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Abstract

Exponential smoothing is one of the most popular forecasting methods in practice.

It has been used and researched for more than half a century. It started as an

ad-hoc forecasting method and developed to a family of state-space models. Still all

exponential smoothing methods are based on time series decomposition and the usage

of such components as “level”, “trend”, “seasonality” and “error”. It is assumed that

these components may vary from one time series to another and take different forms

depending on data characteristics. This makes their definition arbitrary and in fact

there is no single way of identifying these components.

At the same time the introduction of different types of exponential smoothing

components implies that a model selection procedure is needed. This means that

a researcher needs to select an appropriate type of model out of 30 different types

either manually or automatically for every time series analysed. However several

recent studies show that an underlying statistical model may have a form completely

different than the one assumed by specific exponential smoothing models.

These modelling questions motivate our research. We propose a model without

strictly defined “level”, “trend” and “seasonality”. The model greatly simplifies the

selection procedure, distinguishing only between seasonal and non-seasonal time se-

ries. Although we call it “Complex Exponential Smoothing” (CES), due to the use

of complex-valued functions, its usage simplifies the forecasting procedure.

In this thesis we first discuss the main properties of CES and propose an under-

lying statistical model. We then extend it in order to take seasonality into account
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and conduct experiments on real data to compare its performance with several well-

known univariate forecasting models. We proceed to discuss the parameters estima-

tion for exponential smoothing and propose a “Trace Forecast Likelihood” function

that allows estimating CES components more efficiently. Finally we show that Trace

Forecast Likelihood has desirable statistical properties, is connected to shrinkage and

is generally advisable to use with any univariate model.
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Introduction

When a company needs to make a business decision, it requires information about the

market, its clients’ and competitors’ behaviour in future. There is always a very high

level of uncertainty in all of these areas. In order to decrease it companies usually pro-

duce point and interval forecasts, which allow them to make adequate decisions. The

uncertainty may decrease even more if these are produced using statistical methods,

ensuring that the selected model is correctly specified.

The theory of forecasting is broad and very well developed nowadays. There are

basic principles that ensure that the more accurate forecasts are produced and there

are several popular methods that have been shown to work effectively in practice.

One of the most popular forecasting methods is “Exponential Smoothing”. It was

proposed independently by Brown (1956) and by Holt (2004). Due to its simplic-

ity and general robustness it has become very popular amongst practitioners and is

widely used in forecasting applications. Nevertheless exponential smoothing meth-

ods have been ignored by statisticians for many years because of the absence of an

underlying statistical model. The gap between theory and practice was substantially

overcome when Snyder proposed a Single Source of Error State Space model (Sny-

der, 1985) and then from the end of 90s to the beginning of 00s Rob J. Hyndman,

Anne Koehler, Keith Ord and Ralph Snyder produced several papers, developing the

theory of exponential smoothing (Ord et al., 1997; Koehler et al., 2001; Hyndman

et al., 2002, 2005, 2008a). Finally they systematised all knowledge in the field and

published a textbook on exponential smoothing (Hyndman et al., 2008b).

1



The motivation of this PhD thesis is that although exponential smoothing is very

popular and has been shown to perform well in practice, it has not seen any substantial

improvements since Hyndman et al. (2008b). Nevertheless some of the most popular

exponential smoothing methods do not perform consistently. In a literature review

presented in chapter 1 we show that there has not been a substantial change in

modelling principles in time series over the last decades. Furthermore several research

studies show that the existing exponential smoothing methods do not perform as

accurately as expected in various cases. The explanation of this is that an underlying

“true model” (if it exists at all) may be more complicated than thought, thus it cannot

be properly captured by the existing techniques.

In chapter 2 we propose a new approach to time series modelling and forecasting,

which is based on the notion of “information potential”. The idea behind this is that

each time series contains some hidden information which can not be properly revealed

using conventional methods. In order to take it into account it is proposed to use

a complex variables representation, using the imaginary part as some approximation

of this unobservable component. Using this idea and the mechanism of exponential

smoothing, we propose a model called “Complex Exponential Smoothing” (CES).

The proposed model allows a smooth transition between level and trend data, and

is able to model different types of time series. We discuss the statistical properties

of CES and derive a state-space form. We then discuss its forecasting capabilities

and show on several experiments how it performs. Finally we compare the forecast

accuracy of CES with conventional Exponential smoothing (ETS) and autoregressive

model with movina average (ARIMA) models on M3 monthly data, demonstrating

its superiority on this dataset.

The original CES does not take possible seasonality into account, but these types

of time series form a substantial part of all business data. This motivates further

research and in chapter 3 we discuss an extension of the proposed model, which
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allows modelling both additive and multiplicative seasonalities and introduces new

form (where level of the series is constant, but the amplitude of seasonality changes).

We then discuss a model selection procedure and demonstrate with a simulation that

the selection between seasonal and non-seasonal CES is done more accurately than for

other commonly used univariate statistical models. Finally we conduct an experiment

on M3 data and show that CES with model selection outperforms ETS and ARIMA,

mainly due to the increased long-term forecasting accuracy.

Knowing the properties of CES, it is essential to estimate correctly its complex

smoothing parameters, which motivates the last methodological chapter of this thesis.

In order to overcome the limitations of the existing estimation methods we studied the

alternatives and came to conclusion that one of the possible solutions to the problem

lies in the application of estimators based on multiple steps ahead forecast errors.

In chapter 4 we discuss the limitation of existing methods, give explanation of the

processes happening when they are applied to univariate models and propose a new

technique that we call “Trace Forecast Likelihood” (TFL). We discuss its statistical

and optimisation properties and demonstrate why the proposed method guarantees

more accurate estimates of parameters. We then conduct a simulation in order to

support our theoretical findings and demonstrate the superiority of the proposed

estimator. We also show the general applicability of TFL to any univariate time

series model.

The conclusions and the possible future research directions follow in the last chap-

ter where we identify new research avenues that open based on CES, TFL and ideas

behind them.
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Chapter 1

Literature Review

1.1 Introduction

Ten years have passed since Gardners review (Gardner, 2006) which summarized

progress in the area of exponential smoothing (ETS) since his previous review (Gard-

ner, 1985). Those twenty years had brought a lot of advances to the field of expo-

nential smoothing: the state-space approach using single source of errors (SSOE) has

been developed (which allowed the calculation of variances and likelihood for ETS),

the systematization of different exponential smoothing methods has been established

and a general taxonomy, uniting all these methods, has been proposed. In addi-

tion exponential smoothing models selection procedures have been introduced. All

of these were parts of the big step towards forecasting accuracy improvement in the

field of exponential smoothing. The substantial contribution to the field since 2006

is the textbook by Hyndman et al. (2008b) which systematizes all the main results

achieved in the exponential smoothing in a unified framework and shows how to use

these models in practice in different situations.

Since then the field developed slowly introducing only minor changes in the exist-

ing models. Still there has been some progress and our literature review demonstrates

the most interesting papers in the field organising the contributions in the following

categories:
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1. Why damped trend method works. Damped trend method has been shown

to perform very well in many cases and is considered as a robust forecasting

method, meaning that it can be applied to time series of different types in

order to obtain good forecasts. Here we analyse the articles aiming to give an

explanation of the performance of this method.

2. Combinations of forecasts. It has been shown since the first M-Competitions

(Makridakis et al., 1982) that combinations of forecasts perform very well, some-

times even outperforming individual methods. Usually exponential smoothing

is included in combinations exclusively or as one of the forecasting methods.

Several papers in this area have been included in this section.

3. Hybrid models. Another approach used in order to increase forecasting accuracy

uses hybrid models. Arguably this approach follows the same ideas as combi-

nation of forecasts but from a more sophisticated perspective, often including

models with complimentary properties.

4. Temporal aggregation. There is renewed interest to this approach to time series

forecasting. It employs the idea that aggregation of time series on different

frequencies may reveal some hidden patterns in data.

5. High-frequency data. Methods for high-frequency data forecasting are consid-

ered to be more complicated than the methods for slow moving data. This is

because this type of data contains many more patterns and information. Usu-

ally exponential smoothing and ARIMA models are modified in order to take

this into account. This area has seen the substantial development over the last

decade but still holds several unanswered questions.

Obviously there have been more papers that make use of exponential smoothing

over the last ten years, but those discussed in this review demonstrate gaps in the

field and motivate our research.
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Before we proceed with more details on the new forecasting methods, we need

to clarify what exponential smoothing is. In this thesis we discuss single source of

error state-space model underlying all the exponential smoothing methods that can

be formulated the following way (Hyndman et al., 2008b):

yt = w(vt−l) + r(vt−l)εt
vt = f(vt−l) + g(vt−l)εt

, (1.1)

where yt is actual value of time series, εt is error term, vt−l is a state vector, w(.) is

measurement function, r(.) is error term function, f(.) is transition function and g(.)

is persistence function.

A special case of this model is pure additive ETS, which can be written as:

yt = w′vt−l + εt
vt = Fvt−l + gεt

, (1.2)

where w is measurement vector, F is transition matrix, g is persistence vector.

Simple Exponential Smoothing, being an important method for this thesis, has

an underlying ETS(A,N,N) state-space model:

yt = lt−1 + εt
lt = lt−1 + αεt

, (1.3)

where lt is level of series and α is smoothing parameter for level.

The other important method - Holt’s method - has the following underlying ETS

model:
yt = lt−1 + bt−1 + εt
lt = lt−1 + bt−1 + αεt
bt = bt−1 + βεt

, (1.4)

where bt is trend component and β is smoothing parameter for trend. This model in

(Hyndman et al., 2008b) taxonomy is called ETS(A,A,N).

The majority of exponential smoothing models can be represented this state space

form. Some of them are discussed in this chapter.
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1.2 Common datasets for forecasting

There are several popular datasets in forecasting that are widely used in different

papers. Here we give a brief description of them.

M3 dataset refers to the data used in M3-Competition (Makridakis and Hibon,

2000). It consists of 3003 time series, including yearly, quarterly, monthly and “other”

types of data. These are time series from different areas, including industry, finance,

macroeconomic etc.

NN3 dataset is a subset of monthly time series from M3. It includes 111 data with

large number of observations.

Australian tourism competition dataset (Athanasopoulos et al., 2011) has 518

yearly, 427 quarterly and 366 monthly time series, which were supplied by tourism

agencies and various academics, who had used them in previous tourism forecasting

studies

Finally, there is also macroeconomic data by Federal Reserve Bank of St. Louis

(FRED), which consists mainly of yearly macroeconomic data.

1.3 Why damped trend method works

There are several papers published since 2006 explaining the good performance of

damped trend exponential smoothing proposed by Gardner and McKenzie (1985).

The method performed very well in M3-Competition (Makridakis and Hibon, 2000)

and several authors reported that it also performed well on other time series. Several

researchers have looked into this problem trying to identify the appropriate rationale

of such good performance of the method.

Snyder and Koehler (2009) show that simple exponential smoothing with the

embedded Triggs’ tracking signal is equivalent to a restricted damped-trend expo-

nential smoothing method. The authors claim that this idea helps in understanding
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why damped-trend method performs better than other ETS methods on M3 data.

They claim that it underlies high number of different methods. A small competition

on yearly data of M3 is performed in this research and it is shown that restricted

damped-trend method performs even better than simple damped trend.

McKenzie and Gardner (2010) give a detailed explanation of the performance of

random coefficients state-space model underlying their method:
yt = lt−1 + Atbt−1 + εt
lt = lt−1 + Atbt−1 + αεt
bt = Atbt−1 + βεt

. (1.5)

where At is a binary random variable with P (At = 0) = φ and P (At = 0) = 1 − φ.

The inclusion of random term At allows to describe the variety of different processes.

For example if At is equal to one on every observation t, then the resulting process

resembles the local trend process. If At is equal to zero, then the local level process

is generated.

The authors also derive the equivalent ARIMA model with random coefficients for

the proposed model (1.5) and give their explanation of why damped trend performs

on average better than the other exponential smoothing methods (SES and Holt’s

methods). They show that the damped trend method underlies a wider range of

processes than other exponential smoothing methods and thus damped trend is more

capable of modelling and forecasting time series of different nature (stochastic or

deterministic level / trend). This gives damped trend the property of being robust

when using one single model for forecasting different time series.

In a following article Gardner and McKenzie (2011) once again examine damped

trend method and derive several particular methods from it. They propose an heuris-

tic estimation procedure for the initial values using local and global values (the last

appears to give a little bit less accurate forecasts) and use Solver from MS Excel to

minimize Mean Squared Error (MSE). The resulting symmetric Mean Absolute Per-

centage Error (SMAPE) differs a little bit from SMAPE published by Makridakis and
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Hibon (2000) but the difference is not statistically significant. Models are estimated

on M3 data and authors show that several series follow ETS(A,N,N) with damped

drift and random walk with damped drift processes. As a result the damped trend

method (being a more general case) performs well on M3 dataset.

In our view one of the reasons of good performance of the damped trend method

is the φ parameter which reduces the effect of wrong estimation of trend component.

This is probably the reason why damped trend performs better than Holt’s method.

If a different estimation technique is used, then performance of Holt’s method would

probably improve. It also highlights the usefulness of more flexible models to conven-

tional SES and Holt’s methods.

1.4 Forecasts combinations and hybrid models

Over the years combinations of forecasts have been reported to perform, on average,

more accurately than individual forecasts (Makridakis et al., 1982; Makridakis and

Hibon, 2000). There are some developments on how to best combine forecasts, but

only a few papers that use exponential smoothing have appeared in the literature.

The basic method of forecast combination usually involves using either a simple

mean or weighted average. The general knowledge of statistics dictates that in cases of

outliers it is wiser to use median value instead of mean. Jose and Winkler (2008) show

that using winsorizing and trimming instead of median usually gives an increased

forecast accuracy. The rationale for their proposition is that the mean is usually

influenced by outliers and median while being a robust measure usually leads to the

loss of a useful information. The authors use forecasts made by 22 methods from M3

competition in the combination to show that the use of winsorizing and trimming

increases forecasting accuracy. The results of combinations of forecasts made by 5,

7 and 9 models are also shown. Authors remark that the increase in forecasting

accuracy from 5 to 9 models looks comparable to the increase from 9 to 22 models,
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which leads to the conclusion that increase in forecasting accuracy is declining with

the increase of number of models used in combination. Their proposed combination

methods are also tested on Nominal Gross Domestic Product data with similar results.

In conclusion the authors advise using 10% – 13% of trimming and 15% – 45% of

winsorizing, giving the preference to winsorizing. These recommendations however

do not have a theoretical ground and are based on empirical findings of the authors.

One of the other possible forecast combination techniques involves defining weights

for different methods rather than using equal weights. Kolassa (2011) uses information

criteria, such as AIC, AICc and BIC to determine weights and combine point and

interval forecasts for different exponential smoothing models rather than choosing the

best one among them (using similar principles as in Burnham and Anderson (2004)).

The author conducts an experiment on M3 data and shows that forecasting accuracy

increases in some cases when using the proposed method. One disadvantage of the

proposed method is that it can only be applied to models from the same class (either

exponential smoothing or autoregressive models) while combination forecasts made

using different approaches could contain different information and features of analysed

time series.

Another popular approach in forecasting is the construction of hybrid models as

alternative to a combination of forecasts. Usually in these cases one of the models

that is used in the process is exponential smoothing model.

For example Maia and de Carvalho (2011) propose combining Holt’s exponential

smoothing modified for interval-valued series with a neural networks method. The

resulting method is checked on a stock-market series and is compared with single

models. The selection of Holt’s method in the article instead of alternatives like

damped trend, which has been shown in several papers to work better for trend

time series, is not justified. The time series the authors use could also be seen as a

multivariate problem and comparison of results with multivariate ETS on a bigger
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sample of time series would have been more appropriate, as it could show whether the

differences in accuracy of different methods are statistically significant. Furthermore

the authors did not include the Naive method in their benchmarks list, which typically

is unbeatable on this type of series. Whilst the research was lacking the paper is still

useful for our review as it recognises that hybrid models may perform better than

single models.

Wang et al. (2012) propose a hybrid model for stock index forecasting. This

model consists of SES, ARIMA and a neural network method (NN). Authors propose

to select weights using the squared one-step-ahead forecasting error minimization via

a genetic algorithm. The proposed hybrid model outperforms the equally weighed

hybrid model, random walk, SES, ARIMA and NN used separately on two time

series. The comparison of methods included in the article is not enough. Comparing

the proposed hybrid model with other hybrids proposed in other papers on a larger

dataset is necessary in order to justify the proposed hybrid. For now these results are

not statistically significant and the selection of competing methods raises additional

questions. For example, why did the authors choose SES instead of some other more

robust exponential smoothing method?

Nevertheless both Maia and de Carvalho (2011) and Wang et al. (2012) highlight

that ETS models may not capture all information available in a series.

Davydenko and Fildes (2012) propose a method of joint forecasting by a statis-

tical model and expert’s judgment using a Bayesian approach. They argue that by

combining point forecasts of any statistical model and the standard error of experts

more accurate forecasts can be obtained. This can be explained by the idea that us-

ing judgemental opinion can in general increase forecasting accuracy if an expert has

additional valuable information about the future. The authors benchmark the result-

ing forecasts with Naive and automatic ARIMA on Australian tourism demand data.

Notably state-space exponential smoothing applied to the data produced downwards
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trend (based on the several last available observations) and performed the worst of all

the models. This happens mainly because of a weights distribution used in exponen-

tial smoothing and the property of “short memory”, where recent events have higher

value than the past. As a result the model is excluded from further comparison, which

shows that using judgment one can obtain more accurate forecasts with the proposed

joint model.

Findings in the area of forecasting discussed in this section indicate that an under-

lying statistical model may have a more complicated form. Otherwise combinations

of forecasts and hybrid models would not be needed; the only thing a forecaster would

need to do would be to select the correct model. Still even if the model has a known

form, it may be hard to select it from all the possible models known due to the large

number of candidates. Furthermore there are different model selection procedures

but none of them guarantees for an individual data set that the correct model will

be selected. Finally even if an appropriate model is selected, it needs to be esti-

mated properly in order to cater for limited sample. The example of Davydenko and

Fildes (2012) demonstrates this point: if state-space exponential smoothing model

was estimated using a different method, it could in theory perform better.

1.5 Temporal aggregation

Temporal aggregation operates by aggregating data using some function with higher

frequency in order to obtain slower moving series. After the new time series are

produced, the most appropriate of them is selected, the model is fitted on that level,

forecasts are produced and after that – somehow reconciled.

Andrawis et al. (2011) propose a new approach for forecast combination. They

propose to combine forecasts made using monthly series and then the same series

aggregated to yearly data. Though the authors do not give a detailed explanation

of why this should be done, they claim that aggregation to yearly data allows one

12



to capture long-term dependencies while monthly data models capture short-term

information. Several methods of weights estimation are studied in the article including

simple and geometric means and different types of weighted averages. The M3, NN3

and tourism data (inbound tourism demand for Egypt, 34 time series) are used in the

benchmark of the proposed approach. The usage of NN3 by the authors is not clear

as it is a subset of M3.

Kourentzes et al. (2014) propose a novel framework for time series forecasting

called “Multi Aggregation Prediction Algorithm” (MAPA). Forecast using MAPA is

produced in 3 steps: (1) Aggregation of original time series (which is done using dif-

ferent levels). (2) Fitting of ETS to each of the levels and transformation of obtained

multiplicative components (if they appear) into additive components. (3) Combina-

tion of the obtained components to produce final ETS combined model. The final

forecast is done after all 3 steps. M3 data and FRED are used in the experiment.

MAPA is compared with Hyndman et al. (2002) ETS and a simple combination of

forecasts on different levels (using mean and median values). The results indicate that

MAPA is statistically significantly (on probability of 0.05) more accurate in almost

all the categories of times series in M3 and FRED.

Kourentzes and Petropoulos (2016) propose a modification of the original MAPA

in order to take promotions into account as exogenous variables. They tackle several

problems caused by multicollinearity and conduct an experiment on simulated and

real data. The authors show that forecasts of MAPAx have smaller bias and higher

accuracy than ETS, MAPA, ETS with exogenous variables and regression on the used

dataset.

The fact that MAPA and MAPAx perform so well indicates that conventional

ETS cannot always capture correctly components in time series. There are at least

two possible reasons for that: (1) The underlying model is more complicated than it is

thought. MAPA in this case manages to capture non-linear relations by aggregating
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data. (2) ETS components cannot be properly captured because of the problems

with estimation on finite samples. Due to combination of forecasts MAPA in this

case manages to mitigate this and produce better estimates of ETS components.

