P Nq based on E. The formula for } ¨ }
min
n is

}x}
min
n “ max

i“1,...,n
}xi} px “ px1, . . . , xnq P E

n, n P Nq .

By [20, Theorem 3.33], the dual of } ¨ }
max
n is µ1,n, the weak 1-summing norm, to be

defined in §1.5, and so

}x}
max
n “ sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

xxi, λiy

ˇ

ˇ

ˇ

ˇ

ˇ

: λ1, . . . , λn P E
1, µ1,npλ1, . . . , λnq ď 1

+

for each n P N and x “ px1, . . . , xnq P E
n.

There are also maximum and minimum dual multi-norms based on a normed space

E; the maximum dual multi-norm is the sequence p} ¨ }nq defined by

}x}n “
n
ÿ

i“1

}xi} px “ px1, . . . , xnq P E
n, n P Nq .

See [20, p. 59].

In fact, in this work, we shall refer to ‘8–multi-norms’ and ‘1–multi-norms’ for ‘multi-

norms’ and ‘dual multi-norms’, respectively, as special cases of ‘p–multi-norms’; see the

definitions in §2.2.

1.2. Description of the main results. Our aim in this memoir is to generalize the

notions of multi-norms and dual multi-norms to that of a p–multi-norm for 1 ď p ď 8;

in the cases where p “ 8 and p “ 1, we shall recover the classes of multi-norms and dual

multi-norms, respectively. A p–multi-norm is a power-norm with an additional property;

the precise definition will be given in §2.2.

Again p–multi-norms have a strong connection with certain cross-norms defined on

tensor products. The study of p–multi-norms involves consideration of the normed space

on which the p–multi-norm is based, and we shall obtain new results in this direction,

especially involving ‘p–spaces’.

A key example of a p–multi-norm is that of the canonical lattice p–multi-norm defined

on a real or complex Banach lattice: this p–multi-norm will be defined in Definition 4.22.

There is a sense in which this p–multi-norm is generic. Indeed, our main representation

theorem is Theorem 5.7, which roughly says the following. Take p with 1 ă p ă 8. Then a
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p–multi-norm based on a Banach space and satisfying extra conditions is the same as the

canonical lattice p–multi-norm defined on a closed subspace of a certain Banach lattice.

The analogous result for multi-norms themselves is Theorem 5.5: a multi-norm based on a

Banach space is the same as the canonical Banach-lattice multi-norm defined on a closed

subspace of a certain Banach lattice. This latter theorem is a result of Pisier, stated as

[45, Théorème 2.1]. The analogous result for certain dual multi-norms is Theorem 5.6.

Our generalization of Pisier’s theorem to p–multi-norms requires, in fact, that the

p–multi-norm be a ‘strong’ p–multi-norm that is ‘p–convex’. We shall explain these extra

terms in §2.5 and §2.6, respectively. In §2.5, we shall show that each p–multi-norm based

on a Banach space is a strong p–multi-norm whenever p is equal to 2 or 8 and that, for

every other value of p with 1 ď p ď 8, there is a Banach space E and a p–multi-norm

based on E that is not a strong p–multi-norm; we shall give a number of examples of

p–multi-norms that are and are not strong p–multi-norms.

There is a dual representation theorem, given as Theorem 5.10; it shows that certain

p–multi-norms, including dual multi-norms, based on a Banach space are the same as the

quotient p–multi-norm based on a space X{Y , where Y is a closed subspace of a Banach

lattice X and we take the canonical lattice p–multi-norm based on X.

Throughout we shall consider when properties of p–multi-norms based on Banach

spaces pass to the corresponding power-norms based on subspaces, on quotients, on dual

spaces, and on spaces that are the intermediate space formed by complex interpolation

between a compatible couple of Banach spaces. Most of these results are not needed for

the main representation theorems of Chapter 5.

Chapter 1 gives background, mainly in the theory of Banach spaces; a reader may

wish to skim the results of this chapter and return to consult it when the particular

background is relevant.

For example, we shall recall in Chapter 1 some standard theory of tensor products of

Banach spaces, concentrating on the projective and injective tensor products. In §1.3, we

shall define the p–sum norm based on a normed space, and, in §1.5, we shall introduce

weak p–summing norms and their duals; these are examples of power-norms. A source

of examples for us will be spaces in the class SQppq, where 1 ď p ď 8; these are Banach

spaces that are isometrically isomorphic to closed subspaces of quotients of Lp-spaces,

and we shall introduce this class in §1.6. In §1.7, we shall use an example of Schechtman

to exhibit a space Sp for 1 ď p ď 2 that is isomorphic to a member of the class SQppq,

but not isomorphic to a closed subspace of LppΩq for any measure space Ω. Some results

here may be new.

The p–spaces of Herz are introduced in §1.8. Spaces in the class SQppq are, by a theo-

rem of Kwapień, exactly these p–spaces; the theorem of Kwapień seems to be important,

and we shall present a proof of this result in §1.9. Finally, in §1.10, we shall recall some

theory of complex interpolation spaces between compatible couples of Banach spaces.

In Chapter 2, we shall begin our study of p–multi-norms, which are special types of

power-norms, giving the definition and various examples. In Theorem 2.8, we shall relate

p–multi-norms to the p–spaces of Herz; indeed, we shall show that, for p with 1 ď p ă 8,

the p–sum norm based on a Banach space E is a p–multi-norm if and only if E is a p–space
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if and only if E belongs to the class SQppq. Suppose that there are p0–multi-norms and

p1–multi-norms based on Banach spaces E0 and E1, respectively. In §2.3, we shall discuss

when there is a p–multi-norm based on suitable intermediate spaces between E0 and

E1. In §2.4, we shall characterize p–multi-norms in terms of certain tensor products of

Banach spaces, thus showing that our theory can be regarded as belonging to the latter

subject. We shall also introduce, in §2.5 and §2.6, two strengthenings of the notion of

a p–multi-norm to give strong p–multi-norms and p–convex and p–concave multi-norms,

respectively; we shall give a variety of examples that show that, in various settings, there

are p–multi-norms that are not strong p–multi-norms. Throughout the chapter, we shall

explain when p–multi-norms and their strengthened versions based on Banach spaces

pass to closed subspaces, to quotient spaces, to dual spaces, and to interpolation spaces.

The natural morphisms in the category of multi-normed spaces are the multi-bounded

maps, and these are introduced in Chapter 3; we shall give various examples, and define

p–multi-norms on spaces of multi-bounded operators.

In Chapter 4, we shall turn to our main topic, that of p–multi-norms in the setting

of Banach lattices, in particular introducing in §4.3 the canonical lattice p–multi-norm

based on a Banach lattice. In §4.1 and §4.2, we shall recall and somewhat extend some

background on Banach lattices and regular and order-bounded operators between Banach

lattices, in particular discussing pre-regular operators. In §4.4, we shall show that complex

interpolation between Banach lattices gives a Banach lattice and that two canonical

lattice p0– and p1–multi-norms on a Banach lattice produce a canonical lattice p–multi-

norm for an appropriate value of p. In §4.5, we shall show how spaces of p–multi-bounded

operators between Banach lattices with their respective canonical lattice p–multi-norms

are related to spaces of pre-regular operators.

Finally, in Chapter 5, we shall give our representation theorems, together with some

examples that show their limits.

1.3. Notation and terminology. First, we recall some standard definitions and nota-

tions primarily involving normed and Banach spaces that we shall use.

The cardinality of a set S is |S|. The closed unit interval r0, 1s is denoted by I. The

conjugate index of p P r1,8s is denoted by p1, so that 1{p` 1{p1 “ 1; we shall often set

q “ p1. Throughout we shall interpret the expression
˜

n
ÿ

i“1

αpi

¸1{p

,

where α1, . . . , αn ě 0 and n P N, as maxtα1, . . . , αnu when p “ 8.

Let E be a linear space over a field F (always R or C). Then we write IE for the

identity operator on E. However the identity on Fn is usually denoted by In for each

n P N. The linear span of a subset S of E is denoted by

linS .

Let E and F be linear spaces. Then E‘F is the direct sum of E and F , and LpE,F q
is the linear space (over F) of F–linear maps from E into F .
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Definition 1.2. Let E and F be linear spaces, and take n P N. The nth amplification

of T P LpE,F q is given by

T pnq : px1, . . . , xnq ÞÑ pTx1, . . . , Txnq , En Ñ Fn . (1.3.1)

Let T P LpE,F q, and take n P N. Then the mapping T pnq is clearly also linear, and

it is injective or surjective if and only if T has the corresponding property. We may write

equation (1.3.1) as:

T pnq : x ÞÑ T pnqx , En Ñ Fn .

Let E be a linear space, and take S, T P LpEq. Then clearly

pS ˝ T qpnq “ Spnq ˝ T pnq P LpEnq pn P Nq . (1.3.2)

The action of a linear functional λ on an element x of a linear space E is usually denoted

by xx, λy, so that the nth amplification of λ is the linear map λpnq, which is defined on

En by

λpnq : px1, . . . , xnq ÞÑ pxx1, λy, . . . , xxn, λyq “ xx, λy , En Ñ Fn , (1.3.3)

where x “ px1, . . . , xnq.

Take m,n P N. For elements x “ px1, . . . , xmq P E
m and y “ py1, . . . , ynq P E

n, we

write

px,yq “ px1, . . . , xm, y1, . . . , ynq P E
m`n ;

this is called the concatenation of x and y.

Suppose that F is a linear subspace of a linear space E. Then we shall often write

JF : F Ñ E and QF : E Ñ E{F (1.3.4)

for the natural embedding and the quotient map, respectively. Take n P N. Then Fn is

a linear subspace of En, and we identify pE{F qn with the quotient space En{Fn via

px1 ` F, . . . , xn ` F q “ x` F
n px “ px1, . . . , xnq P E

nq . (1.3.5)

Consequently, the quotient map QFn : En Ñ En{Fn is identified with the nth amplifi-

cation Q
pnq
F of the quotient map QF : E Ñ E{F .

Let E and F be linear spaces. A bijection in LpE,F q is a linear isomorphism. Take

T P LpE,F q. Then T induces a linear map

T : x` kerT ÞÑ Tx , E{ kerT Ñ F . (1.3.6)

Of course, T is a linear isomorphism from E{ kerT onto T pEq; this is the fundamental

isomorphism theorem. For n P N, we have kerT pnq “ pkerT qn, and the identification of

En{ kerT pnq with pE{ kerT qn implies that the induced map T pnq is identified with the
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nth amplification T
pnq

of T , as the following diagram illustrates:

En{ kerT pnq

T pnq

++
En

T pnq //

zzzz

dddd

Fn.

pE{ kerT qn
T
pnq

33

(1.3.7)

Let E and F be linear spaces, and take n P N. For T1, . . . , Tn P LpE,F q, define

∆pT1,...,Tnq P LpE,Fnq and ΣpT1,...,Tnq P LpEn, F q by

∆pT1,...,Tnqpxq “ pT1x, . . . , Tnxq px P Eq (1.3.8)

and

ΣpT1,...,Tnqpx1, . . . , xnq “ T1x1 ` ¨ ¨ ¨ ` Tnxn px1, . . . , xn P Eq , (1.3.9)

respectively.

Take m,n P N. Then Mm,n “Mm,npFq denotes the space of all mˆn matrices over F,

with Mn for Mn,n; we shall write T PMm,n as pTi,jq. The transpose of T “ pTi,jq PMm,n

is the matrix T t “ pTj,iq P Mn,m. A matrix T P Mm,n is row-special (respectively,

column-special) if it has at most one non-zero entry in each row (respectively, column);

T is special if it has at most one non-zero entry in each row and in each column. Suppose

that E is a linear space over F. Then we further regard a matrix in Mm,npFq as defining

a linear map from En to Em in the obvious way.

Now let pE, } ¨ }q be a normed space over a field F. We write

BE , B˝E , and SE

for the closed unit ball, the open unit ball, and the unit sphere of E, respectively. The

dual space of E (consisting of all continuous linear functionals on E) is denoted by E1,

and the duality is implemented by the bilinear map

px, λq ÞÑ xx, λy , E ˆ E1 Ñ F ;

the dual norm to } ¨ } on E1 is often denoted by } ¨ }
1
. The weak topology on E is σpE,E1q

and the weak˚ topology on E1 is σpE1, Eq. The bidual of E is E2 “ pE1q1, and the

canonical embedding of E into E2 is κE ; we shall usually identify E with κEpEq and

sometimes write px for κEpxq, where x P E.

Let E be a normed space, take n P N, and let } ¨ }n be a norm on En defining the

product topology. Suppose that F is a closed linear subspace of E. Then Fn is a closed

linear subspace of pEn, } ¨ }nq, and using the identification (1.3.5) we obtain a norm

on pE{F qn “ En{Fn that is given by the following explicit formula:

}x` Fn}n “
›

›px1 ` F, . . . , xn ` F q
›

›

n
“ inf
y1,...,ynPF

}px1 ` y1, . . . , xn ` ynq}n (1.3.10)

for x “ px1, . . . , xnq P E
n.
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Suppose that E and F are normed spaces, and take p with 1 ď p ď 8. Then we write

E ‘p F

for the direct sum E ‘ F , taken with the norm given by }x` y} “ p}x}
p
` }y}

p
q1{p for

x P E and y P F . The dual space of E ‘p F is identified with E1 ‘p1 F 1.

Suppose that E and F are normed spaces. Then we write BpE,F q for the normed

space (with respect to the operator norm) of all bounded linear operators from E to F ,

with BpEq for BpE,Eq. The space BpE,F q is a Banach space whenever F is a Banach

space, and BpEq is a unital Banach algebra when E is Banach. For details on Banach

algebras, see [15]. An operator of norm at most 1 is a contraction. For T P BpE,F q, we

write T 1 P BpF 1, E1q for the dual of T , so that T 1 is defined by the formula

xx, T 1λy “ xTx, λy px P E, λ P F 1q ;

of course, }T 1} “ }T }. For y P F and λ P E1, set

py b λqpxq “ xx, λy y px P Eq . (1.3.11)

Then y b λ P BpE,F q with }y b λ} “ }y} }λ}, and

FpE,F q “ lin ty b λ : y P F, λ P E1u

is the subspace in BpE,F q consisting of the finite-rank operators. Let T P BpE,F q, take

n P N, and suppose that } ¨ } and ||| ¨ ||| are norms on En and Fn, respectively, defining the

product topologies. Then T pnq : pEn, } ¨ }q Ñ pFn, ||| ¨ |||q is a bounded linear operator. A

bijection T P BpE,F q such that T´1 P BpF,Eq is an isomorphism; the spaces E and F

are isomorphic, written

E „ F ,

when there is such an isomorphism from E onto F . Take C ě 1. Then E and F are

C–isomorphic when there is an isomorphism T P BpE,F q with }T }
›

›T´1
›

› ď C; in this

case, we write

E „
C
F .

In the case where E and F are Banach spaces, it is of course immediate from Banach’s

isomorphism theorem that each bijection T P BpE,F q is an isomorphism.

Suppose that E and F are isomorphic normed spaces. Then the Banach–Mazur dis-

tance from E to F is

dpE,F q “ inft}T }
›

›T´1
›

› : T P BpE,F q is an isomorphismu ;

the spaces E and F are almost isometric if dpE,F q “ 1. The infimum in the definition

of dpE,F q is attained when E and F are both finite-dimensional spaces, but this is not

true in general. We have dpE,F q ď C whenever E „
C
F . Clearly

dpE,Gq ď dpE,F q dpF,Gq (1.3.12)

for three normed spaces E, F , and G such that E „ F „ G.

The following definition is taken from [2, Definition 11.1.1].



12 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

Definition 1.3. Let E and F be infinite-dimensional Banach spaces. Then E is finitely

representable in F if, for each finite-dimensional subspace X of E and each ε ą 0, there

is a finite-dimensional subspace Y of F with dimY “ dimX such that dpX,Y q ă 1` ε.

Let E, F , and G be infinite-dimensional Banach spaces, and suppose that E is finitely

representable in F and that F is finitely representable in G. Then it is noted in [2,

Proposition 11.1.4] that E is finitely representable in G. Examples of spaces that are

finitely representable in other spaces will be given in §1.6.

Let E and F be normed spaces. An operator T P BpE,F q is an embedding if it is an

isomorphism onto a subspace of F (where the subspace has the relative norm from F ),

and E embeds in F if there is such an embedding. Thus T P BpE,F q is an embedding if

and only if there exists c ą 0 such that }Tx} ě c }x} px P Eq. We define the embedding

constant of T P BpE,F q by the formula:

βpT q “ βpT : E Ñ F q “ inft}Tx} : x P SEu ,

so that βpT q ą 0 when T is an embedding. When we consider an embedding T : E Ñ F

as an isomorphism onto its range, we see that T has an inverse T´1 : T pEq Ñ E and

that
›

›T´1 : T pEq Ñ E
›

› “ 1{βpT q .

Suppose that E, F , G, and H are normed spaces, and take R P BpE,F q to be a

surjection, S P BpF,Gq, and T P BpG,Hq. Then TSR P BpE,Hq and

βpTSRq ď βpSq }R} }T } . (1.3.13)

Indeed, take ε ą 0, and then take y P SF with }Sy} ă βpSq ` ε. Since R is a surjection,

there exists x P E with Rx “ y, and then 1 ď }R} }x}, so that

βpTSRq ď
}TSRx}

}x}
ď }T } }Sy} }R} ă pβpSq ` εq }R} }T } .

Inequality (1.3.13) follows.

Let E and F be normed spaces, and suppose that T P BpE,F q is an open map, and

hence a surjection. Then we define the modulus of surjectivity of T P BpE,F q by

rpT q “ inftc ą 0 : B˝F Ă cT pB˝Equ pT P BpE,F qq ,

so that rpT q ą 0. In this case, the induced map T : E{ kerT Ñ F is an isomorphism and

rpT q “
›

›

›
T
´1

›

›

›
. (1.3.14)

Let E and F be Banach spaces. Then the following are standard results: for each em-

bedding T P BpE,F q, the map T 1 is a surjection and rpT 1q “ 1{βpT q; for each surjection

T P BpE,F q, the map T 1 is an embedding and βpT 1q “ 1{rpT q.

Two normed spaces E and F are isometrically isomorphic, written

E – F ,

when there is a linear isometry from E onto F ; an embedding of E into F is an isometric

embedding if it is an isometry, and then E embeds isometrically in F .

Let E and F be normed spaces, and take T P BpE,F q. Then T is a quotient operator

if T pB˝Eq “ B˝F and an exact quotient operator if T pBEq “ BF . Each exact quotient
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operator is a quotient operator; the converse is not necessarily true. We shall use the

following standard result [27, p. 333].

Proposition 1.4. Let E and F be normed spaces, and take T P BpE,F q.
(i) The induced operator T : E{ kerT Ñ F is an isometric isomorphism if and only

if T is a quotient operator.

(ii) The operator T is an isometric embedding if and only if T 1 is an exact quotient

operator if and only if T 1 is a quotient operator.

Suppose that F is a closed subspace of a normed space E. Then the annihilator of

F in E1 is the weak˚-closed subspace of E1 defined by

FK “ tλ P E1 : xx, λy “ 0 px P F qu ,

so that F 1 is identified with E1{FK. Thus J 1F “ QFK in the notation of equation (1.3.4).

Definition 1.5. Let E be a normed space. Then a normed space F is a subquotient of

E whenever there is a closed subspace G of E such that F is isometrically isomorphic to

a subspace of the quotient space E{G.

Equivalently, the normed space F is a subquotient of a normed space E whenever F

is isometrically isomorphic to a quotient of a subspace of E.

We shall also use the following result.

Proposition 1.6. Let E, F , and G be normed spaces. Suppose that there are a quotient

operator Q : E Ñ F and a contraction J : E Ñ G such that JpEq is dense in G and

}Qx} ď }Jx} px P Eq. Then F is isometrically isomorphic to a quotient of G.

Proof. Take z P JpEq. Then there exists x P E with Jx “ z; we set Tz “ Qx. Since

}Qx} ď }Jx} px P Eq, the element Tz is well-defined in F and }Tz} ď }Jx} “ }z}.

Clearly the map T : JpEq Ñ F is linear. Since JpEq is dense in G, the map T extends to

a contraction T : GÑ F . Take y P F with }y} ă 1. Since Q is a quotient operator, there

exists x P E with }x} ă 1 and Qx “ y. Then }Jx} ă 1 and T pJxq “ y. This shows that

T is a quotient operator, and so the map T : G{ kerT Ñ F is an isometric isomorphism

by Proposition 1.4(i).

Let E be a normed space. A closed subspace F of E is complemented if there is a

closed subspace G of E such that E “ F ‘ G; an idempotent in the algebra BpEq is a

projection on E.

Now suppose that E is a Banach space and that F is a complemented subspace of

E. Then there is a projection P on E with P pEq “ F and E “ P pEq‘ pIE ´P qpEq; the

space F is λ-complemented (for λ ě 1) if there is such a projection P with }P } ď λ, and

λpF,Eq, the projection constant of F in E, is the infimum of such numbers λ.

A Banach space E is injective if, for every Banach space G, every closed subspace

F of G, and every T P BpF,Eq, there is an extension rT P BpG,Eq of T ; the space E is

λ-injective if, further, we can ensure that
›

›

›

rT
›

›

›
ď λ }T }. For example, the space `8pSq

of bounded, scalar-valued functions on a non-empty set S is always 1–injective. See [17,

Proposition 2.5.5], for example.
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For p with 1 ď p ď 8, we write ` p for the usual Banach space of scalar-valued,

p–summable sequences, with

}pαjq}` p “

˜

8
ÿ

j“1

|αj |
p

¸1{p

ă 8 ppαjq P `
pq ;

for n P N, the n–dimensional versions of these spaces are denoted by ` pn . The Banach

space of all scalar-valued null sequences is c 0; the linear subspace of sequences which are

eventually 0 is c 00, so that c 00 is dense in c 0 and ` p for 1 ď p ă 8.

We shall write δi for the sequence pδi,j : j P Nq for i P N, where δi,j is the Kro-

necker delta. Later, we shall identify finite sequences pα1, . . . , αnq in Fn with the element

pα1, . . . , αn, 0, 0, . . . q P c 00, and regard c 00 and ` pn as subspaces of ` p, so that

` pn “ lin tδ1, . . . , δnu pn P Nq .

For n P N, we write Pn : FN Ñ Fn for the linear map which is the projection onto the

first n coordinates. Let E “ ` p (for 1 ď p ď 8) or E “ c 0. Then Pn | E P BpEq with

}Pn | E} “ 1 in each case; we note that limnÑ8 PnT “ T in pBpEq, } ¨ }q for each compact

operator T on E. We also regard each T “ pTi,jq PMm,n, where m,n P N, as an operator

on c 00 via the formula

Tα “ T

˜

8
ÿ

j“1

αjδj

¸

“

m
ÿ

i“1

˜

n
ÿ

j“1

Ti,jαj

¸

δi “ TPnα pα “ pαjq P c 00q .

More generally we have the following definition.

Definition 1.7. Let E be a normed space, and take n P N and p with 1 ď p ď 8. Define

}x}` p
n pEq

“

˜

n
ÿ

i“1

}xi}
p

¸1{p

px “ px1, . . . , xnq P E
n , n P Nq . (1.3.15)

Clearly pEn, } ¨ }` p
n pEq

q is a normed space that is a Banach space when E is a Banach

space. The norm } ¨ }` p
n pEq

is called the p–sum norm on E, and we write ` pnpEq for En

taken with this norm. Let F be a closed subspace of E. Then clearly the restriction of

the p–sum norm on En to Fn and the quotient of the p–sum norm on pE{F qn are the

p–sum norms on Fn and pE{F qn, respectively. The dual space to ` pnpEq is ` p
1

n pE
1q.

Let E be a normed space. We define the following space:

` ppEq “

$

&

%

pxnq P E
N : }pxnq}` ppEq “

˜

8
ÿ

n“1

}xn}
p

¸1{p

ă 8

,

.

-

,

so that ` ppEq is a normed space; the specified norm on ` ppEq is also called the p–sum

norm. In the case where 1 ď p ă 8, the dual space to ` ppEq is ` p
1

pE1q, and so the dual

of the p–sum norm based on E is the p1–sum norm based on E1.

The following result is easily checked.

Proposition 1.8. Let p with 1 ď p ď 8, and take m,n P N.

(i) We have }T : ` pn Ñ ` pm} “
›

›

›
T t : ` p

1

m Ñ ` p
1

n

›

›

›
pT PMm,nq.
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(ii) For each row-special matrix T PMm,n, we have

}T : ` pn Ñ ` pm} “ max

$

&

%

˜

m
ÿ

i“1

|Ti,j |
p

¸1{p

: j P Nn

,

.

-

.

(iii) For each column-special matrix T PMm,n, we have

}T : ` pn Ñ ` pm} “ max

$

&

%

˜

m
ÿ

j“1

|Ti,j |
p1

¸1{p1

: i P Nm

,

.

-

.

Let Γ be an index set. Then the space of functions on Γ with finite support is denoted

by c 00pΓq. Now take p with 1 ď p ď 8. Then we write ` ppΓq for the corresponding space,

and define elements δγ in these spaces for γ P Γ by δγpsq “ 1 if s “ γ and δγpsq “ 0

if s P Γztγu. Thus c 00pΓq is dense in p` ppΓq, } ¨ }` ppΓqq for 1 ď p ă 8. In particular, the

uniform norm } ¨ }8 on a set Γ is defined by

}f}8 “ supt|fpsq| : s P Γu pf P `8pΓqq .

Let K be a compact (Hausdorff) space. Then pCpKq, } ¨ }8q is the uniform algebra

(with the pointwise operations and the norm } ¨ }8) of all scalar-valued, continuous func-

tions on K; if it be necessary to specify the scalar field, we shall write CpK,Rq or CpK,Cq,
as appropriate. For a study of CpKq as a Banach space, see [17], for example.

We shall use the fact that each Banach space E is a quotient of a space ` 1pΓq for

some index set Γ. Indeed, we can take Γ “ BE and define

Q :
ÿ

αγδγ ÞÑ
ÿ

αγγ , ` 1pΓq Ñ E .

We recall two elementary and well-known facts that we shall use.

Proposition 1.9. Let E be a finite-dimensional normed space, and take ε ą 0. Then

there exist n P N and an embedding J : E Ñ `8n such that

}x} ď }Jx}8 ď p1` εq }x} px P Eq , (1.3.16)

and so dpE, JpEqq ď 1` ε.

Proof. We may suppose that ε ă 1.

The set SE1 :“ tλ P E1 : }λ} “ 1u is compact, and so totally bounded, in the metric

space pE1, } ¨ }q, and hence there exist n P N and λ1, . . . , λn P SE1 such that, for each

λ P SE1 , there exists i P Nn with }λ´ λi} ă ε{2. Set

Jx “ p1` εqpxx, λ1y, . . . , xx, λnyq px P Eq.

Then Jx P `8n px P Eq, the map J : E Ñ `8n is linear, and (1.3.16) follows easily, so that

J is an embedding.

Proposition 1.10. Let E be a normed space, take k P N, and suppose that tx1, . . . , xku

is a linearly independent set in E. Then there exists ε ą 0 such that ty1, . . . , yku is a

linearly independent set whenever yj P E and }xj ´ yj} ă ε for j P Nk.
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Proof. Set F “ lin tx1, . . . , xku, a finite-dimensional subspace of E, and consider the

linear bijection

T : pζ1, . . . , ζkq ÞÑ
k
ÿ

j“1

ζjxj , ` 1
k Ñ F .

Set M “
›

›T´1
›

› ą 0, fix ε P p0, 1{Mq, and consider elements y1, . . . , yk P E such that

}xj ´ yj} ă ε pj P Nkq. Suppose that ζ1, . . . , ζk P F with
řk
j“1 ζjyj “ 0. Then

1

M

k
ÿ

j“1

|ζj | ď

›

›

›

›

›

k
ÿ

j“1

ζjxj

›

›

›

›

›

“

›

›

›

›

›

k
ÿ

j“1

ζjpxj ´ yjq

›

›

›

›

›

ď ε
k
ÿ

j“1

|ζj | .

Since ε ă 1{M , this is a contradiction unless
řk
j“1 |ζj | “ 0. Hence ζ1 “ ¨ ¨ ¨ “ ζk “ 0,

and so ty1, . . . , yku is linearly independent.

Now let E be a normed space, and take n P N. We shall consider norms ||| ¨ ||| on En

that satisfy the following two conditions:

|||x||| ě max
i“1,...,n

}xi} px “ px1, . . . , xnq P E
nq (1.3.17)

and

|||p0, . . . , 0, xi, 0, . . . , 0q||| “ }xi} pxi P E, i P Nnq . (1.3.18)

Each norm that satisfies these conditions defines the product topology of En. Certainly

||| ¨ ||| :“ } ¨ }n satisfies these conditions whenever p} ¨ }mq is a power-norm based on E.

The maps ∆pT1,...,Tnq P LpE,Fnq and ΣpT1,...,Tnq P LpEn, F q were defined in equations

(1.3.8) and (1.3.9), respectively. The results of the following proposition will be developed

further in §3.2.

Proposition 1.11. Let E and F be normed spaces, and take n P N.

(i) Suppose that the norm ||| ¨ ||| on Fn satisfies (1.3.17) and (1.3.18). Then the map

pT1, . . . , Tnq ÞÑ ∆pT1,...,Tnq , BpE,F qn Ñ BpE,Fnq ,

is a linear isomorphism.

(ii) Suppose that the norm ||| ¨ ||| on En satisfies (1.3.17) and (1.3.18). Then the map

pT1, . . . , Tnq ÞÑ ΣpT1,...,Tnq , BpE,F qn Ñ BpEn, F q ,

is a linear isomorphism.

Proof. Take T1, . . . , Tn P BpE,F q.
(i) For each x P E, we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ∆pT1,...,Tnqpxq
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ ď

n
ÿ

i“1

||| p0, . . . , 0, Tix, 0, . . . , 0q ||| ď

˜

n
ÿ

i“1

}Ti}

¸

}x}

by (1.3.18), and so ∆pT1,...,Tnq P BpE,Fnq with
›

›∆pT1,...,Tnq

›

› ď
řn
i“1 }Ti}.

Clearly the specified map is a linear injection. For i P Nn, let πi : Fn Ñ F be the

coordinate projection onto the i th coordinate, and take T P BpE,Fnq; by (1.3.17), πi is

a contraction, and so πi ˝ T P BpE,F q. Further T “ ∆pπ1˝T,...,πn˝T q, and so the specified

map is a surjection.
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(ii) For each x1, . . . , xn P E, we have

›

›ΣpT1,...,Tnqpx1, . . . , xnq
›

› ď

˜

n
ÿ

i“1

}Ti}

¸

max
i“1,...,n

}xi} ď

˜

n
ÿ

i“1

}Ti}

¸

|||px1, . . . , xnq|||

by (1.3.17), and so ΣpT1,...,Tnq P BpEn, F q with
›

›ΣpT1,...,Tnq

›

› ď
řn
i“1 }Ti}.

Clearly the specified map is a linear injection. For i P Nn, let ιi : E Ñ En be the

embedding into the i th coordinate, and take T P BpEn, F q; by (1.3.18), ιi is an isometry,

and so T ˝ ιi P BpE,F q. Since T “ ΣpT˝ι1,...,T˝ιnq, the specified map is a surjection.

Let E be a normed space, take n P N, and suppose that En is endowed with a norm

||| ¨ ||| which satisfies equations (1.3.17) and (1.3.18). As a special case of clause (ii), above,

take λ1, . . . , λn P E
1, and define λ “ Σpλ1,...,λnq P pE

n, ||| ¨ |||q1, so that

xx, λy “
n
ÿ

i“1

xxi, λiy px “ px1, . . . , xnq P E
nq . (1.3.19)

Then

max
i“1,...,n

}λi} ď |||λ|||
1
ď

n
ÿ

i“1

}λi} ,

where ||| ¨ |||
1

is the dual norm to ||| ¨ ||| , and so, by identifying λ P pEn, ||| ¨ |||q1 with

pλ1, . . . , λnq P pE
1qn, we have defined a norm on pE1qn. We have identified κEn with κ

pnq
E ,

and so we regard κEnpEnq as a subspace of pE2qn.

Suppose in addition that T is an operator from E into a normed space F and that Fn

is also endowed with a norm ||| ¨ ||| which satisfies equations (1.3.17) and (1.3.18). Then

the above identification of the dual spaces of pEn, ||| ¨ |||q and pFn, ||| ¨ |||q with pE1qn and

pF 1qn, respectively, implies that the dual of the nth amplification of T is identified with

the nth amplification of the dual of T , so that

pT pnqq1 “ pT 1qpnq pn P Nq . (1.3.20)

1.4. Tensor products. We recall some definitions concerning tensor products of normed

spaces; for the theory of such tensor products, see [22, 23, 24, 25, 32, 55] and [15, Appendix

3].

Suppose that E and F are linear spaces over the same field F, and denote their

(algebraic) tensor product by E b F . Each element z P E b F has a representation

as z “
řn
j“1 xj b yj , where n P N, x1, . . . , xn P E, and y1, . . . , yn P F ; in the case

where z ‰ 0, we may suppose that the sets tx1, . . . , xnu and ty1, . . . , ynu are linearly

independent.

Let F be a subspace of a linear space E, and let G be a linear space. Then F b G

is a subspace of E b G and the quotient space pE b Gq{pF b Gq can be identified with

pE{F q bG.

Let E, F , and G be linear spaces, and take S to be a bilinear map from E ˆ F into

G. Then there is a unique linear map TS : E b F Ñ G such that

TSpxb yq “ Spx, yq px P E, y P F q .
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Let E, F , X, and Y be linear spaces, and suppose that S P LpE,Xq and T P LpF, Y q.
Then there is a unique linear map S b T : E b F Ñ X b Y such that

pS b T qpxb yq “ Sxb Ty px P E, y P F q .

Similarly, suppose that λ and µ are linear functionals on E and F , respectively. Then

λb µ is the unique linear functional on E b F such that

pλb µqpxb yq “ xx, λy xy, µy px P E, y P F q . (1.4.1)

Suppose that E is a finite-dimensional space with a basis te1, . . . , enu and that F is

a linear space. Then each element z P E b F has a unique representation in the form

z “
řn
j“1 ej b yj , where y1, . . . , yn P F . For example, the space Fn has the standard

basis tδ1, . . . , δnu, and so we can identify py1, . . . , ynq P F
n with

řn
j“1 δj b yj in Fn bF .

Let F and G be linear spaces, and take T P LpF,Gq and n P N. As above, we identify

Fn and Gn with Fn bF and Fn bG, respectively. Then the nth amplification T pnq of T

is identified with the operator InbT : FnbF Ñ FnbG. More generally, for A PMm,n,

where m,n P N, the action

Ab T : Fn b F Ñ Fm bG (1.4.2)

corresponds to the map

x ÞÑ ApT pnqxq “ T pmqpAxq , Fn Ñ Gm . (1.4.3)

In particular, the map AbIF : FnbF Ñ FmbF corresponds to the map A : Fn Ñ Fm,

with the above identification.

Let E and F be normed spaces. The projective tensor norm } ¨ }π on EbF is defined

by

}z}π “ inf

#

m
ÿ

j“1

}xj} }yj} : z “
m
ÿ

j“1

xj b yj , m P N

+

pz P E b F q ,

where the infimum is taken over all representations of z as an element of E b F . Then

pEbF, } ¨ }πq is a normed space; it is complete if either E or F is finite dimensional and the

other is a Banach space, but it is not complete if both E and F are infinite-dimensional

spaces; the Banach space which is its completion is denoted by

pE pbF, } ¨ }πq .

The injective tensor norm } ¨ }ε on E b F is defined by

}z}ε “ sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

j“1

xxj , λy xyj , µy

ˇ

ˇ

ˇ

ˇ

ˇ

: λ P BE1 , µ P BF 1

+

,

where z “
řm
j“1 xj b yj is any representation of z in E b F . Then pE b F, } ¨ }εq is a

normed space; the Banach space which is its completion is denoted by

pE qbF, } ¨ }εq .

We note that always }z}ε ď }z}π pz P E b F q; it is straightforward to see that, in

the case where dimE “ n, we have

}z}π ď n }z}ε pz P E b F q , (1.4.4)
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and so the identity map from pEbF, } ¨ }εq onto pEbF, } ¨ }πq is an isomorphism in this

special case.

A norm } ¨ } on E b F is a cross-norm if

}xb y} “ }x} }y} px P E, y P F q ,

and a sub-cross-norm if

}xb y} ď }x} }y} px P E, y P F q .

A sub-cross-norm } ¨ } on EbF is reasonable if the linear functional λbµ that was defined

in equation (1.4.1) is bounded on pE b F, } ¨ }q with }λb µ} ď }λ} }µ} for each λ P E1

and µ P F 1. The projective and injective tensor norms on E b F are both cross-norms;

indeed, the projective tensor norm is the maximum cross-norm on E b F .

The following result is [55, Proposition 6.1].

Proposition 1.12. Let E and F be normed spaces.

(i) A norm } ¨ } on E b F is a reasonable sub-cross-norm if and only if

}z}ε ď }z} ď }z}π pz P E b F q .

(ii) Each reasonable sub-cross-norm } ¨ } on EbF is a cross-norm, and the dual norm

} ¨ }
1

is a cross-norm on E1 b F 1.

Let E and F be normed spaces. The dual space pE pbF q1 is isometrically isomorphic

to BpE,F 1q via the map ι defined by

xy, pιλqpxqy “ xxb y, λy px P E, y P F, λ P pE pbF q1q . (1.4.5)

By [22, p. 47], there is a natural isometric embedding of E1 qb F 1 in pE pb F q1, but this

embedding is not usually a surjection. However, in the case where either E or F is a

finite-dimensional space, we have the two identifications

pE b F, } ¨ }εq
1 – pE1 b F 1, } ¨ }πq (1.4.6)

and

pE b F, } ¨ }πq
1 – pE1 b F 1, } ¨ }εq . (1.4.7)

See [22, Theorem 6.4], for example.

Now let E, F , and G be Banach spaces, and take S to be a bounded bilinear map

from E ˆ F into G. Then there is a unique bounded linear map TS : E pbF Ñ G such

that TSpxb yq “ Spx, yq px P E, y P F q; further, }TS} “ }S}. The bilinear map

R : py, λq ÞÑ y b λ , F ˆ E1 Ñ BpE,F q ,

where y b λ was defined in (1.3.11), is bounded, and so we obtain a bounded linear

operator TR : F pbE1 Ñ BpE,F q. The range of TR is the space of nuclear operators,

denoted by pN pE,F q, } ¨ }νq, where } ¨ }ν is the nuclear norm; see [22, §3.6].

We shall use the following standard theorem; see [55, Propositions 2.3 and 3.2], for

example. For the final statement, see [22, (4.3) and (5.8)].
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Theorem 1.13. Let E, F , X, and Y be Banach spaces, and suppose that S P BpE,Xq
and T P BpF, Y q. Then there are unique operators

S bπ T P BpE pbF,X pbY q and S bε T P BpE qbF,X qbY q

with

pS bπ T qpxb yq “ Sxb Ty px P E, y P F q

and

pS bε T qpxb yq “ Sxb Ty px P E, y P F q ,

respectively. Further,

}S bπ T } “ }S bε T } “ }S} }T } .

Suppose that S and T are injective. Then S bε T is always injective, and S bπ T is

injective whenever either E or F has the approximation property.

We shall usually write S b T for either S bπ T or S bε T , as appropriate.

