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Abstract

We consider robust counterparts of uncertain combinatorial optimiza-
tion problems, where the difference to the best possible solution over all
scenarios is to be minimized. Such minmax regret problems are typically
harder to solve than their nominal, non-robust counterparts. While cur-
rent literature almost exclusively focuses on simple uncertainty sets that
are either finite or hyperboxes, we consider problems with more flexible
and realistic ellipsoidal uncertainty sets. We present complexity results for
the unconstrained combinatorial optimization problem, the shortest path
problem, and the minimum spanning tree problem. To solve such prob-
lems, two types of cuts are introduced, and compared in a computational
experiment.
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1 Introduction

We consider general combinatorial optimization problems of the form

min{cTx : x ∈ X ⊆ {0, 1}n}

where the objective vector c is unknown, and coming from a set U of possible
realizations. To find a solution x that still performs well under all possible
outcomes of c, several robust optimization approaches have been developed (for
an overview, we refer to [GS16, BBC11, CG16]).

In this paper, we focus on the minmax regret approach, which is amongst
the best-established methods in robust optimization [IS95, KY97, ABV09]. The
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basic idea is to find a solution that minimizes the largest difference to the opti-
mal objective value in each scenario. More formally, we use a robust objective
function of the form

Reg(x,U) = max{cTx− opt(c) : c ∈ U}

with opt(c) being the optimal objective value of the original problem with ob-
jective vector c, and aim at solving the minmax regret problem

min{Reg(x,U) : x ∈ X}

This problem has been extensively analyzed for finite and hyperbox uncertainty
sets. Most minmax regret problems of this kind are NP-hard, see., e.g., [AL05,
ABV05, Ave01] and the overview in [ABV09]. Therefore, both approximation
algorithms and heuristic algorithms without performance guarantees have been
suggested.

[KZ06] showed that solving the midpoint scenario of an interval uncertainty
set gives a 2-approximation for minmax regret combinatorial optimization prob-
lems. This was further extended in [Con12] to symmetry points of general un-
certainty sets. In [CG15], an a-posteriori bound for the midpoint solution was
presented, which can be used in a branch-and-bound algorithm.

[MGD04] developed a branch-and-bound algorithm for robust spanning trees.
For the same problem, also a scenario relaxation procedure was presented in
[PGAMCVT14]. The basic idea of scenario relaxation is to begin with a finite
subset of scenarios, instead of the whole interval set. Then, worst-case scenar-
ios are iteratively added to the scenario set, until the objective value of this
relaxation coincides with the actual objective value of the regret problem with
intervals.

Quite surprisingly, little attention has been paid to uncertainty sets that are
not finite or hyperboxes. It seems that this is at odds with the development of
other approaches to robust optimization, where the use of more sophisticated
sets has been of primary importance. We mention ellipsoidal uncertainty sets
(see [BTGN09]) and Γ-uncertainty sets (see [BS04]) as the most prominent
examples.

There are several reasons to use ellipsoidal uncertainty sets in robust opti-
mization. First, they give good tractability results for other robust optimization
approaches. So far, this question is open for minmax regret. Second, they are
flexible, as the generalized ∩-ellipsoidal uncertainty introduced in [BTN98] even
incorporates finite (via their convex hull) and interval sets. Third, they are
well-motivated from a stochastic setting, where they naturally occur when a
normal distribution is cut off at a certain level of probability.

In this paper we consider ellipsoidal uncertainty sets in minmax regret prob-
lems. To the best of our knowledge, there is only one previous paper that also
considers this type of problem [TTT10]. There, the authors consider uncertain
convex quadratic problems and present a relaxation heuristic with probabil-
ity guarantees. In this paper, we focus on combinatorial problems, complexity
results and exact solution algorithms.

In Section 2 we present complexity results for the unconstrained combina-
torial problem, for the shortest path problem, and for the minimum spanning
tree problem. While the unconstrained problem with finite sets is NP-hard to
solve, and the regret objective value of a candidate solution can be computed
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in polynomial time, we find the surprising result that the reverse holds true for
axis-parallel ellipsoids: While it is NP-hard to compute the regret objective of
one candidate solution, the optimal solution of the problem can be found in
polynomial time.

In Section 3, we discuss two different ways to reformulate the minmax regret
problem via a scenario relaxation procedure, resulting in exact, general solution
approaches. These algorithms are compared in computational experiments in
Section 4. Final conclusions are drawn and further research directions are posted
in Section 5.