1.6 High-frequency time series forecasting

Finally, one of the main streams in scientific publications since 2006 is the use the

of state-space approach for high-frequency time series forecasting. Taylor’s double

seasonal method (Taylor, 2003) has been considered as one of the main exponential

smoothing based solutions to the problem of high-frequency data forecasting till 2006.

The method can be represented by the following system (transforming it in to error-

correction form): 

ŷt+h|t = (lt−1 + h · bt−1)s1,t−m1s2,t−m2

lt = lt−1 + bt−1 + α εt
s1,t−m1s2,t−m2

bt = bt−1 + β εt
s1,t−m1s2,t−m2

s1,t = s1,t−m1 + γ1
εt

lt−1+bt−1

s2,t = s2,t−m2 + γ2
εt

lt−1+bt−1

, (1.6)

where h is forecast horizon, yt is actual data, lt is level component, bt is trend compo-

nent, s1,t is first seasonal coefficient, s2,t is second seasonal coefficient, m1 is frequency

of the first type of seasonality (for example, monthly), m2 is frequency of the second

type of seasonality (for example, weekly), α, β, γ1 and γ2 are smoothing parameters.

The Taylor (2003) method has several disadvantages. Firstly, it is based on Holt-

Winters method with multiplicative seasonality and has restrictions concerning the

number of seasonal coefficients (the number of coefficients is very high and is hard to

estimate) and how often they are updated. Besides, Taylor’s double seasonal model

does not have an underlying statistical model. That is why the topic of high-frequency

time series forecasting became of interest in several articles since.

Gould et al. (2008) propose a model for multiple seasonality forecasting. They

address the problem of absence of an appropriate underlying model for time series

having multiple seasonalities (for example, daily data can have weekly and monthly
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seasonality at the same time) and propose a new approach for high-frequency time

series forecasting. Their model, called MS(r,m1,m2) (“Multiple Seasonality”), has

additive and multiplicative forms and is a generalization of Holt-Winters and Taylor’s

methods. Here r designates the number of different sub-cycles. For example, sub-

cycles for working days can be similar and the same can hold for weekends. This may

result in a decrease of number of seasonal coefficients from 7 (5 for the workdays and

2 for weekends) to r = 2.

MS with additive seasonality is:
yt = lt−1 + bt−1 +

∑r
i=1 xi,tsi,t−mi

+ εt
lt = lt−1 + bt−1 + αεt
bt = bt−1 + βεt
si,t = si,t−mi

+
∑r

j=1 γi,jxj,tεt

, (1.7)

MS with multiplicative seasonality is:
yt = (lt−1 + bt−1) (

∑r
i=1 xi,tsi,t−mi

) (1 + εt)
lt = (lt−1 + bt−1)(1 + αεt)
bt = bt−1 + β(lt−1 + bt−1)εt

si,t = si,t−mi

(
1 +

(∑r
j=1 γi,jxj,t

)
εt

) , (1.8)

where xi,t is a dummy variable that is equal to 1 when time t occurs during the

sub-cycle i and 0 otherwise, γi,j is smoothing parameter.

The authors’ model uses dummy variables xi,t for modelling sub-cycles which

permits implementation of the idea of joint updates for seasonal coefficients inside sub-

cycles. Besides, using the proposed idea the number of seed values can be substantially

decreased. One additional advantage of the proposed model is that it can handle

missing data without any need for additional variables. This is done via the very

same dummy variables xi,t.

The authors carry out a comparison of the model with a modification of Taylor’s

double seasonal and classical Holt-Winters methods on traffic data and hourly vehicle

count data. This experiment demonstrates superiority of the proposed model. The

authors also show that Taylor’s method can be considered a special case of their new

multiple seasonal model.
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The same year Taylor (2008) publishes an article with a comparison of several

methods on high-frequency data. The list of models includes several different ETS,

ARIMA for double seasonality, regression model (demand as affected by weather),

Taylor’s double seasonal method with first order autocorrelation correction (Taylor,

2003) and Gould et al. (2008) model. All of them are tested on electricity demand

data. Taylor remarks that simple Holt’s method performs poorly and excludes it

from further analysis. Different models are also optimised using different forecasting

horizons (for example, including 30 observations ahead). As a result of this small

competition, Taylors double seasonal model optimised for 30 minutes ahead gave the

most accurate forecasts for short term, while the regression model gave the most

accurate forecasts for long term.

In Taylor (2010) British and French electricity load series are studied, triple sea-

sonal ARMA and triple seasonal Holt-Winters models with a first order autocor-

relation correction (triple seasonal HWT) are proposed. These models become the

most accurate during an experiment in the article amongst triple, double and single

seasonal models for the horizon of 1 hour up to 1 day. The author shows that a

combination of triple seasonal ARMA and HWT gives even more accurate forecasts.

It should be remarked once again that all the research is done using only 2 time series

and all the models are compared using MAPE.

De Livera (2010) proposes a new generalization for high-frequency data exponen-

tial smoothing models which is called “BATS(ω, φ, p, q,m1,m2, ...,mT ) (B stands for

“Box-Cox transformation”, A – ARMA residuals, T – trend component, S – seasonal

component), which implies the prior Box-Cox transformation of original data. Here

ω is Box-Cox transformation parameter, φ is damping parameter, p and q are ARMA
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orders and m1, ...,mT are seasonal periods. The general form of the BATS model is:
y
(ω)
t = lt−1 + φbt−1 +

∑M
i=1 si,t−mi

+ εt
lt = lt−1 + φbt−1 + αdt
bt = φbt−1 + βdt
dt =

∑p
j=1 ϕjdt−j +

∑q
j=1 θjεt−j + εt

, (1.9)

where dt is an ARMA(p,q) process, ϕj and θj are parameters of AR(p) and MA(q)

parts respectively. All the other parameters in this model correspond to the ones

discussed above.

As we see the main difference between BATS and other high-frequency seasonal

models is in usage of ARMA and Box-Cox transformation. This allows it to capture

additional information in data and as a result the proposed BATS model outperformes

Taylor’s double-seasonal exponential smoothing on example of a time series. The

paper does not provide an extensive empirical evaluation and it is hard to gauge the

accuracy of BATS compared to other high-frequency data methods.

De Livera et al. (2011) show an underlying statistical model for BATS and propose

a new model based on Fourier series. The authors show that Gould et al. (2008) and

Taylor’s double and triple seasonal models can be viewed as special cases of BATS. For

example, Taylor’s double seasonal model with an autoregressive term can be written

as BATS(1, 1, 1, 0,m1,m2). TBATS model (T stands for “trigonometric”) is based

on Fourier transformation which is the main difference from BATS. It uses following

system of equations instead of si,t−mi
in (1.9):si,t =

∑ki
j=1 si,j,t

si,j,t =
(
si,j,t−1 cosλi,j + s∗i,j,t−1 sinλi,j

)
+ γi,1dt

s∗i,j,t =
(
s∗i,j,t−1 cosλi,j − si,j,t−1 sinλi,j

)
+ γi,2dt

, (1.10)

where λi,j = 2πj
mi

, γi,1 and γi,2 are smoothing parameters, si,j,t−1 is the level of the

i-th seasonal component, s∗i,j,t−1 is the trend of the i-th seasonal component, ki is the

number of harmonics required for i-th seasonal component.

Using the Fourier transformation allows a decrease in the number of parameters

needed for initialization, while usage of γi,1 and γi,2 in (1.10) still allows to use the
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principle of exponential smoothing in the model that results in update of seasonal

components over time. Due to (1.10) the TBATS model allows us to deal with non-

integer seasonality and has fewer initial values to estimate compared with BATS.

Both BATS and TBATS allow modelling complicated time series with several

seasonal patterns (for example daily, weekly and monthly). State-space forms of

BATS and TBATS, equivalent ARIMA and likelihood function are derived in De

Livera et al. (2011). It is shown that TBATS can also be used for complex seasonal

time series decomposition. TBATS is then compared with BATS on a time series,

but no real competition between models is conducted.

Continuing the topic of high-frequency time series forecasting Taylor and Snyder

(2012) compare Taylor’s double seasonal model, double seasonal ARIMA and Gould

et al. (2008) model. They show that Taylor’s model while being more complex in

number of parameters than Gould’s is still more accurate because it assumes that

parts of days can differ in contrast with Gould’s model assuming that only whole

days should be treated as identical. The comparison of methods accuracy is done

only on three time series.

Summarizing this section, two conclusions can be reached:

1. Models for high-frequency data open a question of correct estimation of pa-

rameters. Several models have been proposed, but all of them use short-term

information, being optimised using the conventional mean squared one step

ahead forecast error. Only Taylor (2008) notes that forecasting accuracy in-

creases when models are estimated using multiple steps ahead estimators, but

no one else in the field of high-frequency data uses this finding.

2. Gould’s and Taylor’s models allow modelling of both additive and multiplicative

seasonality. However selection procedures between additive and multiplicative

multi-seasonal models are not established, so it is not obvious how to select an

appropriate model in real data using these models.
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Therefore the estimation of such models, particularly given the number of param-

eters and identifying and capturing the nature of the multiple seasonal cycles, remain

challenging. These should be areas of further research.

1.7 Conclusions

Concluding the review, there are several open questions that motivate our research.

First, the true model (if one exists) may have a much more complicated structure

than it is though to have. The papers in forecast combinations, hybrid models and

temporal aggregation support this hypothesis. Proposing a more flexible non-linear

model could address this problem. However such a model would be desirable to retain

the simple interpretation and ease of use of conventional exponential smoothing.

Second, even if we assume that a true model is known, selecting it from the pool

of all the known models is not a trivial task. Combining several models allows us to

partially overcome this limitation but does not completely solve the problem. Intro-

ducing a model that could side step the selection procedure could be an alternative

solution to the problem. The good performance of damped trend indicates that this

may be a fruitful avenue to explore.

Third, high-frequency data demonstrates that seasonality in high-frequency can

be both additive and multiplicative but no mechanism for model selection has been

proposed. Proposing a seasonal model that would be able to model both types with-

out a need to switch between them could be another possible direction of research.

Furthermore on high frequency data, for example in the case of solar irradiance the

observed seasonality may be neither.

Finally, high-frequency data examples and damped trend method papers point

out that the existing models may face a problem from a different angle: estimation

rather than model selection. Using multiple steps ahead estimators seems to help

solve this problem. This question will be investigated further.
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This work will attempt to address these questions. As discussed above some of

the open questions can be approached in multiple alternative ways. For example, we

will explore the problem of model selection both from the point of view of deriving

more flexible models, but also as part of parameter estimation. This way we attempt

to explore the promising directions of the research we identified in this review.

Finally it is important to underline that exponential smoothing has the advantage

of being relatively easy to understand and use in practice. It is desirable that fur-

ther improvements in the field should retain this property, as this is crucial to allow

innovations to transfer to practice. This will be central to our motivation of how we

research new models and techniques in the area of exponential smoothing.
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Chapter 2

Theory of Complex Exponential
Smoothing

In this chapter we discuss the idea of “information potential”, propose a new mod-

elling approach in time series and a new model using this approach. All the materials

in this chapter are based on an article submitted to European Journal of Operational

Research (currently under review).

2.1 Introduction

Exponential smoothing is a very successful group of forecasting methods which is

widely used both in theoretical research (for examples see Jose and Winkler, 2008;

Kolassa, 2011; Maia and de Carvalho, 2011; Wang et al., 2012; Athanasopoulos and

de Silva, 2012; Kourentzes et al., 2014) and in practice (see different forecasting

comparisons by Fildes et al., 1998; Makridakis and Hibon, 2000; Gardner and Diaz-

Saiz, 2008; Athanasopoulos et al., 2011).

The exponential smoothing methods are well known and popular amongst prac-

tising forecasters for more than half a century originating from the work by Brown

(1956). Hyndman et al. (2002), based on work by Snyder (1985) and Ord et al. (1997),

embedded exponential smoothing within a state space framework, providing its statis-

tical rationale, resulting in ETS (short for ExponenTial Smoothing). ETS provides
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a systematic framework to estimate parameters, construct prediction intervals and

choose between different types of exponential smoothing.

While ETS is widely used, recent work has demonstrated that it is possible to

improve upon. Research shows that various combinations of exponential smoothing

models result in composite ETS forms beyond the 30 standard forms (Hyndman

et al., 2008b) which leads to improvement in forecasting accuracy (Kolassa, 2011;

Kourentzes et al., 2014). We argue that models in the existing taxonomy do not cover

all the possible forms. A possible complicating factor for ETS is the assumption that

any time series can be decomposed into several distinct components, namely level,

trend and seasonality. In particular separating the level and trend of the time series

presents several difficulties. The motivation in this paper is to try to avoid this

artificial distinction. For this reason we focus our research on the level and trend

aspects, and do not examine seasonality that can usually be easily distinguished.

We propose a new approach to time series modelling that eliminates the arbitrary

distinction between level and trend components, and effectively sidesteps the model

selection procedure. To do this we introduce the concept of “information potential”,

an unobserved time series component. We argue that this information exists in any

time series and including it in a model results in superior forecasting accuracy. We

encode the observed values of a time series together with the information potential

as complex variables, giving rise to the proposed Complex Exponential Smoothing

(CES). We demonstrate that CES has several desirable properties in terms of mod-

elling flexibility over conventional exponential smoothing and demonstrate its superior

forecasting accuracy empirically.

The rest of the article is structured as follows. The conventional and the new

approaches to time series modelling are briefly discussed in section 2.2, leading to the

introduction of the Complex Exponential Smoothing (CES) in section 2.3. Within

that section properties of CES and connections with existing models are discussed.
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Section 2.4 proposes a proxy for the information potential and discusses its impli-

cations for CES. Finally real life examples are shown and the comparison of CES

performance with competing statistical models is carried out in section 2.5, followed

by concluding remarks.

2.2 Conventional and complex-valued approaches

Hyndman et al. (2008b) systematised all existing exponential smoothing methods and

showed that any ETS model is based on one out of five types of trends (none, additive,

damped additive, multiplicative and damped multiplicative), one out of two types of

errors (additive and multiplicative) and one out of three types of seasonal components

(none, additive and multiplicative). This taxonomy leads to 30 exponential smoothing

models that underlie different types of time series. Model parameters are optimised

using maximum likelihood estimation and analytical variance expressions are available

for most exponential smoothing forms. The authors proposed to use information

criteria for model selection, which allowed choosing the most appropriate exponential

smoothing model in each case. Hyndman et al. (2008b) argued that AIC is the most

appropriate information criterion. Billah et al. (2006) demonstrated that there was

no significant difference in the forecasting accuracy when using different information

criteria.

Focusing on the non-seasonal cases the general ETS data generating process has

the following form:

yt = f(lt−1, bt−1, εt), (2.1)

where yt is the value of the series, lt is the level component, bt is the trend compo-

nent, εt is the error term and f(C(·)) is some function that allows including these

components in either additive or multiplicative form. However the composite fore-

casts discussed in Kolassa (2011) and Kourentzes et al. (2014) hint to the lack of a

clear separation between level and trend components. This decomposition in (2.1)
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can be considered arbitrary: depending on the chosen ETS model, its initial values

and smoothing parameters, different estimates of the time series components can be

obtained. However, these components are unobservable and their identification re-

lies on an appropriate decomposition. For example it is often hard to distinguish a

local-level time series from a trend series. Consider simple exponential smoothing

(SES):

ŷt = αyt−1 + (1− α)ŷt−1, (2.2)

where ŷt is the estimated value of the series and α is the smoothing parameter which

should lie inside the region (0, 2) (Brenner et al., 1968). Following the notation by

Hyndman et al. (2002) SES has an underlying ETS(A,N,N) model:{
yt = lt−1 + εt
lt = lt−1 + αεt

. (2.3)

When the smoothing parameter (α) in (2.3) increases, changes in level become so

rapid that the generated time series can reveal features of trends. When the smoothing

parameter becomes greater than one, the series can reveal an even clearer global trend

(Hyndman et al., 2008b, p.42). Selecting the correct model in this situation becomes

a challenging task. This is just one example where it is hard to identify the correct

model with the standard exponential smoothing decomposition approach.

Instead of decomposing time series we propose to study two characteristics: i)

the observed value of the series yt; and ii) its “information potential” pt. We intro-

duce the information potential as a non-observable component of the time series that

characterises it and influences the observed values yt. We propose that although the

actual value yt and its prediction are the variables of main interest in modelling, the

unobserved information potential pt contains additional useful information about the

observed series. Thus it is necessary to include it in models. In this paper we show

that the information potential increases the flexibility of models allowing to capture
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a wider range of behaviours, it also removes the need for the arbitrary distinction

between level and trend and results in increased forecasting accuracy.

We encode these two real variables into a single complex variable yt+ ipt that per-

mits both of them to be taken into account during the modelling process (Svetunkov,

2012). Here i is the imaginary unit which satisfies the equation: i2 = −1. Thus the

general data generating process using this notation has the form:

yt + ipt = f(Q, εt), (2.4)

where Q is a set of some complex variables, chosen for the prediction of yt + ipt.

Using this idea, we propose the Complex Exponential Smoothing (CES) based on the

data generating process (2.4), in analogy to the conventional exponential smoothing

model. This is introduced in the detail in the following section.

2.3 Complex Exponential Smoothing

2.3.1 Method and model

Combining the simple exponential smoothing method with the idea of information

potential, substituting the real variables in (2.2) by complex variables, gives us the

complex exponential smoothing method:

ŷt+1 + ip̂t+1 = (α0 + iα1)(yt + ipt) + (1− α0 + i− iα1)(ŷt + ip̂t), (2.5)

where ŷt is the estimated value of series, p̂t is the estimated value of information

potential and α0 + iα1 is complex smoothing parameter. Representing the complex-

valued function as a system of two real-valued functions leads to:{
ŷt+1 = (α0yt + (1− α0)ŷt)− (α1pt + (1− α1)p̂t)
p̂t+1 = (α1yt + (1− α1)ŷt) + (α0pt + (1− α0)p̂t)

. (2.6)

It can be seen from (2.6) that the final CES forecast consists of two parts: one is

produced by SES, while the second only employs the SES mechanism. It is obvious
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that CES is a non-linear method in its nature as both first and second equations

in (2.6) are connected with each other and change simultaneously depending on the

complex smoothing parameter value.

We derive the underlying statistical model for CES to study its properties. The

model can be written in the following state-space form (see Appendix A for the

derivation): 
yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 − α1pt + α0εt
ct = lt−1 + (1− α0)ct−1 + α0pt + α1εt

, (2.7)

where lt is the level component, ct is the information component at observation t

and εt is an error term. Observe that dependencies in time series have a non-linear

structure and no explicit trend component is present in the time series as this model

does not need to artificially break the series into level and trend, as ETS does. This

idea still allows to rewrite (2.7) in a shorter more generic way, resembling the general

SSOE state-space framework:{
yt = w′xt−1 + εt
xt = Fxt−1 + qpt + gεt

, (2.8)

where xt =

(
lt
ct

)
is the state vector, F =

(
1 −(1− α1)
1 1− α0

)
is the transition ma-

trix, g =

(
α0

α1

)
is the persistence vector, q =

(
−α1

α0

)
is the information potential

persistence vector and w =

(
1
0

)
is the measurement vector.

The state-space form (2.8) permits extending the CES in a similar ways to ETS

to include additional states for seasonality or exogenous variables. The main dif-

ference between model (2.8) and the conventional ETS is that the former includes

the information potential term. Furthermore the transition matrix in (2.8) includes

smoothing parameters which is not a standard feature for ETS models. This form

uses the generic SSOE state-space exponential smoothing notation and allows a clear

understanding of the model.
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2.3.2 Weights distribution in CES

Being an exponential smoothing method CES is capable of distributing weight be-

tween the observations in a different manner. In this paragraph we will show how the

complex smoothing parameter influences this distribution.

Substituting the estimated values in the right side of equation (2.5) repeatedly

the following recursive form of CES can be obtained:

ŷt+1 + ip̂t+1 = (α0 + iα1)
t∑

j=0

(1− α0 + i− iα1)
j(yt−j + ipt−j), (2.9)

where t→∞.

To obtain the bounds of the complex smoothing parameter the weights in (2.9)

can be perceived as a geometric progression with a complex ratio (1− α0 + i− iα1);

hence this series will converge to some complex number only if the absolute value of

the ratio is less than one:

v =
√

(1− α0)2 + (1− α1)2 < 1. (2.10)

The condition (2.10) is crucial for the preservation of the stability condition (Hynd-

man et al., 2008a): the older observations should have smaller weights compared to

the newer observations. For CES this is represented graphically on the plane as a

circle with a centre at coordinates (1, 1) as in Figure 2.1. This parameter space is

not usual for exponential smoothing methods.