In particular, suppose that F is a closed subspace of a Banach space E and that G

is a Banach space. Then the linear map

IG bπ JF : pG pb F, } ¨ }πq Ñ pG pb E, } ¨ }πq

is a contraction, but it is not always an embedding. More generally, the projective tensor

product ‘preserves quotients, but not necessarily subspaces’ and the injective tensor prod-

uct ‘preserves subspaces, but not necessarily quotients’. This phenomenon is discussed

in the literature; for example, see [23, Theorem 2.3.1] and [55, §§2.1, 3.1]. The following

result is contained in [22, Chapters 3 and 4] and [55, §2.1, §3.1, and Exercise 3.3].

Proposition 1.14. Let E and G be Banach spaces, and suppose that F is a closed

subspace of E.

(i) The linear map IG bQF : G pbE Ñ G pbpE{F q is a quotient operator.

(ii) The linear map IG b JF : G pbF Ñ G pbE is an isometry if and only if each

T P BpF,G1q extends to an operator rT P BpE,G1q with
›

›

›

rT
›

›

›
“ }T }.

(iii) For each measure space Ω, the linear map IL1pΩqb JF : L1pΩq pbF Ñ L1pΩq pbE

is an isometry.

(iv) The linear map κG b κE : G pbE Ñ G2 pbE2 is an isometry.

(v) The linear map IG b JF : G qbF Ñ G qbE is an isometry.

The next proposition is closely related to clause (ii), above; it may be well-known

(see, e.g., [47, Section 3]), but we prove it for the sake of completeness.

Proposition 1.15. Let F be a finite-dimensional subspace of a Banach space E, and let

G be a Banach space. Then the linear map

IG bπ JF : G pbF Ñ G pbE

is an embedding, and βpIGbπ JF q ě 1{λpF,Eq. Moreover, in the case where G “ F 1, we

have

βpIF 1 bπ JF q “ 1{λpF,Eq .
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Proof. The first part of this proposition is easy, and hence we need to show only that

βpIF 1 bπ JF q ď 1{λpF,Eq. Set

T “ IF 1 bπ JF : F 1 pbF Ñ F 1 pbE

and c “ 1{βpT q. By equation (1.4.5) and the fact that F is reflexive, we may consider the

surjection T 1 as an operator from BpE,F q onto BpF q. Since rpT 1q “ 1{βpT q “ c, it follows

that, for each U P BpF q, there exists V P BpE,F q with T 1pV q “ U and }V } ď c }U}. But

T 1 is the restriction map, and so, taking U “ IF , we conclude that λpF,Eq ď c.

The result follows.

1.5. Weak p–summing norms. Let E be a normed space. In this section, we shall

recall the definition of the weak p–summing norms on E and give some of their basic

properties. Throughout this section, 1 ď p ď 8 and q “ p1.

The following standard definition was given in [20, Definition 4.1.1] and [19, §2.3]; for

further discussion, see also [22, 24, 32].

Let E be a normed space, and take n P N. Following the notation of [18, 20, 32], we

define µp,npxq for x “ px1, . . . , xnq P E
n by

µp,npxq “ sup

$

&

%

˜

n
ÿ

i“1

|xxi, λy|
p

¸1{p

: λ P BE1

,

.

-

“ sup
 

}xx, λy}` p
n

: λ P BE1

(

.

Then pEn, µp,nq is a normed space; it is a Banach space when E is a Banach space. We

write µEp,n when it is necessary to identify the space E. For example,

µ8,npxq “ max
i“1,...,n

}xi} “ }x}`8
n pEq

px “ px1, . . . , xnq P E
nq . (1.5.1)

Definition 1.16. Let E be a normed space, and take p with 1 ď p ď 8 and n P N.

Then µp,n is the weak p–summing norm on E (at dimension n).

Let E be a normed space. Clearly pµp,nq is a power-norm based on E and, for each

n P N, we have

max
i“1,...,n

}xi} ď µp,npx1, . . . , xnq ď

˜

n
ÿ

i“1

}xi}
p

¸1{p

px1, . . . , xn P Eq . (1.5.2)

Also µp1,npxq ě µp2,npxq px P E
nq whenever 1 ď p1 ď p2 ď 8 and n P N. By [32, p. 26]

or [55, (6.4)], it follows that, for each p P r1,8s, n P N, and x1, . . . , xn P E, we have

µp,npx1, . . . , xnq “ sup

$

&

%

›

›

›

›

›

n
ÿ

j“1

ζjxj

›

›

›

›

›

: ζ1, . . . , ζn P F,

˜

n
ÿ

j“1

|ζj |
q

¸1{q

ď 1

,

.

-

. (1.5.3)

Now take n P N and λ1, . . . , λn P E
1, and set λ “ pλ1, . . . , λnq. Then

µp,npλq “ sup

$

&

%

˜

n
ÿ

i“1

| xx, λiy|
p

¸1{p

: x P BE

,

.

-

. (1.5.4)

Let E and F be normed spaces, and take n P N and T P BpE,F q. Then

µp,npT
pnqxq ď µp,npxq }T } px P Enq . (1.5.5)
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Let E be a normed space. Then the space of sequences x “ pxiq P E
N such that

}x} :“ sup

$

&

%

˜

8
ÿ

i“1

|xxi, λy|
p

¸1{p

: λ P BE1

,

.

-

ă 8

is denoted by p` pweakpEq, } ¨ }` p
weakpEq

q in [23, p. 16], by p`weakp pEq, } ¨ }
weak
p q in [24, p. 32],

and by p`wp pEq, } ¨ }
w
pq in [55, (6.4)].

Let E be a normed space, and take n P N. For x “ px1, . . . , xnq P E
n, consider the

map

Tx : pζ1, . . . , ζnq ÞÑ
n
ÿ

i“1

ζixi , ` qn Ñ E .

Then Tx P Bp` qn , Eq and µp,npxq “ }Tx}. The norm on En corresponding to the injective

tensor norm on ` pn b E is denoted by } ¨ }ε,n, and so, for x “ px1, . . . , xnq P E
n, we have

}x}ε,n “

›

›

›

›

›

n
ÿ

i“1

δi b xi

›

›

›

›

›

ε

“ sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

αixxi, λy

ˇ

ˇ

ˇ

ˇ

ˇ

:

˜

n
ÿ

i“1

|αi|
q

¸1{q

ď 1, λ P BE1

,

.

-

“ sup

$

&

%

˜

n
ÿ

i“1

|xxi, λy|
p

¸1{p

: λ P BE1

,

.

-

“ µp,npxq .

Hence

}x}ε,n “ µp,npxq px P Enq . (1.5.6)

It follows that

pEn, µp,nq – Bp` qn , Eq – p` pn b E, } ¨ }ε,nq . (1.5.7)

In the case where E is a finite-dimensional normed space, we also have

pEn, µp,nq – BpE1, ` pnq .

Indeed, the element x “ px1, . . . , xnq P E
n corresponds to the element T 1x P BpE1, ` pnq,

where

T 1xpλq “ λpnqpxq “ xx, λy pλ P E1q .

Let E be a normed space with a closed subspace F , and take p with 1 ď p ď 8,

n P N, and x P Fn. Then it follows immediately from the Hahn–Banach theorem that

we obtain the same values for µp,npxq whether it be evaluated with respect to E or F .

Thus ‘a weak p–summing norm passes to subspaces’, in the sense that

J
pnq
F : pFn, µFp,nq Ñ pEn, µEp,nq (1.5.8)

is an isometry for each n P N; cf. Proposition 1.14(v). Now suppose that 1 ă p ă 8 with

p ‰ 2 and that n P N. Then it is not necessarily the case that the norm µ
E{F
p,n on the

quotient space pE{F qn of En is equal to the quotient of the norm µEp,n on En; we shall

show this in Example 1.30, below.

Let E be a normed space, and again take p with 1 ď p ď 8 and set q “ p1. For n P N
and x P En, define

νp,npxq “ sup
 

|xx, λy| : λ P pE1qn, µq,npλq ď 1
(

.
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Then we see that pEn, νp,nq is a normed space; we write νEp,n when it is necessary to

identify the space E. For example,

ν1,npxq “
n
ÿ

j“1

}xj} px “ px1, . . . , xnq P E
n, n P Nq . (1.5.9)

Clearly pνp,nq is a power-norm based on E. The norm νp,n is the restriction to En of the

dual norm of µq,n, where µq,n is defined on pE1qn. Since p` qn qbE1q 1 “ ` pn pbE2 by (1.4.6),

it follows that

νp,npxq “ }x}π,n px P En, n P Nq , (1.5.10)

where } ¨ }π,n denotes the projective tensor norm on ` pn bE and we are using Proposition

1.14(iv). Hence

pEn, νp,nq – p`
p
n b E, } ¨ }π,nq pn P Nq . (1.5.11)

Definition 1.17. Let E be a normed space, and take p with 1 ď p ď 8 and n P N.

Then νp,n is the dual weak p–summing norm on E (at dimension n).

Take n P N. Then it is clear that the dual space to pEn, µp,nq is ppE1qn, νq,nq and that

the dual space to pEn, νp,nq is ppE1qn, µq,nq.

It follows from equation (1.5.2) by duality that, for each n P N, we have
˜

n
ÿ

i“1

}xi}
p

¸1{p

ď νp,npx1, . . . , xnq ď
n
ÿ

i“1

}xi} px1, . . . , xn P Eq . (1.5.12)

Example 1.18. Let E be a normed space, and take n P N. Then we have defined the

p–sum norm } ¨ }` p
n pEq

on the space En in Definition 1.7. As in §1.4, we identify ` pn b E

with En, and so we obtain a norm on ` pnbE corresponding to the p–sum norm. It follows

from (1.5.6), (1.5.2), (1.5.12), (1.5.10) that

}x}ε,n “ µp,npxq ď }x}` p
n pEq

ď νp,npxq “ }x}π,n px P Enq , (1.5.13)

and so, by Proposition 1.12, } ¨ }` p
n pEq

defines a reasonable cross-norm on ` pn b E.

(In fact, it follows from [55, (6.9)] that

dppzq ď }z}` p
n pEq

ď gppzq pz P ` pn b Eq ,

where dp and gp denote certain ‘Chevet–Saphar tensor norms’.)

Now suppose that E and F are normed spaces and that T P BpE,F q. Also in §1.4,

we identified the operator In b T : ` pn b E Ñ ` pn b F with the nth amplification T pnq of

T . It is clear from the definitions that

}In b T : ` pn b E Ñ ` pn b F } “
›

›

›
T pnq : ` pnpEq Ñ ` pnpF q

›

›

›
“ }T } . (1.5.14)

In the language of §3.1, this will say that T is a multi-bounded operator with respect to

the p–sum norms based on E and F , respectively, and that }T }mb “ }T }.
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Proposition 1.19. Let E and F be normed spaces, and take T P BpE,F q and n P N.

Then
›

›

›
T pnq : pEn, µEp,nq Ñ pFn, µFp,nq

›

›

›
“

›

›

›
T pnq : pEn, νEp,nq Ñ pFn, νFp,nq

›

›

›
“ }T } .

Proof. Recall that we are identifying the nth amplification T pnq of T with the operator

In b T : ` pn b E Ñ ` pn b F . By Theorem 1.13, }In bπ T } “ }In bε T } “ }T }. The result

now follows from the identifications of the weak p–summing norm and the dual weak

p–summing norm in (1.5.6) and (1.5.10), respectively.

The next result follows from Proposition 1.14(i) and equation (1.5.11).

Proposition 1.20. Let F be a closed subspace of a Banach space E, let QF : E Ñ E{F

be the quotient map, and take p with 1 ď p ď 8 and n P N. Then

Q
pnq
F : pEn, νEp,nq Ñ ppE{F qn, νE{Fp,n q

is a quotient operator.

Take F to be a closed subspace of a Banach space E, and suppose that 1 ă p ă 8

with p ‰ 2 and that n P N. Then it is not necessarily the case that the norm νFp,n on the

subspace Fn of En is equal to the restriction to Fn of the norm νEp,n on En. We shall

also show this in Example 1.30, below.

1.6. Subspaces and subquotients of Lp-spaces. Let pΩ, µq be a measure space, and

take p with 1 ď p ď 8. We write LppΩ, µq or LppΩq for the usual Banach space of scalar-

valued, p–integrable (with respect to the measure µ) functions. In particular, we write

LppIq for the usual space of p–integrable (with respect to Lebesgue measure) functions

on I. Again we write LppΩ, µ,Rq or LppΩ, µ,Cq, etc., when necessary.

We shall need some results which determine the Banach spaces that are either sub-

spaces or subquotients of Banach spaces of this form, and we summarize the story here.

Following Pisier in [51], we make the following definition.

Definition 1.21. Take p with 1 ď p ď 8. Then the class of Banach spaces that are

subquotients of Banach spaces of the form LppΩ, µq, where pΩ, µq is a measure space, is

denoted by SQppq.

Each Banach space E is a quotient of a space of the form ` 1pΓq, and so SQp1q is the

class of all Banach spaces. Set B “ BE1 . Then the map x ÞÑ κEpxq | B, E Ñ `8pBq, is

an isometric embedding, and so SQp8q is the class of all Banach spaces. Also SQp2q is

the class of all Hilbert spaces. Let E be a Banach space. Then clearly E1 P SQpp1q if and

only if E P SQppq.

The first result is standard; see [2, Theorem 6.4.19 and Proposition 11.1.9], for ex-

ample. (The result is stated just for real Banach spaces in these sources; the result for

complex Banach spaces follows easily.) An early source for the final clause is a paper of

Dor [26, Theorem 2.1].

Proposition 1.22. (i) Suppose that 1 ď p ď 2 and 1 ď r ă 8. Then ` r and LrpIq each

embed in LppIq if and only if p ď r ď 2.
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(ii) Suppose that 2 ă p ă 8 and 1 ď r ă 8. Then ` r and LrpIq each embed in LppIq
if and only if r “ 2 or r “ p.

Moreover, in both cases, ` r and LrpIq embed isometrically in LppIq whenever they embed

in LppIq.

Corollary 1.23. Suppose that 2 ď p ď 8 and 1 ď r ă 8. Then ` r and LrpIq are each

isometrically isomorphic to a quotient of LppIq if and only if 2 ď r ď p.

Proof. Set q “ p1 and s “ r1. Suppose that 2 ď r ď p. Then 1 ď q ď s ď 2, and so, by

Proposition 1.22(i), ` s and LspIq embed isometrically in LqpIq. Hence ` r and LrpIq are

isometrically isomorphic to a quotient of LppIq. The converse is similar.

It follows from Proposition 1.22(i) and Corollary 1.23 that the space ` r is a sub-

quotient of LppIq whenever 1 ď p ď r ď 2 or 2 ď r ď p ď 8.

Although it is not strictly relevant to our work, we note that, for each r, p P p1,8q,

the space ` r embeds in LppIq as a complemented subspace if and only if r “ p or r “ 2

[2, Theorem 6.4.21].

We shall also use the following result from [2, Theorem 11.1.8].

Proposition 1.24. Take p with 1 ď p ă 8. Then each separable Banach space that is

finitely representable in ` p is isometrically isomorphic to a closed subspace of LppIq.

We next give in Theorem 1.26 a more general version of Proposition 1.22. We shall use

the following remark. Take p with 1 ď p ă 8, let pΩ, µq be a measure space, and suppose

that E is a closed, separable subspace of LppΩ, µq. Then it is easy to see that E embeds

in a space LppΣ, νq, where pΣ, νq is a measure space and ν is σ-finite, whence LppΣ, νq is

separable. By [33, p. 15] and by [37, p. 128], each infinite-dimensional, separable space

of the form LppΣ, νq is isometrically isomorphic to either ` p or to LppIq or to ` p‘pL
ppIq

or to ` pn ‘p L
ppIq for some n P N, and hence embeds isometrically in LppIq.

The first result is close to [2, Proposition 11.17].

Proposition 1.25. Let Ω be a measure space, and take r with 1 ď r ă 8. Then LrpΩq

is finitely representable in ` r.

Proof. Take a finite-dimensional subspace X of LrpΩq and take ε ą 0, say tx1, . . . , xmu

is a basis for X, where m P N. We approximate each xi by a simple function fi in LrpΩq

in such a way that the linear operator T : X Ñ LrpΩq with Txi “ fi pi P Nmq is an

isomorphism onto F :“ lin tf1, . . . , fmu with }T }
›

›T´1
›

› ă 1 ` ε. Take tA1, . . . , Anu to

be a measurable partition of Ω such that each function fi is constant on each set Aj ,

and set G “ lin tχA1
, . . . , χAn

u. Then F Ă G and G – `rn. We conclude that there is a

finite-dimensional subspace Y of ` r such that dpX,Y q ă 1` ε, as required.

Theorem 1.26. Let Ω be a measure space, and take p with 1 ď p ă 8.

(i) Suppose that r is such that 1 ď p ď r ď 2 or that p ą 2 and r “ 2 or r “ p. Then

the space LrpΩq is finitely representable in ` p and there is a measure space Σ such that

LrpΩq is isometrically isomorphic to a closed subspace of LppΣq.
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(ii) Suppose that 2 ă p ă 8 and 1 ď r ă 8 with r ‰ 2 and r ‰ p. Then ` r is not

isomorphic to a closed subspace of LppΩq.

(iii) Suppose that 1 ă p ď r ď 2 or 2 ď r ď p ă 8. Then LrpΩq belongs to the class

SQppq.

Proof. (i) By Proposition 1.25, LrpΩq is finitely representable in ` r. By Proposition 1.22,

` r embeds isometrically in LppIq. Again by Proposition 1.25, LppIq is finitely representable

in ` p. Thus LrpΩq is finitely representable in ` p.

By [24, Corollary 8.14(a)], there is a measure space Σ such that LrpΩq is isometrically

isomorphic to a closed subspace of LppΣq.

(ii) By Proposition 1.22(ii), ` r is not isomorphic to a subspace of LppIq, and so the

result follows from our preliminary remark.

(iii) The case where 1 ď p ď r ď 2 is covered in (i); the case where 2 ď r ď p ă 8

follows by duality.

The following theorem implies that ` r is isomorphic to a member of the class SQppq

if and only if r lies between 2 and p; it is surely well-known, but we have not found an

explicit statement in the literature.

Theorem 1.27. Take p and r with 1 ď p ă 8 and 1 ď r ă 8, and suppose that either

1 ă p ď 2 and r R rp, 2s or 2 ď p ă 8 and r R r2, ps.

(i) For each C ą 0, there exists n P N such that ` rn is not C–isomorphic to a space

in the class SQppq.

(ii) For each measure space Ω such that LrpΩq is an infinite-dimensional space, the

space LrpΩq is not isomorphic to a space in the class SQppq.

Proof. By duality, it suffices to prove the theorem in the case where 2 ď p ă 8 and

r R r2, ps, and so we suppose that this is the case.

(i) Assume to the contrary that, for some C ą 0 and each n P N, there is an n–

dimensional subspace En of a quotient of the space LppΣq with dpEn, `
r
nq ď C. By [62,

II.E.8] and [40, Corollary 5], respectively, we have

dp` rn , `
2
nq “ n|1{2´1{r| and dpEn, `

2
nq ď n|1{2´1{p| (1.6.1)

for each n P N. (Again, the results quoted are given for real-valued spaces, but they

extend easily to complex-valued spaces.)

First suppose that p ă r ă 8. Then, by (1.3.12) and (1.6.1), we have

n1{2´1{r ď Cn1{2´1{p pn P Nq ,

and so n1{p´1{r ď C pn P Nq, a contradiction.

Next suppose that 1 ď r ă 2. Then we claim that

dpEn, `
r
nq ě cn1{r´1{2 pn P Nq (1.6.2)

for some c ą 0. Indeed, take n P N and closed subspaces X and Y of LppΣq such that

Y Ă X Ă LppΣq and dimpX{Y q “ n, with quotient map Q : X Ñ X{Y , and take a
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contractive isomorphism T : ` rn Ñ X{Y , with inverse S : X{Y Ñ ` rn . We again write

tδ1, . . . , δnu for the canonical basis of ` rn . For each i P Nn, there exists xi P X with

}xi} ď 2 and Qpxiq “ Tδi. In the following sums, ε1, . . . , εn range over all choices of ˘1.

We have

1

2n

›

›

›

ÿ

εixi

›

›

›

X
ě

1

2n

›

›

›

ÿ

εiQpxiq
›

›

›

X{Y
ě

1

}S}

1

2n

›

›

›

ÿ

εiδi

›

›

›

` r
n

“
n1{r

}S}
.

On the other hand, the space LppΣq is of type 2 because p ě 2 [62, III.A.23], and so

there is a constant M ą 0 such that

1

2n

›

›

›

ÿ

εixi

›

›

›

X
ďM

˜

n
ÿ

i“1

}xi}
2

¸1{2

ď 2Mn1{2 .

Thus }S} ě cn1{r´1{2, where c “ 1{2M , and so dpEn, `
r
nq ě cn1{r´1{2 pn P Nq, giving the

claim (1.6.2).

It follows that cn1{r´1{2 ď C pn P Nq, again a contradiction.

(ii) Let Ω be a measure space such that LrpΩq is an infinite-dimensional space, and

assume towards a contradiction that LrpΩq is isomorphic to a subquotient E of LppΣq,

where Σ is a measure space, say dpE,LrpΩqq “ C. For each n P N, the space ` rn is

isometrically isomorphic to a closed subspace of LrpΩq, and so there is an n–dimensional

subspace En of a quotient of the space LppΣq with dpEn, `
r
nq ď C. However, by (i), this

is not the case for some n P N, giving the required contradiction.

Thus LrpΩq is not isomorphic to a subquotient of LppΣq for any measure space Σ.

We now present a result about uncomplemented subspaces of the spaces ` p that we

shall use.

Theorem 1.28. Take p with 1 ď p ă 8 and p ‰ 2. Then there is a closed subspace F

of ` p such that F is isomorphic to ` p and F is not complemented in ` p.

Proof. In the case where p “ 1, this is a theorem of Bourgain [10]. In the two cases where

1 ă p ă 2 and 2 ă p ă 8, this is [5, Theorem 3.1] and [54, Corollary to Theorem 6],

respectively.

Corollary 1.29. Take p with 1 ă p ă 8 and p ‰ 2. Then there are a constant C ą 0, a

closed, uncomplemented subspace F of ` p, and an increasing sequence pFnq of subspaces

of F such that dimFn “ n, dpFn, `
p
nq ď C, and λpFn, F q ď C for each n P N, and further

such that
Ť

tFn : n P Nu is dense in F and limnÑ8 λpFn, `
pq “ 8.

Proof. By Theorem 1.28, there is a closed subspace F of ` p such that F is not com-

plemented in ` p and F „ ` p, say T : ` p Ñ F is the specified isomorphism. Set

Fn “ T p` pnq pn P Nq. We see that dimFn “ n pn P Nq and that there exists C ą 0

such that dpFn, `
p
nq ď C and λpFn, F q ď C for each n P N, and also that

Ť

tFn : n P Nu
is dense in F . It remains to show that limnÑ8 λpFn, `

pq “ 8.

Assume towards a contradiction that there is a strictly increasing sequence pnkq in

N such that each space Fnk
is complemented in ` p by a projection, say Qk P Bp` pq, and

that supt}Qk} : k P Nu ă 8. Set q “ p1, so that 1 ă q ă 8. The space Bp` pq is the dual
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of the space G :“ ` p pb ` q, and so the sequence pQkq has an accumulation point, say Q,

with respect to the weak˚ topology σpBp` pq, Gq on Bp` pq.
Take f P ` p. We first claim that Qf P F . For otherwise there exists λ P ` q such that

xQf, λy “ 1 and xg, λy “ 0 pg P F q. However xQf, λy “ limαxgα, λy “ 0 for a subnet

pgαq of pQkfq, a contradiction. Thus Qf P F , as claimed.

We next claim that Qf “ f pf P F q. Indeed, first suppose that f P Fnk
for some

k P N. Then Qjf “ f for each j P N with j ě k, and so xQf, λy “ xf, λy for each λ P ` q,

whence Qf “ f . Since
Ť

tFnk
: k P Nu is dense in F , the second claim follows.

We have shown that Q P Bp` pq is a projection onto F , a contradiction of the fact

that F is not complemented in ` p. Thus we conclude that limnÑ8 λpFn, `
pq “ 8.

A similar result to the above can be obtained in the case where p “ 1 from results

in [10] by somewhat different methods. As we shall not use the case where p “ 1, we do

not provide a proof of this remark.

Example 1.30. Suppose that F is a closed subspace of a Banach space E, with the

embedding JF : F Ñ E and quotient map QF : E Ñ E{F . Take p with 1 ă p ă 8 and

p ‰ 2, and take n P N. Then, as we remarked, it is not necessarily the case that the weak

p–summing norm µ
E{F
p,n on the quotient space En{Fn “ pE{F qn is equal to the quotient

of the weak p–summing norm µEp,n on En or that the dual weak p–summing norm νFp,n
on the subspace Fn of En is equal to the restriction to Fn of the dual weak p–summing

norm νEp,n on En. Further the relevant norms are not always uniformly equivalent as n

varies. Here we present examples to substantiate these remarks.

Denote by µEp,n the quotient norm on pE{F qn of the norm µEp,n on En. Then we do

have

µE{Fp,n px` F
nq ď µEp,npx` F

nq px P Enq , νEp,npxq ď νFp,npxq px P Fnq ,

and so, for each n P N, the norms µ
E{F
p,n and µEp,n are equivalent on pE{F qn and the norms

νEp,n and νFp,n are equivalent on Fn. However we shall show that we do not always have

uniform equivalence (in n) in the two cases.

Set q “ p1, so that 1 ă q ă 8 and q ‰ 2, and consider the special case where E “ ` q.

By Corollary 1.29, there are a constant C ą 0, a closed subspace F of E, and an increasing

sequence pFnq of subspaces of F such that dimFn “ n, such that dpFn, `
q
nq ď C, and

such that λpFn, F q ď C for each n P N, and further such that limnÑ8 λpFn, Eq “ 8. For

each n P N, take a projection Qn of F onto Fn with }Qn} ď C, and set

cn “ 1{βpI` p
n
bπ JFn

q ,

where JFn
: Fn Ñ E is the inclusion map. Thus, for each n P N, cn is the minimum

constant such that

νFn
p,npxq ď cnν

E
p,npxq px P Fnn q .

Since dpFn, `
q
nq ď C, we have dpF 1n, `

p
nq ď C, and so there is an isomorphism Tn : F 1n Ñ ` pn

with }Tn} “ 1 and
›

›T´1
n

›

› ď C.
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Let us combine the commutative diagram

` pn pbFn
I` p

n
bπ JFn //

T´1
n bπ IFn

��

` pn pbE

F 1n pbFn
IF 1

n
bπ JFn // F 1n pbE

Tn bπ IE

OO

with equation (1.3.13) (which applies because T´1
n bπ IFn

is an isomorphism), with

Theorem 1.13, and with Proposition 1.15. Then we conclude that

1

cn
“ βpI`pn bπ JFnq ď CβpIF 1

n
bπ JFnq “

C

λpFn, Eq
Ñ 0 as nÑ8 .

Thus there is a sequence pxnq such that xn P `
p
n b Fn with νFn

p,npxnq “ 1 for each n P N
and such that νEp,npxnq Ñ 0 as nÑ8.

We now regard xn as an element of the subspace Fnn of Fn for n P N and use

Proposition 1.19 to conclude that

νFn
p,npxnq “ νFn

p,npQ
pnq
n pxnqq ď CνFp,npxnq ,

and hence that

β
´

J
pnq
F : pFn, νFp,nq Ñ pEn, νEp,nq

¯

Ñ 0 as nÑ8 , (1.6.3)

an equation that we shall refer to later.

Recall that F is a closed subspace of E “ ` q. Since ` p has the approximation property,

Theorem 1.13 implies that the map

I` p bπ JF : ` p pbF Ñ ` p pb ` q

is an injection. However it follows from equation (1.6.3) that it is not an embedding.

Let U : F 1 Ñ E1{FK be the inverse of the isometric isomorphism J 1F induced by

J 1F : E1 Ñ F 1 as in (1.3.6). Take n P N, and write µE
1

q,n for the quotient norm on the

space pE1{FKqn of the norm µE
1

q,n on pE1qn. Then we have a commutative diagram

pEn, νEp,nq
1

pJ
pnq
F q1

// pFn, νFp,nq
1

ppE1qn, µE
1

q,nq
pJ 1F q

pnq

//

Q
pnq
FK

��

ppF 1qn, µF
1

q,nq

U pnq

uu
U pnq

��

ppE1{FKqn, µE
1

q,nq ppE1{FKqn, µ
E1
{FK

q,n q .
I
pnq
E1{FK

oo

Set

dn “ }I
pnq
E1{FK : ppE1{FKqn, µE

1
{FK

q,n q Ñ ppE1{FKqn, µE
1

q,nq} ,
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so that dn is the minimum constant such that

µE
1

q,npλ` pF
Kqnq ď dn µ

E1
{FK

q,n pλ` pFKqnq pλ P pE1qnq .

Since U is an isometric isomorphism, Proposition 1.19 (applied to U and its inverse)

implies that U pnq is an isometric isomorphism of ppF 1qn, µF
1

q,nq onto ppE1{FKqn, µ
E1
{FK

q,n q.

Hence, using the above diagram, we see that

dn “ }U
pnq : ppF 1qn, µF

1

q,nq Ñ ppE1{FKqn, µE
1

q,nq}

“ rppJ 1F q
pnqq “ rppJ

pnq
F q1q “

1

βpJ
pnq
F q

Ñ 8 as nÑ8 , (1.6.4)

using (1.3.7), (1.3.14), and (1.6.3). This shows that the norms µ
E1
{FK

q,n and µE
1

q,n on the

space pE1{FKqn are not uniformly equivalent as n varies.

1.7. Schechtman’s space. In this section, we give a result about quotients of the spaces

LppIq, where 1 ď p ă 8; in the case where 1 ă p ă 2, the result seems to be new, and

may have independent interest.

We first describe some Banach spaces Zp and Sp for p ą 1 that arose in the paper

[57] of Schechtman, where a somewhat different notation was used.

Definition 1.31. Take p with 1 ă p ă 8. Then Zp is the Banach space ` pp` 2q .

Let M8 denote the linear space of all scalar-valued NˆN–matrices. We may consider

the Banach space Zp “ ` pp` 2q for 1 ă p ă 8 to be a subspace of M8 in the following

way. Given a P Zp, we have a “ paj : j P Nq, where aj P `
2 pj P Nq with

}a}Zp
“

˜

8
ÿ

j“1

}aj}
p
` 2

¸1{p

ă 8 ;

we set aj “ pαi,j : i P Nq for j P N, and identify a with pαi,jq PM8, so that aj is the j th

column of the matrix pαi,jq. For later reference, we note that

}pαi,jq}Zp
“

ˆ 8
ÿ

j“1

ˆ 8
ÿ

i“1

|αi,j |
2

˙p{2˙1{p

. (1.7.1)

The dual space of Zp is Zq, where q “ p1; the duality bracket is given by

x pαi,jq, pβi,jq y “
8
ÿ

i,j“1

αi,jβi,j ppαi,jq P Zp, pβi,jq P Zqq .

For a “ pαi,jq P M8, let at “ pαj,iq P M8 denote its transpose, and consider the

subspace

Sp “ tb` c
t : b, c P Zpu

of M8 and the linear surjection

T : pb, cq ÞÑ b` ct , Zp ‘1 Zp Ñ Sp .
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The kernel of T is clearly a closed subspace of the Banach space Zp ‘1 Zp, and we give

Sp the quotient norm, so that

}a}Sp
“ inft}b}Zp

` }c}Zp
: b, c P Zp, a “ b` ctu pa P Spq .

Thus pSp, } ¨ }Sp
q is a Banach space; further, }a}Sp

“ }at}Sp
pa P Spq.

In the next lemma, we use ‘matrix units’ eij P M8 for i, j P N, where eijpr, sq “ 1

when pr, sq “ pi, jq and eijpr, sq “ 0 when pr, sq ‰ pi, jq, and consider matrices pαi,jq

with only finitely-many non-zero entries, writing the matrix as
ř

i,j αi,jeij . For example,

for each sequence pαjq P c 00 and i P N, the elements

8
ÿ

j“1

αjeij and
8
ÿ

j“1

αjeji

correspond to the ith row and ith column, respectively, of M8.

Lemma 1.32. Take p with 1 ă p ă 2, and suppose that pαjq P c 00. Then:

(i) for each i P N, we have
›

›

›

›

›

8
ÿ

j“1

αjeij

›

›

›

›

›

Sp

“

›

›

›

›

›

8
ÿ

j“1

αjeji

›

›

›

›

›

Sp

“

˜

8
ÿ

j“1

|αj |
2

¸1{2

;

(ii) for each strictly increasing sequences pikq and pjkq in N, we have
›

›

›

›

›

8
ÿ

k“1

αkeik,jk

›

›

›

›

›

Sp

“

˜

8
ÿ

k“1

|αk|
p

¸1{p

.

Proof. (i) Take i P N.

First consider the row a “
ř8

j“1 αjeij , an element of Zp Ă Sp ĂM8. Then

}a}Sp
“
›

›at
›

›

Sp
ď
›

›at
›

›

Zp
“

ˆ 8
ÿ

j“1

|αj |
2

˙1{2

,

where the final equality follows from (1.7.1).

Conversely, given ε ą 0, take b, c P Zp such that a “ b` ct and

}a}Sp
ě }b}Zp

` }c}Zp
´ ε ,

say b “ pβr,sq and c “ pγr,sq as elements of M8. Then αj “ βi,j ` γj,i pj P Nq, so that,

by the sub-additivity of the ` 2-norm, we obtain
ˆ 8
ÿ

j“1

|αj |
2

˙1{2

ď

ˆ 8
ÿ

j“1

|βi,j |
2

˙1{2

`

ˆ 8
ÿ

j“1

|γj,i|
2

˙1{2

ď

ˆ 8
ÿ

j“1

|βi,j |
p

˙1{p

`

ˆ 8
ÿ

j“1

|γj,i|
2

˙1{2

“

›

›

›

›

8
ÿ

j“1

βi,jeij

›

›

›

›

Zp

`

›

›

›

›

8
ÿ

j“1

γj,ieji

›

›

›

›

Zp

ď }b}Zp
` }c}Zp

ď }a}Sp
` ε .
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Since ε ą 0 was arbitrary, we conclude that
`
ř8

j“1 |αj |
2
˘1{2

ď }a}Sp .

The claimed equality follows.

(ii) Set a “
ř8

k“1 αkeik,jk . Then

}a}Sp ď }a}Zp “

˜

8
ÿ

k“1

|αk|
p

¸1{p

.

Conversely, given ε ą 0, again take b “ pβr,sq and c “ pγr,sq in Zp such that a “ b`ct

and

}a}Sp ě }b}Zp ` }c}Zp ´ ε .

Then αk “ βik,jk ` γjk,ik pk P Nq, so that, by the sub-additivity of the ` p-norm, we

obtain
ˆ 8
ÿ

k“1

|αk|
p

˙1{p

ď

ˆ 8
ÿ

k“1

|βik,jk |
p

˙1{p

`

ˆ 8
ÿ

k“1

|γjk,ik |
p

˙1{p

ď }b}Zp ` }c}Zp ď }a}Sp ` ε .

As before, this implies that
`
ř8

k“1 |αj |
p
˘1{p

ď }a}Sp
.

The claimed equality follows.

Theorem 1.33. Take p with 1 ă p ă 2. Then the space Sp is isomorphic to a member of

the class SQppq, but it is not isomorphic to a closed subspace of LppΩq for any measure

space Ω.

Proof. By Proposition 1.22(i), ` 2 embeds in LppIq, and so Zp embeds in LppIq, whence

Zp‘1 Zp embeds in LppIq‘1 L
ppIq „ LppIq. Since Sp is a quotient of Zp‘1 Zp, the space

Sp is isomorphic to a member of the class SQppq.

Assume towards a contradiction that there is an embedding J : Sp Ñ LppΩq for some

measure space Ω, so that }Ja}LppΩq ě βpJq }a}Sp
pa P Spq, where βpJq ą 0, and set

fi,j “ Jeij P L
ppΩq pi, j P Nq .

It follows from Lemma 1.32(i) that the ‘rows’ and ‘columns’ of the array pfi,jq each form

a basis of the space ` 2, and so it now follows from the main theorem, Theorem 1.1, in

[29] that there exist strictly increasing sequences pikq and pjkq in N such that

lim
nÑ8

1

n1{p

›

›

›

›

›

n
ÿ

k“1

fik,jk

›

›

›

›

›

LppΩq

“ 0 . (1.7.2)

(In fact, the quoted theorem is considerably more general.) Take n P N. By Lemma

1.32(ii), applied with αk “ 1 pk ď nq and αk “ 0 pk ą nq, we see that

n1{p “

›

›

›

›

›

n
ÿ

k“1

eik,jk

›

›

›

›

›

Sp

ď
1

βpJq

›

›

›

›

›

n
ÿ

k“1

fik,jk

›

›

›

›

›

LppΩq

,

a contradiction of (1.7.2). Thus Sp is not isomorphic to a closed subspace of LppΩq.

The following theorem will be used in Example 2.31.
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Theorem 1.34. For each p with 1 ď p ă 8 and p ‰ 2, there is a separable Banach space

in the class SQppq that is not isomorphic to a closed linear subspace of LppΩq for any

measure space Ω.

Proof. First, suppose that p “ 1. For each measure space Ω, the Banach space L1pΩq

has cotype 2 [2, Theorem 6.2.14(i)], and so each closed subspace of L1pΩq has cotype 2.

The spaces E “ ` q for q ą 2 have cotype q [2, Theorem 6.2.14(ii)], and so these spaces

are not isomorphic to a closed linear subspace of L1pΩq. Certainly E P SQp1q. (Indeed,

there is a quotient operator from ` 1 onto E [2, Theorem 2.3.1].)

Second, suppose that p ą 2, and set q “ p1. Take r with 2 ă r ă p, and set s “ r1.

By Proposition 1.22(i), ` s embeds isometrically in LqpIq, and hence ` r is isometrically

isomorphic to a quotient of LppIq. However, by Theorem 1.26(ii), ` r is not isomorphic to

a subspace of LppΩq for any measure space Ω.

Finally, suppose that 1 ă p ă 2. Then the result follows from Theorem 1.33.

1.8. The spaces LppΩ;Eq and p–spaces. In this section, we shall define the class of

‘p–spaces’; as a preliminary, we shall recall the definition of the spaces LppΩ;Eq.

Let pΩ, µq be a measure space, take p with 1 ď p ď 8, and suppose that E is a

Banach space. Then the space LppΩ;Eq consists of the (equivalence classes of) strongly

µ–measurable functions F : Ω Ñ E such that the function s ÞÑ }F psq} on Ω belongs to

LppΩ, µq ; see [25]. Thus pLppΩ;Eq, } ¨ }q is a Banach space with respect to the norm } ¨ }

specified by

}F } “

ˆ
ż

Ω

}F psq}
p

dµpsq

˙1{p

pF P LppΩ;Eqq ,

with }F } “ ess supt}F psq} : s P Ωu when p “ 8.

The tensor product LppΩq b E can be identified with a dense subspace of LppΩ;Eq;

indeed, the elementary tensor f b x P LppΩq b E corresponds to the function

f b x : s ÞÑ fpsqx , Ω Ñ E ;

see [22, Chapter 7 ], for example. In particular, as before we shall identify ` pm b E with

` pmpEq for m P N, so that the action of

S b IE : ` pm b E Ñ ` pn b E

(where m,n P N and S PMn,m) corresponds to the action of S as a map from ` pmpEq to

` pnpEq; this is consistent with the identification of px1, . . . , xnq P E
n with

řn
j“1 δj bxj in

Fn b E in §1.4 and with equation (1.4.3).