2 Complexity Results

2.1 Problem Definition

We consider combinatorial optimization problems to investigate the computa-
tional complexity of the minmax regret problem for different uncertainty sets.
We consider the cases of

• interval or hyperbox uncertainty U =×n
i=1[ĉi − di, ĉi + di], where di ≥ 0,

• axis-parallel ellipsoids U = {c : (c − ĉ)TD(c − ĉ) ≤ 1}, where D � 0 is a
positive definite diagonal matrix,

• general ellipsoids U = {ĉ+ Cξ : ‖ξ‖2 ≤ 1}, and

• finite uncertainty sets U = {c1, . . . , ck}, where k is polynomially bounded.

Note that each axis-parallel ellipsoid can be expressed as a general ellipsoid.
For each uncertainty set we study the complexity of solving the minmax regret
problem, i.e., finding the optimal solution of

min
x∈X

Reg(x,U) = min
x∈X

max
c∈U

(
cTx−min

y∈X
cT y

)
(Solve)

and evaluating the regret of a given solution, i.e., computing the value of

Reg(x,U) = max
c∈U

(
cTx−min

y∈X
cT y

)
. (Eval)

The unconstrained combinatorial problem is the simplest non-trivial com-
binatorial problem. The feasible set X = {0, 1}n is the set of all 0, 1-vectors.
We denote this problem as (UP ). The shortest path problem is one of the
most studied combinatorial problems. Each vector x in the feasible set X is an
incidence vector of an s−t path in a graph G. This problem is denoted as (SP ).

Additionally, we briefly sketch how results for (SP ) can be transferred to
the minimum spanning tree problem (MST ).

Some of the presented reductions use the NP-complete partition problem:
Given a list of natural numbers a1, . . . , an. The problem is to decide if a subset
I ⊂ {1, . . . , n} of the index set exists such that

∑
i∈I ai =

∑
i/∈I ai.

The following lemmas are used in some of the proofs.
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Lemma 1. (See [BTN99]) For an ellipsoidal uncertainty set U = {Cξ + ĉ :
‖ξ‖2 ≤ 1}, it holds that

max
c∈U

cTx = ĉTx+ ‖CTx‖2. (1)

In case of an axis-parallel ellipsoid, Lemma 1 becomes:

Lemma 2. For an axis-parallel ellipsoidal uncertainty set U = {c : (c−ĉ)TD(c−
ĉ)T ≤ 1}, it holds that

max
c∈U

cTx = ĉTx+

√√√√ n∑
i=1

D−1ii x
2
i (2)

2.2 The Unconstrained Combinatorial Problem

Robust counterparts of the unconstrained combinatorial problem were first con-
sidered in [BBI14], where it was shown that the minmax counterpart

min
x∈{0,1}n

max
c∈U

cTx

is NP-hard already for an uncertainty set consisting only of two scenarios. To
the best of our knowledge, no complexity results have been provided for the
minmax regret counterpart. For the sake of completeness, we therefore also
consider the complexity for interval and finite sets in this section.

We first consider the evaluation problem of (UP ). For interval uncertainty
and finite uncertainty, evaluating a solution is simple, as the following two the-
orems demonstrate.

Theorem 1. The evaluation problem of (UP ) for interval uncertainty sets is
in P.

Proof. The evaluation problem is given by

max
c∈U

(
cTx−min

y∈X
cT y

)
= max

c∈U

(
cTx−

n∑
i=1

min(0, ci)

)

=

n∑
i=1

c∗i (xi)xi −
n∑

i=1

min(0, c∗i (xi))

(3)

with c∗i (xi) = ĉi + (2xi − 1)di. For fixed x this expression can be computed
in O(n).

Theorem 2. The evaluation problem of (UP ) for finite uncertainty sets is in P.

Proof. The evaluation problem is given by

max
c∈U

(
cTx−min

y∈X
cT y

)
= max

c∈U

(
cTx−

n∑
i=1

min(0, ci)

)

= max
j=1,...,k

(
n∑

i=1

cjixi −
n∑

i=1

min(0, cji )

)
For fixed x this expression can be computed in O(nk).
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We now turn to the more involved case of ellipsoidal uncertainty sets. Here,
evaluating a solution is already a hard problem, as the following theorem shows.

Theorem 3. The evaluation problem of (UP ) for axis-parallel ellipsoidal un-
certainty sets is NP-complete.