Using (2.9) CES can also be represented in the trigonometric form of complex

variables, which should help in understanding the mechanism used in the method:

ŷt+1 + ip̂t+1 = R
t∑

j=0

[
vj(cos(ϕ+ jγ) + i sin(ϕ+ jγ))(yt−j + ipt−j)

]
, (2.11)

where R =
√
α2
0 + α2

1, ϕ = arctan α1

α0
+ 2πk and γ = arctan 1−α1

1−α0
+ 2πk, k ∈ Z.

Hereafter we assume that k = 0 in the calculation of all the polar angles as all other

angles do not add to model understanding. This is because angles γ and γ + 2π
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Figure 2.1: Bounds of complex smoothing parameter.

lead to exactly the same values of cosine and sine functions, but the latter does not

contribute in interpretation of the complex variable.

Multiplying complex variables in (2.11) shows how the real and imaginary parts

of the forecast are formed separately, which can be presented in the following system:{
ŷt+1 = R

∑T
j=0 v

j cos(ϕ+ jγ)yt−j −R
∑T

j=0 v
j sin(ϕ+ jγ)pt−j

p̂t+1 = R
∑T

j=0 v
j sin(ϕ+ jγ)yt−j +R

∑T
j=0 v

j cos(ϕ+ jγ)pt−j
. (2.12)

Here the CES forecast depends on the previous values of the series and the in-

formation potential, which are weighed in time using trigonometric functions, de-

pending on the value of the complex smoothing parameter. For example, when

α0 + iα1 = 0.2 + 1.2i weights are distributed as shown on Figures 2.2a and 2.2b:

they converge to zero slowly, demonstrating a hump for 4th observation. Their ab-

solute value decreases in time due to (2.10). This weights distribution results in

forecasts based on the long term time series characteristics, taking some observation

into account with higher weight. This example demonstrates the flexibility in weights

distribution in CES. A more conventional case is shown in Figures 2.2c and 2.2d.

The smoothing parameter is equal to 0.1 + 1.01i, which results in a slow exponential

decline of the weights in time. Plots 2.2a and 2.2b show the decrease of weights on
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Figure 2.2: CES weights distribution. 2.2b and 2.2d: blue solid lines – real parts of
complex weights, green dashed lines – the imaginary parts of complex weights.

complex plane. They demonstrate what is happening with the equivalent complex

smoothing parameter when it is exponentiated in the power j with j = 1, ..., T : the

original vector is rotated on the complex plane, the amount of rotation depends on

value of complex smoothing parameter.

Plots on the Figure 2.2 also demonstrate that due to the complex nature of the

weights their sum will usually be a complex number that can be calculated using:

S = (α0 + iα1)
∞∑
j=0

(1− α0 + i− iα1)
j =

α2
0 − α1 + α2

1 + iα0

α2
0 + (1− α1)2

. (2.13)

The sum of weights depends solely on the value of the complex smoothing parameter.

It can become real number only when α0 = 0 which contradicts condition (2.10).

It can also be concluded that the real part of S can be any real number while its

imaginary part is restricted to positive real numbers only. S indicates that CES

is not an averaging model, diverging from the conventional exponential smoothing
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interpretation. In a way it has more common features with ARIMA, rather than

exponential smoothing, because parameters of the former are not restricted with

bounds, guaranteeing it property of “averaging” model, while exponential smoothing

is usually restricted this way.

2.3.3 Connection with other forecasting models

Underlying ARIMAX model

The majority of exponential smoothing models have equivalent underlying ARIMA

models. For example, ETS(A,N,N) has underlying ARIMA(0,1,1) model (Gardner,

1985). It can be shown that CES has an underlying ARIMAX(2,0,2) model (see

Appendix B for the derivations):{
(1− φ1B − φ2B

2)yt = (1− θ1,1B − θ1,2B2)εt + (−γ1B − γ2B2)pt
(1− φ1B − φ2B

2)ξt = (1− θ2,1B − θ2,2B2)pt + (−γ1B − γ2B2)εt
, (2.14)

where ξt = pt− ct−1 is an information gap, the value showing the amount of the infor-

mation missing in the information component ct, while the parameters of ARIMAX

are: φ1 = 2−α0, φ2 = α0+α1−2, θ1,1 = 2−2α0, θ1,2 = 2α0+2α1−2−α2
0−α2

1, θ2,1 =

−2, θ2,2 = 2, γ1 = α1, γ2 = α0 − α1.

The first equation in (2.14) demonstrates how the actual data is generated, while

the second equation shows how the unobservable part of the data is formed. The

information potential variable pt in the right hand side of the first equation of the

model (2.14) functions as an external variable that contributes to the model and

refines the AR and MA terms. The error term εt in the second equation in (2.14)

has the same role and coefficients as the information potential in the first equation.

Furthermore the AR term has the same coefficients in both first and second equations

in (2.14).
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Comparison with single exponential smoothing

When pt = 0 and α1 = 1 the system (2.6) becomes:{
ŷt+1 = α0yt + (1− α0)ŷt
p̂t+1 = yt + (1− α0)p̂t

. (2.15)

It is obvious that the first equation in (2.15) is the SES method and that the two

equations in (2.15) become independent from each other under these conditions. The

second equation is not needed for the purpose of forecasting.

The interpretation of pt = 0 is that no additional information is used in the time

series generation and the classical exponential smoothing time series decomposition

view is adequate. This results from (2.7) in the following CES model (see Appendix

C): 
yt = lt−1 + εt
lt = lt−1 + α0εt
ct = lt−1

α0
+ εt

α0

. (2.16)

We see in (2.16) that the level component becomes the same as in ETS(A,N,N). The

only difference of CES is the presence of non-observable information component that

does not interact with yt.

In this case the weights in CES are distributed similarly to single exponential

smoothing and converge to the complex number (2.13) which becomes equal to:

S =
α2
0 + iα0

α2
0

= 1 + i
1

α0

. (2.17)

The real part of S is equal to 1, as in SES. The stability region of CES becomes

equivalent to the stability region of SES, a (0, 2) region for the smoothing parameter:

v =
√

(1− α0)2 + (1− α1)2 < 1,

v = |1− α0| < 1, with α1 = 0. (2.18)

From the above we see that CES encompasses SES and that it is the information

potential part that gives CES its different properties.
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2.4 Information potential proxy

2.4.1 State-space form

Due to the unobservability of the information potential it needs to be approximated

by some characteristics of the studied time series. A proxy that leads to several useful

properties is:

pt = yt − ŷt = εt. (2.19)

The logic behind this proxy is that εt can be seen as a gauge of the information not

included in a model.

There can be other information potential proxies, that could be used instead. For

example, differences of the data can also contain useful information about the original

time series.

The proxy (2.19) leads to a different state-space model, based on (2.7), underlying

CES: 
yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 + (α0 − α1)εt
ct = lt−1 + (1− α0)ct−1 + (α0 + α1)εt

. (2.20)

Now the persistence vector g =

(
α0 − α1

α0 + α1

)
, while all the other vectors and matrices

values from (2.7) can be retained. The main difference between the general state-space

CES (2.7) and (2.20) is that the smoothing parameter changes in both equations of the

transition equation, leading to additional non-linearity in the model. The conditional

variance of the model can be estimated using the new persistence vector and the

transition matrix can be used to estimate the conditional mean.

2.4.2 Likelihood function

The error term in (2.20) is additive. As a result the likelihood function for CES

is trivial and is similar to the likelihood function of additive exponential smoothing
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models (Hyndman et al., 2008b, p.68):

L(g, x0, σ
2|y) =

(
1

σ
√

2π

)T
exp

(
−1

2

T∑
t=1

(εt
σ

)2)
. (2.21)

It was shown by Hyndman et al. (2008b) that when the error term is distributed

normally, maximizing the likelihood function to estimate the parameters of CES is

equivalent to minimizing the sum of squared errors: SSE =
∑t

t=1 ε
2
t .

2.4.3 Stationarity and stability conditions for CES

The stationarity condition for general exponential smoothing in the state-space form

(2.8) holds when all the eigenvalues of F lie inside the unit circle (Hyndman et al.,

2008b, p.38). CES can be both stationary and not, depending on the complex smooth-

ing parameter value, in contrast to ETS models that are always nonstationary. Cal-

culating eigenvalues of F for CES gives the following roots:

λ =
2− α0 ±

√
α2
0 + 4α1 − 4

2
. (2.22)

If the absolute values of both roots are less than 1 then the estimated CES is station-

ary.

When α1 > 1 one of the eigenvalues will always be greater than one. In this case

both eigenvalues will be real numbers and CES produces a non-stationary trajectory.

When α1 = 1 CES becomes equivalent to ETS(A,N,N). Finally, the model becomes

stationary when (see Appendix D):
α1 < 5− 2α0

α1 < 1
α1 > 1− α0

(2.23)

The other important property that arises from (2.20) is the stability condition

for CES. We first use εt = yt − lt−1 in the transition equation in (2.20). After

manipulations, the following is obtained:
yt = lt−1 + εt(
lt
ct

)
=

(
1− α0 + α1 −(1− α1)
1− α0 − α1 1− α0

)(
lt−1
ct−1

)
+

(
α0 − α1

α1 + α0

)
yt
. (2.24)
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The matrix D =

(
1− α0 + α1 −(1− α1)
1− α0 − α1 1− α0

)
is called the discount matrix and can be

written in the general form:

D = F − gw′. (2.25)

The model is said to be stable if all the eigenvalues of (2.25) lie inside the unit

circle. The eigenvalues are given by the following formula:

λ =
2− 2α0 + α1 ±

√
8α1 + 4α0 − 4α0α1 − 4− 3α2

1

2
. (2.26)

CES will be stable when the following system of inequalities is satisfied (see Appendix

E): 
(α0 − 2.5)2 + α2

1 > 1.25
(α0 − 0.5)2 + (α1 − 1)2 > 0.25
(α0 − 1.5)2 + (α1 − 0.5)2 < 1.5

. (2.27)

Both the stationarity and stability regions are shown in Figure 2.3. The station-

arity region (2.23) corresponds to the triangle. All the combinations of smoothing

parameters lying below the curve in the triangle will produce the stationary harmonic

trajectories, while the rest lead to the exponential trajectories. The stability condi-

tion (2.27) corresponds to the dark region, which has an unusual form. The stability

region intersects the stationarity region, but in general stable CES can produce both

stationary and non-stationary forecasts.

2.4.4 Conditional mean and variance of CES

The conditional mean of CES for h steps ahead with known lt and ct can be calculated

using the state-space (2.20):

E (yt+h|xt) = w′F h−1xt, (2.28)

where F is the matrix from (2.8). The conditional mean estimated using (2.28)

consists of two parts: the conditional mean of the actual values and the conditional

mean of the information potential. The former is the main interest in forecasting.
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Figure 2.3: Stability and stationarity regions of CES, derived from the state-space
form (2.20).

The forecasting trajectories (2.28) will differ depending on the values of l1, c1 and

the complex smoothing parameter. The analysis of stationarity conditions shows that

there are several types of forecasting trajectories of CES depending on the particular

value of the complex smoothing parameter:

1. When α1 = 1 all the values of the forecast will be equal to the last obtained

forecast, which corresponds to a flat line. This trajectory is shown on the

Figure 2.4a.

2. When α1 > 1 the model produces the trajectory with the exponential growth

which is shown on Figure 2.4b.

3. When
4−α2

0

4
< α1 < 1 the trajectory becomes stationary and CES produces the

exponential decline shown on Figure 2.4c.

4. When 1 − α0 < α1 <
4−α2

0

4
the trajectory becomes harmonic and will converge

to zero (see Figure 2.4d).
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Figure 2.4: Forecasting trajectories.

5. Finally, when 0 < α1 < 1 − α0 the diverging harmonic trajectory is produced,

the model becomes non-stationary. This forecasting trajectory is of no use in

forecasting, that is why we do not show it on graphs.

Using (2.20) the conditional variance of CES for h steps ahead with known lt and

ct can be calculated (Hyndman et al., 2008b, p.96):

V (yt+h|xt) =

{
σ2
ε

(
J2 +

∑h
j=1(w

′F j−1g)2
)

when h > 1

σ2
ε when h = 1

(2.29)

This conditional variance formula corresponds in fact to the conditional variance

of additive ETS models.
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Figure 2.5: Invertibility region of CES on the plane of AR coefficients.

2.4.5 Connection with other forecasting models

Underlying ARMA model

Given the proxy (2.19) we can explore the connections with the other forecasting

models further on. Model (2.14) transforms into ARMA(2,2) model:{
(1− φ1B − φ2B

2)yt = (1− θ1,1B − θ1,2B2)εt
(1− φ1B − φ2B

2)ξt = (1− θ2,1B − θ2,2B2)εt
, (2.30)

where φ1 = 2−α0, φ2 = α0 +α1−2, θ1,1 = 2−2α0 +α1, θ1,2 = 3α0 +α1−2−α2
0−α2

1,

θ2,1 = 2 + α1 and θ2,2 = α0 − α1 − 2.

The coefficients of AR terms of this model are connected with the coefficients of

MA terms, via the complex smoothing parameters. This connection is non-linear but

it imposes restrictions on the AR terms plane. Figure 2.5 demonstrates how the invert-

ibility region restricts the AR coefficients field. The triangle on the plane corresponds

to the stationarity condition of AR(2) models, while the dark area demonstrates the

invertibility region of CES.

Note that exponential smoothing models are nonstationary, but it is crucial for

them to be stable or at least forecastable (Ord et al., 1997). In general the stability
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condition of ETS corresponds to the invertibility condition for ARIMA. That is why

the later should be preferred to the former in CES framework. This means that CES

will produce both stationary and non-stationary trajectories, depending on the com-

plex smoothing parameter value. This selection between different types of processes

happens naturally in the model without the need of model selection procedure. As

an example, the similar stability condition on the same plane for ETS(A,N,N) corre-

sponds to the dot with the coordinates (1,0) while for ETS(A,Ad,N) it corresponds

to the line φ2 = 1− φ1 restricted by the segment φ1 ∈ (1, 2).

Further observations on single exponential smoothing

Given (2.19) then several additional properties of CES become obvious after regroup-

ing the elements of (2.6):{
ŷt+1 = ŷt + α0εt − α1pt − (1− α1)p̂t
p̂t+1 = ŷt + α1εt + α0pt + (1− α0)p̂t

. (2.31)

When α1 is close to 1 the influence of p̂t on ŷt+1 becomes minimal and the second

smoothing parameter α0 in (2.31) behaves similar to the smoothing parameter in SES:

α0 − 1 in CES becomes close to α in SES. For example the value α0 = 1.24 in CES

will correspond to α = 0.24 in SES.

The insight from this is that when the series is stationary, the optimal smoothing

parameter in SES should be close to zero and the optimal α0 in CES will be close to

one. At the same time the real part of the complex smoothing parameter will become

close to 2 when the series demonstrates persistent changes in level.

2.4.6 Initialisation of CES

There can be several ways of initialising states of CES. One of these follows the idea

with likelihood function and perceiving the initial values of state vector as parameters

that need to be optimised. This refers to the ETS optimisation proposed in Hyndman

et al. (2002). The other possible way of CES initialisation is using backcasting, similar
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to how it is sometimes done with ARIMA (Box and Jenkins, 1976). Finally, Kalman

filter can be used for similar purposes.

Among these three options we prefer the first one, because it corresponds to the

modern approach used in exponential smoothing.

2.5 Empirical results

2.5.1 Examples of simulated data
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Figure 2.6: Processes simulated using CES with different complex smoothing param-
eter values (subplot titles). Positive initial value of level.

In order to better understand what CES is capable of producing as data generating

process, we have generated several time series, which are shown in the Figure 2.6. Note

that the imaginary part of the complex smoothing parameter determines the direction

of the trend (or the absence of it when α1 = 1), while the real part influences the

steepness of trend. When α0 < 1 the trend has obvious exponential character. When

α0 = 1 the trend slows down but still shows the features of the exponential function.

Finally, when α0 > 1 the series reveals features of additive trend with possible change

of level and slope. One of the interesting findings is that when α0 + iα1 = 1 + i the

generated series becomes stationary. The other feature of CES is that the behaviour of

the trend with α1 < 1 resembles the damped trend model. Finally if, for some reason,
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Figure 2.7: Stationary and trended time series. Red line divides the in-sample with
the holdout-sample.

a level of series becomes negative, then the same complex smoothing parameter values

will result in the opposite trajectories direction (for example, α0 < 1 will result in the

increase rather than decline).

These examples demonstrate flexibility of CES and its potential in dealing with

level and trend time series.

2.5.2 Real time series examples

We use CES on two time series to demonstrate how it performs on real data: a level

series and a trend series from M3-Competition. The first series (number 1664) is

shown in Figure 2.7a and the second series (number 2721) is shown in Figure 2.7b.

Historic and fitted values, point and 95% interval forecasts produced by CES are

plotted. Visual and statistical (using the ADF and KPSS tests) analysis indicate

that series N1664 is stationary, while N2721 exhibits a clear trend.

Estimation of CES on the first time series results in the complex smoothing pa-

rameter α0 + iα1 = 0.99999 + 0.99996i. This indicates that SES could potentially be

efficiently used for this time series as well. All the roots of the characteristic equation

for such a complex smoothing parameter lie outside the unit circle and inequality

(2.23) is satisfied which means that the model produces a stationary trajectory.

CES estimated on the second time series has complex smoothing parameter α0 +
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Table 2.1: Forecasting methods used

Name Method
Naive Random walk model with Naive method
SES ETS(A,N,N) which corresponds to Simple Exponential Smoothing

method
AAN ETS(A,A,N) which corresponds to Holt’s method (Holt, 2004)
MMN ETS(M,M,N) which underlies Pegel’s method (Pegels, 1969)
AAdN ETS(A,Ad,N) which underlies additive damped trend method

(Gardner and McKenzie, 1985)
MMdN ETS(M,Md,N) which corresponds to multiplicative damped trend

method (Taylor, 2003)
ZZN ETS(Z,Z,N) – the general exponential smoothing model with the

model selection procedure proposed by (Hyndman et al., 2002) us-
ing AICc.

ARIMA ARIMA model implemented by (Hyndman et al., 2002) in R. It
uses hypothesis testing and AICc for order selection.

Theta Theta method proposed by Assimakopoulos and Nikolopoulos
(2000). It performed very well on this time series and it is use-
ful to compare CES with it. We use implementation of Theta from
forecast package in R.

CES Complex Exponential Smoothing.

iα1 = 1.48187 + 1.00352i. This means that the forecast of CES on the second time

series is influenced by a larger number of observations compared to the first time

series. There are several roots of characteristic equation lying inside the unit circle

and the imaginary part of the complex smoothing parameter is greater than one.

All of this indicates that the model is non-stationary in mean, producing growing

trajectory. That is what we can see on the Figure 2.7b.

These two examples show that CES is capable of identifying whether the series

is stationary or not and producing the appropriate forecast without the need for a

model selection procedure.
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2.5.3 M3 competition results

To evaluate the forecasting performance of CES against other exponential smoothing

based methods we use the M3-competition dataset (Makridakis and Hibon, 2000) to

conduct an empirical comparison. All 814 non-seasonal monthly time series are used.

We have split all the data in two categories: level and trend series. The distinction is

done using “ets” functions from “forecast” package in R: if a trend model is selected,

then we consider the series to be trended. Otherwise the series is level. This should

in general be favourable towards ETS models. Table 2.1 lists the benchmarks used.

These benchmarks have been selected to evaluate the performance of CES against

various forms of exponential smoothing forecasts that are capable of capturing level

and trend components. ETS(Z,Z,N) permits selecting the most appropriate non-

seasonal model for each series, allowing any type of error or trend component. We

have also included ARIMA in order to see if CES with underlying ARMA(2,2) model

can beat it, and Theta, which performed very well in the original M3-Competition

(Makridakis and Hibon, 2000).

The estimation of all the models was done in R. All the models excluding CES

were estimated using functions from “forecast” package by Hyndman and Khandakar

(2008): “naive”, “ets”, “theta” and “auto.arima”. A function “ces” from a package

“smooth” (available on CRAN) was written by the authors of this paper to estimate

CES.

We retain a similar setup to the original competition to facilitate comparability of

the results. The last 18 observations are withheld as a test set that is forecasted by

each of the methods considered. The forecasts are evaluated using the Mean Absolute

Scaled Error (MASE) proposed by Hyndman and Koehler (2006).