Now suppose that Ω and Σ are measure spaces and that E is a Banach space, and

again take p with 1 ď p ď 8. For each S P BpLppΩq, LppΣqq, there is a linear map

S b IE : LppΩq b E Ñ LppΣq b E ,

and we consider whether this map is bounded with respect to the relative norms from

LppΩ;Eq and LppΣ;Eq, respectively. (We note in passing the following from [51, §1.2]:

An operator S P BpLppΩq, LppΣqq is regular, equivalently, order-bounded (see §4.2) if and

only if the above operator S b IE is bounded for every Banach space E.)
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The following definition is due to Herz [31, p. 70].

Definition 1.35. Let E be a Banach space, and take p with 1 ď p ă 8. Then E is a

p–space whenever

}S b IE} ď }S} pS P BpLppΩq, LppΣqqq

for all measure spaces Ω and Σ.

Further, Herz shows the following in [31, Proposition 0].

Theorem 1.36. Let E be a Banach space, and take p with 1 ď p ă 8. Then the following

are equivalent:

(a) E is a p–space;

(b) }S : ` pmpEq Ñ ` pnpEq} ď }S : ` pm Ñ ` pn} for each S P Bp` pm, ` pnq and m,n P N ;

(c) }S : ` pmpEq Ñ ` pmpEq} ď }S : ` pm Ñ ` pm} for each S P Bp` pmq and m P N ;

(d) }S : ` ppEq Ñ ` ppEq} ď }S : ` p Ñ ` p} for each S P Bp` pq.

Herz also notes the following; they are easily seen. Take p with 1 ď p ă 8. Then:

(i) each space LppΩq for a measure space Ω is a p–space;

(ii) each closed subspace of a p–space is a p–space;

(iii) each quotient of a p–space by a closed subspace is a p–space;

(iv) the dual of a p–space is a p1–space (when 1 ă p ă 8q.

It follows that each space in the class SQppq is a p–space. However, Herz left open the

converse to this latter statement; we shall consider this in the next section.

1.9. Kwapień’s theorem. In this section, we shall characterize the class of p–spaces.

In fact, the converse to the above statement of Herz follows from a theorem of Kwapień

[36, Theorem 21]. A generalization of Kwapień’s theorem is stated by Pisier in [51, Theo-

rem 4.6]: to obtain Kwapień’s result, one must take C “ 1 and the class B to be just the

singleton tFu in the cited reference. The theorem of Kwapień is important for this memoir

and elsewhere, and the original proof is perhaps somewhat inaccessible, and so we wish

to present a detailed account; our proof is based on one given by Professor Christian Le

Merdy in an unpublished note, and we are grateful to him for agreeing that we could

present this proof here.

First, we introduce a further definition; it uses the notation of (1.3.3).

Definition 1.37. Let pE, } ¨ }q be a normed space, and take p with 1 ď p ď 8. Suppose

that m,n P N, x P Em, and y P En. Then y ďp x if

}xy, λy}` p
n
ď }xx, λy}` p

m
pλ P E1q . (1.9.1)

The condition in (1.9.1) is that
˜

n
ÿ

j“1

| xyj , λy|
p

¸1{p

ď

˜

m
ÿ

i“1

| xxi, λy|
p

¸1{p

pλ P E1q ,
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where x “ px1, . . . , xmq and y “ py1, . . . , ynq.

Let E be a normed space, take m P N and x “ px1, . . . , xmq P `
p
mpEq, and let z

correspond to x in ` pm b E, say z “
řm
j“1 δj b xj . Suppose also that

z “
k
ÿ

i“1

ri b ai ,

where k P N, r1, . . . , rk P `
p
m and a1, . . . , ak P E. Take λ P E1. Then

xx, λy “ pIm b λqpzq “
k
ÿ

i“1

xai, λyri P `
p
m . (1.9.2)

Theorem 1.38. Let pE, } ¨ }q be a normed space, and take p with 1 ď p ď 8. Suppose

that m,n P N, x P Em, and y P En with y ďp x, and set

Z “ txx, λy : λ P E1u .

Then there is a matrix A P Mn,m such that Ax “ y, such that w “ pA b IEqpzq, where

z P Z b E and w P ` pn b E correspond to x and y, respectively, and such that the map

A | Z : Z Ñ ` pn is a contraction as an element of BpZ, ` pnq, where we regard Z as a

subspace of ` pm.

Proof. Set x “ px1, . . . , xmq P E
m and y “ py1, . . . , ynq P E

n, and define

z “
m
ÿ

j“1

δj b xj “
k
ÿ

i“1

ri b ai and w “
n
ÿ

j“1

δj b yj “
ÿ̀

i“1

si b bi

as elements of ` pm b E and ` pn b E, respectively, where we may suppose that z ‰ 0 and

w ‰ 0, and we specify that tr1, . . . , rku and ts1, . . . , s`u are linearly independent subsets

of ` pm and ` pn , respectively, and that ta1, . . . , aku and tb1, . . . , b`u are linearly independent

subsets of E. We see from (1.9.2) that Z “ lin tr1, . . . , rku, a linear subspace of ` pm, and

so z P Z b E.

Take λ P E1 with xai, λy “ 0 pi P Nkq. By (1.9.2), we have xx, λy “ 0. Thus

xy, λy “ 0, and hence
ř`
i“1xbi, λysi “ 0. Since ts1, . . . , s`u is a linearly independent set

in ` pn , it follows that xbi, λy “ 0 pi P N`q; this implies that bi P lin ta1, . . . , aku pi P N`q,
and hence that

w “
k
ÿ

i“1

ti b ai

for some t1, . . . , tk P `
p
n . There is a linear map A : Z Ñ ` pn such that Ari “ ti pi P Nkq,

and then w “ pAb IEqpzq. We extend A (arbitrarily) to a linear map from ` pm to ` pn , and

regard A as a matrix in Mn,m; we have Ax “ y when we regard A as a map from Em to

En.

We claim that the map A : Z Ñ ` pn is a contraction. Indeed, take ζ1, . . . , ζk in F, and

set r “
řk
i“1 ζiri P Z. Since ta1, . . . , aku is linearly independent, there exists λ P E1 with

xai, λy “ ζi pi P Nkq, and then, by (1.9.2),

}r}` p
m
“ }xx, λy}` p

m
and }Ar}` p

n
“

›

›

›

›

›

k
ÿ

i“1

ζiti

›

›

›

›

›

` p
n

“ }xy, λy}` p
n
.
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Since y ďp x, it follows that }Ar}` p
n
ď }r}` p

m
, and so A is a contraction in BpZ, ` pnq.

We record a relevant result that we shall use later: it is Lemma 7.7 of [24], taking

C “ 1 and X “ Z “ E and Y “ F for Banach spaces E and F in that result.

Theorem 1.39. Let E and F be normed spaces, and take p with 1 ď p ă 8. Suppose

that an operator T P BpE,F q has the property that
›

›

›
T pnqy

›

›

›

` p
n pF q

ď }x}` p
mpEq

whenever m,n P N, x P Em, y P En, and y ďp x. Then there are a measure space Ω

and a contraction J : E Ñ LppΩq such that }Tx} ď }Jx}LppΩq px P Eq.

This theorem says that T ‘factors through a subspace of LppΩq, with both factors

being contractions’. We obtain the following corollary by taking F “ E and T “ IE in

the above theorem.

Corollary 1.40. Let E be a normed space, and take p with 1 ď p ă 8. Suppose that

}y}` p
n pEq

ď }x}` p
mpEq

whenever m,n P N, x P Em, y P En, and y ďp x. Then E embeds isometrically into a

space LppΩq for some measure space Ω.

Part of the following lemma is exactly [49, Lemma 8.5], with X1 of that reference

taken to be the scalar field.

Lemma 1.41. Let E be a Banach space, let Γ be an index set, and take Q P Bp` 1pΓq, Eq

and p with 1 ď p ă 8. Suppose that, for each r, s P N and each C PMr,s, we have
›

›C bQ : ` ps b `
1pΓq Ñ ` pr b E

›

› ď }C : ` ps Ñ ` pr } . (1.9.3)

Then
n
ÿ

j“1

}Qgj}
p
ď

m
ÿ

i“1

}fi}
p
1 (1.9.4)

whenever m,n P N and f1, . . . , fm, g1, . . . , gn P `
1pΓq with pg1, . . . , gnq ďp pf1, . . . , fmq.

Proof. Set pX, } ¨ }q “ p` 1pΓq, } ¨ }` 1pΓqq.

We take m,n P N, f “ pf1, . . . , fmq P X
m and g “ pg1, . . . , gnq P X

n with g ďp f ,

and seek to prove inequality (1.9.4).

By reducing Γ, if necessary, we may suppose that maxt|f1pγq| , . . . , |fmpγq|u ą 0 for

each γ P Γ. We may also suppose that fi ‰ 0 pi P Nmq and that
řm
i“1 }fi}

p
“ 1.

As in Theorem 1.38, set Z “ txf , λy : λ P X 1u, regarded as a linear subspace of

` pm. Since g ďp f , it follows from Theorem 1.38 that there is a matrix A P Mn,m such

that Af “ g and A | Z : Z Ñ ` pn is a contraction as an element of BpZ, ` pnq. We write

A “ paj,i : i P Nm, j P Nnq.
Define

αpγq “

˜

m
ÿ

i“1

}fi}
p´1

|fipγq|

¸1{p

pγ P Γq ,
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so that αpγq ą 0 pγ P Γq and

ÿ

γPΓ

αpγqp “
m
ÿ

i“1

}fi}
p´1

ÿ

γPΓ

|fipγq| “ 1 .

Thus α P ` ppΓq with }α}` ppΓq “ 1.

Now define bi,γ “ fipγq{αpγq for i P Nm and γ P Γ, so that

bi,γαpγq “ fipγq pi P Nm, γ P Γq .

Take h P c 00pΓq. Since the function t ÞÑ tp is convex on R`, we have
˜

ÿ

γPΓ

|fipγq|

}fi}

|hpγq|

αpγq

¸p

ď
ÿ

γPΓ

|fipγq|

}fi}

|hpγq|
p

αpγqp
pi P Nmq ,

and so
ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γPΓ

bi,γhpγq

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď

˜

ÿ

γPΓ

|fipγq|
|hpγq|

αpγq

¸p

ď }fi}
p
ÿ

γPΓ

|fipγq|

}fi}

|hpγq|
p

αpγqp

“ }fi}
p´1

ÿ

γPΓ

|fipγq|
|hpγq|

p

αpγqp
pi P Nmq .

Hence

m
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

γPΓ

bi,γhpγq

ˇ

ˇ

ˇ

ˇ

ˇ

p

ď

m
ÿ

i“1

}fi}
p´1

ÿ

γPΓ

|fipγq|
|hpγq|

p

αpγqp
“

ÿ

γPΓ

|hpγq|
p
“ }h}

p
` ppΓq .

This shows that the linear map

B : h ÞÑ

˜

ÿ

γPΓ

bi,γhpγq

¸m

i“1

, pc 00pΓq, } ¨ }` ppΓqq Ñ p` pm, } ¨ }` p
m
q ,

is a contraction. Since c 00pΓq is dense in ` ppΓq, there is a contraction, also denoted by

B, in Bp` ppΓq, ` pmq extending the original B. Clearly

Bδγ “ pbi,γq
m
i“1 “

1

αpγq
pf1pγq, . . . , fmpγqq “

1

αpγq
xf , εγy pγ P Γq ,

where εγ : X Ñ F is the evaluation functional at γ. Thus the range of B is contained in

the subspace Z.

Define

C “ A ˝ B : ` ppΓq Ñ ` pn ,

so that the map C is also a contraction. We set C “ pcj,γq, where

cj,γ “
m
ÿ

i“1

aj,ibi,γ pj P Nn, γ P Γq .

Thus

gj “
m
ÿ

i“1

aj,ifi “
m
ÿ

i“1

ÿ

γPΓ

aj,ibi,γαpγqδγ “
ÿ

γPΓ

cj,γαpγqδγ pj P Nnq . (1.9.5)
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Fix ε ą 0, and choose a finite subset Γ0 of Γ such that
n
ÿ

j“1

}Qpgj | Γ0q}
p
ě

n
ÿ

j“1

}Qgj}
p
´ ε , (1.9.6)

say |Γ0| “ k; we may suppose that k ě n. We also write C for the restriction of the

original operator C to ` ppΓ0q, and regard the new map C as a matrix in Mn,k. Set

x “ pαpγqδγ : γ P Γ0q P `
ppΓ0, Xq and h “ pg1 | Γ0, . . . , gn | Γ0q P `

p
npXq. By equation

(1.9.5), we have

Cx “ h . (1.9.7)

As in equation (1.4.3), we can identify the map C bQ : ` ppΓ0q bX Ñ ` pn b E with the

map

Qpnq ˝ C : ` ppΓ0, Xq Ñ ` pnpEq .

Since C is a contraction, the hypothesis (1.9.3) (with s “ k and r “ n) implies that the

above map is a contraction, and so, by (1.9.7), we have

n
ÿ

j“1

}Qpgj | Γ0q}
p
“

›

›

›
pQpnq ˝ Cqpxq

›

›

›

p

` p
n pEq

ď }x}
p
` ppΓ0,Xq

“
ÿ

γPΓ0

|αpγq|
p
ď 1 . (1.9.8)

It follows from (1.9.6) and (1.9.8) that

n
ÿ

j“1

}Qgj}
p
ď

n
ÿ

j“1

}Qpgj | Γ0q}
p
` ε ď 1` ε .

This holds true for each ε ą 0, and so we obtain the required inequality (1.9.4), where

we recall that
řm
i“1 }fi}

p
“ 1.

We can now conclude the proof of Kwapień’s theorem.

Theorem 1.42. Take p with 1 ď p ă 8. Then the class SQppq coincides with the class

of p–spaces.

Proof. We have noted, following Herz, that each member of the class SQppq is a p–space.

Now suppose that E is a Banach space that is a p–space. We shall apply Proposition

1.6, Theorem 1.39, and Lemma 1.41.

Take r, s P N and C PMr,s. Since E is a p–space, we know that

}C b IE : ` ps b E Ñ ` pr b E} ď }C : ` ps Ñ ` pr } .

There is an index set Γ and a quotient operator Q : ` 1pΓq Ñ E; by equation (1.5.14), we

see that
›

›Is bQ : ` ps b `
1pΓq Ñ ` ps b E

›

› “ }Q} “ 1 .

Since C b Q “ pC b IEq ˝ pIs b Qq, it follows that inequality (1.9.3) of Lemma 1.41 is

satisfied, and hence that lemma shows that
n
ÿ

j“1

}Qgj}
p
ď

m
ÿ

i“1

}fi}
p
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whenever m,n P N and g1, . . . , gn, f1, . . . , fm P ` 1pΓq with pg1, . . . , gnq ďp pf1, . . . , fmq.

By Theorem 1.39 (taken with E “ ` 1pΓq, F “ E, and T “ Q), there is a contraction

J : ` 1pΓq Ñ LppΩq for some measure space Ω such that

}Qf} ď }Jf}LppΩq pf P ` 1pΓqq .

By Proposition 1.6 (taken with E “ ` 1pΓq, F “ E, and G equal to the closure of the

range of J in LppΩq), the space E is isometrically isomorphic to a quotient of G. Thus

E belongs to the class SQppq.

The above is an ‘isometric’ version of Kwapień’s theorem. There is also an isomorphic

version of this theorem; it is proved by a small variation of the above proof.

Theorem 1.43. Let E be a Banach space, and take C ě 1 and p with 1 ď p ă 8. Then

the following are equivalent:

(a) E is C–isomorphic to a p–space;

(b) }S b IE} ď C }S} pS P BpLppΩq, LppΣqqq for all measure spaces Ω and Σ;

(c) }S : ` pmpEq Ñ ` pnpEq} ď C }S : ` pm Ñ ` pn} for each S P Bp` pm, ` pnq and m,n P N;

(d) }S : ` pmpEq Ñ ` pmpEq} ď C }S : ` pm Ñ ` pm} for each S P Bp` pmq and m P N.

Corollary 1.44. Take p with 1 ă p ă 8 and r with 1 ď r ă 8, and suppose that Ω

is a measure space such that LrpΩq is an infinite-dimensional space. Then the following

are equivalent:

(a) LrpΩq is a p–space;

(b) LrpΩq is isomorphic to a p–space;

(c) either 1 ă p ď r ď 2 or 2 ď r ď p ă 8.

Suppose that 1 ă p ď 2 and r R rp, 2s or 2 ď p ă 8 and r R r2, ps. Then, for each C ą 0,

there exists n P N such that the space ` rn is not C–isomorphic to a p–space.

Proof. The main part of this result follows immediately from Theorem 1.26(iii), Theorem

1.27(ii), and Theorem 1.42. The final clause follows from Theorems 1.27(i) and 1.42.

1.10. Interpolation spaces. We summarize the basics of complex interpolation theory.

For details, see [6, §§2.3, 2.4], [28, Chapter 9], and [51]; the seminal paper is that of

Calderón [11].

Let pE0, } ¨ }0q and pE1, } ¨ }1q be two (real or complex) Banach spaces that are both

linear subspaces of a Banach space pH, } ¨ }q, the ambient space, and suppose that the

inclusion maps from pEj , } ¨ }jq into pH, } ¨ }q are both continuous. Then the pair

tpE0, } ¨ }0q, pE1, } ¨ }1qu

is a compatible couple (of Banach spaces). It is straightforward to show that, in this case,

the spaces E0 X E1 and E0 ` E1 are then Banach spaces under the respective norms
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defined by:

}x}E0XE1
“ maxt}x}0 , }x}1u px P E0 X E1q ;

}x}E0`E1
“ inft}x0}0 ` }x1}1 : x “ x0 ` x1, x0 P E0, x1 P E1u px P E0 ` E1q .

A Banach space pG, } ¨ }q that contains E0 XE1 and is contained in E0 `E1 and is such

that the two inclusions

pE0 X E1, } ¨ }E0XE1
q Ñ pG, } ¨ }q Ñ pE0 ` E1, } ¨ }E0`E1

q

are continuous is then an intermediate space.

For details of the following remarks, see [6, Chapter 4], for example. For the remainder

of this section, all our Banach spaces are complex Banach spaces.

Suppose that tpE0, } ¨ }0q, pE1, } ¨ }1qu is a compatible couple of Banach spaces. Let

L0 and L1 be the lines tiy : y P Ru and t1 ` iy : y P Ru, respectively, in C, and set

S “ p0, 1q ˆ R Ă C, an open strip in C. Take F to be the linear space of all functions

F on S taking values in pE0 `E1, } ¨ }E0`E1
q such that F is bounded and continuous on

S, such that F is analytic on S, and such that F | Lj is a bounded and continuous map

into pEj , } ¨ }jq for j “ 0, 1.

We define a norm on F by setting

}F }F “ max
j“0,1

tsupt}F pzq}j : z P Ljuu pF P Fq .

By the Phragmén–Lindelöf theorem,

}F pzq}E0`E1
ď }F }F pz P S, F P Fq .

Further pF , } ¨ }F q is a Banach space.

Next take θ P p0, 1q, and identify θ with the point pθ, 0q of S. Then the map F ÞÑ F pθq

is a contractive linear map from F into pE0 ` E1, } ¨ }E0`E1
q, and the image of this map

is denoted by

pE0, E1q θ “ Erθs ;

Erθs is a Banach space with respect to the quotient norm defined by

}x}rθs “ inft}F }F : F P F , F pθq “ xu px P Erθsq ,

so that } ¨ }rθs is the interpolation norm. Further pErθs, } ¨ }rθsq is an intermediate space.

We now note that, in the definition of the family F , we may suppose that F piyq and

F p1` iyq tend to 0 in E0 and E1, respectively, as |y| Ñ 8. Indeed, we can multiply each

original function in the family F by the function

z ÞÑ exppδpz2 ´ θ2qq , S Ñ C ,

for suitable δ ą 0 to obtain this without changing the space pErθs, } ¨ }rθsq; for this, see

[13, p. 1007]. This extra property of F was assumed by Calderón when he introduced this

theory in [11]. We shall suppose throughout that functions in F have this extra property.

We note that, if we move to norms on E0 and E1 that are equivalent to } ¨ }0 and

} ¨ }1 on E0 and E1, respectively, we do not change the intermediate space Erθs (and the

interpolation norm is equivalent to the original interpolation norm).

We also note that, in the above situation, the space E0XE1 is dense in pErθs, } ¨ }rθsq;

this is [6, Theorem 4.2.2(a)].
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A Banach-space-valued form of the famous Riesz–Thorin interpolation theorem is the

following; full details are given in [6, Theorem 5.1.2].

Theorem 1.45. Let Ω be a measure space, and let tE0, E1u be a compatible couple of

complex Banach spaces. Take θ P p0, 1q and p0, p1 with 1 ď p0, p1 ă 8, and define p by

1

p
“

1´ θ

p0
`

θ

p1
.

Set E “ pE0, E1q θ. Then tLp0pΩ;E0q, L
p1pΩ;E1qu is a compatible couple of Banach

spaces, and

pLp0pΩ;E0q, L
p1pΩ;E1qq θ “ LppΩ;Eq

with }f}rθs “ }f}LppΩ;Eq pf P L
ppΩ;Eqq.

In particular, with the above notation, t` p0pE0q, `
p1pE1qu is also a compatible couple

of Banach spaces, and

p` p0pE0q, `
p1pE1qq θ “ ` ppEq , (1.10.1)

where E “ pE0, E1q θ.

Take n P N. By [6, Theorem 5.1.2], it is also true that t` p0n pE0q, `
8
n pE1qu is a com-

patible couple of Banach spaces and that

p` p0n pE0q, `
8
n pE1qq θ “ ` pnpEq , (1.10.2)

where 1{p “ p1´ θq{p0 and E “ pE0, E1q θ.

The fundamental theorem in this context is the following [6, Theorem 4.1.4].

Theorem 1.46. Let tpE0, } ¨ }0q, pE1, } ¨ }1qu and tpF0, } ¨ }0q, pF1, } ¨ }1qu be two compati-

ble couples of complex Banach spaces, and suppose that T : E0`E1 Ñ F0`F1 is a linear

map such that T pEjq Ă Fj and T | Ej : Ej Ñ Fj is bounded, with norm Mj, for j “ 0, 1.

Take θ P p0, 1q. Then T pErθsq Ă Frθs and
›

›T | Erθs
›

› ďM1´θ
0 Mθ

1 .

Proposition 1.47. Let tE0, E1u be a compatible couple of complex Banach spaces, and

take θ P p0, 1q. Suppose that 1 ď p ă 8 and that E0 and E1 are both p–spaces. Then

pE0, E1q θ is also a p–space.

Proof. Set E “ pE0, E1q θ. By (1.10.1), p` pnpE0q, `
p
npE1qq θ “ ` pnpEq pn P Nq.

Take m,n P N and T P Bp` pm, ` pnq, and consider T as a map defined on the spaces Em0
and on Em1 , say

Mj “ }T : ` pmpEjq Ñ ` pnpEjq} pj “ 0, 1q .

Since E0 and E1 are both p–spaces, in fact Mj ď }T } pj “ 0, 1q. By Theorem 1.46,

T p` pmpEqq Ă ` pnpEq and

}T : ` pmpEq Ñ ` pnpEq} ďM1´θ
0 Mθ

1 ď }T }
1´θ

}T }
θ
“ }T } ,

and so E is a p–space by Theorem 1.36, (b) ñ (a).

We shall see in Example 2.16, to be given below, that an apparent generalization of

the above result to the case where E0 and E1 are p0– and p1–spaces, respectively, and

1{p “ p1´ θq{p0 ` θ{p1 is not necessarily true.
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2. Power-norms and p–multi-norms

2.1. Power-norms. We now return to the theory of power-norms. Throughout we con-

tinue to consider linear spaces over a field F, where F is either R or C.

Let p} ¨ }nq be a power-norm based on a normed space E, as in Definition 1.1. Then

it is easy to see [20, Lemma 2.11] that

max
i“1,...,n

}xi} ď }x}n ď
n
ÿ

i“1

}xi} px “ px1, . . . , xnq P E
n, n P Nq . (2.1.1)

Thus the formulae }x}n “ maxi“1,...,n }xi} and }x}n “
řn
i“1 }xi} define the minimum

and maximum power-norms based on E, respectively; the corresponding spaces En are

just `8n pEq and ` 1
npEq, respectively.

Let pEn, } ¨ }nq be a power-normed space, and suppose that F is a subspace of E.

Then an easy check shows that pFn, } ¨ }nq is also a power-normed space. In the case

where F is a closed subspace of E, equation (1.3.10) defines a power-norm based on

E{F ; the latter is called the quotient power-norm.

Let pEn, } ¨ }nq be a power-normed space. Then, by [20, Proposition 2.30], the dual

sequence ppE1qn, } ¨ }
1

nq is a power-Banach space. We say that ppE1qn, } ¨ }
1

nq is the dual

power-Banach space to pEn, } ¨ }nq. In the case where pEn, } ¨ }nq is a multi-normed space

or a dual multi-normed space, then ppE1qn, } ¨ }
1

nq is a dual multi-Banach space or a multi-

Banach space, respectively [20, §2.3.2].

The following characterization of power-norms is straightforward.

Proposition 2.1. Let E be a linear space, and suppose that } ¨ }n is a norm on En for

each n P N. Then p} ¨ }nq is a power-norm based on E if and only if

}Tx}m ď maxt|Ti,j | : i P Nm, j P Nnu }x}n px P Enq (2.1.2)

for each special matrix T PMm,n and each m,n P N.

In fact, to verify that p} ¨ }nq is a power-norm based on a linear space E, it is sufficient

to check equation (2.1.2) for a restricted class of special matrices T . Indeed, to verify

(A1), it is sufficient to consider square matrices pTi,jq such that Ti,j “ δi,j save for two

specified values i0 and j0 of i and j, respectively, and such that Ti,j “ 1 ´ δi,j when

ti, ju “ ti0, j0u; to verify (A2), it is sufficient to consider diagonal matrices; to verify
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(A3), it is sufficient to consider matrices of the form
»

—

—

—

—

—

–

1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

0 0 . . . 0

fi

ffi

ffi

ffi

ffi

ffi

fl

PMn`1,n and

»

—

—

—

–

1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

... 0

0 0 . . . 1 0

fi

ffi

ffi

ffi

fl

PMn,n`1 .

Definition 2.2. Let E be a linear space, and let p} ¨ }
1
n : n P Nq and p} ¨ }

2
n : n P Nq be

two power-norms based on E. Then

p} ¨ }
1
nq ď p} ¨ }

2
nq if }x}

1
n ď }x}

2
n px P E n, n P Nq ,

and p} ¨ }
2
n : n P Nq dominates p} ¨ }

1
n : n P Nq, written p} ¨ }

1
nq ď p} ¨ }

2
nq, if there is a

constant C ą 0 such that

}x}
1
n ď C }x}

2
n px P E n, n P Nq ; (2.1.3)

the two power-norms are equivalent , written

p} ¨ }
1
n : n P Nq – p} ¨ }2n : n P Nq or p} ¨ }

1
nq – p} ¨ }

2
nq ,

if each dominates the other.

For discussions of when two multi-norms are equivalent, see [8] and [19].

2.2. p–multi-norms. We now define the main topic of this memoir, a special class of

power-normed spaces.

Definition 2.3. Let E be a linear space, and take p with 1 ď p ď 8. A p–multi-norm

based on E is a sequence p} ¨ }n : n P Nq such that } ¨ }n is a norm on En for each n P N
and such that

}Tx}m ď }T : ` pn Ñ ` pm} }x}n pT PMm,n, x P E
n, m, n P Nq , (2.2.1)

and then pEn, } ¨ }nq is a p–multi-normed space.

In the case where E is a Banach space, we may refer to a p–multi-Banach space.

This definition was first given by Ramsden in [52], where the term ‘type–p multi-

norm’ was used. As observed in [52, p. 58], it follows from Proposition 2.1 that each

p–multi-norm is a power-norm.

The motivation for giving this definition is the following. The characterizations given

in Theorems 2.35 and 2.36, respectively, of [20] prove that 8–multi-norms and 1–multi-

norms in the above sense are exactly the multi-norms and dual multi-norms that were

defined in Definition 1.1, and so our new definition generalizes the old one given for the

cases p “ 1 and p “ 8.

For n P N, let Cn be a class of matrices in Mn such that

}U : ` pn Ñ ` pn} ď 1 pU P Cnq

and such that the absolutely convex hull of Cn is the closed unit ball of the space Mn

when this space is identified with Bp` pnq. Then, to verify equation (2.2.1), it suffices to
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check that axiom (A3) holds and that we have }Ux}n ď }x}n px P Enq for each U P Cn.

In particular, in the case where p “ 2 and E is a complex linear space, the class Un of

unitary matrices in MnpCq satisfies the required condition with Cn “ Un.

Let p} ¨ }n : n P Nq be a p–multi-norm based on a linear space E. As noted in [52,

Lemmas 4.3.2 and 4.3.4], the following variations of Axioms (A4) and (B4) hold:

}px1, . . . , xn´1, αxn, βxnq}n`1 “ }px1, . . . , xn´1, γpxnq}n , (2.2.2)

}px1, . . . , xn´1, αx` βyq}n ď }px1, . . . , xn´1, γqx, γqyq}n`1 , (2.2.3)

for all α, β P F, x1, . . . , xn, x, y P E, and n P N, where q “ p1 and γr “ p|α|
r
` |β|

r
q1{r

for r “ p, q. In the two cases where p “ 1 and p “ 8, just equation (2.2.2) characterizes

a p–multi-norm. However, in the case where 1 ă p ă 8, these two equations do not

characterize p–multi-norms based on E, as we shall see in Example 2.7(ii), to be given

below. These equations are used by Blasco in [7] to characterize a larger class of power-

normed spaces than the p–multi-normed spaces.

It follows from (2.2.2) that

}pα1x, . . . , αnxq}n “

˜

n
ÿ

i“1

|αi|
p

¸1{p

}x} pα1, . . . , αn P F, x P E, n P Nq , (2.2.4)

and so

}px, . . . , xq}n “ n1{p }x} px P E, n P Nq . (2.2.5)

In particular, for each non-zero normed space E, a given power-norm based on E is a

p–multi-norm for at most one value of p.

The following result follows easily from (2.2.3) by induction on n P N; in particular

the given inequality holds for all p–multi-norms based on E.

Proposition 2.4. Let E be a normed space, take p with 1 ď p ď 8, and suppose that

p} ¨ }nq is a power-norm based on E such that inequality (2.2.3) is satisfied. Then
›

›

›

›

›

n
ÿ

i“1

αixi

›

›

›

›

›

ď }pαiq}` q
n
}x}n px “ px1, . . . , xnq P E

nq

for all α1, . . . , αn P F and n P N, where q “ p1.

We note the following standard constructions involving p–multi-norms; clause (iv) is

[52, Corollary 4.4.12].

Proposition 2.5. Let E be a normed space, take p with 1 ď p ď 8, and suppose that

p} ¨ }nq is a p–multi-norm based on E.

(i) For each subspace F of E, the power-normed space pFn, } ¨ }nq is a p–multi-normed

space.

(ii) For m P N, set F “ Em. Then the power-normed space pFn, } ¨ }mnq is a p–multi-

normed space.

(iii) For each closed subspace F of E, the quotient power-normed space ppE{F qn, } ¨ }nq

is a p–multi-normed space.

(iv) The sequence p} ¨ }
1

nq of dual norms is a p1–multi-norm based on E1.
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Proof. (i) and (ii) These are easily checked.

(iii) Take m,n P N, x P En, and T P Mm,n with }T : ` pn Ñ ` pm} ď 1, and take ε ą 0.

There exists y P Fn with }x` y}n ď }x` F
n}n ` ε. Since Ty P Fm, we have

}T px` Fnq}m ď }T px` yq}m ď }x` y}n ď }x` F
n}n ` ε .

This holds for each ε ą 0, and so }T px` Fnq}m ď }x` F
n}n, as required.

(iv) Set q “ p1. Take m,n P N, T P Mm,n, and λ P pE1qn. Then, for each x P Em

with }x}m ď 1, we have

|xx, Tλy| “
ˇ

ˇxT tx, λy
ˇ

ˇ ď
›

›T tx
›

›

n
}λ}

1

n ď
›

›T t : ` pm Ñ ` pn
›

› }λ}
1

n “ }T : ` qn Ñ ` qm} }λ}
1

n ,

and so }Tλ}m ď }T : ` qn Ñ ` qm} }λ}
1

n. Thus p} ¨ }
1

nq is q–multi-norm based on E1.

Definition 2.6. Let pEn, } ¨ }nq be a p–multi-normed space, where 1 ď p ď 8. Then the

sequence p} ¨ }
1

nq of norms is the dual p1–multi-norm based on E1.

Examples 2.7. Take p with 1 ď p ď 8.

(i) For n P N and z “ pz1, . . . , znq P Fn, set

}z}n “

˜

n
ÿ

i“1

|zi|
p

¸1{p

“ }z}` p
n
.

Then p} ¨ }nq is a p–multi-norm based on F, and it is immediately checked that it is the

unique p–multi-norm based on F such that }z}1 “ |z| pz P Fq.
(ii) Let E be a normed space. Then we have defined the p–sum norm in Definition

1.7 by the formula

}x}` p
n pEq

“

˜

n
ÿ

i“1

}xi}
p

¸1{p

px “ px1, . . . , xnq P E
n, n P Nq . (2.2.6)

Set } ¨ }n “ } ¨ }` p
n pEq

, so that pEn, } ¨ }nq “ ` pnpEq. Then clearly p} ¨ }nq is a power-norm

based on E; this power-norm is called the p–sum power-norm. Clearly the sequence

p} ¨ }nq satisfies equations (2.2.2) and (2.2.3). In the case where p “ 8, we obtain the

minimum multi-norm; in the case where p “ 1, we obtain the maximum dual multi-norm,

as in [20].

Now consider the special case in which E “ ` p. Take m,n P N, T P Mm,n such that

}T : ` pn Ñ ` pm} ď 1, and x “ px1, . . . , xnq P p`
pqn. For k P N, set

αk “ px1k, . . . , xnkq P Fn ,

where xi “ pxij : j P Nq for i P Nn. Then

}Tx}
p
m “

8
ÿ

k“1

m
ÿ

i“1

|pTxqik|
p
“

8
ÿ

k“1

}Tαk}
p
` p
m
ď

8
ÿ

k“1

}αk}
p
` p
n
“

8
ÿ

k“1

n
ÿ

j“1

|xjk|
p
“ }x}

p
n ,

and so p} ¨ }nq is a p–multi-norm based on ` p. More generally, consider the case where

E “ LppΩ, µq, where pΩ, µq is a measure space. Then we shall see in Example 2.27(ii),

below, that p} ¨ }nq is a strong p–multi-norm, and hence that p} ¨ }nq is a p–multi-norm.
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Next suppose that 1 ď p ď 2 and that r P rp, 2s. By Proposition 1.22, the spaces

` r and LrpIq are isometrically isomorphic to closed subspaces of LppIq, and so, by Prop-

osition 2.5(i), the p–sum power-norm is a p–multi-norm based on the spaces ` r and LrpIq.
Second, suppose that 2 ď p ă 8 and that r P r2, ps. Then, by Corollary 1.23, ` r and

LrpIq are isometrically isomorphic to quotients of LppIq, and so, by Proposition 2.5(iii),

the p–sum power-norm is a p–multi-norm on these spaces.

However, we shall see in Theorem 2.8, below, that the p–sum norm based on a Banach

space is not always a p–multi-norm.

(iii) Let E be a normed space. For n P N, the norm µp,n on En is the weak p–summing

norm discussed in §1.5.

It is shown in [20, Theorem 3.16] that pµp,nq is a p–multi-norm based on E; we shall

prove a stronger result in Example 2.27(iii). It follows that the set of p–multi-norms

based on an arbitrary normed space E is not empty. In fact, we shall see in Theorem

2.11, below, that pµp,nq has the property that

µp,npxq ď }x}n px P En, n P Nq

for each p–multi-norm p} ¨ }nq based on E.

(iv) Let E be a normed space, and set q “ p1. For n P N, the dual weak p–summing

norm νp,n on En was also discussed in §1.5; indeed, νp,n is the restriction to En of the

dual norm of µE
1

q,n on pE2qn.

Since pµq,nq is a q–multi-norm based on E1, it follows that pνp,nq is a p–multi-norm

based on E. In fact, we shall see in Theorem 2.11, below, that pνp,nq has the property

that

}x}n ď νp,npxq px P En, n P Nq

for each p–multi-norm p} ¨ }nq based on E.

The results concerning p–sum power-norms mentioned in Example 2.7(ii), above, are

special to the cases mentioned. Indeed, take p with 1 ď p ă 8. Then it follows from

Theorem 1.36, (a) ô (b), that the p–sum power-norm based on a Banach space E is a

p–multi-norm if and only if E is a p–space, and so the following theorem is an immediate

consequence of Kwapień’s theorem, Theorem 1.42.

Theorem 2.8. Let E be a Banach space, and take p with 1 ď p ă 8. Then the following

conditions on E are equivalent:

(a) the p–sum power-norm based on E is a p–multi-norm;

(b) E is a p–space;

(c) E belongs to the class SQppq.

Further, take take p with 1 ď p ă 8 and r with 1 ď r ď 8, and let Ω be a

measure space such that LrpΩq is an infinite-dimensional space. Then, by Theorem 2.8

and Corollary 1.44, the p–sum power-norm based on LrpΩq is a p–multi-norm if and only

if either 1 ď p ď r ď 2 or 2 ď r ď p ă 8. In particular, equations (2.2.2) and (2.2.3) do

not characterize p–multi-norms when 1 ă p ă 8.
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Example 2.9. We now generalize a construction of [45, p. 17] (using a different term-

inology).

Fix independent standard normal random variables, f1, f2, . . . . More specifically, we

suppose, in the real case, that each fi has the probability density function

1
?

2π
expp´t2{2q pt P Rq ,

so that the joint density function of f1, . . . , fn on Rn (for n P N) is

1

p2πqn{2
expp´pt21 ` ¨ ¨ ¨ ` t

2
nq{2q pt1, . . . , tn P Rq .

In the complex case, f1, f2, . . . are independent complex standard normal random vari-

ables, of the form pgi ` ihiq{
?

2, where g1, h1, g2, h2, . . . are real independent standard

normal random variables. For background information, see [41, pp. 148–149].

Now suppose that E is a complex Banach space, take n P N, and suppose that

U “ pUi,jq P MnpCq is a unitary matrix. Take f1, . . . , fn to be independent complex

standard normal random variables, as above. Then the two n-tuples f “ pf1, . . . , fnq

and ppUfq1, . . . , pUfqnq are equidistributed (see [48, Chapter 2]), and so

E

›

›

›

›

›

n
ÿ

i“1

fixi

›

›

›

›

›

“ E

›

›

›

›

›

n
ÿ

i“1

˜

n
ÿ

j“1

Ui,jfj

¸

xi

›

›

›

›

›

px1, . . . , xn P Eq . (2.2.7)

For n P N and x “ px1, . . . , xnq P E
n, define

}x}n “ E

›

›

›

›

›

n
ÿ

i“1

fixi

›

›

›

›

›

, (2.2.8)

so that } ¨ }n is a norm on En.