Proof. We give a reduction from the partition problem.
The axis-parallel ellipsoidal uncertainty set U is defined by the midpoint

vector ĉ and diagonal matrix D. We set ĉi = 2ai and Dii = 1
8Aai

for i = 1, . . . , n

and A =
∑n

i=1 ai. Consider the evaluation problem for x = 0:

max
c∈U

(
cTx−min

y∈X
cT y

)
= max

c∈U

(
0−min

y∈X
cT y

)
= max

c∈U
max
y∈X

cT (−y)

= max
y∈X

max
c∈U

cT (−y)

Eq. (2)
= max

y∈X

n∑
i=1

2ai(−yi) +

√√√√ n∑
i=1

8Aai(−yi)2

= −min
y∈X

n∑
i=1

2aiyi −

√√√√ n∑
i=1

8Aaiyi

Define for each solution y ∈ X the value λy := 1
A

∑n
i=1 aiyi ∈ [0, 1]. Note

that the objective value of the minimization problem can be expressed using λy

n∑
i=1

2aiyi −

√√√√ n∑
i=1

8Aaiyi = 2Aλy −
√

8A2λy

Consider the function f : [0, 1] → R, f(λ) = 2Aλ −
√

8A2λ. The minimum
of this function is attained for λ∗ = 0.5 due to the first order condition, further
f(λ∗) = −A. This observation proves that the regret for x = 0 is at least A if
and only if the partition instance is a yes-instance.

As a direct consequence of Theorem 3, we also have that the general case is
NP-complete.

Corollary 1. The evaluation problem of (UP ) for general ellipsoidal uncer-
tainty sets is NP-complete.

Having established the complexity of the evaluation problem, we now turn
to the solution problem. We first consider the complexity for finite uncertainty
sets.

Theorem 4. The solution problem of (UP ) for finite uncertainty sets is NP-
complete.

Proof. Again we use a reduction from partition. The uncertainty set consists
of only two scenarios c1 = (a1, . . . , an) and c2 = (−a1, . . . ,−an). Denote by
A =

∑n
i=1 ai. We claim that a solution with regret at most A

2 exists if and only
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if the partition instance is a yes-instance. Let I be the solution of the partition
instance. We define solution x∗i = 1 ∀i ∈ I and x∗i = 0 ∀i /∈ I. The regret of x∗

is given by

max(
∑
i∈I

ai,−
∑
i∈I

ai +A) = max(
∑
i∈I

ai,
∑
i/∈I

ai) =
A

2
.

Conversely, let a solution x with regret at most A
2 be given. Let S = {i : xi =

1, i = 1, . . . , n}. The regret of x is given by

max(
∑
i∈S

ai,−
∑
i∈S

ai +A) = max(
∑
i∈S

ai,
∑
i/∈S

ai) ≥
A

2
.

Since the regret of x is at most A
2 , we know that the regret of x is exactly A

2 .

Therefore, max(
∑

i∈S ai,
∑

i/∈S ai) = A
2 , which proves that S is a solution for

the partition instance.

Instead of considering the case of interval and axis-parallel ellipsoid un-
certainty sets separately, we directly consider the more general case of axis-
symmetric uncertainty sets. A set U is axis-symmetric if it exists a midpoint
ĉ ∈ U such that for any c ∈ U with c = ĉ + γ for any index i it holds that
ci := c − 2γiei ∈ U where ei is the ith unit vector. Prominent axis-symmetric
uncertainty sets are interval, axis-parallel ellipsoids, or Γ−uncertainty sets.

Theorem 5. The midpoint solution

x̂ ∈ arg min{ĉTx : x ∈ X}

is an optimal solution of (UP ) for axis-symmetric uncertainty sets.

Proof. We define x̂i = 1 if and only if ĉi ≤ 0. The goal is to show that x̂ is
optimal for the minmax regret problem. Let x∗ be an optimal solution with
x∗i = 1 and ĉi > 0 for some i. In the following we show that x′ = x∗ − ei is also
an optimal solution.

Reg(x′) = max
c∈U

max
y∈X

cT (x′ − y)

= max
c∈U

(
cTx′ −

n∑
i=1

min(0, ci)

)

= c′Tx′ −
n∑

i=1

min(0, c′i)

= ĉTx′ + γ′Tx′ −
n∑

i=1

min(0, ĉi + γ′i)

where c′ is the worst case scenario (for the regret objective function) and c′ =
ĉ+ γ′. We define γ̃j = γ′j ∀j 6= i and γ̃i = −γ′i. We claim that

ĉTx′ + γ′Tx′ −
n∑

i=1

min(0, ĉi + γ′i) ≤ ĉTx∗ + γ̃Tx∗ −
n∑

i=1

min(0, ĉi + γ̃i) (∗)

6



Using (∗) we can show that x′ is also an optimal solution, since

Reg(x′) = ĉTx′ + γ′Tx′ −
n∑

i=1

min(0, ĉi + γ′i)

≤ ĉTx∗ + γ̃Tx∗ −
n∑

i=1

min(0, ĉi + γ̃i) ≤ Reg(x∗)

Simplifying (∗) yields

−min(0, ĉi + γ′i) ≤ ĉi − γ′i −min(0, ĉi − γ′i)
⇔ max(0,−ĉi − γ′i) ≤ max(0, ĉi − γ′i)

which is true since 0 ≤ ĉi. The other direction is analogous: If ĉi ≤ 0 and
x∗i = 0, x′ = x∗ + ei is also an optimal solution. Both directions together show
that x̂ is an optimal solution of the minmax regret problem.