Mean and median MASE over all the horizons are shown in the Table 2.2. The

table also presents split into categories of level and trend time series. The best per-

forming method is highlighted in boldface. CES has a lowest mean and median MASE
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Table 2.2: Mean ASE (MASE) and Median ASE (MdASE) values for different fore-
casting models

Method
Overall Level Trend

MASE MdASE MASE MdASE MASE MdASE
Naive 3.216 1.927 1.881 1.183 4.067 3.046
SES 3.098 1.681 1.680 0.894 4.003 3.076
AAN 2.755 1.602 1.731 0.959 3.408 2.232
AAdN 2.726 1.467 1.700 0.895 3.380 2.643
MMN 3.323 1.703 2.035 0.977 4.145 2.372
MMdN 2.700 1.490 1.716 0.890 3.327 2.644
ZZN 2.716 1.466 1.682 0.901 3.375 2.395
ARIMA 2.700 1.448 1.669 0.895 3.358 2.222
Theta 2.693 1.462 1.606 0.868 3.386 2.466
CES 2.496 1.387 1.649 0.902 3.036 1.990

compared to all the other models used on this set of data overall. It outperforms

ETS(A,N,N) and ETS(A,A,N) models, but also ETS(Z,Z,N) with the implemented

model selection procedure. As can be seen from the column “Level” in the table CES

has one of the lowest Mean ASE, being outperformed by Theta only. The situation

is slightly worse for CES in Median ASE, although not substantially. As a result it

is not the best method in this category, but it performs better than some other ETS

models. The main advantage of CES can be seen in the last two columns, correspond-

ing to “Trend” category of time series – CES outperforms all the other models with

a substantial difference. So, we can conclude that CES managed to capture trends

correctly in time series and could also produce decent forecasts in cases of level time

series.

To investigate further why CES is more accurate than the other models mean

and median MASE are calculated for each forecast horizon in Figure 2.8. The dif-

ference in accuracies between CES and other models increases with the increase of

the forecasting horizon. For example, CES is substantially more accurate than the

second best method ETS(M,Md,N) for horizons h = 6, . . . , 18 but it is not the best
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Figure 2.8: MASE values over different forecasting horizons for the competing models.

method for the shorter horizons (h = 1, . . . , 3). This indicates that CES was able to

capture the long-term dependencies in time series better than the other exponential

smoothing models.

2.6 Conclusions

In this paper we presented a new approach to time series modelling. Instead of taking

into account only the actual value of series and decomposing it into several compo-

nents, we introduced the notion of the information potential variable and combined

it with the actual observations in one complex variable. Adopting this approach

rather than using the arbitrary decomposition of time series into several components

(level, trend, error) leads to a new model, the Complex Exponential Smoothing that

is introduced in this paper.
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The state-space form using Single Source of Error was presented, which allowed

the derivation of the stability and stationarity conditions of CES as well as conditional

mean and variance of the model.

CES is a flexible model that can produce different types of trajectories. It encom-

passes both level and multiplicative trend series and approximates additive trend very

well. One of the advantages of CES is that it smoothly moves from one trajectory to

the other, depending on the complex smoothing parameter value. Furthermore, CES

is able to distribute weights between different observations in time either exponen-

tially or harmonically. This feature allows CES to capture long-term dependencies

and non-linear relations in time series.

CES has an underlying ARMAX(2,2) model, where the exogenous part corre-

sponds to the information potential variable. By using the proxy discussed in the ar-

ticle, the model transforms into restricted ARMA(2,2). The main difference between

ARMA(2,2) underlying CES and the general ARMA(2,2) is that in CES framework

the AR and MA parameters become connected with each other. This leads to a

different parameter space and a different modelling of time series.

Finally, CES is empirically shown to be more accurate than various exponential

smoothing benchmarks, especially ETS(A,N,N), ETS(A,A,N) and ETS with model

selection. This provides evidence that CES can be used effectively to capture both

level and trend time series cases, side-stepping the model selection problem that con-

ventional exponential smoothing and similar models face. We argue that the smooth

transition of CES between level and trend series, in contrast to conventional ETS that

implies abrupt changes due to the model selection between level and trend forms, is

advantageous. CES is also able to capture long-term dependencies which results in

more accurate forecasts for the longer horizons, in comparison to the exponential

smoothing benchmarks considered here.
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In conclusion, the Complex Exponential Smoothing model has unique and desir-

able properties for time series forecasting. Using the ideas of complex variables and

information potential, CES builds on the established and widely used ideas behind

exponential smoothing to overcome several limitations and modelling challenges of

the latter.
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Chapter 3

Seasonal Complex Exponential
Smoothing

In this chapter we propose an extension of the Complex Exponential Smoothing

for modelling seasonality, discuss its properties and demonstrate its performance on

simulated and real data. This work has been submitted as a paper to the International

Journal of Forecasting (currently under review).

3.1 Introduction

Exponential smoothing (ETS) is one of the most popular family of models used both

in research and practice. The variety of the exponential smoothing models is wide and

allows modelling different types of time series components. Hyndman et al. (2008b)

present a taxonomy which leads to 30 models with different types of error, trend and

seasonal components.

ETS is not free of modelling challenges. First, the large number of model forms

introduces a selection problem. Although the model variety allows to capture different

types of processes, at the same time it makes it difficult to select a correct one for

a time series. This is usually addressed by using an information criterion, typically

the Akaike Information Criterion (Hyndman et al., 2002), though Billah et al. (2006)

showed that using other information criteria did not lead to significant differences in

forecasting performance. However recent research showed that choosing a single most
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appropriate exponential smoothing model for a time series may not lead to the most

accurate forecast. As a result various combination approaches have been proposed in

the literature. For example, Kolassa (2011) investigated combination of the different

ETS forecasts using Akaike weights with good results.

Second, it is assumed in ETS framework that any time series may be decomposed

into level, trend and seasonal components, which in real life are arbitrary and unob-

servable. For example, it may not always be easy to identify whether a series exhibits

a changing level or a trend. Similar complications are relevant to identifying the

seasonal component and its nature: whether it is additive or multiplicative.

Third, the combination approaches highlight that there may be composite ETS

forms that are not captured by the known models. The combinations described by

Kolassa (2011) result in such non-customary trend and seasonality forms. Kourentzes

et al. (2014) argue that full identification of trend and seasonality is not straightfor-

ward with conventional modelling, showing the benefits of using multiple levels of

temporal aggregation to that purpose, demonstrating forecasting performance im-

provements. ? proceed to show that this problem is more acute under the presence of

extreme values, such as outliers due to promotional activities, where again a similar

combination approach leads to more accurate forecasts. We argue that these com-

posite forms of exponential smoothing perform well because the type of time series

components, as well as the interaction between them, may be too restrictive under

ETS for some time series.

In this paper we aim to overcome these problems by using a more general expo-

nential smoothing formulation that has been proposed Chapter 2. It assumes that

any time series can be modelled as the observed series value and an unobserved in-

formation potential. This leads to the less restrictive model without an arbitrary

decomposition of time series. The authors implement this idea using complex vari-

ables, proposing the Complex Exponential Smoothing (CES). Their investigation is
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limited to non-seasonal time series, where they find that CES can accurately model

time series without arbitrarily separating them into level and trend ones. Another

crucial advantage of CES over conventional ETS is that it can capture both stationary

and non-stationary processes.

Here we extend CES for seasonal time series, which leads to a a family of CES

models that can model all types of level, trend, seasonal and trend seasonal time

series in the conventional ETS classification. In contrast to ETS, CES has only two

forms (non-seasonal and seasonal) and hence we deal with a simpler model selection

problem that allows capturing different types of components and interactions between

them. To test that the extended CES models the appropriate time series structure,

we conduct a simulation study and find that the simplified selection problem leads to

better results in comparison with conventional ETS. We then evaluate the forecasting

performance of extended CES against established benchmarks and find it to produce

more accurate forecasts on the monthly M3 dataset. We argue that even though the

formulation of CES appears to be more complicated than individual ETS models, the

substantially simplified selection problem and its good accuracy makes it appealing

for practice.

The rest of the paper is organised as follows: section 3.2 introduces the Complex

Exponential Smoothing model and its seasonal extension. Section 3.3 presents the

setup and provides the results of empirical evaluations on simulated and real data.

This section is then followed by concluding remarks.

3.2 Complex Exponential Smoothing

3.2.1 Information Potential

A fundamental idea behind CES is the Information Potential (discussed in Chapter

2). Any measured time series contains some information, which may be less than

the time series in all its totality and potentially unobservable due to sampling. For
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example, that might be due to some unobserved long memory process or other more

exotic structures.

It was shown that there is a convenient way to write the measured series and the

information potential using a complex variable: yt + ipt (Svetunkov, 2012), where yt

is the actual value of the series, pt is the information potential on the observation

t and i is the imaginary unit, the number that satisfies the equation: i2 = −1. In

Chapter 2 we have proposed using the value of the error term: pt = εt as this proxy

which exhibits desirable properties that are discussed below.

3.2.2 Non-seasonal CES

A complex counterpart to conventional exponential smoothing can be developed as:

ŷt+1 + ip̂t+1 = (α0 + iα1)(yt + ipt) + (1− α0 + i− iα1)(ŷt + ip̂t) (3.1)

where ŷt is the forecast of the actual series, p̂t is the estimate of the information

potential, α0 + iα1 is complex smoothing parameter. Using the aforementioned proxy

pt = εt, Svetunkov and Kourentzes (2015) derived the state-space model of CES that

can be used to further explore its properties. It can be written in the following way:


yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 + (α0 − α1)εt
ct = lt−1 + (1− α0)ct−1 + (α0 + α1)εt

, (3.2)

where lt is the level component, ct is the information component on observation t,

and εt ∼ N(0, σ2). This state-space form of CES can be written in a more general

form: {
yt = w′xt−1 + εt
xt = Fxt−1 + gεt

, (3.3)

where xt =

(
lt
ct

)
is state vector, F =

(
1 −(1− α1)
1 1− α0

)
is transition matrix, g =(

α0 − α1

α0 + α1

)
is persistence matrix and w =

(
1
0

)
is a measurement vector.
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Figure 3.1: CES stability (the black area) and stationarity (the light triangle) condi-
tions.

One of the main features of CES is that it does not contain an explicit trend: its

lt and ct components are connected with each other and change in time depending

on the value of the complex smoothing parameter. It can be shown that CES has an

underlying ARIMA(2,0,2) model:{
(1− φ1B − φ2B

2)yt = (1− θ1,1B − θ1,2B2)εt
(1− φ1B − φ2B

2)ξt = (1− θ2,1B − θ2,2B2)εt
, (3.4)

where φ1 = 2−α0, φ2 = α0 +α1−2, θ1,1 = 2−2α0 +α1, θ1,2 = 3α0 +α1−2−α2
0−α2

1,

θ2,1 = 2 + α1, θ2,2 = α0 − α1 − 2 and ξt = pt − ct−1 is an information gap, the value

showing the amount of the information missing in the information component ct.

However the parameter space for the autoregressive terms in this model differs

from the conventional AR(2) model due to the connection of AR and MA terms via

the complex smoothing parameter. This gives the model an additional flexibility and

allows it to switch naturally between level and trend time series. It also should be

noted that CES can be both stationary and non-stationary, depending on the complex

smoothing parameter value, while all the conventional ETS models are strictly non-

stationary.
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Figure 3.2: Processes simulated using CES with different complex smoothing param-
eter values (subplot titles). Positive initial value of level.

The stability and stationarity conditions for CES have already been discussed in

Chapter 2. They are also shown on the Figure 3.1 as a reminder. They correspond

to the following inequalities:


(α0 − 2.5)2 + α2

1 > 1.25
(α0 − 0.5)2 + (α1 − 1)2 > 0.25
(α0 − 1.5)2 + (α1 − 0.5)2 < 1.5

and


α1 < 5− 2α0

α1 < 1
α1 > 1− α0

. (3.5)

As it was discussed in the Chapter 2, CES can produce different types of trajec-

tories depending on the complex smoothing parameter value. These trajectories are

shown in the Figure 3.2 as a reminder of what CES is capable of producing. The

examples in the Figure demonstrate that CES is able to produce different types of

trends as well as level series (in an ETS context). In Chapter 2 we showed empirically

that a single CES model can be used instead of several ETS models with different

types of trends for common forecasting tasks. This is one of the major advantages of

the model. Disregarding seasonal time series no model selection is needed for CES,

in contrast to conventional exponential smoothing.
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3.2.3 Seasonal CES

Here we extend the CES model presented above to cater for seasonality. The simplest

way to derive a seasonal model using CES is to take values of level and information

components with a lag m which corresponds to the seasonality lag instead of t− 1:


yt = l1,t−m + εt
l1,t = l1,t−m − (1− β1)c1,t−m + (β0 − β1)εt
c1,t = l1,t−m + (1− β0)c1,t−m + (β0 + β1)εt

(3.6)

where l1,t is the level component, c1,t is the information component on observation

t, β0 and β1 are smoothing parameters. This formulation follows similar ideas to the

reduced seasonal exponential smoothing forms by Snyder et al. (2001) and Ord and

Fildes (2012).

The model (3.6) preserves all the features of the original CES (3.2) and produces

all the possible CES trajectories with the same complex smoothing parameter values.

These trajectories, however, will be lagged and will appear for each seasonal element

instead of each observation. This means that the model (3.6) produces non-linear

seasonality which can approximate both additive and multiplicative seasonality de-

pending on the complex smoothing parameter and initial components values. Note

that the seasonality produced by the model may even have these features regardless

of the value of the level, thus generating seasonalities that cannot be classified as

either additive or multiplicative. Naturally, no known exponential smoothing model

can produce similar patterns: multiplicative seasonality implies that the amplitude

of fluctuations increases with the increase of the level, while with seasonal CES the

amplitude may increase without it.

However this model is not flexible enough: it demonstrates all the variety of

possible seasonality changes only when the level of the series is equal to zero (meaning

that a part of the data lies in the positive and another lies in the negative plane). To

overcome this limitation we extend the original model (3.2) with the basic seasonal
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model (3.6) in one general seasonal CES model:


yt = l0,t−1 + l1,t−m + εt
l0,t = l0,t−1 − (1− α1)c0,t−1 + (α0 − α1)εt
c0,t = l0,t−1 + (1− α0)c0,t−1 + (α0 + α1)εt
l1,t = l1,t−m − (1− β1)c1,t−m + (β0 − β1)εt
c1,t = l1,t−m + (1− β0)c1,t−m + (β0 + β1)εt

(3.7)

The model (3.7) still can be written in a conventional state-space form (3.2). It

exhibits several differences from the conventional smoothing seasonal models. First,

the proposed seasonal CES in (3.7) does not have a set of usual seasonal components

as the ordinary exponential smoothing models do, which means that there is no

need to renormalise them. The values of l1,t and c1,t correspond to some estimates of

level and information components in the past and have more common features with

seasonal ARIMA (Box and Jenkins, 1976, p.300) than with the conventional seasonal

exponential smoothing models. Second, it can be shown that the general seasonal

CES has an underlying model that corresponds to SARIMA(2, 0, 2m + 2)(2, 0, 0)m

(see Appendix F), which can be either stationary or not, depending on the complex

smoothing parameters values.

The general seasonal CES preserves the properties of both models (3.2) and (3.6):

it can produce non-linear seasonality and all the possible types of trends discussed

above, as now the original level component l0,t can become negative while the lagged

level component l1,t may become strictly positive.

Finally this model retains the interesting property of independence of the original

level and lagged level components, so a multiplicative (or other) shape seasonality

may appear in the data even when the level of the series does not change. This could

happen for example when the seasonality is either nonlinear or some other variable

is determining its evolution, as for example is the case with solar power generation

(Trapero et al., 2015).
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3.2.4 Parameters estimation

During the estimation of the parameters of the general seasonal CES some constraints

should be introduced to achieve the stability of the model. The state-space model

is stable when all the eigenvalues of the discount matrix D = F − gw′ lie inside the

unit circle. Unfortunately, it is hard to derive the exact regions for the smoothing

parameters of general seasonal CES but the stability condition can be checked during

the optimisation. To do that the eigenvalues of the following discount matrix should

be calculated (see Appendix G):

D =


1− α0 + α1 α1 − 1 α1 − α0 0
1− α0 − α1 1− α0 −α1 − α0 0
β1 − β0 0 1− β0 + β1 β1 − 1
−β1 − β0 0 1− β0 − β1 1− β0

 (3.8)

The estimation of the parameters of CES can be done using the likelihood function.

This is possible due to the additive form of the error term in (3.7). The likelihood

function turns out to be similar to the one used in ETS models (Hyndman et al.,

2002):

L(g, x0, σ
2|y) =

(
1

σ
√

2π

)T
exp

(
−1

2

T∑
t=1

(εt
σ

)2)
(3.9)

This likelihood function value can be used in calculation of information criteria.

The twice the negative logarithm of (3.9) can be calculated to that purpose:

−2 log(L(g, x0|y)) = T

(
log

(
2πe

T

)
+ log

(
T∑
t=1

ε2t

))
. (3.10)

3.2.5 Model selection

Using (3.10) the Akaike Information Criterion for both seasonal and non-seasonal

CES models can be calculated:

AIC = 2k − 2 log(L(g, x0|y)) (3.11)
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where k is the number of coefficients and initial states of CES. For the non-seasonal

model (3.2) k is equal to 4 (2 complex smoothing parameters and 2 initial states). For

the seasonal model the number of the coefficients in (3.7) becomes much greater than

in the original model: k = 4 + 2m + 2, which is 4 smoothing parameters, 2m initial

lagged values and 2 initial values of the generic level and information components.

Naturally, other information criteria can be constructed.

Observe that the model selection problem for CES is reduced to choosing only

between non-seasonal and seasonal variants, instead of the multiple model forms

under conventional ETS.

3.3 Empirical evaluation

3.3.1 Model selection

To evaluate the performance of the model selection procedure we simulate series with

known structure and attempt to model them with CES. Each series is simulated

using ETS at a monthly frequency and contains 120 observations. All the smoothing

parameters are generated using uniform distribution, restricted by the traditional

bounds: α ∈ (0, 1), β ∈ (0, α), γ ∈ (0, 1 − α). Normal distribution with zero mean

is used in the error term generation. We generate series with either additive or

multiplicative errors, using error standard deviation equal to 50 and 0.05 respectively.

The initial value of the level is set to 5000, while the initial values of trend is set

to 0 for the additive cases and to 1 for the multiplicative cases. This allows the

model used as DGP to produce either growth or decline, depending on the error term

and smoothing parameter values. All the initial values of seasonal components are

randomly generated and then normalised. For each of the 9 process shown in Table

3.1 1000 time series are generated.

We fit the two types of CES and chose the one with the smallest AIC corrected

for small sample sizes (AICc) value. As benchmarks we fit ETS and ARIMA (both
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DGP CES
ETS ARIMA

Trend Seasonal Overall Trend Seasonal Overall

N(5000, 502) 99.9 97.3 99.8 97.1 96.5 45.7 44.1
ETS(ANN) 99.1 88.0 99.7 49.3 51.5 46.5 28.0
ETS(MNN) 99.3 85.1 99.6 50.9 59.7 47.3 30.0
ETS(AAN) 91.5 94.4 99.7 82.3 96.4 45.7 43.5
ETS(MMN) 98.9 91.6 99.7 68.9 92.3 35.2 32.2
ETS(ANA) 100 85.4 100 46.3 53.0 100 53.0
ETS(AAA) 100 92.1 100 79.1 86.3 100 86.3
ETS(MNM) 100 65.9 100 32.6 61.9 100 61.9
ETS(MMM) 98.2 88.4 100 52.7 70.3 100 70.3
Average 98.5 87.6 99.8 62.1 74.2 68.9 49.9

Table 3.1: The percentage of forecasting models chosen correctly for each ETS data
generating process (DGP).

use AICc for model selection). The implementation of CES was done in R and is

available as the “CES” package (in github: https://github.com/config-i1/CES).

The benchmarks are produced using the “forecast” package for R (Hyndman and

Khandakar, 2008).

The percentage of the correct models chosen by CES, ETS and ARIMA are shown

in the Table 3.1. The values in the table are the percentage of successful time series

characteristics identified by each model. Column “CES” shows in how many instances

the appropriate seasonal or non-seasonal model is chosen. We can observe that CES

is very accurate and managed to select the appropriate model in the majority of cases.

It is important to note that the fitted CES is not equivalent to the data generating

process in each time series, but nevertheless it is able to approximate the time series

structure.