We claim that p} ¨ }nq is a 2–multi-norm based on E. Indeed, it is immediate that

p} ¨ }nq satisfies axiom (A3). Now take n P N and a unitary matrix V P MnpCq, and set

U “ V t, so that U is also a unitary matrix in MnpCq. It follows from equations (2.2.7)

and (2.2.8) that

}V x}n “ E

›

›

›

›

›

n
ÿ

i“1

fipV xqi

›

›

›

›

›

“ E

›

›

›

›

›

n
ÿ

i“1

fi

˜

n
ÿ

j“1

Vi,jxj

¸
›

›

›

›

›

“ E

›

›

›

›

›

n
ÿ

j“1

˜

n
ÿ

i“1

Uj,ifi

¸

xj

›

›

›

›

›

“ E

›

›

›

›

›

n
ÿ

i“1

fixi

›

›

›

›

›

“ }x}n ,

and so p} ¨ }nq satisfies equation (2.2.1) for each unitary matrix V , and hence for all

matrices in MnpCq. It follows that p} ¨ }nq is a 2–multi-norm.

In fact, we could also define

}x}p,n “

˜

E

›

›

›

›

›

n
ÿ

i“1

fixi

›

›

›

›

›

p¸1{p

for each p with 1 ď p ă 8. This will be a 2–multi-norm based on E by the same reasoning

as in the case where p “ 1. Moreover, all these 2–multi-norms are equivalent: for each
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such p, there is a constant Cp such that

}x}n ď }x}p,n ď Cp }x}n px P En, n P Nq ;

the second inequality in the above formula is the Gaussian version of the Khintchine–

Kahane inequality [39, §4.2].

Example 2.10. As indicated, a number of multi-norms have been introduced in earlier

works. Here we recall one of these, from [20, §1.4].

Let E be a normed space, and take p, q with 1 ď p ď q ă 8. Then the pp, qq–multi-

norm p} ¨ }
pp,qq
n q based on E is defined by

}x}
pp,qq
n “ sup

$

&

%

˜

n
ÿ

i“1

|xxi, λiy|
q

¸1{q

: µp,npλ1, . . . , λnq ď 1

,

.

-

for x “ px1, . . . , xnq P E
n and n P N. By [20, Theorem 4.1], p} ¨ }

pp,qq
n q is indeed a multi-

norm based on E.

For example, it is shown in [20, Theorem 4.6] that } ¨ }
p1,1q
n “ } ¨ }

max
n pn P Nq, where

p} ¨ }
max
n q is the maximum multi-norm, defined on page 6.

The theory of when two such multi-norms are equivalent is given in [8].

As in §1.5, the norms } ¨ }ε,n and } ¨ }π,n are the injective and projective norms, res-

pectively, on ` pn b E. The following theorem is similar to results in [52, §4.5].

Theorem 2.11. Let E be a normed space, and take p with 1 ď p ă 8. Suppose that

p} ¨ }nq is a p–multi-norm based on E. Then

µp,npxq “ }x}ε,n ď }x}n ď }x}π,n “ νp,npxq px P En , n P Nq .

Proof. Set q “ p1, and take n P N and x “ px1, . . . , xnq P E
n. By Proposition 2.4, we

have

sup

$

&

%

›

›

›

›

›

n
ÿ

i“1

αixi

›

›

›

›

›

:

˜

n
ÿ

i“1

|αi|
q

¸1{q

ď 1

,

.

-

ď }x}n ,

and hence, by equations (1.5.3) and (1.5.6),

}x}ε,n “ µp,npxq “ sup

$

&

%

›

›

›

›

›

n
ÿ

i“1

αixi

›

›

›

›

›

:

˜

n
ÿ

i“1

|αi|
q

¸1{q

ď 1

,

.

-

ď }x}n .

The dual q–multi-norm based on E1 is p} ¨ }
1

nq. We have }λ}ε,n “ µq,npλq ď }λ}
1

n for

each λ P pE1qn, and hence

}x}n “ sup
 

|xx, λy| : }λ}
1

n ď 1
(

ď sup t|xx, λy| : µq,npλq ď 1u “ νp,npxq “ }x}π,n .

This completes the proof.

In particular, for each Banach space E and each p with 1 ď p ď 8, there are minimum

and maximum p–multi-norms based on E, namely pµp,nq and pνp,nq, respectively, as noted

in [52]; for n P N, we have µ8,n “ } ¨ }
min
n and ν8,n “ } ¨ }

max
n in the notation of §1.1.
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The following remarks are also contained in [52, §4.5]; clauses (i) and (ii) are imme-

diate from Theorem 2.11.

Proposition 2.12. Let E be a normed space, and take p with 1 ď p ď 8.

(i) The dual of the maximum p–multi-norm based on E is the minimum p1–multi-norm

based on E1.

(ii) The dual of the minimum p–multi-norm based on E is the maximum p1–multi-

norm based on E1.

(iii) The bidual of a p–multi-norm based on E is a p–multi-norm based on E2, and

the canonical embedding of pEn, } ¨ }nq into ppE2qn, } ¨ }
2

nq is an isometry for each n P N.

2.3. Interpolation spaces and p–multi-norms. Let pE0, } ¨ }0q and pE1, } ¨ }1q be two

(real or complex) Banach spaces such that tE0, E1u is a compatible couple. Further,

suppose that p} ¨ }
0
nq and p} ¨ }

1
nq are power-norms based on the respective spaces. Then,

for each m P N, we consider the pair

tpEm0 , } ¨ }
0
mq, pE

m
1 , } ¨ }

1
mqu .

Since Em0 X Em1 “ pE0 X E1q
m and Em0 ` Em1 “ pE0 ` E1q

m, it follows that this pair is

also a compatible couple of Banach spaces.

Now suppose that E0 and E1 are complex Banach spaces. Take θ P p0, 1q, and set

E “ pE0, E1qθ, as in §1.10. Then the norms } ¨ }
0
m and } ¨ }

1
m are equivalent to the norms

on ` 2
mpE0q and ` 2

mpE1q, respectively, and so it follows from Theorem 1.45 that the inter-

mediate space ppEm0 , } ¨ }
0
mq, pE

m
1 , } ¨ }

1
mqqθ is isomorphic to ` 2

mpEq; the interpolation norm

defined on Em by using } ¨ }
0
m and } ¨ }

1
m is denoted by } ¨ }m.

Theorem 2.13. Let tpE0, } ¨ }0q, pE1, } ¨ }1qu be a compatible couple of complex Banach

spaces, and suppose that p} ¨ }
0
nq and p} ¨ }

1
nq are power-norms based on E0 and E1, resp-

ectively. Take θ P p0, 1q, and set E “ pE0, E1qθ. Then pEn, } ¨ }nq is a power-normed

space.

Proof. The axioms (A1), (A2), and (A3) are easily checked using Theorem 1.46.

Definition 2.14. The pair pEn, } ¨ }nq is the interpolation power-normed space of index

θ defined by the compatible couple of complex Banach spaces tpE0, } ¨ }0q, pE1, } ¨ }1qu and

the power-norms p} ¨ }
0
nq and p} ¨ }

1
nq based on E0 and E1, respectively; the power-norm

based on E is the interpolation power-norm.

For example, suppose that p} ¨ }
0
nq and p} ¨ }

1
nq are a p0–sum and a p1–sum power-

norm (as in Example 2.7(ii)) based on Banach spaces E0 and E1, respectively, where

1 ď p0, p1 ă 8. Take θ P p0, 1q, and define p by

1

p
“

1´ θ

p0
`

θ

p1
.

Then, by equation (1.10.1), the interpolation norm on Em is the p–sum power-norm

based on E.
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Now suppose that 1 ď p0, p1 ă 8 and that p} ¨ }
0
nq is a p0–multi-norm based on a

complex Banach space E0 and p} ¨ }
1
nq is a p1–multi-norm based on a complex Banach

space E1. Take θ P p0, 1q, and define p as above. We ask whether the interpolation power-

norm p} ¨ }nq based on E is a p–multi-norm. The first theorem shows that this is the case

when p0 “ p1; Example 2.16 will show that this may not be the case for certain values

of p0 and p1 with p0 ‰ p1, even when E0 “ E1, and Example 2.32 will show that this

may not be the case for more general values of p0 and p1.

Theorem 2.15. Take p with 1 ď p ă 8, and suppose that tE0, E1u is a compatible

couple of complex Banach spaces and that there are p–multi-norms p} ¨ }
0
nq and p} ¨ }

1
nq

based on E0 and E1, respectively. Take θ P p0, 1q. Then the interpolation power-norm

defined from these p–multi-norms that is based on pE0, E1q θ is also a p–multi-norm.

Proof. Set E “ pE0, E1q θ.

Let F be the space of functions on the strip S taking values in E0 ` E1, as defined

in §1.10, and, for k P N, take Fk to be the corresponding space of functions on the strip

S taking values in Ek0 ` E
k
1 , so that the image of the map

F ÞÑ F pθq , Fk Ñ Ek0 ` E
k
1 ,

is Ek; the space Ek has the interpolation norm, say } ¨ }k, determined by } ¨ }
0
k and } ¨ }

1
k.

We need to check inequality (2.2.1) in Definition 2.3 for the interpolation power-norm

p} ¨ }nq based on E. For this, take m,n P N, T P Bp` pm, ` pnq with }T : ` pm Ñ ` pn} ď 1, and

x “ px1, . . . , xmq P E
m.

Take ε ą 0. Then there exists F P Fm with F pθq “ x and }F }Fm
ă }x}m ` ε. Set

G “ T ˝ F : S Ñ En .

Then it is easily seen that, as a map from S into pEn0 `E
n
1 , } ¨ }En

0 `E
n
1
q, the new function

G satisfies the conditions for it to belong to the space Fn. For j “ 0, 1 and z P Lj , we

have }Gpzq}En
j
ď }F pzq}Em

j
because both E0 and E1 are p–multi-normed spaces, and so

}G}Fn
ď }F }Fm

. Since Gpθq “ Tx, it follows that }Tx}n ă }x}m` ε. This holds true for

each ε ą 0, and so }Tx}n ď }x}m. Thus (2.2.1) holds, as required.

Example 2.16. Let E be a complex normed space, and consider the maximum dual

multi-norm and minimum multi-norm based on E. Take θ P p0, 1q. Then, as in equation

(1.10.2), for each m P N, the interpolation space between ` 1
mpEq and `8m pEq is ` pmpEq,

where p “ 1{p1´ θq, and so the interpolation power-norm based on E is a p–multi-norm

if and only if the p–sum power-norm based on E of Example 2.7(ii) is a p–multi-norm.

However this is not the case for suitable Banach spaces E. Indeed, suppose that E “ ` r.

Then, as stated after Theorem 2.8, the p–sum power-norm based on E is not a p–multi-

norm when r is outside a certain range of values.

2.4. Characterization of p–multi-norms. We shall now characterize p–multi-norms

in terms of tensor products.

In [18], it was explained how multi-norms correspond to certain tensor norms. We

recall this briefly; details are given in [18, §3].
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Definition 2.17. Let E be a normed space. Then a norm } ¨ } on c 0bE is a c 0–norm if

}δ1 b x} “ }x} for each x P E and if the linear operator TbIE is bounded on pc 0bE, } ¨ }q

with norm at most }T } for each compact operator T on c 0.

Suppose that } ¨ } is a c 0–norm on c 0 b E, and set

}px1, . . . , xnq}n “

›

›

›

›

›

n
ÿ

i“1

δi b xi

›

›

›

›

›

px1, . . . , xn P E, n P Nq . (2.4.1)

Then p} ¨ }n : n P Nq is a multi-norm based on E.

A more general and detailed version of the following theorem is given as [18, Theorem

3.4].

Theorem 2.18. Let E be a normed space. Then the above construction defines a bijection

from the family of c 0–norms on c 0 bE onto the family of multi-norms based on E. The

injective tensor norm and the projective tensor norm on c 0 b E correspond to the min-

imum and maximum multi-norms, respectively.

A norm } ¨ } on c 0 b E satisfies ‘property (P)’ (due to Pisier) [45, §2, p. 12] if

}T b IE} ď }T } pT P Bpc 0qq . (2.4.2)

It is shown in [18, Corollary 3.6] that these norms are exactly the c 0–norms of Definition

2.17, and so the definition of a multi-normed space corresponds to the theory in the

memoir of Marcolino Nhani [45] concerning norms on c 0 bE satisfying property (P). In

particular, the word ‘compact’ is not required in Definition 2.17, as noted in [18]. As we

shall explain in §5.1, c 0–norms also arise in the thesis [44] of McClaran.

In the paper [18], there is also a notion of an ` 1–norm on ` 1 b E, and it is noted

in [18, §4.1] that ` 1–norms correspond to dual multi-norms in an analogous way to that

defined above. These results will be generalized below.

We have the following analogue of Definition 2.17 and Theorem 2.18.

Definition 2.19. Let E be a normed space, and take p with 1 ď p ă 8. Then a norm

} ¨ } on ` p b E is an ` p–norm if }δ1 b x} “ }x} for each x P E and if the linear operator

T b IE is bounded on p` p b E, } ¨ }q with norm at most }T } for each operator T on ` p.

It is clear from Theorem 1.13 that the projective tensor norm } ¨ }π and the injective

tensor norm } ¨ }ε on ` p b E are each ` p–norms.

Take p with 1 ď p ă 8, and let } ¨ } be an ` p–norm on ` pbE. Fix α P ` p and x P E,

and define Sβ “ β1α pβ P `
pq. Then S is a finite-rank operator on ` p with }S} “ }α}` p

and pS b IEqpδ1 b xq “ αb x. Thus

}αb x} “ }pS b IEqpδ1 b xq} ď }S} }δ1 b x} “ }α}` p }x} ,

and so } ¨ } is a sub-cross-norm on ` p b E. Essentially as in equation (2.4.1), we define

}px1, . . . , xnq}n “

›

›

›

›

›

n
ÿ

i“1

δi b xi

›

›

›

›

›

px1, . . . , xn P E, n P Nq . (2.4.3)

Then } ¨ }1 coincides with the given norm on E, and it is clear that each } ¨ }n is a norm

on En and that (2.2.1) is satisfied. Hence p} ¨ }n : n P Nq is a p–multi-norm based on E.
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By Theorem 2.11,

}z}ε ď }z} ď }z}π pz P ` p b Eq ,

and so it follows from Proposition 1.12 that } ¨ } is a reasonable cross-norm on ` p b E.

The following statement recasts the definition of a p–multi-norm in the above nota-

tion.

Proposition 2.20. Let E be a normed space, and take p with 1 ď p ă 8. Then a

sequence pEn; } ¨ }n : n P Nq corresponds to a p–multi-norm based on E if and only if

}T b IE : ` pm b E Ñ ` pn b E} ď }T : ` pm Ñ ` pn}

for each m,n P N and T P Bp` pm, ` pnq.

Theorem 2.21. Let E be a normed space, and take p with 1 ď p ă 8. Then the con-

struction given in equation (2.4.3) defines a bijection from the family of ` p–norms on

` p b E onto the family of p–multi-norms based on E.

Proof. Suppose that } ¨ } is an ` p–norm on ` pbE. Then we have noted that p} ¨ }n : n P Nq
is a p–multi-norm based on E.

Conversely, suppose that p} ¨ }n : n P Nq is a p–multi-norm based on E.

First note that each element z of c 00 b E can be expressed ‘essentially uniquely’ in

the form z “
řn
j“1 δj b xj for some n P N and x1, . . . , xn P E, in the sense that the

representation is unique up to the addition of some zero vectors xj . In this case, we

define

}z} “ }px1, . . . , xnq}n .

That }z} is uniquely defined follows because p} ¨ }nq satisfies Axiom (A3). It is clear that

} ¨ } is a norm on c 00 b E.

We claim that } ¨ } is a cross-norm on c 00bE with respect to the norm } ¨ }` p on c 00.

Indeed, take α “ pα1, . . . , αnq in c 00 and x P E. Then

}αb x} “

›

›

›

›

›

n
ÿ

j“1

δj b αjx

›

›

›

›

›

“ }pα1x, . . . , αnxq}n “ }α}` p }x}

by equation (2.2.4), and this gives the claim.

Next, take m,n P N, and consider z “
řn
j“1 δjbxj P c 00bE and T “ pTi,jq PMm,n.

Then

pT b IEqpzq “
n
ÿ

j“1

m
ÿ

i“1

Ti,jδi b xj “
m
ÿ

i“1

δi b

˜

n
ÿ

j“1

Ti,jxj

¸

“

m
ÿ

i“1

δi b pTxqi , (2.4.4)

where x “ px1, . . . , xnq, and so

}pT b IEqpzq} “ }Tx}m ď }T : ` pn Ñ ` pm} }x}n “ }T } }z} .

Thus

}T b IE} ď }T } . (2.4.5)

We shall now extend the above norm } ¨ } from c 00 b E to ` p b E.
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Take z P ` p b E, so that

z “
k
ÿ

j“1

uj b xj for some k P N , u1, . . . , uk P `
p , and x1, . . . , xk P E ; (2.4.6)

we may suppose that z ‰ 0 and that the sets tu1, . . . , uku and tx1, . . . , xku are linearly

independent in ` p and E, respectively. Define

zn “ pPn b IEqpzq P c 00 b E , tn “ }zn} pn P Nq .

Then we have

tn “ }pPn b IEqpzq} “ }pPn b IEqpPn`1 b IEqpzq} ď }Pn} tn`1 pn P Nq

by (2.4.5). Since }Pn} “ 1, the sequence ptnq is increasing in R. Further,

tn “

›

›

›

›

›

k
ÿ

j“1

Pnuj b xj

›

›

›

›

›

ď

k
ÿ

j“1

}Pnuj b xj} “
k
ÿ

j“1

}Pnuj} }xj} ď
k
ÿ

j“1

}uj} }xj} pn P Nq ,

where we are using the fact that } ¨ } is a cross-norm on c 00 bE, and so ptnq is bounded

above. Hence ptnq converges, and so we may define

}z} “ lim
nÑ8

tn “ supt}pPn b IEqpzq} : n P Nu .

In the case where z P c 00bE, the new definition is consistent with the existing definition.

Clearly the map } ¨ } : z ÞÑ }z} is a semi-norm on ` p b E. Now take z P ` p b E with

z ‰ 0, and express z in the form (2.4.6). Since tu1, . . . , uku is linearly independent in ` p,

it follows from Proposition 1.10 that there exists n P N such that tPnu1, . . . , Pnuku

is linearly independent in c 00. Thus zn “
řk
j“1 Pnuj b xj ‰ 0. This implies that

}z} ě }zn} ą 0, and so } ¨ } is a norm on ` p b E. This norm extends the specified norm

on c 00 b E, and also z “ limnÑ8 zn with respect to } ¨ } for each z P ` p b E, so that

c 00 b E is dense in p` p b E, } ¨ }q.

Take T to be an operator on ` p, say with }T } “ 1, and take z P ` p b E to be of the

form in equation (2.4.6). Then, for each m,n P N, we see that

}pPnT b IEqpzq} ď }pPnT b IEqpz ´ zmq} ` }pPnT b IEqpzmq}

ď

k
ÿ

j“1

}PnT } }pI` p ´ Pmqpujq} }xj} ` }pPnTPm b IEqpzmq} .

We have limmÑ8 }pI` p ´ Pmqpuq} “ 0 for each u P ` p. Also, by (2.4.5), we have

}pPnTPm b IEqpzmq} ď }PnTPm} }zm} ď }zm} ď }z} pm,n P Nq ,

and so }pPnT b IEqpzq} ď }z} pn P Nq. Hence }pT b IEqpzq} ď }z}, and so } ¨ } is an

` p–norm on ` p b E.

The correspondence that we have described is clearly a bijection.

The above proof also establishes Theorem 2.18 by replacing ‘` p ’ by ‘c 0’ throughout.

As such the proof seems to be simpler than the one of this specific fact given in [18].
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2.5. Strong p–multi-norms. There are strengthenings of the concept of a p–multi-

norm that we shall describe in the next two sections. The rôle of these strengthenings

will become apparent later, in the representation theorems of Chapter 5. We recall that

the notation y ďp x was introduced in Definition 1.37.

Definition 2.22. Let E be a linear space, and take p with 1 ď p ď 8. A strong p–multi-

norm based on E is a sequence p} ¨ }nq such that } ¨ }n is a norm on En for each n P N
and such that }y}n ď }x}m whenever m,n P N, x P Em, y P En, and y ďp x. In this

case, pEn, } ¨ }nq is a strong p–multi-normed space.

It is clear that each strong p–multi-norm is a power-norm. The following result shows

that it is indeed a p–multi-norm.

Proposition 2.23. Let E be a linear space, and take p with 1 ď p ď 8. Suppose that

pEn, } ¨ }nq is a strong p–multi-normed space. Then p} ¨ }nq is a p–multi-norm based on

E.

Proof. Take m,n P N, x P En, and T PMm,n with }T : ` pn Ñ ` pm} ď 1. Then

}xTx, λy}` p
m
“ }T pxx, λyq}` p

m
ď }xx, λy}` p

n
pλ P E1q ,

and so Tx ďp x. Hence }Tx}m ď }x}n by the defining condition of a strong p–multi-

norm. This shows that p} ¨ }nq is a p–multi-norm.

The following result is immediately checked.

Proposition 2.24. Let E be a linear space, take p with 1 ď p ď 8, and let p} ¨ }nq be a

strong p–multi-norm based on E.

(i) Suppose that F is a subspace of E. Then pFn, } ¨ }nq is a strong p–multi-normed

space.

(ii) Suppose that m P N, and set F “ Em. Then pFn, } ¨ }mnq is a strong p–multi-

normed space.

We shall now see that the converse of Proposition 2.23 is true in the special cases

where p “ 2 or p “ 8; we recall that the latter case corresponds to multi-norms them-

selves. In Example 2.31, we shall show that the converse holds for all Banach spaces only

when p “ 2 or p “ 8.

Theorem 2.25. Let p “ 2 or p “ 8, and suppose that pEn, } ¨ }nq is a p–multi-normed

space. Then p} ¨ }nq is a strong p–multi-norm.

Proof. Take m,n P N, x P Em, and y P En such that y ďp x, and set

Z “ txx, λy : λ P E1u .

By Theorem 1.38, there is a matrix A P Mn,m such that Ax “ y and A | Z : Z Ñ ` pn
is a contraction as an element of BpZ, ` pnq, where the norm on Z is the restriction of the

norm on ` pm.

In the case where p “ 2, there is an orthogonal projection P of ` pm onto Z with

}P } “ 1, and we set T “ pA | Zq ˝ P : ` pm Ñ ` pn . In the case where p “ 8, the space ` pn is
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a 1–injective space, and so there is an extension T : ` pm Ñ ` pn of A | Z with }T } “ }A | Z}.

In both cases T is a contraction.

For each λ P E1, we have

xTx, λy “ pxAx, λyq “ xy, λy ,

and so y “ Tx. Since p} ¨ }nq is a p–multi-norm, inequality (2.2.1) holds, and so we have

}y}n ď }x}m, as required.

In particular, each multi-norm is a strong multi-norm.

Recall that the quotient of a p–multi-norm is a p–multi-norm. However, it is not

generally true that the quotient of a strong p–multi-norm is necessarily a strong p–multi-

norm. (By Theorem 2.25, this is true for p “ 2 and p “ 8.) An example to demonstrate

this when 2 ă p ă 8 will be given within Example 2.30, below, and a counter-example

for each p with 1 ď p ă 8 and p ‰ 2 will be given in Example 2.31. The example within

Example 2.30 will also show that, for 1 ď p ă 2, the dual of a strong p-multi-norm, which

is a p1-multi-norm, is not necessarily a strong p1–multi-norm; Corollary 2.38 will show

the stronger result that this holds for each p with 1 ă p ă 8 and p ‰ 2.

Theorem 2.26. Let E and F be infinite-dimensional Banach spaces such that E is

finitely representable in F , and take p with 1 ď p ď 8. Suppose that the p–sum power-

norm based on F is a strong p–multi-norm. Then the p–sum power-norm based on E is

also a strong p–multi-norm.

Proof. Take m,n P N, x “ px1, . . . , xmq P E
m, and y “ py1, . . . , ynq P E

n such that

y ďp x, so that
n
ÿ

j“1

| xyj , λy|
p
ď

m
ÿ

i“1

| xxi, λy|
p

pλ P E1q .

Set X “ lin tx1, . . . , xm, y1, . . . , ynu, a finite-dimensional subspace of E, and take ε ą 0.

Then there is a finite-dimensional subspace Y of F and an isomorphism T : X Ñ Y such

that }T }
›

›T´1
›

› ă 1` ε.

Take µ P F 1. Then T 1pµ | Y q belongs to X 1, and so has a norm-preserving extension,

say λ, to E1. Thus xTz, µy “ xz, T 1pµ | Y qy “ xz, λy pz P Xq, and so

n
ÿ

j“1

| xTyj , µy|
p
ď

m
ÿ

i“1

| xTxi, µy|
p

and
n
ÿ

j“1

}Tyj}
p
ď

m
ÿ

i“1

}Txi}
p

because the p–sum power-norm based on F is a strong p–multi-norm. Hence
n
ÿ

j“1

}yj}
p
ď
›

›T´1
›

›

p
n
ÿ

j“1

}Tyj}
p
ď

›

›T´1
›

›

p
m
ÿ

i“1

}Txi}
p

ď }T }
p ›
›T´1

›

›

p
m
ÿ

i“1

}xi}
p
ď p1` εqp

m
ÿ

i“1

}xi}
p
.

This holds true for each ε ą 0, and so
řn
j“1 }yj}

p
ď
řm
i“1 }xi}

p
.

We have shown that the p–sum power-norm based on E is a strong p–multi-norm.
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We consider again some examples of p–multi-norms that were given above in Example

2.7.

Examples 2.27. Take p with 1 ď p ď 8.

(i) The unique p–multi-norm based on F is obviously a strong p–multi-norm.

(ii) Let E be a normed space, and again consider the p–sum power-norm based on E

given by

}x}n :“ }x}`pnpEq “

˜

n
ÿ

i“1

}xi}
p

¸1{p

px1, . . . , xn P E, n P Nq .

Certainly this power-norm is a strong p–multi-norm when p “ 8, so we now suppose

that 1 ď p ă 8.

We know that this power-norm is a p–multi-norm in the special case that E “ ` p.

In fact, it is a strong p–multi-norm in this case. To see this, fix m,n P N, and take

x “ px1, . . . , xmq P Em and y “ py1, . . . , ynq P En, say xi “ pxikq for i P Nm and

yj “ pyjkq for j P Nn. Suppose that }xy, λy}` p
n
ď }xx, λy}` p

m
just for each λ P E1 “ ` p

1

of

the form δk for k P N. Then
n
ÿ

j“1

|yjk|
p
ď

m
ÿ

i“1

|xik|
p

for each k P N, and so

n
ÿ

j“1

8
ÿ

k“1

|yjk|
p
“

8
ÿ

k“1

n
ÿ

j“1

|yjk|
p
ď

8
ÿ

k“1

m
ÿ

i“1

|xik|
p
“

m
ÿ

i“1

8
ÿ

k“1

|xik|
p
.

Thus
n
ÿ

j“1

}yj}
p
ď

m
ÿ

i“1

}xi}
p
,

and hence }y}n ď }x}m, as required.

By Theorem 2.26, the p–sum power-norm is a strong p–multi-norm when based on

any Banach space E that is finitely representable in ` p.

Let Ω be a measure space. Suppose that either 1 ď p ď r ď 2 or p ą 2 and r “ 2

or r “ p. Then, by Theorem 1.26(i), the space LrpΩq is finitely representable in ` p, and

so the p–sum power-norm based on LrpΩq is a strong p–multi-norm. In particular, the

p–sum power-norm based on LppΩq is a strong p–multi-norm.

We shall see shortly that the p–sum power-norm based on a Banach space E may be

a p–multi-norm that is not a strong p–multi-norm.

(iii) Let E be a normed space, and consider the weak p–summing norm pµp,nq based

on E. Take m,n P N, x P Em, and y P En with y ďp x. Since

µp,mpxq “ supt}xx, λy}` p
m

: λ P BE1u ,

it is immediate that µp,npyq ď µp,mpxq, and so pµp,nq is a strong p–multi-norm.

However it is not necessarily the case that each quotient of the weak p–summing

norm is a strong p–multi-norm; we shall see this in Example 2.39.
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(iv) Let E be a normed space, and consider the dual weak p–summing norm pνp,nq

based on E.

There are Banach spaces E such that pνp,nq, when based on E, is and is not a strong

p–multi-norm. Indeed, by (i), pνp,nq, when based on F, is a strong p–multi-norm. However

Theorem 2.37 will show that this is not necessarily the case when 1 ď p ă 8 and p ‰ 2,

even for certain finite-dimensional spaces E.

(v) The 2–multi-norm defined in Example 2.9 is a strong 2–multi-norm.

Let E be a Banach space. We showed in Theorem 2.8 that the p–sum power-norm

based on E is a p–multi-norm if and only if E belongs to the class SQppq if and only if E

is a p–space. In contrast, we obtain the following theorem; it is an immediate consequence

of Corollary 1.40 and the above remarks.

Theorem 2.28. Let E be a Banach space, and take p with 1 ď p ď 8. Then the following

conditions on E are equivalent:

(a) the p–sum power-norm based on E is a strong p–multi-norm;

(b) E is isometrically isomorphic to a closed subspace of LppΩ, µq for some measure

space pΩ, µq.

Corollary 2.29. Take p and r with 2 ă p ă 8 and 1 ď r ă 8. Then:

(i) the p–sum power-norm based on ` r is a p–multi-norm if and only if 2 ď r ď p;

(ii) the p–sum power-norm based on ` r is a strong p–multi-norm if and only if r “ 2

or r “ p;

(iii) the p–sum power-norm based on ` rn is a strong p–multi-norm for each n P N if

and only if r “ 2 or r “ p.

Proof. (i) This is noted on page 46.

(ii) It follows from Theorem 2.28 that the p–sum power-norm based on ` r is a strong

p–multi-norm if and only if ` r is isometrically isomorphic to a closed subspace of LppΩ, µq

for some measure space pΩ, µq; by Proposition 1.22 and Theorem 1.26(ii), this holds if

and only if r “ 2 or r “ p.

(iii) Suppose that r “ 2 or r “ p. By (ii), the p–sum power-norm based on ` r is a

strong p–multi-norm, and so the same is true for the p–sum power-norm based on ` rn for

each n P N.

Suppose that the p–sum power-norm based on ` rn is a strong p–multi-norm for each

n P N. By Theorem 2.28 and the remarks above Theorem 1.26, ` rn embeds isometrically

in LppIq for each n P N. It follows that ` r is finitely representable in LppIq, and so, by

Proposition 1.24, ` r is isometrically isomorphic to a closed subspace of LppIq. Again, this

implies that r “ 2 or r “ p.

Example 2.30. Take p and r with 2 ă r ă p ă 8. Then the p–sum power-norm based on

LppIq is certainly a strong p–multi-norm. By Corollary 1.23, ` r is isometrically isomorphic
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to a quotient of LppIq. The quotient multi-norm based on ` r is also the p–sum power-

norm, but, by Corollary 2.29(ii), this is not a strong p–multi-norm. Thus the quotient of

a strong p–multi-norm is not necessarily a strong p–multi-norm.

Now suppose that 1 ă p ă s ă 2. Then the p–sum power-norm based on ` s is

a strong p–multi-norm, but the dual p1–multi-norm based on ` r, where r “ s1, is a

p1–multi-norm that is not a strong p1–multi-norm. Thus the dual of a strong p–multi-

norm is not necessarily a strong p1–multi-norm.

Example 2.31. This example will extend the previous one by showing that, for each p

with 1 ď p ă 8 and p ‰ 2, there is a Banach space E, a strong p–multi-norm based

on E, and a closed subspace F of E such that the quotient power-norm based on E{F

is not a strong p–multi-norm. In particular, this shows that, for each such p, there is a

p–multi-norm that is not strong.

Indeed, for each p with 1 ď p ă 8 and p ‰ 2, it follows from Theorem 1.34 that there

is a closed subspace E of a space LppΩq that has a quotient F which is not isomorphic

to a closed linear subspace of any space LppΣq. By Theorem 2.28, the p–sum power-

norm based on E is a strong p–multi-norm. The quotient of this power-norm is the

p–sum power-norm based on F ; by Theorem 2.28 again, this latter p–multi-norm is not

strong.

In summary, the class of p–multi-normed spaces is closed under taking quotients, but

this is not true for the class of strong p–multi-normed spaces when 1 ď p ă 8 and p ‰ 2.

We now consider when interpolation preserves strong p–multi-norms. The first ex-

ample given below shows that the interpolation space between two strong p0– and p1–

multi-normed spaces (with p0 ‰ p1) need not be a p–multi-normed space and, even in

the special case that p0 “ p1 “ p, so that the interpolation space is a p–multi-normed

space, it is not necessarily a strong p–multi-normed space.

Example 2.32. Let E0 and E1 be two complex Banach spaces, take p0 and p1 with

1 ď p0, p1 ă 8, and take θ P p0, 1q. As usual, define p by the formula

1

p
“

1´ θ

p0
`

θ

p1
.

As in equation (1.10.1), p` p0pE0q, `
p1pE1qq θ “ ` ppEq, where E “ pE0, E1q θ, and so, as

before, the interpolated norm on ` ppEq from the p0– and p1–sum power-norms on E0

and E1, respectively, is the p–sum power-norm based on E.

Suppose that

1 ď p0 ă 2 ă p1 ă 8 ,

and take E0 “ ` p0pCq and E1 “ ` 2pCq. Now take j to be 0 or 1. In both cases, it follows

from Proposition 1.22 that the space Ej embeds isometrically into Lpj pI,Cq, and so, by

Theorem 2.28, the pj–sum power-norm based on Ej is a strong pj–multi-norm. However,

pE0, E1q θ “ ` qpCq, where
1

q
“

1´ θ

p0
`
θ

2
,
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and clearly q ă mintp, 2u. By remarks on page 46, the p–sum power-norm based on ` qpCq
is not a p–multi-norm.

Now suppose that 2 ă p ă 8 and take E0 “ ` 2pCq and E1 “ ` ppCq. By Proposition

1.22, both the spaces E0 and E1 embed isometrically into LppI,Cq, and so the p–sum

power-norm on both E0 and E1 is a strong p–multi-norm. We have pE0, E1qθ “ ` rpCq,
where

1

r
“

1´ θ

2
`
θ

p
,

so that 2 ă r ă p. By Corollary 2.29(i), ` rpCq is in the class SQppq, and so the inter-

polated p–sum power-norm on pE0, E1qθ is a p–multi-norm; this also follows from The-

orem 2.15. However, by Corollary 2.29(ii), this p–multi-norm is not a strong p–multi-

norm.

We now exhibit a finite-dimensional Banach space and a 1–multi-norm (i.e., a dual

multi-norm) based on this space such that the 1–multi-norm is not a strong 1–multi-norm.

The example also shows that the dual of a multi-norm, which is a 1–multi-norm, is not

necessarily a strong 1–multi-norm. A more general example will be given in Corollary

2.38, but the present calculation is elementary and avoids an appeal to deep theorems

contained within Theorem 1.28.

Example 2.33. Fix n P N, and consider the finite-dimensional Banach space E “ `8n ,

with dual space E1 “ ` 1
n . We define y “ cnpδ1, . . . , δnq P E

n, where cn ą 0 is to be

determined. Set m “ 2n, and let x1, . . . , xm be the vectors in E of the form pε1, . . . , εnq,

where each εi is equal to ˘1 and each choice of pε1, . . . , εnq is taken exactly once, so that

}xj}E “ 1 pj P Nmq; set x “ px1, . . . , xmq P E
m.

Now take λ “ pλ1, . . . , λnq P E
1, say with }λ}` 1

n
“

řn
j“1 |λj | “ 1. Then we have

}xy, λy}` 1
n
“ cn

n
ÿ

j“1

|λj | “ cn .

Also

}xx, λy}` 1
m
“
ÿ

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

εjλj

ˇ

ˇ

ˇ

ˇ

ˇ

: εj “ ˘1, j P Nn

+

ě A1m ¨

˜

n
ÿ

j“1

|λj |
2

¸1{2

by Khintchine’s inequality; here A1 is an absolute constant. In fact, by [58], A1 “ 1{
?

2.

By Hölder’s inequality, we have

1 “
n
ÿ

j“1

|λj | ď n1{2 ¨

˜

n
ÿ

j“1

|λj |
2

¸1{2

,

and so }xx, λy}` 1
m
ě 2n{p2nq1{2. Thus y ď1 x when we make the choice cn “ 2n{p2nq1{2

for n P N.

We consider the 1–multi-norm based on E that is defined by

}pz1, . . . , zkq}k “
k
ÿ

j“1

}zj}E pz1, . . . , zk P E, k P Nq ;
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this is the maximum dual multi-norm based on E. We have

}y}n “ cn

n
ÿ

j“1

}δj}E “ ncn “
n1{22n
?

2
.

Moreover, }x}m “ m “ 2n, and so the inequality ‘}y}n ď }x}m’ fails whenever n1{2 ą
?

2,

i.e., whenever n ě 3.

We conclude that there is a 1–multi-norm based on a finite-dimensional space `8n
that is not a strong 1–multi-norm.

Now take F “ E1 “ ` 1
n . Then the corresponding dual of the prescribed maximum

1–multi-norm based on E is the minimum 8–multi-norm based on F . By Theorem 2.25,

each 8–multi-norm is a strong 8–multi-norm. But of course the dual of this strong

8–multi-norm based on F is the 1–multi-norm based on E that was defined above, and

this is not a strong 1 -multi-norm.

We wish now to determine when the maximum p–multi-norm pνp,nq when based on

various spaces is a strong p–multi-norm. We first give an equivalent condition for a p–

multi-norm to be strong; in the following theorem, the norm on ` pn bE, for n P N, is that

specified by equation (2.4.3).

Theorem 2.34. Let E be a linear space, and take p with 1 ď p ď 8. Suppose that p} ¨ }nq

is a sequence such that } ¨ }n is a norm on En for each n P N. Then p} ¨ }nq is a strong

p–multi-norm if and only if, for each m,n P N, for any subspaces Z and W of ` pm and

` pn , respectively, and any contraction T in BpZ,W q, the map

T b IE : Z b E ÑW b E

is also a contraction with respect to the associated norms on ` pmbE and ` pn bE, respect-

ively.

Proof. Suppose that p} ¨ }nq is a strong p–multi-norm, and take m,n P N, subspaces Z

and W of ` pm and ` pn , respectively, and a contraction T in BpZ,W q.
Let z P Z b E, say

z “
m
ÿ

j“1

δj b xj “
k
ÿ

i“1

ri b ai ,

where x1, . . . , xm P E, k P N, and tr1, . . . , rku and ta1, . . . , aku are subsets of Z and E,

respectively. Take λ P E1. Then, by (1.9.2), we have

˜

m
ÿ

j“1

|xxj , λy|
p

¸1{p

“

›

›

›

›

›

k
ÿ

i“1

xai, λyri

›

›

›

›

›

` p
m

.

Now set w “ pT b IEqpzq P W b E Ă ` pn b E, so that w “
řn
j“1 δj b yj , say, where
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y1, . . . , yn P E. Then, by another application of (1.9.2), we have

n
ÿ

j“1

|xyj , λy|
p
“

›

›

›

›

›

k
ÿ

i“1

xai, λyTri

›

›

›

›

›

p

` p
n

“

›

›

›

›

›

T

˜

k
ÿ

i“1

xai, λyri

¸
›

›

›

›

›

p

` p
n

ď

›

›

›

›

›

k
ÿ

i“1

xai, λyri

›

›

›

›

›

p

` p
m

“

m
ÿ

j“1

|xxj , λy|
p
.

Set x “ px1, . . . , xmq and y “ py1, . . . , ynq. Then we have shown that y ďp x, and

so, by hypothesis, }y}n ď }x}m, i.e., }w} ď }z}. Thus T b IE is a contraction.

Conversely, suppose that the stated condition holds. Take m,n P N, and then take

x “ px1, . . . , xmq P E
m and y “ py1, . . . , ynq P E

n such that y ďp x. Set z “
řm
j“1 δjbxj

and w “
řn
j“1 δj b yj .

By Theorem 1.38, there are a subspace Z of ` pm and a contraction T in BpZ, ` pnq with

pT b IEqpzq “ w. By hypothesis, T b IE : Z b E Ñ ` pn b E is also a contraction, and so

}y}n “ }w} “ }pT b IEqz} ď }z} “ }x}m .

This shows that p} ¨ }nq is a strong p–multi-norm.

Example 2.35. Take p with 1 ă p ă 8. We shall now exhibit some further Banach

spaces E such that the maximum p–multi-norm pνp,nq of Example 2.7(iv), when based

on E, is a strong p–multi-norm. We recall from equation (1.5.10) that νp,n corresponds

to the projective tensor norm on ` pn b E for n P N.

Indeed, take E to be L1pΩ, µq for a measure space pΩ, µq. In particular, consider the

case where E “ ` 1pIq for an index set I. By Proposition 1.14(iii), X pbE is isometrically a

closed subspace of Y pbE whenever X is a closed subspace of a Banach space Y . Now take

m,n P N and subspaces Z and W of ` pm and ` pn , respectively, and let T be a contraction

in BpZ,W q. Then, by Theorem 1.13,

T b IE : Z pbE ÑW pbE

is also a contraction with respect to the projective norms on ` pmbE and ` pn bE, respect-

ively. By Theorem 2.34, pνp,nq is a strong p–multi-norm based on E.

The spaces E “ L1pΩ, µq for a measure space pΩ, µq are the only Banach spaces that

we know to have the property that the maximum p–multi-norm pνp,nq, when based on

E, is strong.

Next we shall describe a criterion that will enable us to see that certain maximum

p–multi-norms pνp,nq are not strong; the projection constant λpF,Eq was defined on page

13.

Theorem 2.36. Take p with 1 ď p ď 8, and suppose that Z and W are two subspaces

` p, of the same finite dimension, such that

dpZ,W qλpW, ` pq ă λpZ, ` pq . (2.5.1)

Then the maximum p–multi-norm pνp,nq based on the dual space Z 1 is not strong.
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Proof. By a small perturbation, we may suppose that both Z and W are subspaces of

` pm for some m P N, and then λpW, ` pmq “ λpW, ` pq and λpZ, ` pmq “ λpZ, ` pq.

Set k “ dimZ “ dimW and c “ 1{βpJZ bπ IZ1q, where JZ : Z Ñ ` pm is the natural

embedding, so that, by Proposition 1.15, we have c “ λpZ, ` pmq. Set

W “W pbZ 1 , Z “ Z pbZ 1 , and L “ ` pm pbZ 1 .

By the definition of c, there exists z P Z with }z}L “ 1 and }z}Z “ c, taking the

corresponding projective norms on L and Z.

There is a linear bijection T : Z Ñ W such that }T } “ 1 and
›

›T´1
›

› “ dpZ,W q; set

w “ pT b IZ1qpzq P W Ă L. Using Theorem 1.13, we have the calculation that

c “ }z}Z “
›

›pT´1 b IZ1qpwq
›

›

Z
ď
›

›T´1
›

› }IZ1} }w}W “ dpZ,W q }w}W .

Also λpW,Lq ď λpW, ` pmq, and so }w}W ď λpW, ` pmq }w}L. Hence

λpZ, ` pmq “ c ď dpZ,W qλpW, ` pmq }w}L . (2.5.2)

Assume that the maximum p–multi-norm pνp,nq based on Z 1 is strong. Since νp,n
corresponds to the projective tensor norm on ` pn pbZ 1 for n P N, it follows from Theorem

2.34 that the map TbIZ1 : Z Ñ W is also a contraction with respect to the norm } ¨ }L on

Z and W. Thus we see that }w}L ď }z}L “ 1, and so it follows from equation (2.5.2) that

λpZ, ` pmq ď dpZ,W qλpW, ` pmq. Hence inequality (2.5.1) does not hold, a contradiction.

This completes the proof.

Theorem 2.37. Take p with 1 ď p ă 8 and p ‰ 2. Then there is a finite-dimensional

Banach space E such that the maximum p–multi-norm based on E is not strong.

Proof. In the case where p “ 1, an appropriate example (with dimension 3) is given in

Example 2.33, and so we now suppose that p ą 1. We shall apply Theorem 2.36.

By Corollary 1.29, there are a constant C ą 0 and an increasing sequence pFnq of

subspaces of ` p such that dpFn, `
p
nq ď C pn P Nq and limnÑ8 λpFn, `

pq “ 8. Take n P N
with λpFn, `

pq ą C, and set Z “ Fn and W “ ` pn . Then dpZ,W q ď C, λpW, ` pq “ 1,

and λpZ, ` pq ą C, and so inequality (2.5.1) holds. By Theorem 2.36, the maximum

p–multi-norm on the dual space Z 1 “ F 1n is not strong.

Corollary 2.38. Take q with 1 ă q ă 8 and q ‰ 2. Then there is a finite-dimensional

Banach space F such that the minimum q–multi-norm pµq,nq based on F is strong, but

such that the dual q1–multi-norm pνq1,nq based on F 1 is not strong.

Proof. By Example 2.27(iii), the minimum q–multi-norm based on the above space Z

is strong, but, as stated, the dual q1–multi-norm based on Z 1, which is the maximum

q1–multi-norm pνq1,nq, is not strong.

Example 2.39. We finally exhibit a quotient of a weak p–summing norm that is not a

strong p–multi-norm. To see this, we shall again use the example given in Corollary 1.29

and the characterization of strong p–multi-norms given in Theorem 2.34.

In this example, we suppose that 1 ă p ă 8 and p ‰ 2; a variation of Corollary 1.29

that holds in the case where p “ 1 would give an analogous example for the case where
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p “ 1. However we shall give an easier example of the same phenomenon in this case in

Example 5.12.

Thus take p with 1 ă p ă 8 and p ‰ 2, set q “ p1, and let C ě 1 be the constant

specified in Corollary 1.29. Then there are n,N P N, a closed subspace Z of ` pN with

dimZ “ n and λpZ, ` pN q ą C, and an isomorphism T : Z Ñ ` pn with }T } “ 1 and
›

›T´1
›

› ď C.

Set E “ ` qN , so that E1 “ ` pN , and F “ ZK Ă E. Let QF : E Ñ E{F be the quotient

map. Then Q1F : pE{F q1 Ñ E1 is an isometry onto the subspace FK “ Z, and so the map

U : pE{F q1 Ñ Z given by

Uλ “ Q1F pλq pλ P pE{F q1q

is an isometric isomorphism.

We consider the weak p–summing norm pµp,mq based on E. As in Example 2.27(iii),

this p–multi-norm is strong. The purpose of this example is to show that the induced

quotient p–multi-norm based on E{F is not strong.

Take m P N. We recall that

pEm, µp,mq – ` pm qbE – BpE1, ` pmq .

We shall again write µp,m for the quotient norm on pE{F qm “ ` pm b pE{F q induced by

the norm µp,m on Em “ ` pmbE. As usual, pδiq
m
i“1 denotes the standard basis for ` pm; we

shall denote by pδ1iq
m
i“1 the corresponding sequence of biorthogonal functionals, which is

equal to the standard basis for ` qm under our identification of ` qm with the dual of ` pm.

Define

y “
n
ÿ

i“1

δi b U
1T 1δ1i P `

p
n b pE{F q (2.5.3)

and

x “ pT´1 b IE{F qy “
n
ÿ

i“1

T´1δi b U
1T 1δ1i P Z b pE{F q Ă ` pN b pE{F q .

For each λ P pE{F q1, equation (1.9.2) implies that

xy, λy “
n
ÿ

i“1

xλ,U 1T 1δ1iyδi “
n
ÿ

i“1

xTUλ, δ1iy δi “ TUλ .

A similar calculation shows that xx, λy “ Uλ, and hence we have

}xy, λy}` p
n
“ }TUλ}` p

n
ď }Uλ}` p

N
“ }xx, λy}` p

N

because }T } “ 1. This shows that y ďp x.

Let µ P ` qN and λ P pE{F q1. By applying the functional µ b λ, which is given by



64 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

equation (1.4.1), to the element x P ` pN b pE{F q, we obtain

xx, µb λy “
n
ÿ

i“1

xT´1δi, µy xU
1T 1δ1i, λy “

B n
ÿ

i“1

xTUλ, δ1iy δi, pT
´1q1µ

F

“ xTUλ, pT´1q1µy “ xUλ, µy “ xQ1Fλ, µy “

B N
ÿ

i“1

xQ1Fλ, δ
1
iy δi, µ

F

“

N
ÿ

i“1

xδi, µy xQF δ
1
i, λy “

B

pIN bQF q

ˆ N
ÿ

i“1

δi b δ
1
i

˙

, µb λ

F

.

Since the functionals of the form µb λ span the space p` pN b pE{F qq
1, it follows that

x “ pIN bQF q

ˆ N
ÿ

i“1

δi b δ
1
i

˙

,

and hence µp,N pxq ď
›

›

řN
i“1 δi b δ

1
i

›

›

ε,N
“ 1.

We shall now assume towards a contradiction that the p–multi-norm pµp,mq based

on E{F is strong. Note that µp,npyq ď µp,N pxq ď 1. The quotient norm of y is attained

because ` pn b E is a finite-dimensional space, and so we can find an element

v “
n
ÿ

i“1

δi b vi P `
p
n b E

such that }v}ε,n ď 1 and pIn bQF qpvq “ y. Comparing the definition (2.5.3) of y with

the expression

pIn bQF qpvq “
n
ÿ

i“1

δi bQF vi ,

we deduce that

U 1T 1δ1i “ QF vi pi P Nnq . (2.5.4)

Define V : ` pN Ñ ` pn by setting

V z “
n
ÿ

i“1

xz, viy δi pz P ` pN q ,

so that V is the operator corresponding to the element v, and hence }V } “ }v}ε,n ď 1.

We observe that V | Z “ T . Indeed, for z P Z, set λ “ U´1z P pE{F q1, so that

z “ Uλ “ Q1Fλ; using (2.5.4), we obtain

V z “
n
ÿ

i“1

xλ,QF viyδi “
n
ÿ

i“1

xλ,U 1T 1δ1iyδi “ TUλ “ Tz ,

as required. This implies that the operator P :“ T´1V P Bp` pN q is a projection with

image Z, and consequently λpZ, ` pN q ď }P } ď C, which contradicts our choice of Z.

Thus we have shown that the p–multi-norm pµp,mq based on E{F is not strong, as

required.
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2.6. Convex and concave power-norms. The second strengthening of the concept

of a p–multi-norm that we shall consider involves convexity.

Definition 2.40. Let pEn, } ¨ }nq be a power-normed space, and take p with 1 ď p ď 8.

Then pEn, } ¨ }nq is p–convex if

}px,yq}m`n ď p}x}
p
m ` }y}

p
nq

1{p
(2.6.1)

and p–concave if

}px,yq}m`n ě p}x}
p
m ` }y}

p
nq

1{p
, (2.6.2)

in both cases for each m,n P N, each x P Em, and each y P En.

Each power-norm is obviously 1–convex and 8–concave. Suppose that a power-norm

is p–convex, respectively, p–concave. Then it is also r–convex, respectively, r–concave,

for each r P r1, ps, respectively r P rp,8s.

For example, take p, q with 1 ď p ď q ă 8, and let p} ¨ }
pp,qq
n q be the pp, qq–multi-norm

defined in Example 2.10. Then p} ¨ }
pp,qq
n q is r–convex for r ě 1 if and only if r P r1, qs.

We shall see in Theorem 4.26 that, for each p with 1 ă p ă 8, there are p–multi-norms

that are not p–convex.

A 2 –convex 2 –multi-norm based on a Banach space E is exactly what is termed

a sequential norm in [38, Definition 2.1], and the corresponding space pEn, } ¨ }nq is an

operator sequence space. A related notion of a p–operator space (for 1 ď p ď 8) was

introduced by Daws in [21]. One could say that our theory of p –multi-normed spaces is

‘half-way’ between that of classical Banach space theory and operator space theory; our

hope is that it sheds some light on both of these topics and their connections.

The main texts on operator space theory are those of Blecher and Le Merdy [9], of

Effros and Ruan [27], of Helemskii [30], and of Pisier [50].

Let pEn, } ¨ }nq be a p–convex or p–concave power-normed space, and suppose that

F is a subspace of E. Then the corresponding power-norms based on F and, in the case

where F is closed, on the quotient E{F are both p–convex or p–concave, respectively.

For m,n P N, consider the linear bijection Jm,n that takes the element x ` y in

Em ‘En to the concatenation px,yq in Em`n. Then pEn, } ¨ }nq is p–convex if and only

if

Jm,n : pEm, } ¨ }mq ‘p pE
n, } ¨ }nq Ñ pEm`n, } ¨ }m`nq (2.6.3)

is a contraction for each m,n P N. Similarly, pEn, } ¨ }nq is p–concave if and only if the

inverse J´1
m,n of Jm,n is a contraction for each m,n P N.

Proposition 2.41. Let pEn, } ¨ }nq be a power-normed space, and take p with 1 ď p ď 8.

Then pEn, } ¨ }nq is p–concave if and only if ppE1qn, } ¨ }
1

nq is p1–convex, and pEn, } ¨ }nq is

p–convex if and only if ppE1qn, } ¨ }
1

nq is p1–concave.

Proof. For notational convenience, set q “ p1 and F “ E1.

Suppose that pEn, } ¨ }nq is p–convex, so that the above map Jm,n is a contraction

for each m,n P N. The dual J 1m,n of Jm,n is the linear bijection taking pλ,µq in the

space Fm`n to λ` µ in Fm ‘q F
n “ pEm ‘p E

nq1, and this map is also a contraction.
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But the map J 1m,n is exactly the map corresponding to J´1
m,n on pFm`n, } ¨ }

1

m`nq, and so

pFn, } ¨ }
1

nq is q–concave.

Similarly, we see that pFn, } ¨ }
1

nq is q–convex whenever pEn, } ¨ }nq is p–concave.

Now suppose that pFn, } ¨ }
1

nq is q–convex, respectively, q–concave. Then we have

shown that the bidual ppE2qn, } ¨ }
2

nq is p–concave, respectively, p–convex, and hence

pEn, } ¨ }nq is p–concave, respectively, p–convex.

Examples 2.42. Take p with 1 ď p ď 8.

(i) The unique p–multi-norm based on F is obviously p–convex and p–concave, as is

the p–sum power-norm based on a normed space.

(ii) It is easy to see that the p–sum power-norm is the maximum p–convex power-

norm, in the sense that, for each normed space E and each p–convex power-norm p} ¨ }nq

based on E, we have

}x}n ď }x}` p
n pEq

px P En, n P Nq . (2.6.4)

(iii) The weak p–summing norm pµp,nq based on a normed space E is a p–multi-norm,

and it is p–convex. For take m,n P N, x “ px1, . . . , xmq P E
m, and y “ py1, . . . , ynq P E

n.

For each λ P BE1 , we have
˜

m
ÿ

i“1

|xxi, λy|
p
`

n
ÿ

i“1

|xyi, λy|
p

¸1{p

ď pµp,mpxq
p ` µp,npyq

pq
1{p

,

and so µp,mppx,yqq ď pµp,mpxq
p ` µp,npyq

pq
1{p

. Thus pµp,nq is p–convex.

In particular, pµ2,nq based on a Banach space E is a sequential norm, and in fact

pEn, µ2,nq is the minimum operator sequence space based on E, in the language of [38,

p. 250].

(iv) Let E be a normed space, and consider the maximum p–multi-norm pνp,nq based

on E. The dual of this p–multi-norm is the p1–multi-norm pµp1,nq based on E1, and so,

by (ii) and Proposition 2.41, pνp,nq is p–concave.

Proposition 2.43. Take p with 1 ď p ă 8. Let tE0, E1u be a compatible couple of

complex Banach spaces, and suppose that pEn0 , } ¨ }
0
nq and pEn1 , } ¨ }

1
nq are p–convex power-

normed spaces based on E0 and E1, respectively. Take θ P p0, 1q, and set E “ pE0, E1qθ.

Then the power-normed space pEn, } ¨ }nq is p–convex.

Proof. Take m,n P N. Then, essentially as in equation (1.10.1), tEm0 ‘p E
n
0 , E

m
1 ‘p E

n
1 u

is a compatible couple of complex Banach spaces and

pEm0 ‘p E
n
0 , E

m
1 ‘p E

n
1 q θ “ Em ‘p E

n .

The maps J
p0q
m,n and J

p1q
m,n associated with E0 and E1, respectively, are both contractions,

and so, by Theorem 1.46, the map Jm,n associated with E is also a contraction. Thus

pEn, } ¨ }nq is p–convex.
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3. Multi-bounded operators

We obtain preliminary results on multi-bounded operators.

3.1. Definitions and basic results. We recall that the nth amplification T pnq of a

linear mapping T between linear spaces E and F was defined for n P N in Definition 1.2;

indeed, T pnq is specified by the formula

T pnq : px1, . . . , xnq ÞÑ pTx1, . . . , Txnq , En Ñ Fn .

Suppose that pEn, } ¨ }nq and pFn, } ¨ }nq are two power-normed spaces, and that

T P BpE,F q. It follows from (2.1.1) that the nth amplification of T is bounded as a

linear map from pEn, } ¨ }nq to pFn, } ¨ }nq (with }T } ď
›

›T pnq
›

› ď n }T }) for each n P N.

However, in general, the norms
›

›T pnq
›

› will not be uniformly bounded in n P N. The

following generalizes definitions given in [20, §6.1.3]. Recall that βpSq is the embedding

constant of an operator S, as on page 12.

Definition 3.1. Let pEn, } ¨ }nq and pFn, } ¨ }nq be power-normed spaces, and suppose

that T P BpE,F q. Then T is multi-bounded , with norm }T }mb, if

}T }mb :“ sup
!
›

›

›
T pnq

›

›

›
: n P N

)

ă 8 .

The map T is a multi-contraction, respectively, a multi-isometry , if the map

T pnq : pEn, } ¨ }nq Ñ pFn, } ¨ }nq

is a contraction, respectively, an isometry, for each n P N. Further, T is a multi-isomor-

phism if it is a bijection and if both T : E Ñ F and T´1 : F Ñ E are multi-bounded,

and T is a multi-embedding if it is an embedding and if inftβpT pnqq : n P Nu ą 0.

The spaces pEn, } ¨ }nq and pFn, } ¨ }nq are multi-isomorphic, respectively, multi-iso-

metric, if there is a multi-isomorphism, respectively, a bijective multi-isometry from E

onto F .

The collection of multi-bounded maps from E to F is denoted by MpE,F q.

In particular, in the case where pEn, } ¨ }nq and pFn, } ¨ }nq are p–multi-normed spaces

for some p with 1 ď p ď 8, we shall sometimes say that T is p–multi-bounded if it

is multi-bounded with respect to the two p–multi-norms, and we shall write MppE,F q

for the collection of p–multi-bounded maps from E to F . In this case, the norm of a

p–multi-bounded operator T PMppE,F q is sometimes denoted by }T }p´mb.

In the case where pEn, } ¨ }nq and pFn, } ¨ }nq are operator sequence spaces, our defin-

itions coincide with those of sequentially bounded maps, sequential contractions, and

sequential isometries given in [38, Definition 2.2].
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For a study of M8pE,F q and M8pEq “M8pE,Eq (in the setting of multi-bounded

spaces), see [20, Chapter 6].

Let E and F be Banach spaces such that pEn, } ¨ }nq and pFn, } ¨ }nq are power-normed

spaces. Then pMpE,F q, } ¨ }mbq is easily seen to be a Banach space; cf. [20, Theorem 6.15].

Example 3.2. Take p, q such that 1 ď p, q ď 8, suppose that pEn, } ¨ }nq is a p–multi-

normed space and that pFn, } ¨ }nq is a q–multi-normed space, and consider the space

pMpE,F q, } ¨ }mbq. We suppose that E,F ‰ t0u.

First suppose that p ď q. Take y P F and λ P E1, and consider T :“ ybλ P FpE,F q.
Then, for n P N and x “ px1, . . . , xnq P E

n, we have
›

›

›
T pnqx

›

›

›

n
“ }pxx1, λy y, . . . , xxn, λy yq}n

“

˜

n
ÿ

j“1

|xxj , λy|
q

¸1{q

}y} by equation (2.2.4)

ď

˜

n
ÿ

j“1

|xxj , λy|
p

¸1{p

}y}

ď µp,npxq }λ} }y} ď }x}n }λ} }y} by Theorem 2.11 ,

and so T P MpE,F q with }T }mb “ }λ} }y}. It follows that FpE,F q Ă MpE,F q. In

particular, MpE,F q ‰ t0u.

Second suppose that p ą q. Take T P BpE,F q with T ‰ 0, and then take x P E with

}x} “ 1 and Tx ‰ 0. For n P N, set x “ px, . . . , xq P En. By (2.2.5), }x}n “ n1{p and
›

›T pnqx
›

›

n
“ }Tx}n1{q, and so

›

›T pnq
›

› ě }Tx}n1{q´1{p Ñ 8 as n Ñ 8. It follows that

T RMpE,F q, and so MpE,F q “ t0u.

Example 3.3. Let E and F be Banach spaces, and take p, q with 1 ď p ď q ă 8.

Consider the weak p–summing norm pµp,nq based on E, so that pµp,nq is a strong

p–multi-norm, and the q–sum power-norm p} ¨ }` q
npF q

q based on F , so that p} ¨ }` q
npF q

q

is a power-norm that is sometimes a (strong) q–multi-norm. Then the space of multi-

bounded operators from pEn, µp,nq to pFn, } ¨ }` q
npF q

q with the multi-bounded norm } ¨ }mb
is exactly the space pΠq,ppE,F q, πq,pq of pq, pq–summing operators from E to F , and so

}T }mb “ πq,ppT q pT P Πq,ppE,F qq .

Consider the special case when F “ E and q “ p ; we shall write ΠppEq for Πp,ppE,Eq,

πp for πp,p, and πppEq for πppIEq, as is standard. Thus
›

›

›
IE : pEn, µp,nq Ñ pEn, } ¨ }` p

n pEq
q

›

›

›

mb
“ πppEq . (3.1.1)

See [20, §3.4.2], for example, for background on pq, pq–summing operators.

Let pEn, } ¨ }nq be a power-normed space, and let F be a linear subspace of E. Then

the inclusion JF : F Ñ E is a multi-isometry. Suppose that F is closed in E. As we

remarked after equation (1.3.5), for each n P N, we identify the nth amplification of the

quotient mapping QF : E Ñ E{F with the quotient mapping of En onto En{Fn, and

so QF is a multi-contraction.
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Let pEn, } ¨ }nq and pFn, } ¨ }nq be two power-normed spaces, and take T P BpE,F q
and n P N. Recall from equation (1.3.20) that we have identified the dual of the nth

amplification of T with the nth amplification of the dual T 1 of T , so that pT pnqq1 “ pT 1qpnq.

Moreover, we have identified the nth amplification of the canonical embedding of E into

its bidual E2 with the canonical embedding of En into its bidual pEnq2. Since the latter

operator is an isometry, we see that the canonical embedding of a power-normed space

into its bidual is a multi-isometry.

Proposition 3.4. Let pEn, } ¨ }nq and pFn, } ¨ }nq be power-normed spaces, and take

T P BpE,F q. Then T is multi-bounded if and only if T 1 : F 1 Ñ E1 is multi-bounded

with respect to the dual power-norms based on F 1 and E1, respectively, and, in this case,

}T 1}mb “ }T }mb. In the case where pEn, } ¨ }nq and pFn, } ¨ }nq are p–multi-normed spaces

for some p with 1 ď p ď 8 and T PMppE,F q, we have T 1 PMp1pF 1, E1q.

Proof. Take n P N. Then
›

›pT 1qpnq
›

› “
›

›pT pnqq1
›

› “
›

›T pnq
›

›. Thus T 1 is multi-bounded if and

only if T is multi-bounded; in this case, }T 1}mb “ }T }mb.

The following remarks are contained in [20, Chapter 6] in the setting of multi-norms,

but they apply in the setting of power-norms and, in particular, for p–multi-norms.

Definition 3.5. Let pEn, } ¨ }nq be a power-normed space, and take pxiq P E
N. Then

pxiq is a multi-null sequence in E if, for each ε ą 0, there exists n0 P N such that

sup
kPN

}pxn`1, . . . , xn`kq}k ă ε pn ě n0q .

Let pEn, } ¨ }nq and pFn, } ¨ }nq be two power-normed spaces, and take T P BpE,F q. Then

T is multi-continuous if pTxiq is a multi-null sequence in F whenever pxiq is a multi-null

sequence in E.

The following result has the same proof as [20, Theorem 6.14].

Theorem 3.6. Let pEn, } ¨ }nq and pFn, } ¨ }nq be two power-normed spaces, and take

T P BpE,F q. Then T is multi-continuous if and only if T is multi-bounded.

We shall next prove the power-normed analogue of the theorem on quotient operators

stated as Proposition 1.4(i). This result will be used later.

Proposition 3.7. Let pEn, } ¨ }nq and pFn, } ¨ }nq be power-normed spaces, and suppose

that T P BpE,F q. Then the operator T : E{ kerT Ñ F induced by T is a multi-isometry

if and only if T pnq is a quotient operator for each n P N.

Proof. We have identified the two spaces pE{ kerT qn and En{pkerT qn isometrically for

each n P N. Hence the diagram (1.3.7) implies that T is a multi-isometry if and only if

T pnq is an isometry for each n P N, and, by Proposition 1.4(i), the latter happens if and

only if T pnq is a quotient operator for each n P N.

Corollary 3.8. Let F be a closed subspace of a power-normed space E. Then the iso-

morphism J 1F : E1{FK Ñ F 1 induced by the dual of the inclusion JF : F Ñ E is a

multi-isometry.
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Proof. Take n P N. By Proposition 3.7, we must show that pJ 1F q
pnq is a quotient operator.

Since pJ 1F q
pnq “ pJ

pnq
F q1 and J

pnq
F is an isometry, this follows from Proposition 1.4(ii).

Proposition 3.9. Let E be an infinite-dimensional Banach space. Then:

(i) for 1 ď p ă 8, the power-normed spaces pEn, µp,nq and pEn, } ¨ }` p
n pEq

q are not

multi-isomorphic;

(ii) for 1 ă p ď 8, the power-normed spaces pEn, } ¨ }` p
n pEq

q and pEn, νp,nq are not

multi-isomorphic.

Proof. (i) Assume towards a contradiction that there is a multi-isomorphism T P BpEq,
where T pnq maps pEn, µp,nq onto pEn, }¨}` p

n pEq
q for each n P N. Then we have

sup
!
›

›

›
T pnq : pEn, µp,nq Ñ pEn, } ¨ }` p

n pEq
q

›

›

›
: n P N

)

ă 8 .

By Example 3.3 (in the case where p “ q), this means that T is a p–summing operator,

which contradicts the fact that T is an isomorphism on an infinite-dimensional Banach

space. Indeed, the composition of any two p–summing operators is compact (see [24,

p. 50]), and hence the isomorphism T 2 would be compact if T were p–summing.

(ii) This follows easily by duality.

Note that, for each n P N, we have the equalities µ8,n “ } ¨ }`8
n pEq

by equation (1.5.1)

and } ¨ }` 1
npEq

“ ν1,n by equation (1.5.9).

Corollary 3.10. Let E be an infinite-dimensional Banach space, and take p with

1 ď p ď 8. Then the p–multi-normed spaces pEn, µp,nq and pEn, νp,nq are not multi-

isomorphic.

Proof. For 1 ď p ă 8, this follows immediately by combining Proposition 3.9(i) with

the inequality (1.5.12), while the case where p “ 8 follows from equation (1.5.1) and

Proposition 3.9(ii).

There is a quantitative version of Proposition 3.9 and Corollary 3.10 in the case where

E is a finite-dimensional space. Indeed, suppose that dimE “ k. Then
?
k ď }IE : pEn, µp,nq Ñ pEn, νp,nq}mb ď k .

The upper bound follows from equation (1.4.4). The lower bound follows from equation

(3.1.1) in the case where 1 ď p ď 2 because πppEq ě π2pEq “
?
k ; in the case where

2 ď p ď 8, it follows by duality. It can be shown that both these bounds are optimal to

within a multiplicative constant.

Example 3.11. We shall show that, for each p with 1 ď p ď 8, the inverse of a bijective

multi-contraction need not be multi-bounded, and hence there is no analogue of the

Banach isomorphism theorem for multi-bounded operators.

(We remark that, in the setting of multi-norms themselves, several examples of the

failure of the Banach isomorphism theorem were given in [20]. For example, Example 6.25

of [20] shows that there are multi-norms based on infinite-dimensional Banach spaces E

and F such that MpE,F q “ BpE,F q, but MpF,Eq “ N pF,Eq, the nuclear operators
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from F to E, and Example 6.30 of [20] shows that the analogue of the Banach isomor-

phism theorem may fail even when there is one multi-norm based on a Banach space E

and we consider operators in BpEq. See [20, Example 6.39] for a further example.)

In the present situation, take p with 1 ď p ď 8 and take any infinite-dimensional

Banach space E, and consider the identity operator IE on E. Equation (1.5.13) shows

that
›

›

›
I
pnq
E : pEn, νp,nq Ñ pEn, µp,nq

›

›

›
ď 1 pn P Nq ,

but Corollary 3.10 implies that its inverse is not multi-bounded, so that
›

›

›
I
pnq
E : pEn, µp,nq Ñ pEn, νp,nq

›

›

›
Ñ8 as nÑ8 .

With a little more work, we can present a similar example for strong p–multi-normed

spaces. In the case where either p “ 2 or p “ 8, this follows immediately from the above

example by Theorem 2.25. Otherwise, take E “ ` p. By Example 2.27, (ii) and (iii), the

p–sum norm p} ¨ }` p
n pEq

q and the weak p–summing norm pµp,nq are strong p–multi-norms

based on E. Equation (1.5.2) shows that
›

›

›
I
pnq
E : pEn, } ¨ }` p

n pEqq Ñ pEn, µp,nq
›

›

›
ď 1 pn P Nq ,

but, by Proposition 3.9(i), its inverse is not multi-bounded, so that
›

›

›
I
pnq
E : pEn, µp,nq Ñ pEn, } ¨ }` p

n pEq
q

›

›

›
Ñ8 as nÑ8 .

This provides the required example.

Example 3.12. Let F be a closed subspace of a Banach space E, and take p with

1 ď p ď 8. Equation (1.5.8) shows that the inclusion JF : F Ñ E is a multi-isometry with

respect to the minimum p–multi-norms pµFp,nq and pµEp,nq based on F and E, respectively.

In contrast, suppose that F and E are endowed with their maximum p–multi-norms

pνFp,nq and pνEp,nq, respectively. Proposition 1.19 implies that JF is a multi-contraction,

but it is not always a multi-embedding. Indeed, suppose that 1 ă p ă 8 and p ‰ 2 and

that E and F have been chosen as in Example 1.30. Then equation (1.6.3) shows that

JF is not a multi-embedding of pFn, νFp,nq into pEn, νEp,nq.

Example 3.13. Again, let F be a closed subspace of a Banach space E, and take p with

1 ď p ď 8. We observe that, by Propositions 1.20 and 3.7, ν
E{F
p,n is equal to the quotient

norm on pE{F qn of the norm νEp,n on En for each n P N.

However, the analogous result may fail for the minimum p–multi-norm. To see this,

take q with 1 ă q ă 8 and q ‰ 2, and choose E and F as in Example 1.30. Then it

follows from equation (1.6.4) that the q–multi-normed space ppE1{FKqn, µ
E1
{FK

q,n q is not

multi-isomorphic to the q–multi-normed space ppE1{FKqn, µE
1

q,nq, where µE
1

q,n denotes the

quotient norm on pE1{FKqn of the norm µE
1

q,n on pE1qn for n P N.

We have noted in Theorem 2.18 that multi-norms correspond to c 0–norms on c 0bE.

Suppose that pEn, } ¨ }nq and pFn, } ¨ }nq are multi-normed spaces. Then T P BpE,F q is

multi-bounded if and only if Ic 0 b T is bounded as a map from c 0 b E to c 0 b F , and

further }T }mb “ }Ic 0
b T }. Thus, in this case, our multi-bounded operators are the same
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as the ‘opérateurs réguliers’ of [45, Définition 3.2] (where they are defined in the special

case that E and F are Banach lattices). More generally, take p with 1 ď p ă 8 and

suppose that pEn, } ¨ }nq and pFn, } ¨ }nq are p–multi-normed spaces. Then p–multi-norms

based on E correspond to ` p–norms on ` p b E, where the correspondence is given in

equation (2.4.3). Thus the following theorem follows from Theorem 2.21.

Theorem 3.14. Take p with 1 ď p ă 8, and suppose that pEn, } ¨ }nq and pFn, } ¨ }nq

are p–multi-normed spaces. Take T P BpE,F q. Then T is p–multi-bounded if and only if

I` p b T is bounded as a map from ` p bE to ` p b F ; in this case, }T }mb “ }I` p b T }.

Let tE0, E1u and tF0, F1u be two compatible couples of complex Banach spaces,

and suppose that T : E0 ` E1 Ñ F0 ` F1 is a linear map such that T pEjq Ă Fj and

T | Ej : Ej Ñ Fj is bounded for j “ 0, 1. Take θ P p0, 1q, and set

E “ pE0, E1qθ and F “ pF0, F1qθ .

Then, as in Theorem 1.46, T pEq Ă F and T | E P BpE,F q. Now take n P N. Then

T pnq is a linear map from pE0 ` E1q
n to pF0 ` F1q

n such that T pnqpEnj q Ă Fnj and

T pnq | Enj P BpEnj , Fnj q for j “ 0, 1. Take p with 1 ď p ă 8, and suppose that there are

p–multi-norms based on all of the spaces E0, E1, F0, and F1. By Theorem 2.15, the two

interpolation spaces E and F are such that both the interpolation power-norms based

on these two spaces are also p–multi-norms. As in Theorem 2.15, pEn0 , E
n
1 qθ “ En and

pFn0 , F
n
1 qθ “ Fn for each n P N.

We use the above notation in the following theorem.

Theorem 3.15. Let tE0, E1u and tF0, F1u be two compatible couples of complex Banach

spaces, and take p with 1 ď p ă 8 and θ P p0, 1q. Suppose that there is a p–multi-norm

based on each of these spaces and that T : E0 ` E1 Ñ F0 ` F1 is a linear map such that

T | Ej PMppEj , Fjq for j “ 0 and j “ 1. Then T pEq Ă F and T | E PMppE,F q.

Proof. The p–multi-norms based on each space are all denoted by p} ¨ }nq.

There exist constants M0 and M1 such that
›

›

›
T pnq : pEnj , } ¨ }nq Ñ pFnj , } ¨ }nq

›

›

›
ďMj pn P Nq

for j “ 0 and j “ 1. By Theorem 1.46, T pnqpEnq Ă Fn and
›

›

›
T pnq : En Ñ Fn

›

›

›
ďM1´θ

0 Mθ
1 pn P Nq ,

and so T pEq Ă F and T | E PMppE,F q, giving the result.

3.2. Multi-norms on spaces of multi-bounded operators. We consider how to

recognize the space MpE,F q as a power-normed space.

Let pEn, } ¨ }nq and pFn, } ¨ }nq be power-normed spaces. Then we saw in Proposition

1.11(i) that the map

pT1, . . . , Tmq ÞÑ ∆pT1,...,Tmq , BpE,F qm Ñ BpE,Fmq ,

is a linear isomorphism for each m P N.
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Now suppose that m P N and that T1, . . . , Tm PMpE,F q; set T “ ∆pT1,...,Tmq. Then

T pnqpx1, . . . , xnq “ pTixj : i P Nm, j P Nnq px1, . . . , xn P Eq ,

and so
›

›

›
T pnqpx1, . . . , xnq

›

›

›

mn
ď

m
ÿ

i“1

›

›

›
T
pnq
i px1, . . . , xnq

›

›

›

n
px1, . . . , xn P Eq .

This shows that T PMpE,Fmq with }T }mb ď
řm
i“1 }Ti}mb, and so we have a linear map

Ψm : pT1, . . . , Tmq ÞÑ ∆pT1,...,Tmq , MpE,F qm ÑMpE,Fmq

for each m P N. Now take T P MpE,Fmq, and set Ti “ πi ˝ T P BpE,F q for i P Nm,

as in Proposition 1.11(i). Then
›

›

›
T
pkq
i

›

›

›
ď

›

›T pkq
›

› pk P Nq, and so Ti PMpE,F q pi P Nmq.
Thus Ψm is a surjection, and hence a linear bijection.

We denote by } ¨ }
:

m the norm on MpE,F qm induced by this identification, so that

}pT1, . . . , Tmq}
:

m “
›

›∆pT1,...,Tmq

›

›

mb
pT1, . . . , Tm PMpE,F q, m P Nq .

Thus

}pT1, . . . , Tmq}
:

m “

sup
 

}pTixj : i P Nm, j P Nnq}mn : }px1, . . . , xnq}n ď 1, n P N
(

(3.2.1)

for T1, . . . , Tm PMpE,F q, essentially as in [20, Proposition 6.19]. We see easily that

pMpE,F qm, } ¨ }
:

mq

is a power-normed space.

Clause (i) of the following result was given in [52, Proposition 4.4.7].

Theorem 3.16. Let pEn, } ¨ }nq and pFn, } ¨ }nq be power-normed spaces, take p such that

1 ď p ď 8, and set M “ pMpE,F qm, } ¨ }
:

mq.

(i) Suppose that pFn, } ¨ }nq is a p–multi-normed space. Then M is a p–multi-normed

space.

(ii) Suppose that pFn, } ¨ }nq is a strong p–multi-normed space. Then M is a strong

p–multi-normed space.

(iii) Suppose that pFn, } ¨ }nq is a p–convex power-normed space. Then M is a p–

convex power-normed space.

Proof. (i) Take m,n P N, S P Mm,n, and T1, . . . , Tn P MpE,F q; set T “ pT1, . . . , Tnq.

We have

pΨmpSpT qqq
pkqpxq “ Spkq

´

pΨnpT qq
pkqpxq

¯

px P Ek, k P Nq ,

and so
›

›

›
pΨmpSpT qqq

pkq
›

›

›
ď }S : ` pn Ñ ` pm}

›

›

›
pΨnpT qq

pkq
›

›

›
pk P Nq

because, by Proposition 2.5(ii), ppF kj , } ¨ }kjq : j P Nq is a p–multi-normed space. It

follows that

}SpT q}
:

m “ }pΨmpSpT qqq}mb ď }S : ` pn Ñ ` pm} }ΨnpT q}mb “ }S : ` pn Ñ ` pm} }T }
:

n ,

and this shows that pMpE,F qm, } ¨ }
:

mq is a p–multi-normed space.
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(ii) Take m,n P N, pS1, . . . , Smq P MpE,F qm, and pT1, . . . , Tnq P MpE,F qn such

that

pT1, . . . , Tnq ďp pS1, . . . , Smq .

For each x P E and λ P F 1, the map T ÞÑ xTx, λy, MpE,F q Ñ F, is a continuous linear

functional, and so
˜

n
ÿ

j“1

|xTjx, λy|
p

¸1{p

ď

˜

m
ÿ

i“1

|xSix, λy|
p

¸1{p

.

Now take k P N and x1, . . . , xk P E. Then
˜

n
ÿ

j“1

k
ÿ

r“1

|xTjxr, λy|
p

¸1{p

ď

˜

m
ÿ

i“1

k
ÿ

r“1

|xSixr, λy|
p

¸1{p

pλ P F 1q .