The column “ETS, Trend” shows in how many cases the trend or its absence is

identified correctly (not taking into account the type of trend). The “ETS, Seasonal”

column shows similar accuracy in the identification of seasonal components. The

lowest trends identification ETS accuracy is in the case of ETS(MNM) process with

65.9%, while the average accuracy in capturing trends correctly is 87.6%. The accu-
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racy of seasonal components identification in ETS is much better, with the average

accuracy for all the DGPs in this case being 99.8%. The column “Overall” shows in

how many cases the exact DGP is identified by ETS, not taking parameters values

into account, but considering type of estimated model. So for example, ETS(M,N,N)

selected on data generated by ETS(A,N,N) would be considered as an error in this

column. The average accuracy of ETS in this task is 62.1%. Note that contrary to

CES, ETS should have identified the exact model in the majority of cases, since it

was used to generate the series. The reason behind this misidentification may be due

to the information criterion used and the sample size of the generated time series.

Table 3.1 also provides results for the ARIMA benchmark. The column “ARIMA,

Trend” shows the number of cases where ARIMA identifies the trend or its absence

correctly. Although trend in ARIMA is not defined directly, we use three criteria

to indicate that ARIMA captured a trend in the time series: ARIMA has a drift,

or ARIMA has second differences, or ARIMA has first differences with non-zero AR

element. It can be noted that the lowest accuracy of ARIMA in trends identification

is in the cases of level ETS models DGPs. The average accuracy of ARIMA in this

task is 74.2%.

The column “ARIMA, Seasonal” shows the number of cases where ARIMA iden-

tifies the seasonality or its absence correctly. The cases where either seasonal AR or

seasonal MA or seasonal differences contains non-zero values are identified as seasonal

ARIMA models. The values in the Table 3.1 indicate that ARIMA makes a lot of mis-

takes in identifying the seasonal models in time series generated using non-seasonal

ETS models, which leads to the average accuracy of 68.9% in this category. Even

though the generating processes is different than the model used in this case, captur-

ing seasonality in the pure non-seasonal data makes no sense. The column “ARIMA,

Overall” shows the number of cases where both trend and seasonality are identified

correctly by ARIMA using the criteria described above. Note in the “Overall” column
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we only count the cases where ARIMA correctly identifies both the presence of trend

and season, so as to make it comparable with the CES results. ARIMA identifies the

correct form mainly in the cases of ETS(AAA) and ETS(MMM) models.

Obviously the ETS and ARIMA results are dependent on the identification method-

ology employed. But the comparison done here retains its significance since all three

alternative models, CES, ETS and ARIMA use the same information criterion to

identify the final model form.

We have also conducted similar experiment, generating data using several ARIMA

models. In order for the results to be comparable with the ones obtained in table 3.1,

we have decided to generate data using:

• ARIMA(0,1,1), because it underlies ETS(A,N,N) model,

• ARIMA(0,2,2) – underlies ETS(A,A,N),

• ARIMA(1,1,2) – underlies ETS(A,Ad,N),

• ARIMA(2,0,2) with constant – underlies CES,

• SARIMA(0,1,1)(0,1,1)12 – well-known airline model from Box and Jenkins (1976),

• SARIMA(0,2,2)(1,0,1)12 – has non-seasonal part corresponding to ETS(A,A,N)

and a stationary seasonal part,

• SARIMA(1,1,2)(1,0,1)12 – has non-seasonal part corresponding to ETS(A,Ad,N)

and a stationary seasonal part,

• SARIMA(2,0,2)(0,1,1)12 – has non-seasonal part corresponding to CES and a

non-stationary seasonal part.

Obviously this is a restricted research as the variety of ARIMA models is wide and

there can be many more other models that could potentially be included in the exper-

iment. All the parameters for ARIMA models are generated randomly from station-
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arity and invertibility regions using uniform distribution. Variance of the error is set

to 50, initial values are randomly generated, making sure that there are no negative

values in the data. For each of the 8 ARIMA process 1000 time series, containing 120

observations are generated.

Method CES ETS ARIMA
ARIMA(0,1,1) 100 99.9 58.3
ARIMA(0,2,2) 100 99.8 47.1
ARIMA(1,1,2) 98.4 96.2 49.5
ARIMA(2,0,2) 98.4 94.5 40.6
SARIMA(0,1,1)(0,1,1)12 93.5 100 98.5
SARIMA(0,2,2)(1,0,1)12 11.9 18.5 89.9
SARIMA(1,1,2)(1,0,1)12 14.1 16.5 93.9
SARIMA(2,0,2)(0,1,1)12 98 99.6 95.9

Table 3.2: The percentage of forecasting models chosen correctly for each ARIMA
DGP.

While it is possible to show that some ARIMA models imply that there is a trend

in a time series, generated by ETS, it is not possible to do anything similar in the

opposite direction. That is why we have only three rows in the table 3.2: “CES”,

“ETS” and “ARIMA”. The rows show in how many cases each model managed to

capture seasonality correctly. For CES it means that for seasonal data a seasonal

model was selected, while for ETS it means that for a seasonal time series a model

with any type of seasonal component was selected. “ARIMA accuracy” shows in

how many cases the correct seasonal or non-seasonal ARIMA was selected (seasonal

ARIMA in this case is the model with any non-zero seasonal part). We don’t measure

if orders of ARIMA were selected correctly, but focus on its ability to distinguish

seasonal series from non-seasonal.

The results of this experiment are shown in the table 3.2. As it can be seen, CES

with automatic model selection performed extremely good for non-seasonal data,

beating both ETS and ARIMA and also performed very well for seasonal data. How-

ever, we need to point out that both CES and ETS failed to identify seasonality for
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cases of SARIMA(0,2,2)(1,0,1)12 and SARIMA(1,1,2)(1,0,1)12. So, there are cases of

data, when these models do not perform well and ARIMA should be used instead.

However, analysing ARIMA performance, it can be concluded, that it overfitts the

data, selecting seasonal components even in those cases, when they are not needed

at all. While this could be fine in case with ETS DGP, there is no excuse for such a

poor performance on data, generated using ARIMA itself.

Overall this simulation experiment shows that CES, having only two models to

choose from, becomes more efficient in time series identification than ETS and ARIMA

models, that both have to choose from multiple alternatives. The possible explanation

of this is that CES is capable of capturing both level and trend series and its seasonal

extension can produce both additive and multiplicative seasonality. This reduces the

number of alternative models substantially. Furthermore any seasonal components

are highly penalized with CES during model selection. Therefore the seasonal model

is chosen only in cases when it fits data significantly better than its non-seasonal

counterpart. This substantially simplifies the forecasting process as a whole.

3.3.2 Forecasting accuracy

To test the forecasting performance of CES and compare it against ETS and ARIMA

we conduct an empirical evaluation on the monthly data from the M3 Competition

(Makridakis and Hibon, 2000) that contains both trend and seasonal time series.

The forecasting horizon (18 periods ahead) is retained the same as in the original

competition, however a rolling origin evaluation scheme is used, with the last 24

observations withheld.

The Mean Absolute Scaled Error (MASE) is used to compare the performance of

models for each forecast horizon from each origin (Hyndman and Koehler, 2006):

MASE =

∑h
j=1 |eT+j|

h
n−1

∑T
t=2 |yt − yt−1|

(3.12)
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Figure 3.3: The results of MCB test on monthly data of M3. The dotted lines are
the critical distances for the best model and we can see that both ETS and ARIMA
are found to be significantly different.

Using these errors we estimate quantiles of the distribution of MASE along with the

mean values from each origin. Table 3.3 presents the results of this experiment.

CES ETS ARIMA

Minimum 0.134 0.084 0.098
25% quantile 0.665 0.664 0.703
Median 1.049 1.058 1.093
75% quantile 2.178 2.318 2.224
Maximum 28.440 53.330 59.343
Mean 1.922 1.934 1.967

Table 3.3: MASE values of competing methods. The smallest values are in bold.

CES demonstrates the smallest mean and median MASE. It also has the smallest

maximum error which indicates that when all the models failed to forecast some time

series accurately, CES was still closer to the actual values. In the contrast ETS had

the smallest minimum MASE, while CES had the highest respective value among all

the competitors. This means that CES may not be as accurate as other models in

the cases when the time series is relatively easy.

To see if the difference in the forecasting accuracy between CES and the other

methods is significant, we use the Multiple Comparisons with Best (MCB) test (Kon-

ing et al., 2005). The results of this test indicate that CES is significantly more

accurate than ETS and ARIMA (see Figure 3.3).
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Figure 3.4: Mean and median MASE value for CES, ETS and ARIMA on different
horizons.

To investigate what could cause this difference in forecasting accuracy, the mean

and median MASE are calculated for each forecast horizon, obtaining the one-step

ahead, two-steps ahead etc. mean and median MASE values. These values are shown

on the Figures 3.4a and 3.4b.

The analysis of the Figure 3.4 shows that while the errors of the methods are very

similar for short horizons (with ETS being slightly better), the difference between

them increases on longer horizons. The difference in mean values of MASE between

methods starts increasing approximately after a year (12 observations) with CES

being the most accurate. The same feature is present in median MASE values.

Concluding the results of this experiment, CES performs significantly better than

ETS and ARIMA on the monthly M3 data. CES demonstrates that it can model

various types of time series successfully and is particularly accurate in relation to the
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benchmark models for longer horizons. We attribute this to the way that time series

trends and seasonal components are modelled under CES.

3.4 Conclusions

We proposed a new type of seasonal exponential smoothing, based on Complex Ex-

ponential Smoothing and discussed the model selection procedure that can be used to

identify whether the non-seasonal or seasonal CES should be selected for time series

forecasting. While the non-seasonal CES can produce different non-linear trajecto-

ries and approximate additive and multiplicative trends, the seasonal model produces

non-linear seasonality that can approximate both additive and multiplicative seasonal

time series and even model new forms of seasonality that do not strictly lie under

either of these cases. The latter can be achieved as a result of the independence of

the seasonal and non-seasonal components and non-linearity of CES. This is one of

the potential future research direction in the field of CES.

We also discussed the statistical properties of the general seasonal CES and showed

that it has an underlying SARIMA(2, 0, 2m+ 2), (2, 0, 0)m model. This model can be

either stationary or not, depending on complex smoothing parameter values, which

gives CES its flexibility and a clear advantage over the conventional exponential

smoothing models which are strictly nonstationary.

The simulation conducted showed that the proposed model selection procedure

allows choosing the appropriate CES effectively, making few mistakes in distinguishing

seasonal from non-seasonal time series. In comparison ETS and ARIMA were not as

effective as CES in this task. We argue that this is a particularly useful feature of

the CES model family. Although the models initially may appear more complicated

than conventional ETS, the fact that a forecaster needs to consider only two CES

variants, while being able to model a wide variety of trend and seasonal shapes, can

greatly simplify the forecasting process.
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The forecast competition between CES, ETS and ARIMA conducted on the

monthly data from M3 showed that CES achieved both the lowest mean and median

forecasting errors. The MCB test showed that the differences in forecasting accuracy

between these models were statistically significant. Further analysis showed that the

superior performance of CES was mainly caused by the more accurate long-term fore-

casts. This is attributed to the ability of CES to capture the long-term dependencies

in time series, due to its non-linear character that permits CES to obtain more flexible

weight distributions in time than ETS.

Overall CES proved to be a good model that simplifies the model selection pro-

cedure substantially and increases the forecasting accuracy.
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Chapter 4

Estimation of Complex
Exponential Smoothing

This chapter is based on the materials of the paper “Trace forecast and shrinkage in

time series models” submitted to Journal of American Statistical Association (cur-

rently under review).

4.1 Introduction

Estimation of time series models using methods based on multiple steps ahead er-

rors has been widely researched by statisticians and econometricians. Many papers

argue that using these estimators leads to increase in forecast accuracy (Weiss and

Andersen, 1984; Chevillon and Hendry, 2005; Taylor, 2008; Chevillon, 2009; Franses

and Legerstee, 2009; McElroy, 2015; Chevillon, 2016) especially when the model is

misspecified (Proietti, 2011; Xia and Tong, 2011). However several researches demon-

strate that this finding may not hold universally and depends mainly on data charac-

teristics and the degree of misspecification of the model (Kang, 2003; Marcellino et al.,

2006; Proietti, 2011; McElroy and Wildi, 2013). Discussing the statistical properties

of the estimated parameters with such methods, it has been shown that multiple

steps ahead estimators are asymptotically efficient (Haywood and Tunnicliffe-Wilson,

1997; Ing, 2003; Chevillon and Hendry, 2005; Chevillon, 2007), consistent and nor-

mal (Weiss, 1991; Haywood and Tunnicliffe-Wilson, 1997). But at the same time it
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was shown by (Tiao and Xu, 1993) that parameters of models become less efficient

on finite samples in comparison with the conventional one-step-ahead mean squared

error estimator and that the efficiency may decrease even further when the forecast

horizon increases.

There is also a general understanding that the usage of multiple steps ahead

estimators leads to more conservative and robust models (Cox, 1961; Gersch and

Kitagawa, 1983; Tiao and Xu, 1993; Marcellino et al., 2006; McElroy, 2015). Different

experiments carried out over the years have demonstrated this statement. Still there

is no plausible and detailed explanation why this happens, although many researchers

imply the obviousness of such an explanation.

Furthermore, the literature has also proposed different model selection procedures

derived especially for these estimators, and there are several papers discussing dis-

tribution of multiple steps ahead errors (Bhansali, 1996, 1997; Ing, 2004; Ing et al.,

2009; Jordà and Marcellino, 2010; Pesaran et al., 2010). Unfortunately, these discus-

sions are limited and have not proposed a simple and concise approach to distribution

estimation and model selection using these estimators.

Finally, all the papers in the field discuss ARIMA models exclusively and there is

no discussion of state-space models and the application of these estimators to them

or other modelling frameworks.

The aim of this paper is to fill several gaps in the field of multiple steps ahead

estimators mentioned above:

1. Give the simple and clear explanation of what happens with any time series

model, when any multiple steps ahead estimator is used. This is shown using

Single Source of Error (SSOE) State-space models, but an approach similar to

the one discussed here can be applied to any other time series model;

2. Propose a simple likelihood function based on a multiple steps ahead estimator,

which would guarantee that the estimates of parameters are less biased, more
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efficient and consistent than the estimates produced by any other multiple steps

ahead method. This likelihood function is called by the authors “trace forecast

likelihood”.

The paper is organised as follows: in section 4.2 the conventional multiple steps

ahead estimators are discussed and the concise explanation of the parameter be-

haviour in case of their usage is given. The trace forecast likelihood is proposed and

discussed in section 4.3. In the section 4.4 a simulation demonstrating the properties

of discussed estimators is carried out. Finally section 4.5 presents examples on real

data, followed by concluding remarks.

4.2 Conventional multiple steps estimators

One of the simplest and well-known estimators based on multiple steps ahead forecast

error is mean squared h-steps ahead error:

MSEh =
1

T

T∑
t=1

e2t+h|t, (4.1)

where et+h|t = yt+h − µt+h|t is conditional h-steps ahead forecast error, yt+h is the

actual value, µt+h|t is the conditional expectation (point forecast) on the observation

t + h produced from the point in time t, while T is the number of observations in

sample.

The estimator (4.1) is sometimes used in order to estimate a model several times

for each horizon from 1 to h steps ahead (Kang, 2003; Chevillon and Hendry, 2005;

Pesaran et al., 2010). The model is then optimised h times instead of one and has h

different values of parameters. Such an estimator is sometimes called “direct multi-

steps estimator” or “DMS” (Chevillon, 2007). The estimation procedure using DMS

is obviously more complicated than the one based on (4.1) when used only once, but

is reported to produce models with increased prediction accuracy. This is due to

alignment of forecast with the objective function, i.e. predictions of h-steps ahead.
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One of the other popular estimators implies that instead of taking only one error,

on observation h, a forecaster takes all the errors for horizons from 1 to h, sums up the

values of (4.1) and estimates the model (Weiss and Andersen, 1984; Xia and Tong,

2011). The resulting estimator can be called “Mean Squared Trace Forecast Error”

and is calculated using:

MSTFE =
1

T

h∑
j=1

T∑
t=1

e2t+j|t. (4.2)

The important fact about both estimators (4.1) and (4.2) is that they can be

decomposed into bias and variance (which was discussed by Taieb and Atiya (2016)

in detail). This means that they are proportional to variances of multiple steps ahead

forecast errors: MSEh ∝ σ2
h, MSTFE∝

∑h
j=1 σ

2
j . This property in turn can be used

in order to explain what happens with time series models when these estimators are

used.

In order to give a simple and concise explanation, we use SSOE state-space model

(Snyder, 1985): {
yt = w′vt−1 + εt
vt = Fvt−1 + gεt

, (4.3)

where vt is a state vector, F is a transition matrix, g is a persistence vector, w is a

measurement vector and εt ∼ N(0, σ2) is a white noise process.

Using (4.3) it can be shown that the actual value for some observation t+h (where

h 6= 1) using the values of vt,F,w and g can be calculated using:

yt+h = w′Fh−1vt +
h−1∑
j=1

cj,hεt+j + εt+h (4.4)

where cj,h = w′Fh−j−1g.

The expected value at observation t+ h will then be equal to:

µt+h|t = w′Fh−1vt (4.5)

Substituting (4.5) in (4.4), we obtain the conditional h steps ahead forecast error:

et+h|t = yt+h − µt+h|t =
h−1∑
j=1

cj,hεt+j + εt+h. (4.6)
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Note that when h = 1 the 1-step ahead error should be calculated using a different

formula, it will simply be equal to the error term:

et+1|t = εt+1. (4.7)

The formulae (4.6) and (4.7) are essential for our analysis because they show how

the forecast error is connected with the error term εt and what elements it contains.

Assuming that εt is not autocorrelated and is homoscedastic, the variance of the

error term (4.6) can be calculated using (for a similar derivation see Hyndman et al.

(2008b)):

σ2
h =

σ
2
1

(
1 +

h−1∑
j=1

c2j,h

)
when h > 1

σ2
1 when h = 1

, (4.8)

where σ2
h is variance of h-steps ahead forecast error.

The finding that the σ2
h can be decomposed into variance of one step ahead error

and sum of squared parameters is not new; it has been briefly discussed in several

papers (for examples, see Bhansali (1996, 1997); Haywood and Tunnicliffe-Wilson

(1997)). But to our knowledge it has never been explored further. Here we would

like to note that the minimisation of MSEh in (4.1) implies the minimisation of the

variance (4.8). This means that as both one-step ahead variance and the squared

values of parameters decrease, transition matrix F and persistence vector g move

towards zero. Efficiently this causes shrinkage of parameters and its intensity increases

with increasing forecast horizon h. This finding helps explain results in the literature

so far. For example, the results by Tiao and Xu (1993), who find using simulation

that MA parameters tend towards one when MSEh is used in the estimation (the

detailed explanation of shrinkage mechanism for ARIMA models will be given later

in this section). It also helps to explain the observed robustness of models estimated

using MSEh.
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A similar shrinkage happens when using MSTFE:

h∑
j=1

σ2
j = σ2

1

(
h+

h∑
j=2

j−1∑
i=1

c2i,j

)
. (4.9)

The parameters in (4.9) interact with the variance directly and the size of the sum

in the right-hand side is at least h times greater than in the simpler case of (4.8).

But at the same time the one step ahead variance in (4.9) is multiplied by h. So due

to the presence of variances of short-term forecast errors in (4.9), the shrinkage effect

in MSTFE is less intensive than in MSEh, when the forecast horizon increases. But

still the parameters will overshrink with the substantial increase of forecast horizon.

In order to see what exactly happens with different state-space models when dif-

ferent estimators are used, we examine several cases. In particular we discuss three

model families: exponential smoothing, ARIMA and regression. Hereafter we skip

the case of h = 1 as trivial, because no shrinkage is imposed on the parameters in

this case.

4.2.1 Exponential smoothing

All of the exponential smoothing models (ETS) that we discuss here use Hyndman

et al. (2008b) taxonomy. We examine additive ETS models only, keeping in mind

that the main findings can be extended to multiplicative cases as well.

We first discuss ETS(A,N,N), which is also known as the local level model. It has

cj,h = α, where α is smoothing parameter for level component of time series. This

makes h-steps ahead variance equal to:

σ2
h = σ2

1

(
1 +

h−1∑
j=1

α2

)
. (4.10)

Equation (4.10) shows that using any multiple steps ahead estimator leads to

the shrinkage of smoothing parameter α in ETS(A,N,N) towards zero. Furthermore

the speed of shrinkage increases with the increase of the forecast horizon because
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the sum in the right hand side of (4.10) becomes greater. This also means that

using multiple steps ahead estimators with long term forecasts leads to more uniform

weights distribution in time for ETS(A,N,N). This corresponds to a model with the

slower level changes that is less reactive to new information as α tends to zero.

Asymptotically with the increase of h the model becomes a global level model.

Another commonly used model is ETS(A,A,N), also known as local trend model.

In this case cj,h = α + βj:

σ2
h = σ2

1

(
1 +

h−1∑
j=1

(α + βj)2

)
, (4.11)

where β is smoothing parameter for trend component of ETS.

The shrinkage effect in (4.11) is preserved but has a different form: both smoothing

parameters shrink, but β shrinks faster than α with the increase of h. This leads to

more stable estimates of trend and allows to capture long term tendencies in time

series. Asymptotically, with the increase of horizon the model becomes a deterministic

trend model.

The other model of interest is “damped-trend” ETS(A,Ad,N), which has been

argued in the literature to be robust and performed well in several practical com-

petitions (Makridakis and Hibon, 2000). It has a small difference in cj,h value in

comparison to ETS(A,A,N): cj,h = α + β
∑j

i=1 φ
i, which leads to:

σ2
h = σ2

1

(
1 +

h−1∑
j=1

(α + β

j∑
i=1

φi)2

)
. (4.12)

The damping parameter φ in (4.12) is usually constrained within bounds [0, 1].

This means that the second sum in the right hand side of (4.12) always satisfies the

inequality:

0 ≤
j∑
i=1

φi ≤ j (4.13)

As a result parameter φ slows down the shrinkage of β in comparison to ETS(A,A,N).

In other words φ controls the speed of shrinkage of β. In cases when it is close to
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zero, β may even not shrink at all. But when it is close to one, all the processes have

the same features as ETS(A,A,N) model. This also gives a different interpretation

of the observed good performance of ETS(A,Ad,N) over ETS(A,A,N) (Gardner and

McKenzie, 2011). Asymptotically with the increase of the horizon, ETS(A,Ad,N)

becomes a model with a deterministic non-linear trend.

It is also important to note that the shrinkage in ETS(A,Ad,N) is not controlled

only by φ. It may happen by either β or φ. Also note that if one shrinks it is not

necessary for the other one to shrink as well.

Finally we examine local level seasonal model ETS(A,N,A), which has cj,h =

α + γjm, where jm = b j−1
m
c and m is the frequency of the data. This is also a

very commonly used ETS model and is interesting because it introduces a seasonal

component. The h-steps ahead variance in this case is:

σ2
h = σ2

1

(
1 +

h−1∑
j=1

(α + γjm)2

)
, (4.14)

where γ is smoothing parameter for seasonal component of ETS.

Due to the values of jm, if forecast horizon is less than the frequency of the data

(for example, 9 steps ahead in case of monthly data, where m = 12), then jm = 0.

As a result γ does not shrink at all. As the forecasting horizon increases, γ starts to

shrink towards zero, but this happens in a stepwise manner, increasing as complete

seasonal cycles increase. Parameter α shrinks faster than γ on smaller horizons, but

as h increases, this is inverted and γ shrinks faster. This happens because γ has

higher weight corresponding to jm with higher horizons. The switch in the shrinkage

speed happens when h > 2m, because γ starts prevailing in the sum in (4.14). Once

again asymptotically the model becomes deterministic when h→∞.

Other additive state-space exponential smoothing models demonstrate behaviour

similar to the ones discussed above. For example the shrinkage mechanism in ETS(A,Ad,A)

has features of both ETS(A,Ad,N) and ETS(A,N,A).
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It is important to note that models with the multiplicative errors have cj,h values

similar to the ones already discussed. So the properties described for additive ETS

models can be easily transferred to multiplicative ones.

Finally, it should be noted that the initial states of any ETS model influence

the variance of the one-step ahead forecast error, so the shrinkage of the smoothing

parameters is compensated by the change of the initial states. But the initial states

do not shrink and their behaviour depends mainly on time series characteristics.

4.2.2 ARIMA

Due to Snyder (1985) any ARIMA model can be represented in state-space form. In

order to preserve the same logic as with moving average components in ETS, we use

the following polynomials for MA:

θ(B) = 1 + θ1B + θ2B
2 + . . . (4.15)

This leads to the following components of the state-space model:

w =


1
0
...
0

 ,F =

η1 Ik−1
...
ηk 0

 ,g =

η1 + θ1
...

ηk + θk

 , (4.16)

here ηi is AR polynomial and θi is ith moving average parameter. The variance of

ARIMA can now be estimated in a manner similar to ETS. The analysis of (4.16)

shows that in general AR parameters should shrink towards zero, as the transition

matrix gets exponentiated with each step j = 1, .., h, while MA parameters should

shrink towards minus AR parameters. Furthermore with the increase of forecasting

horizon the shrinkage of AR parameters happens faster than the shrinkage of MA

parameters, because of the exponentiation of transition matrix F in formula (4.8).

Analysing more specific models gives a better understanding of the shrinkage

mechanism in ARIMA when any of multiple steps estimator is used.
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For example ARIMA(1,1,1) can be represented in the state-space form (4.3) where:

w =

(
1
0

)
,F =

(
1 + φ1 1
−φ1 0

)
,g =

(
1 + φ1 + θ1
−φ1

)
. (4.17)

The matrix F is exponentiated in the power of j − 1 when h-steps ahead variance is

calculated. The transition matrix decomposition shows (see Appendix H) that cj,h in

this case is equal to:

cj,h = 1 + (φ1 + θ1)

j∑
i=1

φi−11 . (4.18)

Substituting the value (4.18) into the formula of h-steps ahead variance results in the

following:

σ2
h = σ2

1

1 +
h−1∑
j=1

(
1 + (φ1 + θ1)

j∑
i=1

φi−11

)2
 . (4.19)

Now it can be concluded that the minimisation of (4.19) leads to the shrinkage

of both AR and MA parameters: the sum of polynomials in the right hand side of

(4.19) shrinks towards zero, implying the shrinkage of φ1 towards zero as well. The

speed of shrinkage of φ1 increases with the increase of the forecasting horizon due to

increase of number of elements in the sum of polynomials. At the same time the sum

(φ1 + θ1) also shrinks towards zero, meaning that θ1 becomes closer to −φ1. This can

have two different directions depending on the data: either θ1 moves towards −φ1 or

φ1 moves towards −θ1.

Note that for j →∞ the second sum of right-hand side of (4.19) is equal to sum

of infinite geometric progression, which converges when |φ1| < 1:

(φ1 + θ1)
∞∑
i=1

φi−11 =
φ1 + θ1
1− φ1

. (4.20)

The elements in the first sum in (4.19) then asymptotically will be:(
1 + (φ1 + θ1)

∞∑
i=1

φi−11

)2

=

(
1 + θ1
1− φ1

)2

. (4.21)

Therefore as the sum (4.21) tends towards zero, θ1 shrinks towards −1. So asymp-

totically with h → ∞ ARIMA(1,1,1) transforms into ARIMA(0,2,1) model with

θ1 = −1.
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In order to understand what this means in forecasting, we need to analyse the

compact form of ARIMA(1,1,1):

(1−B)(1− φ1B)yt = (1 + θ1B)εt. (4.22)

Taking that asymptotically φ1 = 1 and θ1 = −1, the formula (4.22) transforms into:

(1−B)2yt = (1−B)εt. (4.23)

Other ARIMA models can be analysed in a similar manner. Unfortunately the

variety of ARIMA models is very wide and it is impossible to discuss all of them.

4.2.3 Regression models

Any regression model can also be represented in a state-space form. For example the

multinomial regression:

yt = a0 + a1x1,t + · · ·+ ak−1xk−1,t + εt, (4.24)

where aj is jth coefficient of the model and xj,t is an exogenous variable.

The regression (4.24) can be split into measurement and transition equations

(Hyndman et al., 2008b, p.138):{
yt = w′tvt−1 + εt
vt = Fvt−1 + gεt

, (4.25)

where

wt =


1
x1,t

...
xk−1,t

 ,vt =


a0,t
a1,t

...
ak−1,t

 ,F = Ik,g = 0. (4.26)

In the state-space form of regression the coefficients do not change in time. As

a result all the values of the persistence vector are equal to zero, which in its turn

means that cj,h = 0 for any values of h. So applying any multiple steps estimator

for regression model with exogenous variables only does not lead to shrinkage of

parameters.
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As we see in this paragraph the shrinkage that happens in multiple steps estima-

tors means that models become more robust and persistent. Asymptotically, with

the increase of h, any time series model estimated using a multiple steps estimator

becomes deterministic. And if the forecast horizon is very high, then the parameters

may become biased by overshrinking. They may take many more observations to

converge to true values in comparison with the conventional MSE as estimator. The

parameters are still asymptotically consistent (Weiss, 1991) but may revert to zeroes

in cases of finite samples and high values of h. So in general it maybe not be appro-

priate to use the multiple steps estimators, especially when the sample size is small

and the forecast horizon is high. This is especially important when the parameters

of the model are the main interest.

4.2.4 Complex Exponential Smoothing

Complex Exponential Smoothing has the following underlying statistical state-space

model: 
yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 − α1pt + α0εt
ct = lt−1 + (1− α0)ct−1 + α0pt + α1εt

, (4.27)

which can be rewritten in the compact form:{
yt = w′vt−1 + εt
vt = Fvt−1 + qpt + gεt

, (4.28)

where F =

(
1 −(1− α1)
1 1− α0

)
, g =

(
α0

α1

)
, q =

(
−α1

α0

)
and w =

(
1
0

)
.

The variance of this model depends on the selected information potential, but in

general for h-steps ahead, where h > 1 can be written as:

σ2
h = σ2

1

(
1 +

∑h−1
j=1 (w′F h−1−jg)2

)
+ V (pt)

(∑h−1
j=1 (w′F h−1−jq)2

)
+cov(pt, εt)

(∑h−1
i=1

∑h−1
j=1 (w′F h−1−jg)(w′F h−1−iq)

)
.

(4.29)

Analysing formula (4.29), it can be concluded that by applying any multiple steps

ahead estimation method, several things happen in CES:
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1. Both variances of error term and information potential decrease;

2. Covariance between error term and information potential decreases as well;

3. Transition matrix and persistence vector shrink.

Now the transition matrix F has the following eigenvalues (2.22):

λ =
2− α0 ±

√
α2
0 + 4α1 − 4

2
. (4.30)

These eigenvalues in a power of h− 1 will have complicated interactions between

real and imaginary parts of the complex smoothing parameter. For example the

square of one of the eigenvalues (which corresponds to h = 3) is equal to:

λ21 = 0.5α2
0 − α0 + α1 + 2(1− 0.5α0)

√
0.25α2

0 + α1 − 1, (4.31)

while for the second it is:

λ22 = 0.5α2
0 − α0 + α1 − 2(1− 0.5α0)

√
0.25α2

0 + α1 − 1. (4.32)

Minimising the values (4.31) and (4.32) even for such a short horizon means that

although the parameters of CES shrink, this process happens in a non-linear fashion:

parameters will move towards zero with the increase of h, but at the same time they

will not overshrink because of the negative signs before the parameters in (4.31) and

(4.32).

Still taking the power h− 1 of each eigenvalue of the transition matrix F means

that during the minimisation they will shrink towards zero. As a result CES with the

multi-steps ahead cost functions will be forced towards stationarity. Unfortunately,

there is no way to demonstrate this mechanism in a simpler and more clear way.

Summarising this subsection, CES can be efficiently estimated using simpler multi-

steps ahead cost functions, such as MSTFE or MSEh, because the parameters of CES

will not overshrink. Using these functions will force CES to become stationary for

higher horizons.
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In order to address this issue we propose a different multiple steps estimator based

on a likelihood function.

4.3 Trace forecast likelihood

The idea of trace forecast likelihood is based on the analysis of the joint conditional

distribution of multiple steps ahead (1 to h) observed values, represented as a vector:

Yt =


yt+1

yt+2
...

yt+h

 . (4.33)

This is a very universal approach because values of Yt depend only on the un-

derlying statistical model, which is not defined directly here. In the general case the

likelihood that a model with some parameters produced such a vector of actual values

can be estimated using the following conditional probability:

L(θ,Σ|Yt) = P (Yt|θ,Σ), (4.34)

where θ is a vector of parameters of a statistical model and Σ is a conditional covari-

ance matrix for variable Yt.

The same likelihood estimated on all the available observations T is equal to the

product of the following joint probabilities:

L(θ,Σ|Y) =
T∏
t=1

P (Yt|θ,Σ), (4.35)

where Y = {Y1,Y2, . . . ,YT}.

Although the elements of vector Yt are in general not independent from each

other for different t, the maximisation of the likelihood (4.35) gives an estimate for

θ, that is at least weakly consistent, first order efficient and asymptotically normally

distributed (Heijmans and Magnus, 1986a,b). This means that using the likelihood

(4.35) automatically guarantees that several important statistical properties of the

estimates of θ hold.
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The final value of the likelihood (4.35) depends mainly on the assumptions on

the conditional distribution of Yt. Traditionally in time series literature the normal

distribution is used, which in the multidimensional case leads to the following quasi-

likelihood function:

L(θ,Σ|Y ) =
T∏
t=1

[
(2π)−

h
2 |Σ|−

1
2 exp

(
−1

2
E′tΣ

−1Et

)]
(4.36)

where Et =


et+1|t
et+2|t

...
et+h|t

.

The covariance matrix Σ is unknown in (4.36) but can be estimated using maxi-

mum likelihood:

Σ̂ =
1

T

T∑
t=1

EtE
′
t (4.37)

Linearising the function (4.36) and using the estimated covariance matrix (4.37)

leads to the following concentrated log-likelihood:

`(θ, Σ̂|Y) = −T
2

(
h log(2π) + log |Σ̂|

)
− 1

2

T∑
t=1

(
E′tΣ̂

−1Et

)
(4.38)

It can now be shown that (4.38) is equivalent to even simpler function (see Ap-

pendix I for the details):

`(θ, Σ̂|Y) = −T
2

(
h log(2πe) + log |Σ̂|

)
(4.39)

By maximising function (4.39) we guarantee that the obtained estimates of θ will

have all the desirable statistical properties of likelihood estimates, in contrast with

the other multiple steps estimators. Furthermore function (4.39) can be used in model

selection with information criteria. The rationale for this will be similar to the one

used in Akaike (1974) with the following difference: the comparison between true

and estimated models is done using multiple steps ahead forecasts instead of one-step

ahead forecasts.
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Analysing (4.39) shows that maximisation of concentrated log-likelihood is equiva-

lent to minimisation of the determinant of the covariance matrix Σ̂. This determinant

is called “Generalised Variance”:

GV = |Σ̂| (4.40)

For convenience of estimation, in cases of large h, the logarithm of (4.40) may be

taken.

It is essential to understand what elements the covariance matrix Σ contains and

what minimisation of its determinant means. The matrix has the following structure:

Σ =


σ2
1 σ1,2 . . . σ1,h

σ1,2 σ2
2 . . . σ2,h

...
...

. . .
...

σ1,h σ2,h . . . σ2
h

 , (4.41)

where σi,j = cov(et+i|t, et+j|t) is the covariance between i-th and j-th steps ahead

conditional errors. Note that these covariances in general differ from the conventional

covariances between error terms εt and εt+i for any integer i because the former

are errors conditional to some actual values on observation t, while the latter are

unconditional errors.

Knowing the structure (4.41) it is easy to show that the function (4.40) can be

represented in the following simpler way (see Appendix J for the derivation):

GV = |Σ| =
h∏
j=1

σ2
j |R|, (4.42)

where R =


1 r1,2 . . . r1,h
r1,2 1 . . . r2,h

...
...

. . .
...

r1,h r2,h . . . 1

 is the correlation matrix of conditional errors.

Linearising (4.42) leads to a function that is much easier to analyse:

logGV =
h∑
j=1

log σ2
j + log |R|. (4.43)

81



We conclude that with the maximisation of likelihood (4.39) the logarithms of

variances of 1 to h steps ahead errors are decreased and correlations between some of

the elements of R are increased, ensuring that the determinant of matrix R becomes

closer to zero.

The advantage of estimator (4.43) in comparison with (4.1) and (4.2) is that the

variances in the former are scaled using the logarithm function. This means that the

higher variances that are typical for long-term forecasts do not dominate the variances

of short term during estimation. This effect was noted and studied by Taieb and Atiya

(2016). Taking logarithms of these variances makes them closer to each other which

in its turn allows minimising variances across all the horizons.

Note that the trace of matrix Σ is proportional to the value of MSTFE. This value

is usually called “Total Variation” and does not take into account the covariances

between variables in matrix Σ. Furthermore values of MSEh for any h are proportional

to the h-th element of diagonal of the matrix Σ, which makes this estimator a special

case of trace forecast likelihood.

Overall it can be noted that the proposed likelihood approach is more general

than the estimators discussed above.

In the case of state-space models, formula (4.43) can be rewritten using (4.8) in

the following manner:

logGV = h log σ2
1 +

h∑
j=2

log

(
1 +

j−1∑
i=1

c2i,j

)
+ log |R|. (4.44)

By minimising GV the variance of one-step ahead forecast error is decreased along

with values of parameters. So this cost function also imposes shrinkage on parameters,

but because of the logarithms in (4.44) the one-step ahead variance value is balanced

out with the sum of parameters. This means that the shrinkage effect in GV is lower

than in MSTFE.

Nevertheless function (4.44) has an important element that all the other functions

lack; the determinant of the correlation matrix R. In order to understand how this
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matrix contributes to the final value, we need to estimate values of covariances σi,j

and calculate correlation coefficients ri,j.

Using the same assumptions of no autocorrelation and homoscedasticity in error

term, taking that j > i, the covariance σi,j = cov(et+j|t, et+i|t) can be derived using

(4.6) and (4.7). The correlation coefficients then are equal to (see Appendix K for

the details):

ri,j =



ci,j +
i−1∑
l=1

cl,jcl,i


√√√√√√√

1 +
i−1∑
l=1

c2l,i


1 +

j−1∑
l=1

c2l,j


when i, j 6= 1

c1,j√√√√√√√
1 +

j−1∑
l=1

c2l,j


when i = 1

. (4.45)

The analysis of (4.45) shows that when i and j are close to each other then corre-

lation between them increases with the increase of horizon, because the numerator in

this case becomes close in value to the denominator. Secondly, the higher values of i

and j in general also lead to increase of correlations. Asymptotically, when i, j →∞,

correlation ri,j → 1, which leads to a singular matrix R.

Vice versa the increase of correlation between some i and j steps ahead errors

means that the numerator and the denominator in (4.45) are enforced to become

closer to each other. This slows down the general shrinkage effect because the value

ci,j = w′Fj−i−1g in numerator tends towards 1, which is possible only when F and g

do not shrink towards zero. Unfortunately, it is impossible to show the exact effect

of |R| on GV in a general case because the determinant of R is hard to calculate

analytically for h > 3.

Overall it can be concluded that the proposed estimator should be less biased

and more efficient than the conventional multiple steps ahead estimators. The rate

of convergence of parameters estimates to true values in this case is also higher than
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for the other multiple steps ahead estimators due to the weakened shrinkage effect.

In the next section we demonstrate these with a simulation experiment. We conduct

simulations for both ETS and ARIMA models, the parameters of which are estimated

using multiple steps functions.
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Figure 4.1: Correct model. Parameter α.

4.4 Simulation experiment

4.4.1 ETS

We conduct a simulation experiment in order to see the behaviour of different esti-

mators depending on the sample size and the horizon. 100 time series with 10000
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observations each are generated using ETS(A,N,N) model, with an arbitrary chosen

smoothing parameter α = 0.8, and then correct and wrong models are fit to the data

using the estimators with forecasting horizon of 1, 10, 20, 30, 40, 50 and 100 on

samples containing from 10 to 100 (with 1 observation step) and then 200, 500, 1000,

5000 and 10000 observations. The resulting estimated model parameters are recorded

and analysed.

The data is simulated using “sim.es” function of package “smooth” for R (available

from CRAN). The estimation of models is done using “es” function of the same

package.

First we study the case when the true model is known. Figure 4.1a shows how pa-

rameters change when the sample size increases for different forecasting horizons used

in the estimation with the different methods discussed in this paper: trace forecast

likelihood (entitled as “TFL”), MSEh and MSTFE. The case of h = 1 corresponds

to the conventional method based on one-step-ahead forecast error. The vertical line

splits samples with 10 to 100 observations from the samples with larger numbers of

observations marked with the following letters: “a” – 200, “b” – 500, “c” – 1000, “d”

– 5000 and “e” – 10000. The horizontal line represents the true parameter.