Since the power-norm based on F is a strong p–multi-norm, it follows that

}pTjxr : j P Nn, r P Nkq}nk ď }pSixr : i P Nm, r P Nkq}mk .

By equation (3.2.1),

}pT1, . . . , Tnq}
:

n ď }pS1, . . . , Smq}
:

m .

This shows that p} ¨ }
:

mq is a strong p–multi-norm based on M.

(iii) Take m,n P N, S1, . . . , Sm P MpE,F q, and T1, . . . , Tn P MpE,F q, and set

S “ pS1, . . . , Smq and T “ pT1, . . . , Tnq. For each k P N and x “ px1, . . . , xkq P E
k, we

have

}ppSixr : i P Nm, r P Nkq, pTjxr : j P Nn, r P Nkqq}pm`nqk

ď
`

}pSixr : i P Nm, r P Nkq}pmk ` }pTjxr : j P Nn, r P Nkq}pnk
˘1{p

because the power-norm based on F is p–convex, and so, by (3.2.1),

}pS,T q}
:

m`n ď

´´

}S}
:

m

¯p

`

´

}T }
:

n

¯p¯1{p

.

This shows that pMpE,F qm, } ¨ }
:

mq is p–convex.

We remark that one can also identify MpE,F qm with MpEm, F q, following Prop-

osition 1.11(ii), so obtaining another power-norm, say p} ¨ }
ˆ

n q, based on MpE,F q when

pEn, } ¨ }nq and pFn, } ¨ }nq are power-normed spaces. In the case where 1 ď p ď 8 and

pEn, } ¨ }nq is a p–multi-normed space, pMpE,F qm, } ¨ }
ˆ

n q is a q–multi-normed space,

where q “ p1. Similar results to those in Theorem 3.16 hold; see [52].
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4. Banach lattices

4.1. Background on Banach lattices. We now consider how the theory of p–multi-

norms described above applies in the special case where they are based on a Banach

lattice. In particular we shall introduce the canonical lattice p–multi-norm associated

with a Banach lattice.

Background on Banach lattice theory which is relevant to the theory of multi-norms

is given in [20, §1.3]. For example, the spaces CpKq, ` r and LrpΩq (for each r with

1 ď r ď 8) are Banach lattices in the usual way.

In most texts (for example, see [43]), a ‘Banach lattice’ is based on a real Banach

space; we shall call this a real Banach lattice, and the complexification of a real Banach

lattice is what we shall term a complex Banach lattice, as in [20]. We shall use the term

Banach lattice for a real or complex Banach lattice.

The lattice operations in a real Banach lattice E are denoted by _ and ^, and we

shall use standard notation; for example,

x` “ x_ 0 , x´ “ p´xq _ 0 , |x| “ x_ p´xq “ x` ` x´ ,

for x P E.

We recall the standard construction of the complexification of a real Banach lattice.

Indeed, suppose that E is a (complex) linear space such that E “ ER ‘ iER for a real

Banach lattice pER, } ¨ }q. The positive cone of ER is denoted by E`; it is the positive

cone of E. Take z P E, say z “ x` iy, where x, y P ER, so that x “ <z and y “ =z, and

first define the modulus |z| P E` of z by

|z| “
´

|x|
2
` |y|

2
¯1{2

(the right-hand side is well-defined in E` by the ‘Youdine–Krivine functional calculus’,

given below), and then define

}z} “ } |z| } pz P Eq .

Alternatively, we can set

|z| “ |x` iy| “ suptx cos θ ` y sin θ : 0 ď θ ď 2πu ; (4.1.1)

the supremum always exists in E` and the two definitions of |z| are consistent. Then

pE, } ¨ }q is a complex Banach lattice; the space ER is the underlying real lattice. For

details of these remarks, see [1, §3.2], [3], [20], [43, §1.d], [46, §2.2], and [56, Chapter II,

§11].
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Let E be a Banach lattice. For x P E`, we set

∆x “ tz P E : |z| ď xu .

A functional λ P E1 is positive if

xx, λy ě 0 px P E`q ,

and these positive linear functionals form the positive cone pE1q` in E1, so that E1 is the

dual Banach lattice. In fact, take λ, µ P E1R. Then xx, λ_ µy and xx, λ^ µy are defined

for x P E` by the following Riesz–Kantorovich formulae:
"

xx, λ_ µy “ suptxy, λy ` xz, µy : y, z P E`, y ` z “ xu ,

xx, λ^ µy “ inftxy, λy ` xz, µy : y, z P E`, y ` z “ xu ,
(4.1.2)

and then λ_ µ and λ^ µ are extended in the obvious way to be defined on ER.

Now take F “ E ‘ iE to be the complexification of a real Banach lattice E. Let λ

be a continuous, real-linear functional on E. Then λ extends uniquely to a continuous,

complex-linear functional on F : indeed, we define

λpx` iyq “ λpxq ` iλpyq px, y P Eq ,

and so we may regard E1 as a real-linear subspace of F 1. For each λ in F 1, there exist

λ1 and λ2 in E1 such that λpxq “ λ1pxq ` iλ2pxq px P Eq, and so F 1 is isomorphic as

a complex Banach space to the complexification E1 ‘ iE1. In fact, this identification is

isometric; the details of this are given in [1, Corollary 3.26] and [45, Proposition 2.2.6],

for example. Thus we obtain the dual Banach lattice of a (complex) Banach lattice.

Similarly, given a bounded operator T : E Ñ F between two real Banach lattices,

one can define the complexification TC of T by

TC : x` iy ÞÑ Tx` iTy , E ‘ iE Ñ F ‘ iF .

It is easy to see that TC is again a bounded operator with }T } ď }TC} ď 2 }T }; see [1, p.

106], for example.

A linear subspace F of a real Banach lattice E is a sublattice if x _ y, x ^ y P F

whenever x, y P F ; a linear subspace F of a complex Banach lattice E is a sublattice if

F is the complexification of a sublattice of ER. The lattice operations in a real Banach

lattice are continuous, and so, for example, the closure of a sublattice in a Banach lattice

is a sublattice. A linear subspace F of a Banach lattice E is an order-ideal in E if x P F

whenever x P E and |x| ď |y| for some y P F ; clearly each order-ideal in E is a sublattice

of E.

Let F be a norm-closed order-ideal in a Banach lattice E, and let QF : E Ñ E{F be

the quotient map. Then the quotient space E{F , taken with the positive cone QF pE
`q,

is a Banach lattice.

Let E be a Banach lattice. We set

B`E “ BE X E
` .

We shall use the following easy fact. Suppose that x, y P E` and xy, λy ď xx, λy for each

positive linear functional λ on E. Then y ď x in E`. Also, for each λ P pE1q`, we have

}λ} “ suptxx, λy : x P B`Eu . (4.1.3)



Multi-normed spaces 77

We shall often use the following Riesz decomposition property of Banach lattices; see

[43, p. 2] or [46, Theorem 1.1.1], for example.

Proposition 4.1. Let E be a Banach lattice. Suppose that x1, x2, y P E
` are such that

y ď x1`x2. Then there are y1, y2 P E
` with y1 ď x1, with y2 ď x2, and with y “ y1`y2.

Definition 4.2. A Banach lattice pE, } ¨ }q is monotonically bounded if every increasing

net in B`E is bounded above; it is Dedekind complete if every non-empty subset of E`

which is bounded above has a supremum; it has the Fatou property if, for every increasing

net pxα : α P Aq in E` that has a supremum x P E`, necessarily

}x} “ supt}xα} : α P Au . (4.1.4)

For example, suppose that K is a compact space. Then the Banach lattice CpKq is

Dedekind complete if and only if K is extremely disconnected [17, Theorem 2.3.3].

A Dedekind complete Banach lattice has the Fatou property if and only if it has the

Nakano property, in the sense of [20, Definition 1.22(v)]. A dual Banach lattice is always

Dedekind complete and has the Fatou property [46, Proposition 2.4.19].

Definition 4.3. A Banach lattice pE, } ¨ }q is an AL-space if

}x` y} “ }x} ` }y} whenever x, y P E` with x^ y “ 0 ,

and an AM -space if

}x_ y} “ maxt}x} , }y}u whenever x, y P E` with x^ y “ 0 .

We shall use the following terminology.

Let E and F be real Banach lattices. A linear map T : E Ñ F is a lattice homomor-

phism if

T px_ yq “ Tx_ Ty px, y P Eq .

Let E and F be complex Banach lattices that are the complexifications of the real Banach

lattices ER and FR, respectively. A linear map T : E Ñ F is a lattice homomorphism if

T px` iyq “ Sx` iSy px, y P ERq, where S is a lattice homomorphism from ER to FR.

Now suppose that E and F are Banach lattices and that T P BpE,F q. Then T is a

lattice isomorphism if it is a bijective lattice homomorphism; one can easily see that, in

this case, the inverse map T´1 is also a lattice homomorphism. The map T is a lattice

isometry if T is a lattice homomorphism that is an isometry; the two lattices E and F

are lattice isomorphic, respectively, lattice isometric, if there is a lattice isomorphism,

respectively, a lattice isometry, from E onto F . A lattice embedding from E to F is

an embedding that is a lattice isomorphism onto its range. For example, the canonical

embedding κE : E Ñ E2 is a lattice isometry [3, Theorem I.5.4].

Let E and F be complex Banach lattices, and suppose that T P BpE,F q is a lattice

isomorphism such that }Tx} “ }x} px P E`q. One can easily check (using equation

(4.1.1)) that T : E Ñ F is an isometry.

The following central representation theorem is proved in [1, Theorems 3.5 and 3.6],

[3, Theorems 4.27 and 4.29], [43, §1.b], and [46, Theorems 2.1.3 and 2.7.1], for example;

we shall call it ‘Kakutani’s theorem’; detailed attributions for the various statements are
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given in [1]. The proofs in the above sources are for real Banach lattices; the complex

version is given in [1, Theorem 3.20].

Definition 4.4. Let E be a Banach lattice. Then e P E` is an AM -unit for E if, for

each x P E, we have }x} ď 1 if and only if |x| ď e.

Theorem 4.5. (i) A Banach lattice is an AL-space if and only if it is lattice isometric

to a Banach lattice of the form L1pΩq for some measure space Ω.

(ii) A Banach lattice is an AM -space if and only if it is lattice isometric to a closed

sublattice of a space CpKq for some compact space K.

(iii) A Banach lattice with an AM -unit is lattice isometric to a space CpKq for some

compact space K.

We recall one standard construction concerning Banach lattices; see [43, §1.d] for

details.

Let E be a Banach lattice, and take e ą 0 in E. We denote by Ie the principal

order-ideal in E generated by e, so that

Ie “ tx P E : |x| ď ζe for some ζ ě 0u .

For x P Ie, set

}x}e “ inftζ ě 0 : |x| ď ζeu .

Then pIe, } ¨ }eq is a Banach lattice that is an AM -space, and e is an AM -unit for Ie, and

so, by Theorem 4.5(iii), Ie is lattice isometric to CpKq for some compact space K.

Definition 4.6. Let E be a Banach lattice. An element e with e ą 0 is a strong unit if

Ie “ E.

Thus } ¨ } and } ¨ }e are equivalent norms on E when e is a strong unit, and we have

the following result.

Proposition 4.7. Let pE, } ¨ }q be a Banach lattice with a strong unit, e. Then } ¨ }e is

equivalent to the given norm } ¨ }, and pE, } ¨ }eq is lattice isometric to CpKq for a certain

compact space K.

Let n P N. A function F : Rn Ñ R is positively homogeneous if

F pαt1, . . . , αtnq “ αF pt1, . . . , tnq pα P R`, t1, . . . , tn P Rq .

Now let E be a real Banach lattice, take x1, . . . , xn P E, and choose an element

e P E` such that |xi| ď e pi P Nnq; for example, take e “ |x1| _ ¨ ¨ ¨ _ |xn| in E. Let

F : Rn Ñ R be a continuous, positively homogeneous function. Then, identifying Ie with

CpK,Rq for some compact space K, we can set

F px1, . . . , xnqptq “ F px1ptq, . . . , xnptqq pt P Kq ,

and so

F px1, . . . , xnq P Ie Ă E ;

in fact, the element F px1, . . . , xnq is independent of the choice of e. The map that takes F

to F px1, . . . , xnq is the Youdine–Krivine calculus [63, 35]; for details of this construction,
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see [43, §1.d], for example. In particular, for each p with 1 ď p ď 8 and each Banach

lattice E, we can define the element

˜

n
ÿ

i“1

|xi|
p

¸1{p

P E`

for x1, . . . , xn P E, where we interpret this element as |x1| _ ¨ ¨ ¨ _ |xn| in the case where

p “ 8. Similarly, for each θ P p0, 1q, we can define the element |x|
1´θ

|y|
θ

for x, y P E.

The Youdine–Krivine functional calculus as above is indeed usually given for real

Banach lattices. There is an extension to the complex setting; this is given in [34, Section

3], for example.

Let E and G be real Banach lattices, and suppose that T P BpE,Gq is a lattice

homomorphism. Take n P N, x1, . . . , xn P E, and a continuous, positively homogeneous

function F : Rn Ñ R. Then

T pF px1, . . . , xnqq “ F pTx1, . . . , Txnq . (4.1.5)

Let E be a real Banach lattice, let F : Rn Ñ R be a continuous, positively homo-

geneous function, and suppose that F pt1, . . . , tnq ě 0 pt1, . . . , tn P Rq. Then we see that

F px1, . . . , xnq ě 0 for each x1, . . . , xn P E. Thus, in order to verify an inequality (or

an equality) that involves only continuous, positively homogeneous functions of finitely-

many variables (and, in particular, any lattice operations) in an arbitrary real Banach

lattice, it suffices to verify the inequality for real numbers.

Take p with 1 ď p ď 8. We recall from [43, p. 42] that, for a real Banach lattice E,

n P N, and x1, . . . , xn P E, we have

˜

n
ÿ

i“1

|xi|
p

¸1{p

“ sup

#

n
ÿ

i“1

αixi : pα1, . . . , αnq P B` q
npRq

+

, (4.1.6)

where q “ p1. The same proof as that in [43] shows that, for a complex Banach lattice

E, n P N, and x1, . . . , xn P E, we have

˜

n
ÿ

i“1

|xi|
p

¸1{p

“ sup

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

αixi

ˇ

ˇ

ˇ

ˇ

ˇ

: pα1, . . . , αnq P B` q
npCq

+

, (4.1.7)

where again q “ p1. It follows that

˜

n
ÿ

i“1

|xi|
p

¸1{p

“ sup

#

<

˜

n
ÿ

i“1

αixi

¸

: pα1, . . . , αnq P B` q
npCq

+

. (4.1.8)

Indeed, these equalities hold in CpK,Cq for each compact space K, and hence in an

arbitrary Banach lattice.

We have the following generalized versions of Hölder’s inequality.

Proposition 4.8. Let E be a Banach lattice.

(i) Take p0, p1 with 1 ď p0 ď p1 ă 8 and take θ with 0 ă θ ă 1, and define p by
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1{p “ p1´ θq{p0 ` θ{p1. Then
˜

n
ÿ

i“1

αi |xi|
p

¸1{p

ď

˜

n
ÿ

i“1

αi |xi|
p0

¸p1´θq{p0 ˜

n
ÿ

i“1

αi |xi|
p1

¸θ{p1

for each n P N, x1, . . . , xn P E, and α1, . . . , αn P R`, and
˜

n
ÿ

i“1

p|xi|
1´θ

|yi|
θ
qp

¸1{p

ď

˜

n
ÿ

i“1

|xi|
p0

¸p1´θq{p0 ˜

n
ÿ

i“1

|yi|
p1

¸θ{p1

(4.1.9)

for each n P N and x1, . . . , xn, y1, . . . , yn P E.

(ii) Take p with 1 ď p ď 8. Then

n
ÿ

i“1

|xxi, λiy| ď

C˜

n
ÿ

i“1

|xi|
p

¸1{p

,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

for each n P N, x1, . . . , xn P E, and λ1, . . . , λn P E
1, where q “ p1.

Proof. The first part of clause (i) and clause (ii) are given in [43, Proposition 1.d.2, (ii)

and (iii)], for example.

For the second part of clause (i), recall that the following generalization of Hölder’s

inequality holds for each n P N, each q0, q1 P p1,8q, and each s1, . . . , sn, t1, . . . , tn P R`,

where 1{p “ 1{q0 ` 1{q1:
˜

n
ÿ

i“1

spi t
p
i

¸1{p

ď

˜

n
ÿ

i“1

sq0i

¸1{q0 ˜

n
ÿ

i“1

tq1i

¸1{q1

. (4.1.10)

Now take x1, . . . , xn, y1, . . . , yn P F, and set si “ |xi|
1´θ

and ti “ |yi|
θ

for i P Nn, and

set q0 “ p0{p1´ θq and q1 “ p1{θ. Then we see that our two definitions of p coincide and

that inequality (4.1.9) holds with this interpretation of the symbols.

Define

F : px1, . . . , xn, y1, . . . , ynq ÞÑ

˜

n
ÿ

i“1

p|xi|
1´θ

|yi|
θ
qp

¸1{p

, R2n Ñ R ,

and

G : px1, . . . , xn, y1, . . . , ynq ÞÑ

˜

n
ÿ

i“1

|xi|
p0

¸p1´θq{p0 ˜

n
ÿ

i“1

|yi|
p1

¸θ{p1

, R2n Ñ R .

Then F and G are continuous and positively homogeneous functions on R2n such that

F px1, . . . , xn, y1, . . . , ynq ď Gpx1, . . . , xn, y1, . . . , ynq px1, . . . , xn, y1, . . . , yn P Rq .

By the Youdine–Krivine calculus described above, the same inequality holds whenever

x1, . . . , xn, y1, . . . , yn P E, where we note that all terms are in E`, and so inequality

(4.1.9) holds in this case.

In the next result, we shall use the following form of the Riesz–Kantorovich formula

for complex Banach lattices specifically given in [1, Corollary 3.26].
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Let E be a complex Banach lattice, and take λ P E1. Then

xx, |λ|y “ supt| xz, λy | : z P ∆xu px P E`q . (4.1.11)

It follows that, for each λ P pE1q`, we have

x|x| , λy “ supt| xx, µy | : µ P ∆λu px P Eq . (4.1.12)

Proposition 4.9. Let E be a Banach lattice, and take p with 1 ď p ă 8. Then
C

x,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

“ sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

xxi, λiy

ˇ

ˇ

ˇ

ˇ

ˇ

: x1, . . . , xn P E,

˜

n
ÿ

i“1

|xi|
p

¸1{p

ď x

,

.

-

for each x P E`, n P N, and λ1, . . . , λn P E
1, where q “ p1.

Proof. This result in the case where E is a real Banach lattice is given in [43, p. 48].

Now suppose that E is a complex Banach lattice with underlying real Banach lattice

ER, and take x P E`, n P N, and λ1, . . . , λn P E
1. By the real case, we have

C

x,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

“ sup

$

&

%

n
ÿ

i“1

xxi, |λi| y : x1, . . . , xn P ER,

˜

n
ÿ

i“1

|xi|
p

¸1{p

ď x

,

.

-

.

Fix ε ą 0, and take x1, . . . , xn P E
` with

˜

n
ÿ

i“1

xpi

¸1{p

ď x and

C

x,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

ď

n
ÿ

i“1

xxi, |λi|y ` ε .

By (4.1.11), there exist z1, . . . , zn P E such that

|zi| ď xi and xxi, |λi|y ď | xzi, λiy | ` ε

for each i P Nn. By multiplying each zi by a complex number of modulus 1, we may

suppose that xzi, λiy P R`. It follows that
˜

n
ÿ

i“1

|zi|
p

¸1{p

ď x and

C

x,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

ď

n
ÿ

i“1

xzi, λiy ` εpn` 1q .

This holds true for each ε ą 0, and so
C

x,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

ď sup

$

&

%

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

xzi, λiy

ˇ

ˇ

ˇ

ˇ

ˇ

: z1, . . . , zn P E,

˜

n
ÿ

i“1

|zi|
p

¸1{p

ď x

,

.

-

.

The opposite inequality follows immediately from Proposition 4.8(ii), and so the result

is proved.

The following is Khintchine’s inequality for Banach lattices; it follows easily from the

same inequality for scalars and the Youdine–Krivine calculus.

Proposition 4.10. Let E be a real Banach lattice. Then

1
?

2

˜

n
ÿ

i“1

|xi|
2

¸1{2

ď
1

2n

ÿ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

εixi

ˇ

ˇ

ˇ

ˇ

ˇ
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for each n P N and x1, . . . , xn P E, where the outer sum on the right-hand side is taken

over all choices of εi “ ˘1 for i P Nn.

The following deep theorem of Krivine is taken from [43, Proposition 1.f.14]; here KG

denotes Grothendieck’s constant.

Theorem 4.11. Let E and F be Banach lattices, and take T P BpE,F q. Then
›

›

›

›

›

›

˜

n
ÿ

i“1

|Txi|
2

¸1{2
›

›

›

›

›

›

ď KG }T }

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
2

¸1{2
›

›

›

›

›

›

for each n P N and x1, . . . , xn P E.

The following definition is taken from [43, Definition 1.d.3].

Definition 4.12. Let E be a Banach lattice, and take p with 1 ď p ď 8. Then E is

p–convex (with constant 1) if
›

›

›
p|x|

p
` |y|

p
q
1{p

›

›

›
ď p}x}

p
` }y}

p
q1{p px, y P Eq

and p–concave (with constant 1) if
›

›

›
p|x|

p
` |y|

p
q
1{p

›

›

›
ě p}x}

p
` }y}

p
q1{p px, y P Eq .

For example, for a space E “ LppΩq, where 1 ď p ď 8 and Ω is a measure space, we

have
›

›

›

›

›

›

˜

n
ÿ

i“1

|fi|
p

¸1{p
›

›

›

›

›

›

E

“

˜

n
ÿ

i“1

}fi}
p
E

¸1{p

pf1, . . . , fn P E, n P Nq , (4.1.13)

and so LppΩq is both p–convex and p–concave. Conversely, it is shown in [43, p. 59] that

each Banach lattice that is both p–convex and p–concave is lattice isometric to a Banach

lattice of the form LppΩq. More generally, a calculation shows that, for r with 1 ď r ď 8,

the Banach lattice LrpΩq is p–convex if and only if r P rp,8s and is p–concave if and

only if r P r1, ps.

Take p with 1 ď p ď 8. It is noted in [43, Proposition 1.d.4] that a Banach lattice

is p–convex, respectively, p–concave, if and only if the dual Banach lattice is p1–concave,

respectively, p1–convex.

4.2. Regular and order-bounded operators. We first recall the definitions of two

Banach spaces BrpE,F q and BbpE,F q.
Let E be a Banach lattice. A subset B of E is order-bounded if there exists x P E`

such that B Ă ∆x. Let E and F be real Banach lattices, and let S and T be linear

operators from E to F . Then

S ď T if Sx ď Tx px P E`q .

Clearly pLpE,F q,ďq is an ordered linear space.
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Definition 4.13. Let E and F be real Banach lattices, and consider a linear operator

T from E to F . Then:

(i) T is positive if T ě 0 ;

(ii) T is regular if T “ T1 ´ T2, where T1 and T2 are positive operators;

(iii) T is order-bounded if T pBq is an order-bounded subset of F for each order-

bounded subset B of E.

The set of positive operators from E to F is closed under addition and multiplication

by α P R`, and so it is a cone. Each regular operator is order-bounded. The book [3] is

devoted to positive operators on real Banach lattices (and more general spaces).

Now suppose that E and F are complex Banach lattices, with underlying real Banach

lattices ER and FR, respectively. Then T P LpE,F q is positive if T pERq Ă FR and the map

T | ER : ER Ñ FR is positive. For a positive operator, we have |Tx| ď T p|x|q px P Eq.

Each operator in LpE,F q has a unique expression in the form S ` iT , where S and T

belong to LpER, FRq and

pS ` iT qpx` iyq “ Sx´ Ty ` ipSy ` Txq px, y P ERq ;

such an operator is regular or order-bounded if both S and T are regular or order-bounded,

respectively.

Let E and F be Banach lattices. Each order-bounded operator is continuous, and so

we denote the spaces of all positive, all regular, and all order-bounded operators from E

to F by BpE,F q`, BrpE,F q, and BbpE,F q, respectively. Thus we have

BpE,F q` Ă BrpE,F q Ă BbpE,F q Ă BpE,F q .

We write BrpEq and BbpEq for BrpE,Eq and BbpE,Eq, respectively. Take T P BpE,F q`.

Then

}T } “ supt}Tx} : x P B`Eu . (4.2.1)

Proposition 4.14. Let E and F be Banach lattices, and take p with 1 ď p ď 8. For

each T P BpE,F q`, we have
˜

n
ÿ

i“1

|Txi|
p

¸1{p

ď T

˜

n
ÿ

i“1

|xi|
p

¸1{p

px1, . . . , xn P E, n P Nq .

Proof. We may suppose that x1, . . . , xn P E
` and that we are working in ER and FR.

Set q “ p1.

By equation (4.1.6), we have p
řn
i“1 |xi|

p
q
1{p
“ supA, where

A “

#

n
ÿ

i“1

αixi : pα1, . . . , αnq P B` q
npRq

+

.

Further,
˜

n
ÿ

i“1

|Txi|
p

¸1{p

“ supT pAq .

Since supT pAq ď T psupAq, the result follows.
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It follows that
›

›

›

›

›

›

˜

n
ÿ

i“1

|Txi|
p

¸1{p
›

›

›

›

›

›

ď }T }

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

px1, . . . , xn P E, n P Nq (4.2.2)

for each T P BpE,F q`, a result of Krivine [43, Proposition 1.d.9].

In particular, Proposition 4.14 implies that
˜

n
ÿ

i“1

|xxi, λy|
p

¸1{p

ď

C˜

n
ÿ

i“1

|xi|
p

¸1{p

, λ

G

px1, . . . , xn P E, n P Nq (4.2.3)

for each λ P pE1q`.

Let E and F be Banach lattices. We now describe the norms on BrpE,F q and

BbpE,F q. For each T P BbpE,F q, there exists c ą 0 such that, for each x P E`, there

exists y P F` with T p∆xq Ă ∆y and }y} ď c }x}. The infimum of these constants c is

denoted by }T }b. Details of this result are given in [20, Proposition 1.26], which is based

on [60].

For T P BrpE,F q, set

}T }r “ inft}S} : S P BpE,F q`, |Tz| ď Sp|z|q pz P Equ .

Proposition 4.15. Let E and F be Banach lattices. Then:

(i) } ¨ }b is a norm on the space BbpE,F q such that

}T }b ě }T } pT P BbpE,F qq ,

and pBbpE,F q, } ¨ }bq is a Banach space;

(ii) } ¨ }r is a norm on BrpE,F q such that

}T }r ě }T }b ě }T } pT P BrpE,F qq ,

and pBrpE,F q, } ¨ }rq is a Banach space.

In the case where F “ E, the spaces pBrpEq, } ¨ }rq and pBbpEq, } ¨ }bq are unital

Banach subalgebras of BpEq.
The following result is proved in [3, pp. 12–13], for example; formula (4.2.4), below,

is a Riesz–Kantorovich formula.

Proposition 4.16. Let E and F be Banach lattices, with F Dedekind complete. Then

BrpE,F q “ BbpE,F q is a Dedekind complete Banach lattice. Suppose that T P BrpE,F q.
Then

|T | pxq “ supt|Tz| : |z| ď xu px P E`q (4.2.4)

and, further, }T }r “ } |T | } and |Tz| ď |T | p|z|q pz P Eq.

Let E and F be Banach lattices. Often, but not always, the two spaces BrpE,F q and

BbpE,F q are the same; by the above result, this holds when F is Dedekind complete, and,

in particular, when F is a dual Banach lattice. In the case where E and F are AL-spaces,

it follows from [1, Theorem 3.9 and Corollary 3.10] and [3, Theorem 15.3] (where we note

that each AL-space is a ‘KB-space’) that BrpE,F q “ BbpE,F q “ BpE,F q and that
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}T }r “ }T } pT P BpE,F qq. On the other hand, suppose that p ą 1, that E “ LppΩq for

a measure space Ω, and that E is an infinite-dimensional space. Then, by [4], BrpEq is

not even dense in pBpEq, } ¨ }q and } ¨ }r and } ¨ } are not equivalent on BrpEq. Examples

with BrpE,F q Ĺ BbpE,F q and with BbpE,F q Ĺ BpE,F q are given in [3, Examples 1.11

and 15.1]. An example given in [60, §2] shows that there may be operators in BbpE,F q
that are not even in the } ¨ }-closure of BrpE,F q, and Example 4.1 of [60] exhibits Banach

lattices E and F and a compact, order-bounded operator V : E Ñ F which is not in

the } ¨ }b-closure of BrpE,F q. Suppose that BrpE,F q “ BbpE,F q. Then the norms } ¨ }r
and } ¨ }b are equivalent on BrpE,F q, but examples in [60] show that the norms are not

necessarily equal in this case. For general Banach lattices E and F , the two norms } ¨ }r
and } ¨ }b are not necessarily equivalent on BrpE,F q.

More information on regular and order-bounded operators can be found in the fine

survey article [61]. In this article, Theorems 2.1 and 2.4, respectively, characterize the

lattices F such that BrpE,F q “ BpE,F q for every Banach lattice E and lattices E such

that BrpE,F q “ BpE,F q for every Banach lattice F ; some extra cases are provided

by Example 2.7 and Theorems 2.8 and 2.9 of [61]. Further, conditions for the equality

BbpE,F q “ BrpE,F q are given in [61, Section 4].

Let E and F be Banach lattices, and take T P BrpE,F q. Then T | G P BrpG,F q for

each closed sublattice G of E.

Definition 4.17. Let E and F be Banach lattices, and take T P BpE,F q. Then T is

pre-regular if T 1 P BpF 1, E1q is regular, and then

}T }pr “
›

›T 1
›

›

r

for each such operator T . The space of pre-regular operators from E to F is denoted by

BprpE,F q.

Thus BprpE,F q is a linear subspace of BpE,F q,

}T }pr ě }T } pT P BprpE,F qq ,

and pBprpE,F q, } ¨ }prq is a Banach space.

It is clear that T 1 is regular and that }T 1}r ď }T }r for each T P BrpE,F q, and

so a regular operator is pre-regular. Further, the dual of an order-bounded operator is

order-bounded [3, Theorem 5.8], and so an order-bounded operator is pre-regular by

Proposition 4.16. Thus we have

BpE,F q` Ă BrpE,F q Ă BbpE,F q Ă BprpE,F q Ă BpE,F q .

The following example shows that BbpE,F q can be a proper subset of BprpE,F q.

Example 4.18. In [3, Example 15.1], it is shown that the map

T : f ÞÑ pfp1{nq ´ fp0q : n P Nq , CpIq Ñ c 0 ,

is a bounded linear operator that is not order-bounded, and hence not regular. However

the dual T 1 of T is an operator T 1 : ` 1 Ñ CpIq1 between two AL-spaces, and so T 1 is

regular, and hence T is pre-regular.
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Proposition 4.19. Let E and F be Banach lattices, and suppose that F is Dedekind

complete and has the Fatou property. Take T P BrpE,F q. Then T 1 P BrpF 1, E1q and

}T 1}r “ }T }r.

Proof. We shall show that }T }r ď }T
2}r. Since }T 2}r ď }T

1}r ď }T }r, this implies the

result.

Fix ε ą 0. By (4.2.1), there exists x P E` with }x} “ 1 and

} |T | } ď } |T | pxq} ` ε .

Set S “ t|Tz| : |z| ď xu, a subset of F`, so that, by equation (4.2.4), supS “ |T | pxq.

The family F of finite subsets of S, when ordered by inclusion, is a directed set. For

each α P F , set yα “ supα, so that pyα : α P Fq is an increasing net in F` such that

suptyα : α P Fu “ |T | pxq. Since F has the Fatou property,

} |T | pxq } “ supt}yα} : α P Fu .

Note that px “ κEpxq belongs to pE2q`. Now set rS “ t|T 2ζ| : |ζ| ď pxu, a subset of

pF 2q`, and let rF be the family of finite subsets of rS; suppose that the elements Ăyβ are

defined in an analogous way to the elements yα, now with respect to rF . Since F 2 has

the Fatou property,
›

›

ˇ

ˇT 2
ˇ

ˇ ppxq
›

› “ supt}Ăyβ} : β P rFu .

Since t|T 2ζ| : |ζ| ď pxu Ą t|T 2pz| : |z| ď xu and the embedding of F into F 2 is a

lattice homomorphism, so that txyα : α P Fu is a subset of tĂyβ : β P rFu, it follows that

} |T 2| ppxq } ě } |T | pxq }. Thus
›

›

ˇ

ˇT 2
ˇ

ˇ

›

› ě
›

›

ˇ

ˇT 2
ˇ

ˇ ppxq
›

› ě } |T | } ´ ε .

This holds true for each ε ą 0, and so }T }r ď }T
2}r, as required.

Corollary 4.20. Let E and F be Banach lattices, and suppose that F is a dual Banach

lattice. Take T P BrpE,F q. Then T 1 P BrpF 1, E1q and }T 1}r “ }T }r “ } |T | }.

Theorem 4.21. Let E and F be Banach lattices, and take T P BpE,F q. Then the fol-

lowing are equivalent:

(a) T 1 : F 1 Ñ E1 is regular, so that T is pre-regular;

(b) T 2 : E2 Ñ F 2 is regular;

(c) κF ˝ T : E Ñ F 2 is regular.

In this case, the three operators have the same regular norm.

Proof. Certainly (a) ñ (b) and }T 2}r ď }T
1}r. Since κF ˝ T “ T 2 ˝ κE : E Ñ F 2, we

see that (b) ñ (c) and }κF ˝ T }r ď }T
2}r

Finally, suppose that (c) holds. Then pκF ˝ T q1 : F3 Ñ E1 is regular. Now we

have T 1 “ pκF ˝ T q1 ˝ κF 1 : F 1 Ñ E1, and so T 1 is regular, giving (a); further, we

have }T 1}r ď }pκF ˝ T q
1}r. By Corollary 4.20, }κF ˝ T }r “ }pκF ˝ T q

1}r, and hence

}T 1}r ď }κF ˝ T }r.

The result follows.
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4.3. Multi-norms based on Banach lattices. We now define the canonical lattice

p–multi-norm based on a Banach lattice.

Definition 4.22. Let E be a Banach lattice, and take p with 1 ď p ď 8. For each

n P N, set

}x}
L,p
n “

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

px “ px1, . . . , xnq P E
nq . (4.3.1)

The corresponding definition to (4.3.1) in the special case where p “ 8 is

}x}
L
n “ } |x1| _ ¨ ¨ ¨ _ |xn| } px “ px1, . . . , xnq P E

nq ;

the above definition in the special case where p “ 1 is

}x}
DL
n “ } |x1| ` ¨ ¨ ¨ ` |xn| } px “ px1, . . . , xnq P E

nq .

Then p} ¨ }
L
nq and p} ¨ }

DL
n q are the lattice multi-norm and the dual lattice multi-norm,

respectively, based on E, as defined in [20, Definition 4.41].

Let E be a Banach lattice. Then the Banach space pEn, } ¨ }
L,p
n q is the space that is

sometimes denoted by Ep` pnq, slightly modifying the notation of [43, p. 46], and we shall

do this at some later points. See also [45, p. 8].

The space pEn, } ¨ }
L,p
n q is itself a Banach lattice with respect to the coordinatewise

operations.

Theorem 4.23. Let E be a Banach lattice, and take p with 1 ď p ď 8. Then the sequence

p} ¨ }
L,p
n q based on E is a strong p–multi-norm.

Proof. As in [20, Theorem 4.42], it is immediately checked that p} ¨ }
L
nq is an 8–multi-

norm. By Theorem 2.25, each 8–multi-norm is a strong 8–multi-norm, and so the result

holds in the case where p “ 8.

Now suppose that 1 ď p ă 8, and set q “ p1. By Proposition 2.23, we know that

a strong p–multi-norm is a p–multi-norm, and so it suffices to verify the condition in

Definition 1.37.

Take m,n P N, x “ px1, . . . , xmq P E
m, and y “ py1, . . . , ynq P E

n with y ďp x.

Thus, for each positive linear functional λ on E, each µ P E1 with |µ| ď λ, and each

pα1, . . . , αnq P B` q
n

, we have

ˇ

ˇ

ˇ

ˇ

ˇ

C

n
ÿ

j“1

αjyj , µ

G
ˇ

ˇ

ˇ

ˇ

ˇ

ď

n
ÿ

j“1

|αj | |xyj , µy| ď

˜

n
ÿ

j“1

|αj |
q

¸1{q ˜ n
ÿ

j“1

|xyj , µy|
p

¸1{p

ď

˜

m
ÿ

i“1

|xxi, µy|
p

¸1{p

ď

˜

m
ÿ

i“1

x|xi| , λy
p

¸1{p

by p4.1.12q

ď

C˜

m
ÿ

i“1

|xi|
p

¸1{p

, λ

G

by p4.2.3q ,
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and so it follows from (4.1.12) that
C
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

αjyj

ˇ

ˇ

ˇ

ˇ

ˇ

, λ

G

ď

C˜

m
ÿ

i“1

|xi|
p

¸1{p

, λ

G

.

This holds for each positive linear functional λ, and so
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

j“1

αjyj

ˇ

ˇ

ˇ

ˇ

ˇ

ď

˜

m
ÿ

i“1

|xi|
p

¸1{p

in E

for each pα1, . . . , αnq P B` q
n

. It now follows from (4.1.6) or (4.1.7) that

˜

n
ÿ

j“1

|yj |
p

¸1{p

ď

˜

m
ÿ

i“1

|xi|
p

¸1{p

,

and hence }y}
L,p
n ď }x}

L,p
m , giving the result.

Let E be a Banach lattice, and take p with 1 ď p ă 8. It follows from Theorem 2.11

that

µp,npxq ď }x}
L,p
n px P En, n P Nq ,

A short calculation shows that we have equality in the case where E “ CpKq for a

compact space K.

Definition 4.24. Let E be a Banach lattice, and take p with 1 ď p ď 8. Then the

sequence p} ¨ }
L,p
n q defined in (4.3.1) is the canonical lattice p–multi-norm based on E.

Example 4.25. Take p with 1 ď p ď 8 and n P N. We give a specific example of a space

Ep` pnq “ pE
n, } ¨ }

L,p
n q.

Indeed, we take r with 1 ď r ă 8, and consider the Banach lattice E “ ` r. The

space Ep` pnq consists of n-tuples x “ px1, . . . , xnq, where xi “ pxi,j : j P Nq P ` r for

i P Nn, and the norm of such an element is

}x}
L,p
n “

¨

˝

8
ÿ

j“1

˜

n
ÿ

i“1

|xi,j |
p

¸r{p
˛

‚

1{r

. (4.3.2)

Now consider the Banach space F “ ` pn . For 1 ď r ă 8, the space ` rpF q consists of

sequences y “ pyj : j P Nq, where yj “ pyj,i : i P Nnq P ` pn for j P N, and the norm of

such an element is

}y}` rpF q “

¨

˝

8
ÿ

j“1

˜

n
ÿ

i“1

|yj,i|
p

¸r{p
˛

‚

1{r

. (4.3.3)

Thus Ep` pnq with E “ ` r is isometrically isomorphic to ` rpF q with F “ ` pn .