Figure 4.1a demonstrates that TFL gives consistent estimates although with a

bias on smaller samples. This means that the method can be effectively used when

dealing with large samples of data. On the contrary using both MSEh and MSTFE

leads to overshrinkage of parameters with high inefficiency and bias even on larger

samples. For example, even when the sample size is 5000 observations MSEh with

h = 100 still produces biased estimates of the parameter. Note that MSTFE produces

less biased estimates than MSEh. Eventually the parameters estimated using both of

these methods converge to the true value, but the speed of convergence is much lower

than for TFL because of the uncontrolled shrinkage effect, the estimates reach true

values only asymptotically. Furthermore the parameters converge to true value with
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a speed proportional to T
h

with obvious advantage of TFL.

The Figure 4.1b demonstrates the convergence of variance of the same parameter.

TFL estimator is inefficient for the sample sizes of approximately T < 2h, but it

becomes efficient for larger samples. Both MSTFE and MSEh demonstrate inefficiency

even for larger samples. While the efficiency of MSTFE slowly increases (when T

becomes approximately more than 10 · h), the MSEh estimator is highly inefficient

even on large samples (approximately 20 · h).

All of these results hold when the model is correctly specified. We proceed to

analyse the behaviour of estimators when the wrong model is selected, which is a

more realistic case in practice. In our case we use ETS(A,A,N).

Figure 4.2a demonstrates the behaviour of parameter α of ETS(A,A,N) model

in the same conditions discussed above. Note that the estimates are biased for all

the methods but eventually converge to the true values. Still TFL has a faster rate

of convergence than the other methods, although the behaviour of the smoothing

parameter in this case is peculiar: it firstly diverges from, but then converges to

α = 0.8. Similar behaviour is demonstrated by the conventional method of estimation.

This shows the connection between the two and also demonstrates that in order to

have a precise estimates of the parameters using TFL, more observations are needed,

than for the conventional method. This can be seen for lines with h > 1 - the estimates

converge to true values slower than in case of MSE.

In the same situation MSEh and MSTFE demonstrate behaviour similar to Figure

4.1a, when the correct model was selected. The bias of the parameter in this case is

even greater, due to the same overshrinkage effect.

Furthermore the variance of α in this part of the experiment demonstrates that all

the methods are inefficient each in its own way (Figure 4.2b). The inefficiency of TFL

firstly grows with the growth of the sample size but then decreases for each of the

horizons. MSEh and MSTFE at the same time are more efficient on smaller samples,

86



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

TFL

obs

α

1 11 23 35 47 59 71 83 95 1000 10000

●

●
●
●●●●

●
●

●
●
●

●
●
●

●●
●●

●●
●
●
●
●●
●●●

●●
●●●

●●
●●●

●●●●
●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
● ● ● ● ●

a b c d e

MSEh

obs
1 12 24 36 48 60 72 84 96 1000 10000

●

●
●●●●●

●
●

●

●
●

●●

●●

●
●●

●
●
●
●
●
●●

●
●●
●
●●●●

●●●●
●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

a b c d e

MSTFE

obs
1 12 24 36 48 60 72 84 96 1000 10000

●

●
●●●●●

●
●

●

●
●

●●

●●

●
●●

●
●
●
●
●
●●

●
●●
●
●●●●

●●●●
●●●●

●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

● ● ● ● ●

a b c d e

●● h=1 h=10 h=20 h=30 h=40 h=50 h=100 true value

(a) Mean values.

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

TFL

obs

σ α2

1 11 23 35 47 59 71 83 95 1000 10000

●●●●●●●

●

●

●
●
●

●●
●

●
●●
●●●

●
●
●
●●

●●●

●
●●●●

●●

●●●
●●
●●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●

a b c d e

MSEh

obs
1 12 24 36 48 60 72 84 96 1000 10000

●●●●
●
●●

●

●

●

●●

●
●

●●
●
●
●●●

●
●
●
●●

●●●

●

●●
●●

●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●

a b c d e

MSTFE

obs
1 12 24 36 48 60 72 84 96 1000 10000

●●●●
●
●●

●

●

●

●●

●
●

●●
●
●
●●●

●
●
●
●●

●●●

●

●●
●●

●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ● ● ●

a b c d e

●● h=1 h=10 h=20 h=30 h=40 h=50 h=100

(b) Variance.

Figure 4.2: Wrong model. Parameter α.

than on larger ones. This interesting feature can probably be explained again by the

shrinkage effect: on smaller samples it has a higher effect, than on bigger samples,

which causes the parameter to become very close to zero.

Finally the mean values of parameter β are shown in Figure 4.3a. As we see due

to the shrinkage the correct value of β = 0 is forced on the model for all estima-

tion methods. MSEh and MSTFE are very efficient in this situation, although TFL

demonstrates bias on samples with a small number of observations. The variances

of the parameter β are shown in Figure 4.3b. Note that the conventional method is

inefficient on smaller samples, TFL demonstrates small efficiency when the ratio T
h

is
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Figure 4.3: Wrong model. Parameter β.

small (about less than 2), but both MSEh and MSTFE give efficient estimators in this

situation. This is once again because of the shrinkage effect that sets the redundant

parameter to zero very fast.

Concluding the results of the experiment, it should be noted that in general TFL

allows to obtain more efficient, less biased and consistent estimates, but the main

advantage of the method appears only when a number of observations is sufficient

(approximately T > 2h). MSEh and MSTFE are biased and inefficient due to the

overshrinkage effect. They are still consistent, but the rate of convergence for these

methods is very low. These conclusions hold for both cases of correctly and wrongly
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specified models. Still when the model is wrong, due to the shrinkage effect of MSEh

and MSTFE, the redundant parameters become equal to zero much faster than using

the conventional method or TFL. TFL shrinks the parameters as well, but it takes

more observations to reach the same effect as other estimators.

4.4.2 ARIMA

We conduct a similar experiment using ARIMA(0,1,1) as the DGP: we produce 100

series consisting of 5000 observations each with θ1 = 0.6. We then fit correct and

wrong models to the simulated data using the three estimators and horizons of 1, 10,

20, 30, 40 and 50. The wrong model is ARIMA(1,1,1).

The results of this simulation in general correspond to the results above. In order

to explore them in detail, we have produced several boxplots for each of the methods.

Figure 4.4 demonstrates how the estimated parameters vary with different sample

sizes and different forecast horizons. TFL gives consistent, efficient and unbiased

estimates of the parameters. In contrast MSEh and MSTFE are highly inefficient and

biased. In many cases they even produce negative values for MA parameter, although

the correct value is 0.6. This is due to the overshrinkage problem. As we have shown

in the previous section, this is happening in conventional multiple steps estimators.

The case of the wrong model is also interesting. Figure 4.5 shows boxplots for

MA(1) parameter and how its estimates deviate from the true value. Note that in this

case all the multiple steps become less efficient than in the case with the correct model,

but Trace Forecast Likelihood gives the most efficient and least biased estimates.

We provide a similar analysis of the estimated AR parameter in Appendix L. It

confirms the results discussed in section 4.2.2. The AR(1) parameter in the simulation

shrinks towards −θ when MSEh and MSTFE are used. In the contrast TFL leads

to unbiased estimates of AR(1). Note that MSTFE is more efficient and less biased

than MSEh which confirms the findings in the previous section.
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Figure 4.4: ARIMA estimated using different methods. Correct model. Boxplots of
parameter θ.
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Figure 4.5: ARIMA estimated using different methods. Wrong model. Boxplots of
parameter θ.
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Figure 4.6: Sales series and forecasts using ARIMA(1,1,1).

4.5 Real time series example

In order to demonstrate what are the benefits of the TFL method for forecasting

purpose, we fit ARIMA(1,1,1) model on Box and Jenkins sales data. The motivation

here is to see how the model used for simulated data in previous section performs in

real life with different estimators. Figure 4.6 demonstrates three cases of the model:

(1) estimated using mean squared one-step-ahead error, (2) estimated using MSEh,

(3) estimated using MSTFE, and (4) estimated using TFL.

As we see from the Figure 4.6 the most accurate forecast is produced by ARIMA

estimated using TFL, although the difference between the methods is slight – forecast

errors for these three cases are respectively: (1) 1.13%, (2) 0.95%, (3) 1.15%, (4)

0.87%. TFL lead to the narrowest prediction intervals among the four estimators.

Reason for that is values of parameters for AR and MA.

Table 4.1 demonstrates the values of parameters for the four estimators. Note

that both MSEh and MSTFE once again overshrink the MA parameter, making it

the lowest of the MAs of the four estimators. Note also that φ1 + θ1 for MSEh is

the lowest (in comparison to the other estimation methods). This is because this
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sum is included in the variance (4.19) and is minimised in the estimation process. If

the forecast horizon would be higher, the shrinkage would be enforced, making MA

to become closer to -1. Furthermore the variance of one-step-ahead forecast error is

the highest for MSEh, which indicates that due to the shrinkage of parameters, the

variance was not minimised properly.

Although the one step ahead variance for MSE is the lowest among the three

methods, the parameters values are still higher than they need to be. This results in

the wider prediction intervals in Figure 4.6. Note also that φ1 + θ1 for MSE is the

highest among the three methods for this case. This leads to a higher variance of

h-steps ahead forecast error and as a result wide prediction intervals.

Finally TFL produced parameters closer to zero (in comparison with the other

estimators) with φ1 +θ1 lower than in MSE. This is because of the shrinkage with the

compensation that is happening during the estimation of the model. The variance

of one-step-ahead error is the second lowest for TFL. These two factors balance each

other out, leading to the lowest variance of h-steps ahead forecast error and as a result

the prediction intervals for the model estimated with TFL appear to be the narrowest

among the four estimation methods.

As we see TFL balances out the benefits of the other estimators, shrinking the

parameters and producing the lower variance of one-step-ahead forecast error. This

leads to more accurate forecasts and narrower prediction intervals, thus decreasing

uncertainty.

Estimator φ1 θ1 φ1 + θ1 σ2
1

MSE 0.891 -0.649 0.242 1.90
MSEh 0.938 -0.852 0.086 2.64
MSTFE 0.919 -0.763 0.156 1.99
TFL 0.632 -0.406 0.226 1.95

Table 4.1: AR and MA parameters values.
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4.6 Conclusions

Estimation methods based on multiple steps ahead forecast error have been known

for several decades. Their statistical properties have been studied in detail and it was

found that using these estimators makes time series models more robust. Still there

has never been any concise explanation of why this happens.

We have shown that the main reason for robustness is the implied shrinkage,

that is automatically imposed on parameters when any of these estimators are used.

We have also demonstrated that the shrinkage happens in ARIMA and ETS, but

the coefficients of exogenous variables in regression do not shrink. Therefore this

constitutes a univariate form of parameter shrinkage, in contrast to shrinkage methods

such as Ridge or LASSO regression. Furthermore due to this effect with the increase

of forecast horizon, time series models become deterministic. Thus there is a danger

of overshrinking the parameters.

We propose a likelihood based on multiple steps ahead forecast errors which we

called “Trace Forecast Likelihood”. We showed that its maximisation implies the

minimisation of generalised variance of multiple steps ahead forecast errors. Using the

proposed likelihood obtains consistent, efficient and unbiased estimates of parameters

and also allows the calculation of information criteria for model selection purpose.

We have also demonstrated that Trace Forecast Likelihood imposes shrinkage on the

parameters of models in a similar manner that other multiple steps estimators do,

but it is done more gently and the parameters do not overshrink.

Using the simulation experiment we have demonstrated that the shrinkage effect

in MSEh and MSTFE worsens with the increase of the forecast horizon. Because of

the “overshrinkage” effect the parameters of models become biased and inefficient,

they eventually converge to the true values but with a very low rate. The speed of

convergence also slows down with the increase of the forecast horizon. However the
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shrinkage effect is weakened in the proposed Trace Forecast Likelihood which as it was

observed, obtains more efficient, less biased and consistent estimates of parameters.

We then showed on the example of Box-Jenkins sales data how different estimation

methods influence parameters of ARIMA(1,1,1) and obtain forecasts. TFL in this

example resulted in more accurate forecasts with narrower prediction intervals.

Finally we conclude that if the parameters are the main interest, TFL should be

preferred to MSEh and MSTFE. However in this work we have not evaluated properly

the effect of the different estimation methods for forecasting. It should be noted that

the latter methods may be useful in forecasting due to their ability to decrease the

influence of redundant parameters on final forecasts. Therefore future research should

explore this question further.
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Conclusions

Exponential smoothing is one of the well-known and effective forecasting methods

that is widely used in practice. It has been shown in many papers that on average it

produces more accurate forecasts than other extrapolative methods and at the same

time is easier to use and explain than, for example, ARIMA model. It has been widely

studied in many articles over the years from both theoretical and practical points of

view and has seen substantial development since it was first introduced in 1956.

The literature review that we have conducted (chapter 1) has pointed towards

interesting avenues for further research, extending the current state-of-the-art. We

showed that the conventional idea of time series decomposition into “level”, “trend”,

“seasonality” and “error” is ambiguous and that the true model (if such exists) can

have more complicated structure than it is typically thought. This explains good

results by various hybrid models and combinations of forecasts based on the conven-

tional exponential smoothing model forms. Furthermore it is well understood that

the true model is not known, which means that any time series model needs to be

identified and estimated using appropriate methods. This motivated our research in

multiple steps estimators.

Taking all of this into account we firstly proposed a new time series modelling

approach based on the notion of “information potential”. The idea behind it is that

any time series contains the observed actual values and an unobservable information

part. In chapter 2 we proposed to use the error term as an approximation of this

unknown information and based on this introduced “Complex Exponential Smooth-

96



ing” (CES) model. CES is based on the theory of complex variables and captures

the information potential into the imaginary part of a variable. This allows the

CES model to produce both stationary and non-stationary forecasts depending on

the data and smoothly transition between them instead of switching. This in turn

obtains more accurate long-term forecasts, increasing overall accuracy in comparison

to conventional ETS models. Therefore by introducing one model that approximates

all possible types of trends in time series we avoid a model selection procedure and

make forecasting process simpler.

We then modified the proposed model to take into account seasonality that many

time series, in particular in business, exhibit. The resulting seasonal CES (chapter

3) can approximate both additive and multiplicative types of seasonality without the

need to select between them. The modelling of the most appropriate type is based

on the data characteristics and the value of smoothing parameters. Seasonal CES

can also produce new types of seasonality, where the variance of seasonal profile may

change even if the level is constant. Furthermore model selection between seasonal and

non-seasonal CES was also introduced in the chapter 3. Because of the large difference

in the number of parameters for these models, the model selection procedure appears

to be more efficient than for ETS or ARIMA and the seasonal model is selected

only when it approximates the time series significantly better than the non-seasonal

counter part.

The key element of the proposed model is a complex smoothing parameter, which

defines whether a stationary or non-stationary trajectory is produced and whether

additive or multiplicative seasonality should be modelled. So the estimation of the

parameters is essential for the model. In order to do that efficiently we propose in

chapter 4 to use multiple steps ahead estimators, which produces more robust models,

as it is argued in the literature. The properties of these estimators were analysed and

it was shown that they impose shrinkage on the parameters of the CES models.
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Furthermore, as the forecast horizon increases this leads to overshrinkage, making

univariate models deterministic. We then proposed “Trace Forecast Likelihood”, a

function based on multiple steps ahead forecast errors and showed that the estimator

is consistent, more efficient and less biased than the conventional multiple steps ahead

estimators. Finally we demonstrated that the estimator can be efficiently applied to

any univariate model resulting in better estimates of parameters, while retaining the

useful property of shrinkage for univariate time series models.

As a result of this research, we proposed a new modelling principle which can easily

be implemented in practice. CES can be efficiently used for demand forecasting and

may substitute the existing exponential smoothing models used in these situations.

Using only one model with a very simple mechanism of switching between seasonal

and non-seasonal data would make producing of forecasts easy. Besides the good

forecasting accuracy of CES also means that the uncertainty is decreased and that

the forecasts can be used to support better decision making, supporting such func-

tions as production planning, inventory management, budgeting and so on. Finally

the proposed Trace Forecast Likelihood has desirable statistical properties which in

practice lead to more consistent and stable forecasts with decreased sizes of the pre-

diction intervals (due to shrinkage of smoothing parameters towards zero). This leads

in turn to a further decrease of uncertainty.

There are some limitations of the proposed model. Due to the form of CES,

precision of estimation is very important, but finding correct values of parameters may

be a challenging task. Trace Forecast Likelihood solves this problem from fundamental

perspective, but optimising the model in practice may sometimes be met with a mixed

success. In some cases the surface of the objective function may become non-concave.

The other limitation is in the fundamental idea behind CES – “information potential”

is not a complicated notion, but it may be hard to explain to practitioners. This may

cause problems in adoption of CES by companies.
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Our research on the other hand opens several topics for the future works. First

of all, we used only one form of information potential assuming that pt = εt. Other

forms of information potential will lead to different forecasting results. For example,

the approximation pt = ∆yt could lead to a model efficiently switching between

long-term and short-term forecasts. Alternatively the information potential can be

modelled using functions of exogenous variables which may lead to a further increase

in forecasting accuracy.

Second, exogenous variables can be used in CES in different ways. For example,

it can be included in a conventional way as in state-space ETS or it can be coded

through the information potential. This can be especially useful for promotional

modelling where the impact of promotions may vary in time in a non-linear fashion

or to model shocks in the supply chain.

Third, it would be interesting to explore further the idea of Trace Forecast Like-

lihood and evaluate its impact on forecast accuracy. This will also lead to a better

understanding of the effect of the univariate parameter shrinkage (that multiple step

estimators impose) on the forecast accuracy of these models. Furthermore this like-

lihood allows the selection of a forecasting model among the set of models using

information criteria, but the criteria themselves need to be updated to take the fore-

casting horizon into account. So additional studies of this likelihood need to be carried

out.

Finally, the reseach opens up the topic of fuzzy state-space models, where the

components are not defined strictly and do not correspond to some known in the-

ory elements, such as “level”, “trend” and “seasonality”. It was shown that CES in

state-space form has an important difference with ETS models: the transition matrix

of CES includes smoothing parameters. This gives CES its main flexibility and can

be exploited further. Defining any number of fuzzy components with any number of

lags and estimating them along with smoothing parameters, measurement vector and
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transition matrix may lead to a new class of models, which can be called “Gener-

alised Exponential Smoothing”. This class of models could underlie all the existing

statistical univariate models, allowing to unite models and methods into one unified

theory. Theoretical derivations, estimation and tests on the real data of this new class

of models are possible directions of new research.
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Appendices

A State-space form of CES

First of all any complex variable can be represented as a vector or as a matrix:

a+ ib =

(
a
b

)
,

a+ ib =

(
a −b
b a

)
.

(46)

The general CES model (2.5) can be split into two parts: measurement and tran-

sition equations using (46):


(
ŷt
x̂t

)
=

(
lt−1
ct−1

)
(
lt
ct

)
=

(
α0 −α1

α1 α0

)(
yt
pt

)
+

((
1 −1
1 1

)
−
(
α0 −α1

α1 α0

))(
lt−1
ct−1

) . (47)

Regrouping the elements of transition equation in (47) the following equation can

be obtained:

(
lt
ct

)
=

(
α0 −α1

α1 α0

)(
0
pt

)
+

(
α0 −α1

α1 α0

)(
yt
0

)
+(

1 −1
1 1

)(
lt−1
ct−1

)
−
(
α0 −α1

α1 α0

)(
0
ct−1

)
−
(
α0 −α1

α1 α0

)(
lt−1
0

). (48)

Grouping vectors of actual value and level component with complex smoothing

parameter and then the level and information components leads to:

(
lt
ct

)
=

(
1 −1
1 1

)(
lt−1
ct−1

)
−
(

0 −α1

0 α0

)(
lt−1
ct−1

)
+(

α0 −α1

α1 α0

)(
0
pt

)
+

(
α0 −α1

α1 α0

)(
yt − lt−1

0

) . (49)
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The difference between the actual value and the level in (49) is the error term:

yt − lt−1 = εt. Using this and making several transformations gives the following

state-space model:


(
ŷt
x̂t

)
=

(
lt−1
ct−1

)
(
lt
ct

)
=

(
1 −(1− α1)
1 (1− α0)

)(
lt−1
ct−1

)
+

(
−α1

α0

)
pt +

(
α0

α1

)
εt

. (50)

Now if CES should be represented in the state-space form with the SSOE then

the measurement equation should also contain the same error term as the transition

equation. Since the imaginary part of the measurement equation in (50) is unobserv-

able, it does not contain any useful information for forecasting and can be excluded

from the final state-space model:


yt = lt−1 + εt(
lt
ct

)
=

(
1 −(1− α1)
1 (1− α0)

)(
lt−1
ct−1

)
+

(
−α1

α0

)
pt +

(
α0

α1

)
εt
. (51)

The other way of writing down this state-space model is by splitting the level and

information components into two equations:


yt = lt−1 + εt
lt = lt−1 − (1− α1)ct−1 − α1pt + α0εt
ct = lt−1 + (1− α0)ct−1 + α0pt + α1εt

. (52)

B Underlying ARIMA

The information component can be calculated using the second equation of (2.7) the

following way:

ct−1 = − lt − lt−1 + α1pt − α0εt
1− α1

. (53)

Inserting (53) into the third equation of (2.7) leads to:
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− lt+1 − lt + α1pt+1 − α0εt+1

1− α1

= lt−1 − (1− α0)
lt − lt−1 + α1pt − α0εt

1− α1

+ α0pt + α1εt.

(54)

Multiplying both parts of (54) by −(1− α1) and taking one lag back results in:

lt − lt−1 + α1pt − α0εt =
−(1− α1)lt−2 + (1− α0)(lt−1 − lt−2 + α1pt−1 − α0εt−1)− (1− α1)α0pt−1 − (1− α1)α1εt−1

.

(55)

Opening the brackets, transferring all the level components to the left hand side

and all the error terms and information components to the right hand side and then

regrouping the elements gives:

lt−(2−α0)lt−1−(α0+α1−2)lt−2 = α0εt−(α0−α2
0+α1−α2

1)εt−1−α1pt+(α1−α0)pt−1.

(56)

Now making substitutions lt = yt+1 − εt+1 in (56), taking one more lag back and

regrouping the error terms once again leads to:

yt − (2− α0)yt−1 − (α0 + α1 − 2)yt−2 =
εt − (2− 2α0)εt−1 − (2α0 + 2α1 − 2− α2

0 − α2
1)εt−2 − α1pt−1 − (α0 − α1)pt−2

. (57)

The resulting model (57) is ARMAX(2,2) with lagged information potential:

(1− φ1B − φ2B
2)yt = (1− θ1B − θ2B2)εt + (−γ1B − γ2B2)pt, (58)

where φ1 = 2−α0, φ2 = α0+α1−2, θ1 = 2−2α0, θ2 = 2α0+2α1−2−α2
0−α2

1, γ1 =

α1 and γ2 = α0 − α1.

If the information potential is equal to the error term then the model (57) trans-

forms into ARMA(2,2):
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(1− φ1B − φ2B
2)yt = (1− θ1B − θ2B2)εt, (59)

where φ1 = 2−α0, φ2 = α0+α1−2, θ1 = 2−2α0+α1 and θ2 = 3α0+α1−2−α2
0−α2

1.

In a similar manner using (2.7) it can be shown that the imaginary part of the

series has the following underlying model:

ct − (2− α0)ct−1 − (α0 + α1 − 2)ct−2 =
α1εt − (α1 − α0)εt−1 + α0pt − (α0 + α1)pt−1

, (60)

If pt − ct−1 = ξt, where ξt is an information gap, then the equation (60) can be

rewritten:

pt+1 − (2− α0)pt − (α0 + α1 − 2)pt−1 − α0pt + (α0 + α1)pt−1 =
ξt+1 − (2− α0)ξt − (α0 + α1 − 2)ξt−1 + α1εt − (α1 − α0)εt−1

, (61)

which after taking one lag back leads to the following simpler ARMAX(2,2) model:

(1− φ1B − φ2B)ξt = (1− θ1B − θ2B2)pt + (−γ1B − γ2B2)εt, (62)

where φ1 = 2− α0, φ2 = α0 + α1 − 2, θ1 = 2, θ2 = 2, γ1 = α1, and γ2 = α0 − α1

In case of pt = εt the model transforms into the following ARMA(2,2):

(1− φ1B − φ2B
2)ξt = (1− θ1B − θ2B2)εt, (63)

where φ1 = 2− α0, φ2 = α0 + α1 − 2, θ1 = 2 + α1 and θ2 = α0 − α1 − 2.

So CES has the following complex ARIMAX(2,0,2) model:

(1− φ1B − φ2B
2)yt = (1− θ1,1B − θ1,2B2)εt + (−γ1B − γ2B2)pt

(1− φ1B − φ2B
2)ξt = (1− θ2,1B − θ2,2B2)pt + (−γ1B − γ2B2)εt

, (64)

where φ1 = 2−α0, φ2 = α0 +α1−2, θ1,1 = 2−2α0, θ1,2 = 2α0 +2α1−2−α2
0−α2

1,

θ2,1 = 2, θ2,2 = 2, γ1 = α1, γ2 = α0 − α1.
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C The connection of CES and ETS(A,N,N)

When pt = 0 and α1 = 1 the following state-space model based on (2.7) can be

obtained:


yt = lt−1 + εt
lt = lt−1 + α0εt
ct = lt−1 + (1− α0)ct−1 + εt

. (65)

The measurement equation in (65) implies that the information component ct is

constant over time, so the substitution ct−1 = ct can be made and after opening the

brackets and making several simple substitutions the following model is obtained:


yt = lt−1 + εt
lt = lt−1 + α0εt
ct = lt−1

α0
+ εt

α0

. (66)

D Stationarity condition for CES

The analysis of the equation (2.22) shows that the eigenvalues can be either real or

complex. In the cases of the real eigenvalues they need to be less than one, so the

corresponding forecasting trajectory can be stationary and exponentially decreasing.

This means that the following condition must be satisfied:


∣∣∣∣2−α0±

√
α2
0+4α1−4

2

∣∣∣∣ < 1

α2
0 + 4α1 − 4 > 0

(67)

The first inequality in (67) leads to the following system of inequalities:


√
α2
0 + 4α1 − 4 > α0 − 4√
α2
0 + 4α1 − 4 < α0

−
√
α2
0 + 4α1 − 4 > α0 − 4

−
√
α2
0 + 4α1 − 4 < α0

(68)

The analysis of (68) shows that if α0 > 4, then the third inequality is violated

and if α0 < 0, then the second inequality is violated. This means that the condition
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α0 ∈ (0, 4) is crucial for the stationarity of CES. This also means that the first and

the forth inequalities in (68) are always satisfied. Furthermore the second inequality

can be transformed into:

α2
0 + 4α1 − 4 < α2

0, (69)

which after simple cancellations leads to:

α1 < 1. (70)

The other important result follows from the third inequality in (68), which can be

derived using the condition α0 ∈ (0, 4):

α2
0 + 4α1 − 4 < (α0 − 4)2, (71)

which implies that:

α1 < 5− 2α0, (72)

Uniting all these condition and taking into account the second inequality in (67),

CES will produce a stationary exponential trajectory when:


0 < α0 < 4
α1 < 5− 2α0
4−α2

0

4
< α1 < 1

(73)

The other possible situation is When the first part of the inequality (67) is violated,

which will lead to the complex eigenvalues, meaning that the harmonic forecasting

trajectory is produced. CES still can be stationary if both eigenvalues in (2.22) have

absolute values less than one, meaning that:

√
<(λ)2 + =(λ)2 < 1 (74)
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This means in its turn the satisfaction of the following condition:

√√√√(2− α0

2

)2

+

(
i

√
|α2

0 + 4α1 − 4|
2

)2

< 1 (75)

or:

0 ≤ 4 + α2
0 − 4α0

4
− α2

0 + 4α1 − 4

2
< 1 (76)

which simplifying leads to:

1 < α0 + α1 ≤ 2

or:

{
α1 > 1− α0

α1 ≤ 2− α0

The full condition that leads to the harmonic stationary trajectory of CES is:

α1 <
4−α2

0

4

α1 > 1− α0

α1 ≤ 2− α0

(77)

Now it can be noted that the first inequality in (77) can be rewritten as a difference

of squares:

α1 < (2− α0)
(2 + α0)

4
(78)

Comparing the right hand part of (78) with the right hand side of the third

inequality in (77) it can be shown that there is only one point, when both of these

inequalities will lead to the same constraint: when α0 = 2. This is because the line

α1 = 2 − α0 is a tangent line for the function α1 = (2 − α0)
(2+α0)

4
in this point. In

all the other cases the right hand part of (78) will be less than the right hand side of
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the third inequality in (77), which in its turn means that (78) can be substituted by

stricter condition:

{
α1 <

4−α2
0

4

α1 > 1− α0

(79)

Uniting (79) with (73) leads to the following general stationarity condition:



0 < α0 < 4
α1 < 5− 2α0
4−α2

0

4
< α1 < 1

α1 <
4−α2

0

4

α1 > 1− α0

(80)

The third and forth conditions can be united while the second and fifth conditions

are always satisfied when the first condition is met (because the corresponding lines of

these inequalities have an intersection in the point α0 = 4). So the following simpler

condition can be used instead of (80):


α1 < 5− 2α0

α1 < 1
α1 > 1− α0

(81)

E Stability condition for CES

The general ARMA(2,2) will be invertible when the following condition is satisfied:


θ2 + θ1 < 1
θ2 − θ1 < 1
θ2 > −1
θ2 < 1

(82)

Following from subsection 2.4.5, inserting the parameters from the ARMA (2.30)

underlying CES the following system of inequalities is obtained:


3α0 + α1 − 2− α2

0 − α2
1 + 2− 2α0 + α1 < 1

3α0 + α1 − 2− α2
0 − α2

1 − 2 + 2α0 − α1 < 1
3α0 + α1 − 2− α2

0 − α2
1 > −1

3α0 + α1 − 2− α2
0 − α2

1 < 1

(83)
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After the cancellations and regrouping of elements the system (83) transforms

into:


−α2

0 + 5α0 − α2
1 − 5 < 0

−α2
0 + α0 − α2

1 + 2α1 − 1 < 0
−α2

0 + 3α0 − α2
1 + α1 − 1 > 0

−α2
0 + 3α0 − α2

1 + α1 − 3 < 0

(84)

The inequalities in (84) can be transformed into the inequalities, based on squares

of differences:


(α0 − 2.5)2 + α2

1 > 1.25
(α0 − 0.5)2 + (α1 − 1)2 > 0.25
(α0 − 1.5)2 + (α1 − 0.5)2 < 1.5
(α0 − 1.5)2 + (α1 − 0.5)2 > −0.5

(85)

Note that any point on the plane of smoothing parameters satisfies the last in-

equality in (85), so it does not change the stability region and can be skipped.

F General seasonal CES and SARIMA

The model (3.7) can be written in the following state-space form:

yt = w′0x0,t−1 + w′1x1,t−m + εt
x0,t = F0x0,t−1 + g0εt
x1,t = F1x1,t−m + g1εt

, (86)

where x0,t =

(
l0,t
c0,t

)
is the state vector of the non-seasonal part of CES, x1,t =(

l1,t
c1,t

)
is the state vector of the seasonal part, w0 = w1 =

(
1
0

)
are the measurement

vectors, F0 =

(
1 α1 − 1
1 1− α0

)
, F1 =

(
1 β1 − 1
1 1− β0

)
are transition matrices and g0 =(

α1 − α0

α1 + α0

)
, g1 =

(
β1 − β0
β1 + β0

)
are persistence vectors of non-seasonal and seasonal

parts respectively.

Observe that the lags of the non-seasonal and seasonal parts in (86) differ, which

leads to splitting the state-space model into two parts. But uniting these parts in a

one bigger part will lead to the conventional state-space model:
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yt = w′xt−l + εt
xt = Fxt−l + gεt

, (87)

where xt =

(
x0,t
x1,t

)
, xt−l =

(
x0,t−1
x1,t−m

)
, w =

(
w0

w1

)
, F =

(
F0 0
0 F1

)
, g =

(
g0
g1

)
. The

state vector xt−l can also be rewritten as xt−l =

(
B 0
0 Bm

)(
x0,t
x1,t

)
, where B is a

backshift operator. Making this substitution and taking L =

(
B 0
0 Bm

)
the state-

space model (87) can be transformed into:

yt = w′Lxt + εt
xt = FLxt + gεt

(88)

The transition equation in (88) can also be rewritten as:

(I2 − FL)xt = gεt, (89)

which after a simple manipulation leads to:

xt = (I2 − FL)−1gεt, (90)

Substituting (90) into measurement equation in (88) gives:

yt = w′L(I2 − FL)−1gεt + εt. (91)

Inserting the values of the vectors and multiplying the matrices leads to:

yt = (1 + w′0(I2 − F0B)−1g0B + w′1(I2 − F1B
m)−1g1B

m)εt. (92)

Substituting the values by the matrices in (92) gives:

yt =

(
1 + w′0

(
1−B (1− α1)B
−B 1−B + α0B

)−1(
α1 − α0

α1 + α0

)
B+

w′1

(
1−Bm (1− β1)Bm

−Bm 1−Bm + β0B
m

)−1(
β1 − β0
β1 + β0

)
Bm)εt

)
.

(93)
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The inverse of the first matrix in (93) is equal to:

(I2 − F0B)−1 =
1

1− 2B − (α0 + α1 − 2)B2

(
1− (1− α0)B (α1 − 1)B

B 1−B

)
, (94)

similarly the inverse of the second matrix is:

(I2 − F1B
m)−1 =

1

1− 2Bm − (β0 + β1 − 2)B2m

(
1− (1− β0)Bm (β1 − 1)Bm

Bm 1−Bm

)
.

(95)

Inserting (94) and (95) into (93), after cancellations and regrouping of elements leads

to:

(1− 2B − (α0 + α1 − 2)B2)(1− 2Bm − (β0 + β1 − 2)B2m)yt =
[(1− 2B − (α0 + α1 − 2)B2)(1− 2Bm − (β0 + β1 − 2)B2m)+
(1− 2Bm − (β0 + β1 − 2)B2m)(α1 − α0 − ((α0 − α1)

2 − 2α1)B)+
(1− 2B − (α0 + α1 − 2)B2)(β1 − β0 − ((β0 − β1)2 − 2β1)B

m)] εt

(96)

Unfortunately, there is no way to simplify (96) to present it in a compact form,

so the final model corresponds to SARIMA(2, 0, 2m+ 2)(2, 0, 0)m.

G Discount matrix of the general seasonal CES

Substituting the error term in the transition equation (87) by the value from the

measurement equation leads to:

xt = Fxt−l + gyt − gw′xt−l = (F − gw′)xt−l + gyt, (97)

which leads to the following discount matrix:

D = F − gw′ =


1− α0 + α1 α1 − 1 α1 − α0 0
1− α0 − α1 1− α0 −α1 − α0 0
β1 − β0 0 1− β0 + β1 β1 − 1
−β1 − β0 0 1− β0 − β1 1− β0

 (98)
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H The calculation of cj,h for ARIMA(1,1,1)

The eigenvalues of the transition matrix F =

(
1 + φ1 1
−φ1 0

)
are λ1 = 1, λ2 = φ1 while

the corresponding eigenvectors can be v1 =

(
1
−φ1

)
and v2 =

(
1
−1

)
.

Using matrix decomposition and inserting these values into cj,h gives:

cj,h =
(
1 0

)( 1 1
−φ1 −1

)(
1 0
0 φ1

)h−1−j (
1 1
−φ1 −1

)−1(
1 + φ1 + θ1
−φ1

)
. (99)

The inverse of the matrix in the right hand side of (99) (when φ1 6= 1) is equal to:(
1 1
−φ1 −1

)−1
=

(
1

1−φ1
1

1−φ1
− φ1

1−φ1 −
1

1−φ1

)
, (100)

and inserting the value (100) into (99) and multiplying first two matrices leads to:

cj,h =
(
1 1

)(1 0

0 φj−11

)( 1
1−φ1

1
1−φ1

− φ1
1−φ1 −

1
1−φ1

)(
1 + φ1 + θ1
−φ1

)
. (101)

Multiplying the first two matrices one more time gives:

cj,h =
(
1 φj−11

)( 1
1−φ1

1
1−φ1

− φ1
1−φ1 −

1
1−φ1

)(
1 + φ1 + θ1
−φ1

)
. (102)

Opening the remaining brackets in (102) leads to:

cj,h =
1 + θ1 − φj+1

1 − φj1θ1
1− φ1

(103)

After regrouping elements of (103), formula transforms into:

cj,h = 1 + (φ1 + θ1)
1− φj1
1− φ1

(104)

The quotient in the right hand side of the formula (104) is the sum of geometric

series. Writing down the sum instead of the quotient gives the final formula for the

calculation of cj,h:

cj,h = 1 + (φ1 + θ1)

j∑
i=1

φi−11 (105)
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I Simplifying the concentrated likelihood

In the function (4.38) the product E′tΣ̂
−1Et will always result in a scalar. This allows

to use trace function in the sum in the right hand side of the equation in the following

manner:

T∑
t=1

(
E′tΣ̂

−1Et

)
=

T∑
t=1

(
tr(E′tΣ̂

−1Et)
)
. (106)

Trace function allows to rearrange the right part of (106):

T∑
t=1

(
tr(E′tΣ̂

−1Et)
)

=
T∑
t=1

(
tr(Σ̂−1EtE

′
t)
)

= tr

(
Σ̂−1

T∑
t=1

EtE
′
t

)
. (107)

The sum of the matrices in the right hand side of (107) is equal to the estimated

covariance (4.37) multiplied by T . The multiplication of Σ̂−1 and Σ̂ gives the identity

matrix with the trace equal to h. So finally the sum (106) can be rewritten as:

T∑
t=1

(
E′tΣ̂

−1Et

)
= Th. (108)

Inserting (108) in (4.38) leads to the following simplified concentrated log-likelihood:

l(θ, Σ̂|Y) = −T
2

(
h log(2π) + log |Σ̂|

)
− T

2
h, (109)

which after regrouping leads to:

l(θ, Σ̂|Y) = −T
2

(
h log(2πe) + log |Σ̂|

)
. (110)

J Simplifying the generalised variance

The covariances in the matrix Σ can be represented using correlations in the following

manner:

σi,j = ri,jσiσj, (111)
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where ri,j is the correlation coefficient between the error i-steps ahead and the error

j-steps ahead.

Substituting (111) in the covariance matrix (4.41) leads to:

Σ =


σ2
1 r1,2σ1σ2 . . . r1,hσ1σh

r1,2σ1σ2 σ2
2 . . . r2,hσ2σh

...
...

. . .
...

r1,hσ1σh r2,hσ2σh . . . σ2
h

 . (112)

Matrix (112) can now be represented as a multiplication of the following three ma-

trices:

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σh




1 r1,2 . . . r1,h
r1,2 1 . . . r2,h

...
...

. . .
...

r1,h r2,h . . . 1



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σh

 . (113)

Taking the determinant of this matrix leads to:

|Σ| =
h∏
j=1

σ2
j |R|, (114)

where R =


1 r1,2 . . . r1,h
r1,2 1 . . . r2,h

...
...

. . .
...

r1,h r2,h . . . 1

 is the correlation matrix.

K Covariances and correlations of forecast errors

Using the formula (4.6) the covariance between i and j steps ahead errors when j > i

and i, j 6= 1 can be written the following way:

σi,j = cov

(
i−1∑
l=1

cl,iεt+l + εt+i,

j−1∑
m=1

cm,jεt+m + εt+j

)
. (115)

Opening sums in (115) leads to the following:

σi,j = cov(εt+i, εt+j) + cov

(
εt+i,

j−1∑
m=1

cm,jεt+m

)
+

cov

(
i−1∑
l=1

cl,iεt+l, εt+j

)
+ cov

(
i−1∑
l=1

cl,iεt+l,

j−1∑
m=1

cm,jεt+m

). (116)
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Assuming that the error term is not autocorrelated, the first and the third covari-

ances in (116) will be equal to zero. In the second covariance all the elements will be

equal to zero except for one: cov(εt+i, ci,jεt+i) = σ2
1ci,j. The last covariance in (116)

will have i− 1 non-zero elements that also become variances. All of that leads to:

σi,j = σ2
1ci,j + σ2

1

i−1∑
l=1

cl,jcl,i. (117)

In case when i = 1, the formula (115) will have a different form:

σ1,j = cov

(
εt+1,

j−1∑
m=1

cm,jεt+m + εt+j

)
, (118)

which after applying the similar approach leads to:

σ1,j = σ2
1c1,j. (119)

Dividing (117) and (119) by square roots of (4.8) for i and j the correlation

coefficient can be estimated:

ri,j =



ci,j +
i−1∑
l=1

cl,jcl,i


√√√√√√√

1 +
i−1∑
l=1

c2l,i


1 +

j−1∑
l=1

c2l,j


when i, j 6= 1

c1,j√√√√√√√
1 +

j−1∑
l=1

c2l,j


when i = 1

. (120)
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L Boxplots of AR(1) parameter
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Figure 7: AR estimates using different methods. Wrong model. Boxplots of parameter
φ.
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