Theorem 4.26. Let E be a Banach lattice, and take p with 1 ď p ă 8. Then the

canonical lattice p–multi-norm based on E is p–convex if and only if E is p–convex as a

Banach lattice.
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Proof. Suppose first that E is p–convex as a Banach lattice, and suppose that m,n P N,

x “ px1, . . . , xmq P E
m, and y “ py1, . . . , ynq P E

n. Set } ¨ }n “ } ¨ }
L,p
n pn P Nq and

u “

˜

m
ÿ

i“1

|xi|
p

¸1{p

and v “

˜

n
ÿ

j“1

|yj |
p

¸1{p

in E. It follows that

}px,yq}m`n “
›

›

›
pup ` vpq1{p

›

›

›
ď p}u}

p
` }v}

p
q1{p “ p}x}

p
m ` }y}

p
nq

1{p
.

Hence the p–multi-norm p} ¨ }
L,p
n q is p–convex.

Conversely, suppose that the p–multi-norm p} ¨ }
L,p
n q is p–convex, and take x, y P E.

Then
›

›

›
p|x|

p
` |y|

p
q
1{p

›

›

›
“ }px, yq}

L,p
2 ď p}x}

p
` }y}

p
q1{p ,

and so E is a p–convex Banach lattice.

Corollary 4.27. Take p with 1 ď p ă 8, and suppose that E is a p–convex Banach

lattice. Then

}x}
L,p
n ď }x}` p

n pEq
px P En, n P Nq .

It is shown in [20, §4.3.1] that the two sequences p} ¨ }
L
n : n P Nq and p} ¨ }

DL
n : n P Nq

are multi-norms and dual multi-norms, respectively, and that the duals of the lattice

multi-norm and the dual lattice multi-norm based on E are the dual lattice multi-norm

and the lattice multi-norm, respectively, based on E1. We now generalize these facts; the

proof is similar to one on pages 47 and 48 of [43] that shows (for the case of real Banach

lattices) that the dual space of Ep` pnq is E1p` p
1

n q.

Theorem 4.28. Let E be a Banach lattice, and take p with 1 ď p ď 8. Then the dual

of the canonical lattice p–multi-norm based on E is the canonical lattice p1-multi-norm

based on E1.

Proof. The cases where p “ 1 and p “ 8 have already been covered, and so we may

suppose that 1 ă p ă 8. Set q “ p1. For n P N, we write } ¨ }
1

n for the dual of the norm

} ¨ }
L,p
n , so that } ¨ }

1

n is defined on the space pE1qn.

Take n P N and λ “ pλ1, . . . , λnq P pE
1qn. For x “ px1, . . . , xnq P E

n, we have

|xx, λy| ď
n
ÿ

i“1

|xxi, λiy| ď

C˜

n
ÿ

i“1

|xi|
p

¸1{p

,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

ď

›

›

›

›

›

›

˜

n
ÿ

i“1

|λi|
q

¸1{q
›

›

›

›

›

›

}x}
L,p
n

by Proposition 4.8(ii), and so

}λ}
1

n ď

›

›

›

›

›

›

˜

n
ÿ

i“1

|λi|
q

¸1{q
›

›

›

›

›

›

“ }λ}
L,q
n .



90 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

For the reverse inequality, take x P E`, n P N, and x “ px1, . . . , xnq P E
n such that

p
řn
i“1 |xi|

p
q
1{p
ď x. Then }x}

L,p
n ď }x}. For each λ “ pλ1, . . . , λnq P pE

1qn, we have
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

xxi, λiy

ˇ

ˇ

ˇ

ˇ

ˇ

ď }λ}
1

n }x} ,

and so it follows from Proposition 4.9 that
C

x,

˜

n
ÿ

i“1

|λi|
q

¸1{qG

ď }λ}
1

n }x} .

Hence, by (4.1.3), we have

}λ}
L,q
n “

›

›

›

›

›

›

˜

n
ÿ

i“1

|λi|
q

¸1{q
›

›

›

›

›

›

ď }λ}
1

n .

This concludes the proof.

Take p with 1 ď p ď 8. We now consider the canonical lattice p–multi-norms asso-

ciated with sublattices and quotients of a Banach lattice.

First, let F be a closed sublattice of a Banach lattice E, and consider the canonical

lattice p–multi-norm based on E. Then F is a Banach lattice, and the p–multi-norm

induced on the family tFn : n P Nu is exactly the canonical lattice p–multi-norm based

on F .

Next suppose that F is a closed order-ideal in E, so that E{F is again a Banach

lattice; we again write QF : E Ñ E{F for the quotient map, so that QF is a lattice

homomorphism. Then there are a quotient power-norm, temporarily called p} ¨ }n,quotq,

and a canonical lattice p–multi-norm, temporarily called p} ¨ }n,canq, based on E{F . We

claim that these two p–multi-norms coincide.

Take n P N and x “ px1, . . . , xnq P E. Then

QF

¨

˝

˜

n
ÿ

i“1

|xi ´ yi|
p

¸1{p
˛

‚“ QF

¨

˝

˜

n
ÿ

i“1

|xi|
p

¸1{p
˛

‚ py1, . . . , yn P F q ,

and so }x` Fn}n,can ď }x` F
n}n,quot.

To prove that, conversely, we have }x` Fn}n,quot ď }x` F
n}n,can, it suffices to show

that, for each n P N, each x1, . . . , xn P E, and each y P F , there exist y1, . . . , yn P F such

that
˜

n
ÿ

i“1

|xi ´ yi|
p

¸1{p

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

˜

n
ÿ

i“1

|xi|
p

¸1{p

´ y

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

, (4.3.4)

and we shall do this. Set

u “

˜

n
ÿ

i“1

|xi|
p

¸1{p

.

Without loss of generality, we may suppose that 0 ď y ď u, for otherwise, replacing y by

p<yq`^u will reduce the right-hand side of (4.3.4). It suffices to prove that, for each such

y, there exist y1, . . . , yn P E such that (4.3.4) holds and such that |yi| ď y pi P Nnq, for
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the latter condition guarantees that y1, . . . , yn P F . We can work in the order ideal Iu,

which we can identify with CpKq for a compact space K, and so it suffices to establish

the inequality (4.3.4) in the special case in which E “ CpKq.

For i P Nn, define yi such that

yiptq “ p|xiptq| ^ yptqq
xiptq

|xiptq|
when t P K and xiptq ‰ 0

and yiptq “ 0 when t P K and xiptq “ 0. Then we see that y1, . . . , yn P CpKq and also

that |xi ´ yi| “ |xi| ´ |yi| pi P Nnq. By replacing each xi by |xi|, we may suppose that

xi ě 0 pi P Nnq in (4.3.4). Hence y1, . . . , yn P CpKq
` and yi “ xi ^ y for each i P Nn,

and so we see that it suffices to prove that
˜

n
ÿ

i“1

pxi ´ xi ^ yq
p

¸1{p

ď

˜

n
ÿ

i“1

xpi

¸1{p

´ y (4.3.5)

whenever x1, . . . , xn P CpKq
` and y P CpKq` with y ď u. Since the order in CpK,Rq

is pointwise, it suffices to prove equation (4.3.5) in the case where x1, . . . , xn, y P R`.

Set x “ px1, . . . , xnq P Rn and y “ py, y, . . . , yq P Rn; without loss of generality, we

may suppose that }x}` p
n
“ 1, in which case 0 ď y ď 1. Thus we need to show that

}px´ yq`}` p
n
ď 1´ y.

We may suppose that x1, . . . , xk ě y and that xk`1, . . . , xn ď y for some k P Nn.

Take α1, . . . , αk ě 0 such that

›

›px´ yq`
›

›

` p
n
“

k
ÿ

i“1

pxi ´ yqαi and
k
ÿ

i“1

αqi “ 1 ,

where q “ p1. Then
řk
i“1 αi ě 1, and so

›

›px´ yq`
›

›

` p
n
ď

k
ÿ

i“1

xiαi ´ y ď }x}` p
n
}pα1, . . . , αkq}` q

k
´ y “ 1´ y ,

as required. Thus we have proved the following theorem.

Theorem 4.29. Let E be a Banach lattice, and suppose that F is a closed order-ideal

in E. Take p with 1 ď p ď 8. Then the quotient power-norm induced on E{F by the

canonical lattice p–multi-norm on E is the canonical lattice p–multi-norm on E{F .

4.4. Interpolation between Banach lattices. We consider interpolation between

complex Banach lattices. In particular we wish to note first that in certain circumstances,

a particular interpolation space between two Banach lattices is itself a Banach lattice.

This topic has been previously considered; the seminal work is [11], and some works have

shown the result for Banach lattices of particular types. The result is also stated without

proof by Raynaud and Tradacete in [53, p. 96]. However we have not found exactly the

result that we seek, and so we provide details here; we are grateful to Michael Cwikel for

some valuable comments, based on [14].

The initial definition and results apply to both real and complex Banach lattices.
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Definition 4.30. Let pE0, } ¨ }0q and pE1, } ¨ }1q be Banach lattices such that tE0, E1u is

a compatible couple of Banach spaces with an ambient space H that is a Banach lattice.

Suppose, further, that, for i “ 0, 1, each Ei is an order-ideal (not necessarily closed) in

H. Then tE0, E1u is a compatible couple of Banach lattices.

Later, we shall use the following remark. Let E0 and E1 be a compatible couple of

Banach lattices, and take x P E0 ` E1 such that 0 ď x ď y0 ` y1, where y0 P E
`
0 and

y1 P E
`
1 . Then

}x}E0`E1
ď }y0}0 ` }y1}1 .

Indeed, by the Riesz decomposition property, Proposition 4.1, there exist x0, x1 P H
`

such that x0 ď y0, x1 ď y1, and x “ x0 ` x1. Since E0 and E1 are ideals in H, we see

that x0 P E
`
0 and x1 P E

`
1 . Thus }x}E0`E1

ď }x0}0 ` }x1}1 ď }y0}0 ` }y1}1, as required.

Theorem 4.31. Let tE0, E1u be a compatible couple of Banach lattices. Then

pE0 X E1, } ¨ }E0XE1
q and pE0 ` E1, } ¨ }E0`E1

q

are Banach lattices that are sublattices of the ambient space.

Proof. We know that E0 XE1 and E0 `E1 are Banach spaces, and they are sublattices

of the ambient space.

It is clear that E0 X E1 is a Banach lattice; we shall show that E0 ` E1 (with the

norm } ¨ } “ } ¨ }E0`E1
) is a Banach lattice.

We first claim the following: Take x, y P E0 ` E1 with 0 ď x ď y. Then }x} ď }y}.

Indeed, fix ε ą 0. Then there exist y0 P E0 and y1 P E1 such that y “ y0 ` y1 and

}y0}0 ` }y1}1 ď }y} ` ε .

We may suppose that y0 P pE0qR and y1 P pE1qR. We have x ď y ď y`0 ` y
`
1 and

›

›y`0
›

›

0
`
›

›y`1
›

›

1
ď }y} ` ε .

By the remark, }x} ď
›

›y`0
›

›

0
`
›

›y`1
›

›

1
ď }y} ` ε. This holds true for each ε ą 0, and so

the first claim is proved.

Second, we claim the following: For each z P E0 ` E1, we have } |z| } “ }z}.

Indeed, take z P E0 ` E1 and fix ε ą 0. Then there exist z0 P E0 and z1 P E1 such

that z “ z0 ` z1 and

}z0}0 ` }z1}1 ď }z} ` ε .

Then |z| ď |z0| ` |z1|. By the remark, } |z| } ď } |z0| }0 ` } |z1| }1 “ }z0}0 ` }z1}1, and so

} |z| } ď }z} ` ε. Hence } |z| } ď }z}.

For the reverse inequality, again fix ε ą 0. There exist z0 P E0 and z1 P E1 such that

|z| “ z0 ` z1 and

}z0}0 ` }z1}1 ď } |z| } ` ε .

Since |z| ď |z0| ` |z1|, there exist x0 P E
`
0 and x1 P E

`
1 such that x0 ď |z0|, x1 ď |z1|,

and also |z| “ x0 ` x1. Take e P H` such that z, x0, and x1 belong to Ie. Then Ie is

lattice isomorphic to CpKq for a compact space K. By working in CpKq, we see that

there exist w0 and w1 in Ie such that

w0ptq “ x0ptq ¨ arg zptq , w1ptq “ x1ptq ¨ arg zptq pt P Kq .
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Then |w0| “ x0 and |w1| “ x1, so that w0 P E0 and w1 P E1. Further, we see that

w0 ` w1 “ |z| ¨ arg z “ z in CpKq, and hence z “ w0 ` w1 in Ie. It follows that

}z} ď }w0}0 ` }w1}1 “ }x0}0 ` }x1}1 ď }z0}0 ` }z1}1 ď } |z| } ` ε .

Thus }z} ď } |z| }. The second claim follows.

Finally, suppose that z, w P E0`E1 with |z| ď |w|. Then } |z| } “ }z} and } |w| } “ }w}

by the second claim, and } |z| } ď } |w| } by the first claim, and so }z} ď }w}. This shows

that pE0 ` E1, } ¨ }E0`E1
q is indeed a Banach lattice.

We also note the following. Suppose that E0 and E1 are complex Banach lattices that

are the complexifications of F0 and F1, respectively. Then E0 XE1 and E0 `E1 are the

complexifications of F0 X F1 and F0 ` F1, respectively.

Let H be a Banach lattice. Take x0, x1 P H
` and θ P p0, 1q. Then the element x1´θ

0 xθ1
is defined in H`; here we identify x1´θ

0 xθ1 with |x0|
1´θ

|x1|
θ
, which is defined by the

Youdine–Krivine calculus, as in [43]. By [43, Proposition 1.d.2(i)], we have
›

›x1´θ
0 xθ1

›

› ď }x0}
1´θ

}x1}
θ
. (4.4.1)

Recall from inequality (4.1.9) (with p0 “ p1 “ 1) that

n
ÿ

i“1

y1´θ
i zθi ď

˜

n
ÿ

i“1

yi

¸1´θ ˜ n
ÿ

i“1

zi

¸θ

(4.4.2)

for each n P N and y1, . . . , yn, z1, . . . , zn P H
`.

Definition 4.32. Let tE0, E1u be a compatible couple of Banach lattices, and take θ

with 0 ă θ ă 1. Then the Calderón–Lozanovskii space, denoted by E1´θ
0 Eθ1 , is the set of

all x P E0 `E1 such that |x| ď x1´θ
0 xθ1 for some x0 P E

`
0 and x1 P E

`
1 . For x P E1´θ

0 Eθ1 ,

set

}x}L “ inf
 

c : |x| ď cx1´θ
0 xθ1, xi P B

`
Ei
pi “ 0, 1q

(

. (4.4.3)

We see that

}x}L “ inf
!

}y0}
1´θ
0 }y1}

θ
1 : |x| ď y1´θ

0 yθ1 , yi P E
`
i pi “ 0, 1q

)

px P E1´θ
0 Eθ1q . (4.4.4)

The following result is implicit in [53, §4], but no explicit proof was given in that

source.

Proposition 4.33. Let tE0, E1u be a compatible couple of Banach lattices, and take θ

with 0 ă θ ă 1. Then the Calderón–Lozanovskii space pE1´θ
0 Eθ1 , } ¨ }Lq is a Banach lattice

and also an intermediate space. Further, the closure of E0 XE1 in E1´θ
0 Eθ1 is a Banach

lattice.

Proof. The ambient space for tE0, E1u is H, say.

Set L “ E1´θ
0 Eθ1 . Clearly αx P L and }αx}L “ |α| }x}L whenever α P F and x P L.

Now take x1, x2 P L. We claim that x1 ` x2 P L and that }x1 ` x2}L ď }x1}L ` }x2}L,

and hence that } ¨ }L is a semi-norm.

To see that x1 ` x2 P L, it suffices to show that

|x1 ` x2| ď py1 ` y2q
1´θpz1 ` z2q

θ (4.4.5)
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whenever yj P E
`
0 , zj P E

`
1 and |xj | ď y1´θ

j zθj in H for j “ 1, 2. Since we know that

|x1 ` x2| ď |x1| ` |x2|, inequality (4.4.5) follows from (4.4.2). Hence x1 ` x2 P L.

We now claim that

}x1 ` x2}L ď }x1}L ` }x2}L .

Let j P t1, 2u. Given cj ą }xj}L, choose vj P B
`
E0

and wj P B
`
E1

with |xj | ď cjv
1´θ
j wθj ,

and set yj “ cjvj P E
`
0 and zj “ cjwj P E

`
1 . Then |xj | ď y1´θ

j zθj , so that

|x1 ` x2| ď py1 ` y2q
1´θpz1 ` z2q

θ

by the inequality (4.4.5). Using equation (4.4.4), we see that

}x1 ` x2}L ď }y1 ` y2}
1´θ
0 }z1 ` z2}

θ
1

ď pc1 }v1}0 ` c2 }v2}0q
1´θ

pc1 }w1}1 ` c2 }w2}1q
θ

ď pc1 ` c2q
1´θpc1 ` c2q

θ “ c1 ` c2.

Since c1 ą }x1}L and c2 ą }x2}L were arbitrary, the claim follows.

We have shown that pL, } ¨ }Lq is a semi-normed space.

We see easily that the inclusion map of E0 X E1 in L is contractive. To see that the

inclusion map of L into E0 ` E1 is a contraction, take x P L with }x}L ă 1. Then there

exist x0 P B
`
E0

and x1 P B
`
E1

with |x| ď x1´θ
0 xθ1. But x1´θ

0 xθ1 ď p1 ´ θqx0 ` θx1 (for

x0, x1 P R`, this is [28, Proposition 4.1.3]), and so

}x}E0`E1
“ } |x| }E0`E1

ď p1´ θq }x0}0 ` θ }x1}1 ď 1 .

It follows that }x}E0`E1
ď }x}L px P Lq, and so the inclusion is indeed a contraction.

In particular, this shows that x “ 0 when }x}L “ 0, and so } ¨ }L is a norm on L. Hence

pL, } ¨ }Lq is an intermediate space.

We now claim that pL, } ¨ }Lq is a Banach space. For this, it suffices to show that
ř8

j“1 xj converges in L whenever pxjq is a sequence in L with }xj}L ă 2´j pj P Nq; take

pxjq to be such a sequence.

For each j P N, there exist yj,0 P E
`
0 and yj,1 P E

`
1 with }yj,0}0 “ }yj,1}1 ă 2´j and

|xj | ď y1´θ
j,0 yθj,1 pj P Nq. The two series

ř8

j“1 yj,0 and
ř8

j“1 yj,1 converge, say to y0 P E
`
0

and y1 P E
`
1 , respectively. Set

uk “
k
ÿ

j“1

xj pk P Nq .

The sequence pukq converges in pE0`E1, } ¨ }E0`E1
q, say to x, and so p|uk|q converges to

|x| in the same space. For each k P N, we have

|uk| ď
k
ÿ

j“1

y1´θ
j,0 yθj,1 ď

˜

k
ÿ

j“1

yj,0

¸1´θ ˜ k
ÿ

j“1

yj,1

¸θ

by inequality (4.4.2), and so |uk| ď y1´θ
0 yθ1 . Since this holds for each k P N, it follows

that |x| ď y1´θ
0 yθ1 , and this implies that x P L with }x}L ď }y0}

1´θ
0 }y1}

θ
1 by (4.4.4).
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Again take k P N. Then

|x´ uk| ď

˜

y0 ´

k
ÿ

j“1

yj,0

¸1´θ ˜

y1 ´

k
ÿ

j“1

yj,1

¸θ

,

and so

}x´ uk}L ď

›

›

›

›

›

y0 ´

k
ÿ

j“1

yj,0

›

›

›

›

›

1´θ

0

›

›

›

›

›

y1 ´

k
ÿ

j“1

yj,1

›

›

›

›

›

θ

ď
1

2k
,

again using inequality (4.4.4). It follows that pukq converges to x in pL, } ¨ }Lq. We have

shown that pL, } ¨ }q is a Banach space.

It is clear that pL, } ¨ }q is a Banach lattice, and that the closure of E0XE1 in E1´θ
0 Eθ1

is also a Banach lattice.

We remark that, in the case where E0 and E1 are the complexifications of real Ba-

nach lattices F0 and F1, respectively, the Calderón–Lozanovskii space E1´θ
0 Eθ1 is the

complexification of the space F 1´θ
0 F θ1 .

Now suppose that tE0, E1u is a compatible couple of complex Banach lattices, and

take θ with 0 ă θ ă 1. Then, as in §1.10, we can define the intermediate Banach space

ppE0, E1q θ, } ¨ }rθsq. The following key result of Raynaud and Tradacete is [53, Theorem

9].

Theorem 4.34. Let tE0, E1u be a compatible couple of complex Banach lattices, and take

θ with 0 ă θ ă 1. Then the intermediate space ppE0, E1q θ, } ¨ }rθsq is the closure in the

Calderón–Lozanovskii space pE1´θ
0 Eθ1 , } ¨ }Lq of the space E0XE1. Further, }x}rθs “ }x}L

for each x P E0 X E1.

Corollary 4.35. Let tE0, E1u be a compatible couple of complex Banach lattices, and

take θ with 0 ă θ ă 1. Then the intermediate space ppE0, E1q θ, } ¨ }rθsq is a Banach

lattice.

Theorem 4.36. Let E be a complex Banach lattice. Take θ with 0 ă θ ă 1, take n P N,

and take p0, p1 with 1 ď p0, p1 ă 8. Then the interpolation space

ppEn, } ¨ }
L,p0
n q, pEn, } ¨ }

L,p1
n qθ

is isometrically isomorphic to the Banach lattice pEn, } ¨ }
L,p
n q, where

1

p
“

1´ θ

p0
`

θ

p1
.

Proof. We shall use Theorem 4.34. We may suppose that p0 ‰ p1, for the result is trivial

when p0 “ p1.

Set Fi “ pEn, } ¨ }
L,pi
n q for i “ 0 and i “ 1. The space `8n pEq plays the rôle of an

ambient Banach lattice for the Banach lattices F0 and F1, where we note that the natural

injections of F0 and F1 in `8n pEq are continuous lattice homomorphisms and that F0 and

F1 are order-ideals in `8n pEq.

We denote the Calderón–Lozanovskii space F 1´θ
0 F θ1 specified in Definition 4.32 by

pL, } ¨ }Lq.
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The only non-trivial fact that we must show is that

}x}L “

›

›

›

›

›

›

˜

n
ÿ

k“1

|xk|
p

¸1{p
›

›

›

›

›

›

E

px “ px1, . . . , xnq P E
nq , (4.4.6)

and we shall now do this. Fix x “ px1, . . . , xnq P E
n; without loss of generality, we may

suppose that x1, . . . , xn P E
`.

As a preliminary, we set αi “ p{pi and βi “ αi ´ 1 for i “ 0, 1, so that βi ‰ 0. We

note that p1´ θqα0 ` θα1 “ 1 and p1´ θqβ0 ` θβ1 “ 0.

Consider the functions

Fj,i : pt1, . . . , tnq ÞÑ |tj |
αi

˜

n
ÿ

k“1

|tk|
p

¸´βi{p

, Rn Ñ R ,

defined for j P Nn and i “ 0, 1, where Fj,ip0, . . . , 0q “ 0. It is clear that each function Fj,i
is continuous and positively homogeneous, and so operates on ER by the Youdine–Krivine

calculus. We note that

Fj,0ptq
1´θFj,1ptq

θ “ |tj | pt “ pt1, . . . , tnq P Rn, j P Nnq . (4.4.7)

Take t “ pt1, . . . , tnq P Rn, and set tj,i “ Fj,iptq for j P Nn and i “ 0, 1. Then
˜

n
ÿ

j“1

|tj,i|
pi

¸1{pi

“

˜

n
ÿ

j“1

|tj |
αipi

¸1{pi ˜ n
ÿ

k“1

|tk|
p

¸´βi{p

“

˜

n
ÿ

k“1

|tk|
p

¸1{pi´βi{p

.

Also 1{pi ´ βi{p “ 1{p, and hence
˜

n
ÿ

j“1

|tj,i|
pi

¸1{pi

“

˜

n
ÿ

k“1

|tk|
p

¸1{p

pi “ 0, 1q . (4.4.8)

For j P Nn and i “ 0, 1, set xj,i “ Fj,ipx1, . . . , xnq P E
`. It follows from equation (4.4.7)

that

xj “ x1´θ
j,0 xθj,1 pj P Nnq .

Set xi “ px1,i, . . . , xn,iq P pE
`qn for i “ 0, 1. Then x “ x1´θ

0 xθ1, and so

}x}L ď
´

}x0}
L,p0
n

¯1´θ ´

}x1}
L,p1
n

¯θ

“

›

›

›

›

›

›

˜

n
ÿ

k“1

|xk|
p

¸1{p
›

›

›

›

›

›

E

by equation (4.4.8).

For the reverse inequality, again take x “ px1, . . . , xnq P pE
`qn, and suppose that

x0,x1 P pE
`qn satisfy x ď x1´θ

0 xθ1, say x0 “ px1,0, . . . , xn,0q and x1 “ px1,1, . . . , xn,1q.

Since the lattice operations in `8n pEq are defined coordinatewise, we have

xj ď x1´θ
j,0 xθj,1 pj P Nnq .

It follows from inequality (4.1.9) that
˜

n
ÿ

j“1

xpj

¸1{p

ď

˜

n
ÿ

j“1

xp0j,0

¸p1´θq{p0 ˜

n
ÿ

j“1

xp1j,1

¸θ{p1

,
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and so, by inequality (4.4.1),
›

›

›

›

›

›

˜

n
ÿ

k“1

xpk

¸1{p
›

›

›

›

›

›

E

ď

›

›

›

›

›

›

˜

n
ÿ

j“1

xp0j,0

¸1{p0
›

›

›

›

›

›

1´θ ›
›

›

›

›

›

˜

n
ÿ

j“1

xp1j,1

¸1{p1
›

›

›

›

›

›

θ

“

´

}x0}
L,p0
n

¯1´θ ´

}x1}
L,p1
n

¯θ

.

Taking the infimum over all such choices of x0 and x1, we conclude that
›

›

›

›

›

›

˜

n
ÿ

k“1

|xk|
p

¸1{p
›

›

›

›

›

›

E

ď }x}L .

We have established equation (4.4.6), and hence the theorem follows.

We believe that a similar result holds when we start with a compatible couple tE0, E1u

of complex Banach lattices, rather than one fixed Banach lattice, but we do not have a

proof of such a general result; certain special cases are listed by Calderón in [11].

4.5. Regular and multi-bounded operators. Let E and F be Banach lattices, take p

with 1 ď p ď 8, and consider the canonical lattice p–multi-norms based on E and F . As

before, the norm of a p–multi-bounded operator T PMppE,F q is denoted by }T }p´mb.

To be specific, we have T PMppE,F q if and only if there exists a constant C ą 0 with
›

›

›

›

›

›

˜

n
ÿ

i“1

|Txi|
p

¸1{p
›

›

›

›

›

›

ď C

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

px1, . . . , xn P E, n P Nq , (4.5.1)

and then }T }p´mb is the infimum of the constants C.

The space of multi-bounded operators between two Banach lattices E and F , each

equipped with the lattice multi-norm p} ¨ }
L
nq, is discussed and often identified in [20, §6.4].

First, we note that each order-bounded operator T from E to F is 8–multi-bounded and

that }T }8´mb ď }T }b [20, Theorem 6.31], so that

BrpE,F q Ă BbpE,F q ĂM8pE,F q Ă BpE,F q ,

and all the inclusions are contractions. There is a comprehensive statement of some

conditions for equality in the above inclusions in [20, Theorem 6.33]; here we state just

one result.

Proposition 4.37. Let E and F be Banach lattices, considered with their Banach lattice

multi-norms. Suppose that F is monotonically bounded and Dedekind complete. Then

BrpE,F q “ BbpE,F q “M8pE,F q.

Corollary 4.38. Let E and F be Banach lattices. Then

BrpE,F 1q “ BbpE,F 1q “M8pE,F
1q .

Proof. For a Banach lattice F , the dual Banach lattice F 1 is monotonically bounded and

Dedekind complete.



98 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

Let E and F be Banach lattices. As mentioned above, the ‘opérateurs réguliers’

of [45, Définition 3.2] are exactly the operators in our class M8pE,F q; this class is

denoted by BrpE,F q in [45, Définition 3.2]. Note that these ‘opérateurs réguliers’ are not

always the same as the usual ‘regular operators’. The ‘opérateurs ` 1–réguliers’ of [45]

are our 1–multi-bounded operators. It is shown in [45, Lemme 1.1] that, in our notation,

M8pE,F q “M1pE,F q; this will also be a consequence of our Theorem 4.40, to be given

below. Our ‘p–multi-bounded operators’ correspond to the ‘opérateurs p–réguliers’ of [45,

Remarque, p. 21].

Take p with 1 ď p ď 8. It follows from equation (4.2.2) that each positive operator

in BpE,F q is p–multi-bounded, with }T }p´mb ď }T }, and so each regular operator is

p–multi-bounded. In fact, the following stronger statement is true.

Theorem 4.39. Let E and F be Banach lattices, and suppose that T P BpE,F q is pre-

regular. Take p with 1 ď p ď 8. Then T is p–multi-bounded with

}T }p´mb ď
›

›T 1
›

›

r
.

Proof. We write κT for κF ˝ T : E Ñ F 2; by Theorem 4.21, (a) ñ (c), κT is regular.

Take n P N and x1, . . . , xn P E. Then
›

›

›

›

›

›

˜

n
ÿ

i“1

|Txi|
p

¸1{p
›

›

›

›

›

›

F

“

›

›

›

›

›

›

˜

n
ÿ

i“1

|pκT qxi|
p

¸1{p
›

›

›

›

›

›

F2

ď

›

›

›

›

›

›

˜

n
ÿ

i“1

p|κT | |xi|q
p

¸1{p
›

›

›

›

›

›

F2

.

By equation (4.2.2),
›

›

›

›

›

›

˜

n
ÿ

i“1

p|κT | |xi|q
p

¸1{p
›

›

›

›

›

›

F2

ď }|κT | }

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

E

,

and so
›

›

›

›

›

›

˜

n
ÿ

i“1

|Txi|
p

¸1{p
›

›

›

›

›

›

F

ď } |κT | }

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

E

.

In terms of the canonical lattice p–multi-norms, this says that

}pTx1, . . . , Txnq}
L,p
n ď }κT }r }px1, . . . , xnq}

L,p
n .

By Theorem 4.21, }κT }r “ }T
1}r, and so the result follows.

Thus, in the above setting, we have

BpE,F q` Ă BrpE,F q Ă BbpE,F q Ă BprpE,F q ĂMppE,F q Ă BpE,F q

for each p with 1 ď p ď 8.

We shall now show that, in the case where p “ 1 or p “ 8, the converse of Theorem

4.39 holds, in the sense that each p–multi-bounded operator is pre-regular, and, further,

that }T }p´mb “ }T
1}r for such operators T . However Example 4.44 will show that there

are 2–multi-bounded operators on certain Banach lattices that are not pre-regular and

that there are pre-regular operators T such that }T }2´mb ‰ }T
1}r.
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Theorem 4.40. Let E and F be Banach lattices, and suppose that T P BpE,F q. Then

the following conditions on T are equivalent:

(a) T is 8–multi-bounded;

(b) T is 1–multi-bounded;

(c) T is pre-regular.

Further, in this case, }T }8´mb “ }T }1´mb “ }T
1}r.

Proof. Suppose that T satisfies (c). Then, by Theorem 4.39, T satisfies (a) and (b), and

}T }8´mb ď }T
1}r and }T }1´mb ď }T

1}r.

Suppose that T satisfies (a). Then κT is 8–multi-bounded, again writing κT for

κF ˝ T : E Ñ F 2, and so, by Corollary 4.38, κT is regular. By the implication (c) ñ (a)

of Theorem 4.21, T is pre-regular, and so T satisfies (c).

Suppose that T satisfies (b). Then, by Proposition 3.4, T 1 : F 1 Ñ E1 is 8–multi-

bounded, and so, by Corollary 4.38, T 1 is regular. Hence T satisfies (c).

Thus (a), (b), and (c) are equivalent.

To establish the equality of the three norms in the case where (a), (b), and (c) are

satisfied, fix x P E`, and set

A “

#

n
ł

i“1

|Txi| : x1, . . . , xn P E
` X∆x, n P N

+

.

Then we can regard A as an increasing net in both F` and pF 2q`; also

}a} ď }T }8´mb }x} pa P Aq ,

and so A has a supremum, say Λ, in F 2 with

}Λ} “ supt}a} : a P Au ď }T }8´mb }x} .

It follows that

|κT | pxq “ supt|κT pzq| : |z| ď xu ď Λ ,

and so

} |κT | pxq} ď }Λ} ď }T }8´mb }x} ,

whence } |κT |} ď }T }8´mb. By Theorem 4.21, }T 1}r “ }κT }r, and so }T 1}r ď }T }8´mb.

Finally, we have

}T }1´mb “
›

›T 1
›

›

8´mb
“
›

›T 2
›

›

r
“
›

›T 1
›

›

r
,

again by Theorem 4.21. Thus }T }8´mb “ }T }1´mb “ }T
1}r.

Corollary 4.41. Let E and F be Banach lattices. Then M8pE,F q “ BpE,F q if and

only if T 1 P BrpF 1, E1q for each T P BpE,F q.

In [45], Banach lattices E such that M8pEq “ BpEq are said to be homogènes; by

[45, Corollaire 4.2], they are characterized as being the lattices that are lattice isomorphic

to either AL- or AM -spaces. (Here we are using [43, Theorem 1.b.12] and [46, 2.1.12] to

see that the definitions of AL- and AM -spaces in [45] coincide with the Banach lattices

that are lattice isomorphic to AL- or AM -spaces, in our terminology.)
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Theorem 4.42. Let E and F be Banach lattices, and suppose that T P BpE,F q. Then

T is 2–multi-bounded, and }T }2´mb ď KG }T }.

Proof. This follows from Krivine’s theorem, Theorem 4.11.

We summarize the above results in the following theorem; it follows from Theorems

4.39, 4.40, and 4.42, and from a remark on page 84.

Theorem 4.43. Let E and F be Banach lattices, and take p with 1 ă p ă 8. Then

BbpE,F q Ă BprpE,F q “M1pE,F q “M8pE,F q ĂMppE,F q ĂM2pE,F q “ BpE,F q .

In the case where E and F are AL-spaces and 1 ď p ď 8, we have

BrpE,F q “ BbpE,F q “MppE,F q “ BpE,F q .

Example 4.44. We claim that there is reflexive Banach lattice E with BprpEq Ĺ BpEq.
Indeed, take E “ ` p, where 1 ă p ă 8, and assume towards a contradiction that each

2–multi-bounded operator in BpEq is pre-regular. Then each dual operator in BpE1q is

regular, and so BrpE1q “ BpE1q. But, as noted above, it is shown in [4] that BrpE1q is

not even dense in BpE1q. Since } ¨ }2´mb is equivalent to } ¨ }, it also follows from [4] that

} ¨ }r is not equivalent to } ¨ }2´mb on BrpEq.

Theorem 4.45. Let E and F be Banach lattices, and take p1, p2 P R such that either

1 ă p1 ă p2 ă 2 or 2 ă p2 ă p1 ă 8. Then

M1pE,F q “M8pE,F q ĂMp1pE,F q ĂMp2pE,F q ĂM2pE,F q “ BpE,F q . (4.5.2)

Proof. We suppose that 1 ă p1 ă p2 ă 2.

Take T P Mp1pE,F q, say with }T }p1´mb ď 1. Then also T P BpE,F q “ M2pE,F q,

with }T }2´mb ď KG.

First, suppose that E and F are complex Banach lattices, and take n P N. By Theo-

rem 4.36, the spaces Ep` p2n q and F p` p2n q are isometrically isomorphic to pEp` p1n q, Ep`
2
nqqθ

and pF p` p1n q, F p`
2
nqqθ, respectively, for a suitable choice of θ P p0, 1q. Further, T pnq is a

linear map from Ep` p1n q `Ep`
2
nq to F p` p1n q ` F p`

2
nq such that T pnq : Ep` p1n q Ñ F p` p1n q is

bounded with norm at most 1 and T pnq : Ep` 2
nq Ñ F p` 2

nq is bounded with norm at most

KG. By Theorem 1.46, T pnq is a bounded linear map from Ep` p2n q to F p` p2n q with norm

at most Kθ
G, a bound independent of n. It follows that T PMp2pE,F q, and so equation

(4.5.2) holds.

Next, suppose that E and F are real Banach lattices, and again take n P N. For an

arbitrary p with 1 ď p ď 8, we again write ` pnpRq and ` pnpCq for the appropriate spaces

taken over real and complex scalars, respectively. It is easy to see that the complexification

Ep` pnpRqq ‘ iEp` pnpRqq of Ep` pnpRqq may be identified with pE ‘ iEqp` pnpCqq, and that

this identification is isometric. Using this identification, we may also identify the nth

amplification pTCq
pnq of the complexification TC with the complexification of T pnq, namely

with

pT pnqqC : Ep` pnpRqq ‘ iEp` pnpRqq Ñ F p` pnpRqq ‘ iF p` pnpRqq .
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In particular, the two operators have the same norms, and so
›

›

›
pTCq

pnq : pE ‘ iEqp` p1n pCqq Ñ pF ‘ iF qp` p1n pCqq
›

›

›

is equal to
›

›

›
pT pnqqC : Ep` p1n pRqq ‘ iEp` p1n pRqq Ñ F p` p1n pRqq ‘ iF p` p1n pRqq

›

›

›
.

The latter norm is bounded by 2
›

›T pnq : Ep` p1n pRqq Ñ F p` p1n pRqq
›

› ď 2; this is because

}TC} ď 2 }T } and }T }p1´mb ď 1. It follows from the first part of the proof that
›

›

›
T pnq : Ep` p2n pRqq Ñ F p` p2n pRqq

›

›

›

ď

›

›

›
pT pnqqC : Ep` p2n pRqq ‘ iEp` p2n pRqq Ñ F p` p2n pRqq ‘ iF p` p2n pRqq

›

›

›

“

›

›

›
pTCq

pnq : pE ‘ iEqp` p2n pCqq Ñ pF ‘ iF qp` p2n pCqq
›

›

›
ď 2Kθ

G ,

and hence }T }p2´mb ď 2Kθ
G. Thus the result follows in this real case.

The case where 2 ă p2 ă p1 ă 8 is similar.

The following example leads to the determination of MppE,F q in some cases.

Example 4.46. Let E and F be Banach lattices, and take p with 1 ă p ă 8 and n P N.

As before the space En with the canonical lattice p–multi-norm } ¨ }
L,p
n is denoted by

Ep` pnq and the space En with the p–sum power-norm is denoted by ` pnpEq. (We recall

that the p–sum power-norm is always a power-norm, and that it is a p–multi-norm for

certain Banach spaces E.) Thus we may consider the space of p–multi-bounded operators

from E to F with respect to these power-norms.

Specifically consider two operators S P BpE,F q with Spnq : ` pnpEq Ñ F p` pnq and

T P BpE,F q with T pnq : Ep` pnq Ñ ` pnpF q. By the definitions given in [43, Definition 1.d.3]:

S is p–multi-bounded if and only if S is a p–convex operator, and the p–multi-bounded

norm of S is M ppqpSq; T is p–multi-bounded if and only if T is a p–concave operator,

and the p–multi-bounded norm of T is MppqpT q. The Banach lattice E is p–convex or

p–concave if the identity operator on E is p–convex or p–concave, respectively. Thus the

canonical lattice p–multi-norm and the p–sum power-norm based on E are equivalent if

and only if E is p–convex and p–concave; this holds for the spaces LppΩq for a measure

space Ω.

By Theorem 4.28, pEp` pnqq
1 “ E1p` p

1

n q, and so it follows from our Proposition 3.4 that

an operator T between two Banach lattices is p–convex if and only if T 1 is p1–concave

and that T is p–concave if and only if T 1 is p1–convex, as in [43, Proposition 1.d.4].

Proposition 4.47. Let Ω and Σ be measure spaces, and suppose that 1 ď r ď p ď s ď 8.

Then

MppL
rpΩq, LspΣqq “ BpLrpΩq, LspΣqq , (4.5.3)

with equality of norms.
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Proof. Set E “ LrpΩq and F “ LspΣq, and take T P BpE,F q. The Banach lattice F is

p–convex with constant 1, and so
›

›

›

›

›

›

˜

n
ÿ

i“1

|Tfi|
p

¸1{p
›

›

›

›

›

›

ď

˜

n
ÿ

i“1

}Tfi}
p

¸1{p

pf1, . . . , fn P E, n P Nq .

The Banach lattice E is p–concave with constant 1, and so

˜

n
ÿ

i“1

}fi}
p

¸1{p

ď

›

›

›

›

›

›

˜

n
ÿ

i“1

|fi|
p

¸1{p
›

›

›

›

›

›

pf1, . . . , fn P E, n P Nq .

It follows that T PMppE,F q with }T }p´mb ď }T }. Since the inequality }T } ď }T }p´mb

always holds, we obtain equality of norms in (4.5.3).

Corollary 4.48. Let Ω and Σ be measure spaces, and take r, s with 1 ď r ď s ď 2 or

2 ď r ď s ď 8. Then

MppL
rpΩq, LspΣqq “ BpLrpΩq, LspΣqq (4.5.4)

for each p P rr, 2s or each p P r2, ss, respectively.

Proof. First suppose that 1 ď r ď s ď 2 and that p “ r. Then equation (4.5.4) holds by

Proposition 4.47. Thus (4.5.4) holds for each p P rr, 2s by Theorem 4.45. The case where

2 ď r ď s ď 8 is similar.

The following result essentially contains a converse to Corollary 4.48 in a special case.

Proposition 4.49. Take r with 1 ă r ă 8.

(i) Suppose that 1 ď p ă 2. Then Mpp`
rq “ Bp` rq if and only if 1 ă r ď p.

(ii) Suppose that 2 ă p ď 8. Then Mpp`
rq “ Bp` rq if and only if r ě p.

Proof. The facts that Mpp`
rq “ Bp` rq for p P rr, 2s, and hence for r P p1, ps, when

1 ď p ă 2, and for p P r2, rs, and hence for r ě p, when 2 ă p ď 8 are special cases of

Corollary 4.48. We must show that these are the only cases for which Mpp`
rq “ Bp` rq.

In the case where p “ 1, it follows from Theorem 4.40 that M1p`
rq “ Bprp` rq for

each r P p1,8s. Further, Bprp` rq “ Brp` rq for each r P p1,8q, and we have noted that

Brp` rq is not even dense in Bp` rq. Thus M1p`
rq ‰ Bp` rq.

Now suppose that 1 ă p ă 8, that 1 ă r ă 8, and that Mpp`
rq “ Bp` rq. Thus

there exists C ě 1 such that

}T }p´mb ď C }T } pT P Bp` rqq . (4.5.5)

Take m,n P N. As in Example 4.25, we see that there is an isometric isomorphism

from pp` rmq
n, } ¨ }

L,p
n q onto p` rmp`

p
nq, } ¨ }` r

mp`
p
n q
q formed by ‘taking transposes’. Now take

T P Bp` rmq and regard T as an mˆm matrix pTj,kq and as an element of Bp` rq, and take
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x “ px1, . . . , xnq P p`
r
mq

n, where xi “ pxi,k : k P Nmq for i P Nn. Then

›

›

›
T pnqx

›

›

›

L,p

n
“

›

›

›

›

›

˜˜

m
ÿ

k“1

Tj,kxi,k : i P Nn

¸

: j P Nm

¸
›

›

›

›

›

` r
mp`

p
n q

“

¨

˝

m
ÿ

j“1

˜

n
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“1

Tj,kxi,k

ˇ

ˇ

ˇ

ˇ

ˇ

p¸r{p
˛

‚

1{r

.

On the other hand,

}x}
L,p
n “

¨

˝

m
ÿ

j“1

˜

n
ÿ

i“1

|xi,j |
p

¸r{p
˛

‚

1{r

.

Thus equation (4.5.5) implies that

}T : ` rmpEq Ñ ` rmpEq} ď C }T : ` rm Ñ ` rm}

for each T P Bp` rmq and m P N, where E “ ` pn . It follows from Theorem 1.43, (d) ñ

(a), (with r replacing p in the notation) that ` pn is C–isomorphic to an r–space for each

n P N. By the final claim of Corollary 1.44, r P rp, 2s when 1 ă p ă 2 and r P r2, ps when

2 ă p ă 8, as required.

Corollary 4.50. Take p1, p2 such that 1 ď p1, p2 ď 8. Then the inclusion

Mp1pEq ĂMp2pEq

holds for every Banach lattice E in each of the following three cases:

(i) p1 P t1,8u;

(ii) 1 ď p1 ď p2 ď 2;

(iii) 2 ď p2 ď p1 ď 8.

For all other pairs tp1, p2u, there is a Banach lattice E such that Mp1pEq ĆMp2pEq.

Proof. The proof of the inclusions Mp1pEq ĂMp2pEq in the specified cases follows from

Theorem 4.45. To show that the inclusion fails in all other cases, take E to be the Banach

lattice ` p1 .
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5. Representation theorems

We now seek canonical representation theorems for certain p–multi-normed spaces.

5.1. Representations as subspaces of lattices. Let E be a Banach space. The mem-

oir [45] contains a representation theorem for spaces c 0 b E satisfying property (P),

which was defined on page 51, and hence gives a representation theorem for multi-normed

spaces, in terms of closed subspaces of Banach lattices, or as ‘sous-espaces de treillis’; the

theorem is [45, Théorème 2.1], where the result and proof are attributed to Pisier. The

theorem is also stated as [20, Theorem 4.56]. We now give a simpler and shorter version

of this proof in the language of multi-norms; further, we shall generalize the result to

apply to certain p–multi-norms.

After the relevant part of this memoir was completed, we discovered that a different

proof of Pisier’s representation theorem was given by Casazza and Nielsen in [12, Theorem

1.7]; this proof uses ultraproducts and is also different from our proof. Further, a proof

of our Theorem 5.5 (in a different language) is contained in the thesis [44] of McClaran;

again, the proof is different from ours. We are grateful to Professor W. B. Johnson for

discussing this thesis with us.

We commence by setting the scene for the results.

Let pE, } ¨ }q be a normed space. We write K for the closed unit ball BE1 of E1, so

that K is a compact space with respect to the relative weak˚ topology σpE1, Eq, and

the space pCpKq, } ¨ }8q is a Banach lattice. As before, to every element x P E one can

associate the element px in E2 defined by pxpλq “ xx, λy pλ P E1q; with a slight abuse of

notation, we also denote the restriction of px to K by px, so that we are considering px as

an element of CpKq. The map

x ÞÑ px , pE, } ¨ }q Ñ pCpKq, } ¨ }8q ,

is a linear isometry. Throughout this section V denotes the order-ideal in CpKq generated

by (the image of) E. Thus, for each f P CpKq, we have f P V if and only if |f | ď
Žn
i“1 |pxi|

holds in CpKq for some n P N and x1, . . . , xn P E.

Let E be a normed space, and fix p with 1 ď p ď 8. We shall be especially interested

in functions on K of the form

fx :“

˜

n
ÿ

i“1

|pxi|
p

¸1{p

for x “ px1, . . . , xnq P E
n ,

where n P N ; here we interpret fx as maxt|px1| , . . . , |pxn|u in the case where p “ 8.
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Since the lattice operations in CpKq are defined pointwise, we have

fxpλq “

˜

n
ÿ

i“1

|xxi, λy|
p

¸1{p

pλ P Kq , (5.1.1)

and so fx P CpKq
`. We note that fx depends on p, although this is not shown explicitly

in the notation. Take α P F, m,n P N, x P Em, and y P En. Then fαx “ |α| fx and

fpx,yq “
`

fpx ` f
p
y

˘1{p
ď fx ` fy . (5.1.2)

Further, fy ď fx in pCpKq`,ďq if and only if y ďp x (in the notation of Definition

1.37), and so, in the particular case that pEn, } ¨ }nq is a strong p–multi-normed space,

}y}n ď }x}m whenever fy ď fx in pCpKq`,ďq. (Indeed, this fact motivated us to

formulate the definition of a strong p–multi-norm.)

Take n P N. There are constants C1 and C2 (depending on n) such that

C1

n
ÿ

i“1

|fi| ď

˜

n
ÿ

i“1

|fi|
p

¸1{p

ď C2

n
ł

i“1

|fi|

for f1, . . . , fn P CpKq, and so f P V if and only if |f | ď fx for some n P N and x P En.

Definition 5.1. Let pEn, } ¨ }nq be a power-normed space, and take p with 1 ď p ď 8.

For each f P V , set

ρppfq “ inf t}x}n : |f | ď fx for some x P En and n P Nu . (5.1.3)

Thus ρppfq P R` for each f P V . The first lemma is immediate.

Lemma 5.2. Let pEn, } ¨ }nq be a power-normed space, and take p with 1 ď p ď 8. Then:

(i) ρppαfq “ |α| ρppfq pα P F, f P V q ;

(ii) ρpp|f |q “ ρppfq pf P V q ;

(iii) ρppfq ď ρppgq whenever f, g P V with |f | ď |g| in CpKq` ;

(iv) ρppfxq ď }x}m whenever m P N and x P Em.

Lemma 5.3. Let pEn, } ¨ }nq be a strong p–multi-normed space, where 1 ď p ď 8. Then

ρppfxq “ }x}m px P Em, m P Nq .

Proof. Take m P N and x P Em. By Lemma 5.2(iv), ρppfxq ď }x}m. Now suppose that

y P En, where n P N, and that |fx| ď fy. Then }y}n ě }x}m, and so ρppfxq “ }x}m.

Suppose that pEn, } ¨ }nq is a power-normed space and that 1 ď p ď 8. In addition,

assume that ρp is subadditive, so that

ρppf ` gq ď ρppfq ` ρppgq pf, g P V q . (5.1.4)

Then ρp is a lattice semi-norm on V , and so ker ρp “ tf P V : ρppfq “ 0u is an order-ideal

in V and V { ker ρp is a normed lattice with respect to the norm induced by ρp. Let X be

the completion of this normed space, so that X is a Banach lattice, and define

J : x ÞÑ px` ker ρ , E Ñ X .

Then J is a linear map and p
řn
i“1 |Jxi|

p
q1{p “ fx ` ker ρ for x “ px1, . . . , xnq P E

n.
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As in Definition 4.22, we write p} ¨ }
L,p
n q for the canonical lattice p–multi-norm based

on the Banach lattice X, and we suppose throughout that this is the p–multi-norm that

is based on X.

Lemma 5.4. Let pEn, } ¨ }nq be a power-normed space, and take p with 1 ď p ď 8.

Further, assume that ρp is subadditive. Then J : E Ñ X is a multi-contraction. In the

case where pEn, } ¨ }nq is a strong p–multi-normed space, J : E Ñ X is a multi-isometry.

Proof. Take n P N and x “ px1, . . . , xnq P E
n. Then

›

›

›
J pnqx

›

›

›

L,p

n
“

›

›

›

›

›

›

˜

n
ÿ

i“1

|Jxi|
p

¸1{p
›

›

›

›

›

›

“ }fx ` ker ρ} “ ρppfxq ď }x}n (5.1.5)

by Lemma 5.2(iv). Thus J : E Ñ X is a multi-contraction. In the case where pEn, } ¨ }nq

is a strong p–multi-normed space, ρppfxq “ }x}n by Lemma 5.3, and so equation (5.1.5)

shows that J : E Ñ X is a multi-isometry.

Clearly the point to be resolved before we can claim a satisfactory representation

theorem is when the above map ρp is subadditive. We shall first show that this is certainly

the case when we are considering multi-norms themselves, so recovering the theorem of

Pisier.

Theorem 5.5. Let pEn, } ¨ }nq be a multi-Banach space. Then there are a Banach lattice

X and a closed subspace Y of X such that pEn, } ¨ }nq is multi-isometric to pY n, } ¨ }
L
nq.

Proof. The multi-norm p} ¨ }nq is a strong multi-norm by Theorem 2.25. As we remarked,

it suffices to show that the function ρ “ ρ8 defined above (in the case where p “ 8) is

subadditive.

Take f, g P V , and fix ε ą 0. Then we can find m,n P N, x P Em, and y P En such

that

|f | ď fx, |g| ď fy, }x}m ď ρpfq ` ε, and }y}n ď ρpgq ` ε .

Set G “ `8m ‘1 `
8
n , so that

}pu, vq} “ }u}`8
m
` }v}`8

n
pu P `8m , v P `8n q .

By Proposition 1.9, there exist k P N and a linear embedding T : GÑ `8k such that

}pu, vq} ď }T pu, vq} ď p1` εq }pu, vq} pu P `8m , v P `8n q . (5.1.6)

Clearly there are linear mappings A : `8m Ñ `8k and B : `8n Ñ `8k for which

maxt}A} , }B}u ď }T } ď 1` ε

such that each element T pu, vq can be written in the form Au`Bv.

We can regard T as a matrix, and hence as a linear map from Em ˆ En to Ek.

Similarly, we can regard A and B as linear maps from Em and En, respectively, to Ek.

Define z “ T px,yq P Ek, say z “ pz1, . . . , zkq, and take λ P E1. Then it follows from

(1.4.3) that

xz, λy “ λpkqpT px,yqq “ T pλpm`nqpx,yqq “ T pλpmqpxq, λpnqpyqq .
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Combining this with (5.1.6), we obtain

fzpλq “ max
i“1,...,k

|xzi, λy| “ }xz, λy}`8
k
“

›

›

›
T pλpmqpxq, λpnqpyqq

›

›

›

`8
k

ě

›

›

›
pλpmqpxq, λpnqpyqq

›

›

›

G
“

›

›

›
λpmqpxq

›

›

›

`8
m

`

›

›

›
λpnqpyq

›

›

›

`8
n

“ fxpλq ` fypλq ,

and hence fz ě fx ` fy ě |f | ` |g| ě |f ` g|. This shows that

ρpf ` gq ď }z}k “ }Ax`By}k ď }Ax}k ` }By}k

ď p1` εqp}x}m ` }y}nq ď p1` εqpρpfq ` ρpgq ` 2εq .

The above inequality holds true for each ε ą 0, and so ρpf ` gq ď ρpfq ` ρpgq, which

shows that ρ is indeed subadditive.

This completes the proof of the theorem.

We next consider the representation of 1–multi-norms, i.e., of dual multi-norms. As

we saw in Example 2.33, there are 1–multi-norms that are not strong 1–multi-norms,

and so we must impose this condition on the 1–multi-norm. Indeed, since the canonical

lattice 1–multi-norm p} ¨ }
DL
n q “ p} ¨ }

L,1
1 q of the following result is strong (by Theorem

4.23), the hypothesis that the 1–multi-norm based on E be strong is clearly necessary

for the following theorem to hold.

Theorem 5.6. Let pEn, } ¨ }nq be a strong 1–multi-Banach space. Then there are a Ba-

nach lattice X and a closed subspace Y of X such that pEn, } ¨ }nq is multi-isometric to

pY n, } ¨ }
DL
n q.

Proof. Again it suffices to show that the function ρ “ ρ1 defined above (in the case where

p “ 1) is subadditive.

Take f, g P V , and fix ε ą 0. Then we can find m,n P N , x P Em and y P En such

that

|f | ď fx, |g| ď fy, }x}m ď ρpfq ` ε, and }y}n ď ρpgq ` ε .

Then |f ` g| ď fx ` fy “ fpx,yq, and so

ρpf ` gq ď }px,yq}m`n ď }x}m ` }y}n ď ρpfq ` ρpgq ` 2ε .

This holds true for each ε ą 0, and so ρpf ` gq ď ρpfq ` ρpgq, as required.

We now seek a result that is applicable in the case where 1 ă p ă 8. In the fol-

lowing theorem, we impose the extra condition that the p–multi-norm be strong, which

is certainly a necessary condition, and that the p–multi-norm be p–convex; for each p,

this latter condition is necessary if we require that the Banach lattice be p–convex, for

then the corresponding canonical p–multi-norm is p–convex by Theorem 4.26, and so the

initial p–multi-norm must be p–convex, where we note that p–convexity passes to closed

subspaces. In Example 5.9, we shall exhibit a strong 2–multi-Banach space (that is not

2–convex) which is not multi-isometric to pY n, } ¨ }
L,2
n q for any closed subspace Y of a

Banach lattice.
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Theorem 5.7. Take p with 1 ă p ă 8, and let pEn, } ¨ }nq be a strong p–multi-Banach

space that is p–convex. Then there are a p–convex Banach lattice X and a closed subspace

Y of X such that pEn, } ¨ }nq is multi-isometric to pY n, } ¨ }
L,p
n q.

Proof. To establish the existence of X and Y such that pEn, } ¨ }nq is multi-isometric to

pY n, } ¨ }
L,p
n q, it suffices to show that ρp defined above is subadditive. Set q “ p1.

Again take f, g P V , and fix ε ą 0. Then we can find m,n P N, x P Em, and y P En

such that

|f | ď fx, |g| ď fy, }x}m ď ρppfq ` ε, and }y}n ď ρppgq ` ε .

We may suppose that x and y are non-zero. We set

α “

ˆ

}x}m
}x}m ` }y}n

˙1{q

, β “

ˆ

}y}n
}x}m ` }y}n

˙1{q

,

so that αq ` βq “ 1. By Hölder’s inequality applied pointwise in CpKq, we have

|f | ` |g| ď

ˆ

|f |
p

αp
`
|g|

p

βp

˙1{p

.

Set z “ px{α,y{βq P Em`n, say z “ pz1, . . . , zm`nq. Then

ˆ

|f |
p

αp
`
|g|

p

βp

˙1{p

ď

˜

m`n
ÿ

i“1

|pzi|
p

¸1{p

“ fz ,

and so ρppf ` gq ď ρppfzq “ }z}m`n. Since the multi-norm p} ¨ }nq is p–convex, we have

}z}m`n ď

ˆ

}x}
p
m

αp
`
}y}

p
n

βp

˙1{p

,

and the expression on the right-hand side is just }x}m ` }y}n. Therefore

ρppf ` gq ď }x}m ` }y}n ď ρppfq ` ρppgq ` 2ε .

This holds true for each ε ą 0, and so ρp is indeed subadditive.

We must also show that the Banach lattice X is p–convex. For this, take f, g P V , as

above. Then

ρp

´

p|f |
p
` |g|

p
q
1{p

¯

ď }px,yq}m`n ď p}x}
p
m ` }y}

p
nq

1{p

ď ppρppfq ` εq
p ` pρppgq ` εq

pq
1{p

.

This also holds true for each ε ą 0, and so

ρp

´

p|f |
p
` |g|

p
q
1{p

¯

ď pρppfq
p ` ρppgq

pq
1{p

.

This implies that the Banach lattice X is p–convex.

Recall that a sequential norm is a 2–multi-norm that is 2–convex.

Corollary 5.8. Let E be a Banach space, and let p} ¨ }nq be a sequential norm based on

E. Then there are a 2-convex Banach lattice X and a closed subspace Y of X such that

pEn, } ¨ }nq is multi-isometric to pY n, } ¨ }
L,2
n q.

Proof. By Theorem 2.25, every 2-multi-norm is a strong 2-multi-norm.
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Example 5.9. First, for each p with 1 ă p ă 8, we shall construct an example of a

p–multi-normed space based on a Banach space E that is not multi-isomorphic to any

closed subspace of a Banach lattice with the canonical p–multi-norm.

Let pE, } ¨ }Eq be a Banach space, and consider the dual weak p–summing norm pνp,nq

based on E, as in Example 2.7(iv); we recall from Theorem 2.11 that pνp,nq is the max-

imum p–multi-norm based on E and that, for n P N, νp,n corresponds to the projective

tensor norm } ¨ }π,n on ` pn pbE. Suppose that X is a Banach lattice equipped with the

canonical lattice p–multi-norm p} ¨ }
L,p
n q and that T : E Ñ X is an embedding onto a

closed subspace Y of X; we may suppose that }T } “ 1. Define Mn “
›

›pT´1qpnq
›

› pn P Nq.
In fact we take E “ ` qpRq, where q “ p1. We write pδnq for the standard basis in

` ppRq, as before, and now write pδ1nq for the standard basis in E. Fix n P N, and set

e “ pδ11, . . . , δ
1
nq P E

n. Then, using equation (1.5.10), we have

νp,npeq “

›

›

›

›

›

n
ÿ

i“1

δi b δ
1
i

›

›

›

›

›

π,n

.

Consider λ “ pδ1, . . . , δnq P pE
1qn “ p` pqn. By equation (1.5.3), µq,npλq “ 1, and so

n “ xe,λy ď νp,npeq. Thus νp,npeq “ n.

Take n P N, and set xi “ Tδ1i pi P Nnq and x “ px1, . . . , xnq P Y
n, so that T pnqe “ x.

Then

n “ νp,npeq ďMn }x}
L,p
n “Mn

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

. (5.1.7)

By Proposition 4.10,

1
?

2

˜

n
ÿ

i“1

|xi|
2

¸1{2

ď
1

2n

ÿ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

εixi

ˇ

ˇ

ˇ

ˇ

ˇ

,

where the outer sum on the right-hand side is taken over all choices of εi “ ˘1 for i P Nn.

We have
›

›

›

›

›

n
ÿ

i“1

εixi

›

›

›

›

›

ď

›

›

›

›

›

n
ÿ

i“1

εiδ
1
i

›

›

›

›

›

E

“ n1{q ,

and so

1
?

2

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
2

¸1{2
›

›

›

›

›

›

ď

›

›

›

›

›

1

2n

ÿ

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

εixi

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

ď
1

2n

ÿ

›

›

›

›

›

n
ÿ

i“1

εiδ
1
i

›

›

›

›

›

“ n1{q .

Suppose that p ě 2. Then
˜

n
ÿ

i“1

|xi|
p

¸1{p

ď

˜

n
ÿ

i“1

|xi|
2

¸1{2

,

and hence, using (5.1.7), we see that

n
?

2Mn

ď
1
?

2

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

ď n1{q ,

and so Mn ě p1{
?

2qn1{p pn P Nq.
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Suppose that 1 ď p ď 2. Then
˜

n
ÿ

i“1

|xi|
p

¸1{p

ď n1{p´1{2

˜

n
ÿ

i“1

|xi|
2

¸1{2

,

and now

n
?

2Mn

ď
1
?

2

›

›

›

›

›

›

˜

n
ÿ

i“1

|xi|
p

¸1{p
›

›

›

›

›

›

ď n1{p´1{2`1{q “ n1{2 ,

and so Mn ě pn{2q
1{2 pn P Nq.

In each case, Mn Ñ 8 as n Ñ 8, and so there is no embedding of E onto a closed

subspace of a Banach lattice such that the inverse is multi-bounded.

In the case where p “ 2, the multi-norm pν2,nq is a strong 2–multi-norm. This shows

that the convexity condition in Corollary 5.8 is not redundant.

5.2. Representations as quotients of lattices. We now give a related representation

theorem for dual multi-normed spaces and certain other p–multi-normed spaces. We state

two theorems, but we shall give one combined proof.

Theorem 5.10. Let pEn, } ¨ }nq be a 1–multi-Banach space. Then there are a Banach

lattice X and a closed subspace Y of X such that pEn, } ¨ }nq is multi-isometric to the

space ppX{Y qn, ||| ¨ |||nq, where p||| ¨ |||nq is the 1–multi-norm based on X{Y that is the

quotient of the canonical lattice 1–multi-norm p} ¨ }
L,1
n q “ p} ¨ }

DL
n q based on X.

The above theorem is related to [44, Theorem 4.18].

Theorem 5.11. Take p with 1 ă p ď 8, and let pEn, } ¨ }nq be a p–multi-Banach space.

Suppose that pEn, } ¨ }nq is p–concave and that, for each finite-dimensional subspace F

of E, equipped with the p–multi-norm inherited from pEn, } ¨ }nq, the dual p1–multi-norm

based on F 1 is a strong p1–multi-norm. Then there are a Banach lattice X and a closed

subspace Y of X such that pEn, } ¨ }nq is multi-isometric to

ppX{Y qn, ||| ¨ |||nq ,

where p||| ¨ |||nq is the p–multi-norm based on X{Y that is the quotient of the canonical

p–multi-norm p} ¨ }
L,p
n q based on X.

Before giving the proof, we make a preliminary remark.

The hypothesis that arises in Theorem 5.11 implies that the dual p1–multi-norm based

on E1 is a strong p1–multi-norm. Indeed, set q “ p1, take m,n P N, and suppose that

λ P pE1qm and µ P pE1qn satisfy

}xx, λy}` q
m
ď }xx, µy}` q

n
px P Eq . (5.2.1)

For each ε ą 0, there is a unit vector y “ py1, . . . , ymq in Em with |xy, λy| ě }λ}m ´ ε.

Set F “ lin ty1, . . . , ymu, a finite-dimensional subspace of E. For each x P F , inequality

(5.2.1) holds, and so, by the hypothesis in Theorem 5.11, we have }λ | Fm}m ď }µ | F
n}n.

Hence

}µ}n ě }µ | F
n}n ě }λ | F

m}m ě |xy, λy| ě }λ}m ´ ε .
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This holds true for each ε ą 0, and so }µ}n ě }λ}m. Thus the p1–multi-norm based on

E1 is strong. Unfortunately, the converse to this statement does not hold in general; we

shall show this in Example 5.13, below.

Proof of Theorems 5.10 and 5.11. Set q “ p1 (with p “ 1 and q “ 8 in the case of

Theorem 5.10), and set

I “
ď

nPN
tx P En : }x}n “ 1u .

For each x “ px1, . . . , xnq P I, set Ex “ lin tx1, . . . , xnu, so that pEx, } ¨ }q is a finite-

dimensional, and hence closed, subspace of E. As such, Ex inherits a p–multi-norm from

pEn, } ¨ }nq; we equip E1x with the dual q–multi-norm. (By assumption when p ą 1, or by

Theorem 2.25 when p “ 1, this q–multi-norm is strong.) Then there is a multi-isometry

Sx of E1x into some Banach lattice Yx, equipped with its canonical lattice q–multi-norm.

Indeed, this is immediate from Theorem 5.5 for q “ 8, from Theorem 5.6 for q “ 1

(taking into account the preliminary remark), and from Theorem 5.7 and Proposition

2.41 for q with 1 ă q ă 8.

Being finite-dimensional, the space Ex is reflexive, so that we may consider S1x as an

operator from Y 1x onto Ex; the relevant power-norm based on Y 1x is the dual p–multi-

norm which agrees with the canonical p–multi-norm based on the Banach lattice Y 1x by

Theorem 4.28. Since S
pnq
x is an isometry for each n P N, equation (1.3.20) and Proposition

1.4(ii) imply that pS
pnq
x q1 “ pS1xq

pnq is an exact quotient operator, and so this operator

maps the closed unit ball of pY 1xq
n onto the closed unit ball of Enx .

Define X to be the ` 1-sum of the family tY 1x : x P Iu, so that X is the space of

functions f : I Ñ
Ť

xPI Y
1
x such that

fpxq P Y 1x px P Iq and
ÿ

xPI
}fpxq} ă 8 .

Then X is a Banach lattice with respect to the pointwise-defined vector lattice operations;

we equip tXn : n P Nu with its canonical p–multi-norm p} ¨ }
L,p
n q.

We shall now show that, for each n P N, the nth amplification T pnq of the linear

mapping T : X Ñ E that is defined by the formula

Tf “
ÿ

xPI
S1xpfpxqq pf P Xq

maps the closed unit ball of Xn onto the closed unit ball of En. This will clearly imply

that T pnq maps the open unit ball of Xn onto the open unit ball of En, and hence

complete the proof by Proposition 3.7.

Let n P N. On the one hand, the following calculation for f “ pf1, . . . , fnq P X
n



112 H. G. Dales, N. J. Laustsen, T. Oikhberg, V. G. Troitsky

shows that T pnq maps the closed unit ball of Xn into the closed unit ball of pEn, } ¨ }nq :

›

›

›
T pnqf

›

›

›

n
“

›

›

›

›

›

›

˜

ÿ

xPI
S1x pfjpxqq

¸n

j“1

›

›

›

›

›

›

n

“

›

›

›

›

›

ÿ

xPI
pS1xq

pnq
´

pfjpxqq
n
j“1

¯

›

›

›

›

›

n

ď
ÿ

xPI

›

›

›
pS1xq

pnq
´

pfjpxqq
n
j“1

¯
›

›

›

n
ď

ÿ

xPI

›

›

›
pfjpxqq

n
j“1

›

›

›

L,p

n

“
ÿ

xPI

›

›

›

›

›

›

˜

n
ÿ

j“1

|fjpxq|
p

¸1{p
›

›

›

›

›

›

“

›

›

›

›

›

›

˜

n
ÿ

j“1

|fj |
p

¸1{p
›

›

›

›

›

›

“ }f}
L,p
n .

On the other hand, let x P I, say x P En for n P N. Then x P Enx , so that

x “ pS1xq
pnqpλq for some unit vector λ “ pλ1, . . . , λnq P pY

1
xq
n. Moreover, since x P I, we

can define f “ pf1, . . . , fnq P X
n by setting fjpyq “ λj if y “ x and fjpyq “ 0 otherwise,

for j P Nn. Then we have

}f}
L,p
n “

›

›

›

›

›

›

˜

n
ÿ

j“1

|fj |
p

¸1{p
›

›

›

›

›

›

“
ÿ

yPI

›

›

›

›

›

›

˜

n
ÿ

j“1

|fjpyq|
p

¸1{p
›

›

›

›

›

›

“

›

›

›

›

›

›

˜

n
ÿ

j“1

|λj |
p

¸1{p
›

›

›

›

›

›

“ }λ}
L,p
n

and T pnqf “ pS1xλjq
n
j“1 “ x, and so T pnq maps the closed unit ball of Xn onto the closed

unit ball of pEn, } ¨ }nq.

As indicated, this completes the proof of Theorems 5.10 and 5.11.

Example 5.12. This example shows that the quotient of a canonical lattice 1–multi-

norm is not necessarily a strong 1–multi-norm. (We have seen a similar example of a

strong p–multi-norm with a quotient that is not a strong p–multi-norm in the case where

1 ă p ă 8 and p ‰ 2 in Example 2.39.)

Indeed, let pEn, } ¨ }nq be a 1–multi-Banach space. Then, by Theorem 5.10, there are a

Banach lattice X with the canonical lattice 1–multi-norm p} ¨ }
DL
n q and a closed subspace

Y of X such that pEn, } ¨ }nq is multi-isometric to ppX{Y qn, ||| ¨ |||nq. Now p} ¨ }
DL
n q is a

strong 1–multi-norm by Theorem 4.23, but the quotient ppX{Y qn, ||| ¨ |||nq is not neces-

sarily a strong 1–multi-norm; this would imply that every 1–multi-norm is strong, and

this is not true by Example 2.33.

Example 5.13. Take p with 1 ă p ď 8, let pEn, } ¨ }nq be a p–concave p–multi-Banach

space, and suppose that the dual p1–multi-norm based on E1 is a strong p1–multi-norm.

As we remarked before the proof of Theorems 5.10 and 5.11, above, it is not in general

true that this implies that the hypotheses of Theorem 5.11 are satisfied. To substantiate

this remark, we shall now show that, for certain values of p, there exists a p–concave

p–multi-norm based on a Banach space E such that: (i) the dual p1–multi-norm based on

E1 is strong; (ii) E has a finite-dimensional subspace F such that the dual p1–multi-norm

based on F 1 is not strong.

Indeed, take p with 1 ă p ă 2, set q “ p1, and let E be the Banach space LppIq.
We consider the p–sum power-norm based on E. By Theorem 2.28, this is a strong p–

multi-norm, and it is p–concave; the dual multi-norm based on E1 “ LqpIq is the q–sum

power-norm based on E1, and this is also a strong q–multi-norm by Theorem 2.28.
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Now take r with p ă r ă 2, and set s “ r1. Then it follows from Proposition 1.22

that ` r embeds isometrically into E, and so, for each n P N, the space E has a subspace

Fn that is isometrically isomorphic to ` rn . We have F 1n – ` sn pn P Nq.
For n P N, consider the p–sum power-norm based on Fn and the dual q–multi-norm,

which is the q–sum power-norm based on F 1n “ ` sn. Since 2 ă s ă q, it follows from

Corollary 2.29(iii) that there exists n P N such that the q–sum power-norm based on F 1n
is not strong.

Although E does not satisfy the hypotheses of Theorem 5.11, it obviously does satisfy

the conclusions of the theorem.
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Index of Terms

A

almost isometric, 11

ambient space, 39

amplification, 9, 67

annihilator, 13

AL-, AM -space, 77

AM -unit, 78

B

Banach lattice, 75

AL-space, 77

AM -space, 77

complex, 75

Dedekind complete, 77

dual, 76

Fatou property, 77

monotonically bounded, 77

Nakano property, 77

p–concave, p–convex 82

real, 75

Banach–Mazur distance, 11

base norm, 6

C

Calderón–Lozanovskii space, 93

Chevet–Saphar norms, 23

compatible couple, 39

Banach lattices, 91

complemented, 13

λ-, 13

concatenation, 9

conjugate index, 8

contraction, 11

cross-norm, 19

D

dual operator, 11

dual multi-norm, 5, 59, 62, 69

dual multi-normed space, 5

E

embedding, 12

embedding constant, 12, 67

F

Fatou property, 77

finitely representable, 12

I

inequality, Hölder, 59, 79

inequality, Khintchine, 59, 81

injective, 13

λ-, 13

intermediate space, 40

interpolation norm, 40, 49

interpolation space, 50, 58

isometric embedding, 12

isometrically isomorphic, 12

isomorphic, 11

C-, 11

isomorphism, 11

L

lattice embedding, 77

lattice homomorphism, 77

lattice isomorphic, lattice isometric, 77

lattice isomorphism, lattice isometry, 77

linear isomorphism, 9

M

matrix, special, 10

modulus, 75

modulus of surjectivity, 12

multi-bounded operator, 67

multi-embedding, 67

multi-continuous operator, 69

multi-contraction, 67

multi-isometry, 67

multi-isomorphism, 67

multi-norm, 5
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canonical lattice, 88

dual 5, 59, 62, 69

dual lattice, 87

lattice, 87

maximum, 6

maximum dual, 50

minimum, 6, 50

pp, qq-, 48

multi-normed space, 5

multi-null sequence, 69

N

Nakano property, 77

norm, ` 1–, ` p–, c 0–, 51

norm, p–sum, 14

nuclear operator, 19

O

operator sequence space, 65

operator

nuclear, 19

order-bounded, 83

p–concave, p–convex, 101

positive, 83

pre-regular, 85

regular, 83

summing, 68

pq, pq–, 68

opérateurs

` 1–réguliers, p–réguliers, 97

réguliers, 72, 97

order-bounded

set, 82

operator, 83

order-ideal, 76

P

positive

linear functional, 76

cone, 75

operator, 83

positively homogeneous, 78

power-Banach space, 6

dual, 42

power-norm, 5, 42

dominates, 43

interpolation, 49, 50

minimum, maximum, 42

p–concave, p–convex, 65

p–sum, 45, 46, 49, 50, 56, 57

quotient, 42

power-normed space, 5, 49

interpolation, 49

power-norms, equivalent, 43

projection, 13

projection constant, 13, 61

property (P), 51

p–multi-Banach space, 43

p–multi-bounded operator, 67

p–multi-norm, 43, 50

maximum, 48, 60, 62

minimum, 48

strong, 54, 60

p–multi-normed space, 43

strong, 54

p–operator space, 65

p–space, 34, 38, 46

p–sum norm, 14

p–sum power-norm, 45

p1–multi-norm, dual, 45

Q

quotient operator, 12, 13

exact, 12

quotient power-norm, 42

R

regular operator, 83

Riesz decomposition property, 77

Riesz–Kantorovich formulae, 76, 80, 84

S

Schechtman’s space, 30

sequential norm, 65

special matrix, 42

strong p–multi-normed space, 54
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strong unit, 78

sub-cross-norm, 19

reasonable, 19

sublattice, 76

subquotient, 13, 24

summing operators, pq, pq–, 68

T

tensor norm

cross-norm, 19

injective, 18

projective, 18

sub-cross-norm, 19

theorem Banach’s isomorphism, 11

Bourgain, 27

fundamental isomorphism, 9

Herz, 34

Kakutani, 77

Kwapień, 34, 38

Pisier, 104

Raynaud and Tradacete, 95

Riesz–Thorin, 41

transpose, 10

U

uniform norm, 15

unit

AM -, 78

strong, 78

W

weak 1–summing norm, 6

weak p–summing norm, 21, 46, 56, 63,

68

dual, 23, 46, 57

weak, weak˚ topology, 10

Y

Youdine–Krivine calculus, 75, 79



Index of Symbols

BE , B˝E , 10

B`E , 76

βpT q, 12

BpE,F q, BpEq, 11

BpE,F q`, BrpE,F q, BbpE,F q, 83

BprpE,F q, 85

CpKq, CpK,Rq, CpK,Cq, 15

c 0, c 00, 14

c 00pΓq, 15

∆x, 76

∆pT1,...,Tnq, 10, 16

δγ , 15

δi, 14

E1, 10

E`, 75

E ‘p F , 11

E „ F , E „
C
F , 11

E – F , 12

E b F , 17

pE pbF, } ¨ }πq, pE qbF, } ¨ }εq, 18

Ep` pnq, 87

FK, 13

fx, 104

FpE,F q, 11

F, 5

IE , In, 8

Ie, 78

I, 8

JF , 9

KG, 82

κE , 10

LppΩ, µ,Rq, LppΩ, µ,Cq, LppIq, 24

LppΩq b E, LppΩ;Eq, 33

` p, 14

` ppEq, ` pnpEq, 14

` ppΓq, 15

LpE,F q, 8

pLpE,F q,ďq, 82

λpF,Eq, 13, 61

λb µ, 18

pµ1,nq, 6

pµp,nq, 21, 48, 56, 66, 68

Mm,n,Mn, 10

M8, 30

MpE,F q, MppE,F q, 67

pN pE,F q, } ¨ }νq, 19

Nn, 5

pνp,nq, 23, 46, 48, 57, 60, 61

Pn, 14

pΠq,ppE, fq, πq,pq, 68

QF , 9, 76

rpT q, 12

SE , 10

Sp, 30, 32

|S|, 8

SQppq, 24, 26, 38, 46, 57

S ď T , 82

S b T , 18

S bπ T , S bε T , 20

ΣpT1,...,Tnq, 10, 16

σpE,E1q, σpE1, Eq, 10

T 1, 11

T pnq, 9, 67

TC, 76

px,yq, xx, λy, 9

xx, λy, 17

px, 10

y ďp x, 34, 105

y b λ, 11

Zp, 30

p} ¨ }n : n P Nq, 5

p} ¨ }
min
n : n P Nq, p} ¨ }max

n : n P Nq, 6

} ¨ }8, 15

} ¨ }b, } ¨ }r, 84

} ¨ }mb, } ¨ }p´mb, 67

} ¨ }pr, 85

} ¨ }
DL
n , } ¨ }

L,p
n , } ¨ }

L
n , 87

} ¨ }ε,n, 22, 48

} ¨ }π,n, 23, 48

p} ¨ }
1
nq ď p} ¨ }

2
nq, p} ¨ }

1
nq – p} ¨ }

2
nq, 43

p} ¨ }
:

mq, 73

p} ¨ }
pp,qq
n q, 48

} ¨ }
1
, 10
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