For axis-parallel ellipsoidal uncertainty sets, we find the surprising result
that while it is a difficult task to evaluate the objective value of a solution,
finding a solution with the best possible objective value is simple. However,
for general ellipsoids, the solution problem is NP-hard, as the following result
states.

Theorem 6. The solution problem of (UP ) for ellipsoidal uncertainty sets is
NP-hard.

Proof. The idea of this proof is to build a degenerated ellipsoid which corre-
sponds to the line segment between the two scenarios c1 and c2 used in the
proof of Theorem 4. Denote by L the line between c1 and c2. Note that
maxc∈Lmaxy∈X c

T (x− y) = maxc∈{c1,c2}maxy∈X c
T (x− y).

We summarize the complexity results of this section in Table 1.

Interval Finite Axis-Parallel Ellipsoid General Ellipsoid
Eval P (Thm. 1) P (Thm. 2) NPC (Thm. 3) NPC (Cor. 1)
Solve Easy (Thm. 5) NPC (Thm. 4) Easy (Thm. 5) NPH (Thm. 6)

Table 1: Overview of the different complexity results of the minmax regret
unconstrained combinatorial problem.

2.3 Shortest Path Problem

We assume in this section that U ⊂ R+
n to avoid shortest path problems with

negative arc weights, since these problems are already NP-hard in general. The
complexity of the minmax regret shortest path problem is well-researched for
interval and finite uncertainty sets. For a finite, but constant number of scenar-
ios, the problem is NP-hard and allows a pseudo-polynomial solution algorithm
[YY98]. For a non-constant number of scenarios and in the case of interval
uncertainty, the problem is strongly NP-hard [KY97, AL04]. To evaluate the
regret of a solution, we need to solve k shortest path problems in the case of a
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s t

(28Aa1 + 3a1, 28Aa1 − a1)

e2

(28Aa1, 4Aa1 − a1)

e3

(28Aan + 3an, 28Aan − an)

e2n

(28Aan, 4Aan − an)

e2n+1

(M,A)

e1

Figure 1: The graph used in the proof of Theorem 7. The labels below and
above each edge indicate the number of the edge and the values (ĉe, de) which
describe the uncertainty set.

finite uncertainty set with k scenarios, and only a single shortest path problem
in the case of interval uncertainty.

We begin with the evaluation problem for ellipsoidal uncertainty sets in
Theorem 7, before considering the solution problem in Theorem 8.

Theorem 7. The evaluation problem of (SP ) for (axis-parallel) ellipsoidal un-
certainty sets is NP-complete.

Proof. We use again a reduction from the partition problem. For a given in-
stance a1, . . . , an we define the graph as shown in Figure 1.

The pairs (ĉe, de) on each edge define the size of the uncertainty set U =
{c : (c − ĉ)TD(c − ĉ) ≤ 1}, where D is implicitly given by D−1e := de. M is a
sufficiently large constant depending on A. The set of all edges is denoted by
E′. The set of all edges except of the first edge is denoted by E = E′ − {e1}.
Note that ĉe ≥ de ∀e ∈ E′ and de ≥ 1 ∀e ∈ E′. Hence, U ⊂ R+

n . Consider the
problem of computing Reg(x) for x = (1, 0, . . . , 0), i.e., the path consisting only
of the first edge e1. Using Lemma 2 we can conclude that

Reg(x) = max
y∈X

max
c∈U

cT (x− y)

= max
y∈X

ĉT (x− y) +

√∑
e∈E′

de(xe − ye)2
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= ĉTx−min
y∈X

ĉT y −√∑
e∈E′

de(xe − ye)2


Since M is a large constant we can exclude the solution y = (1, 0, . . . , 0) without
changing the optimal value of the minimization problem. Further, we have that
y2k + y2k+1 = 1 ∀k = 1, . . . , n due to the structure of the graph. Hence, the
problem simplifies to

Reg(x) =M −min
y∈X

∑
e∈E

ĉeye −
√∑

e∈E
deye +A


=M −min

y∈X

(
n∑

k=1

y2k(28Aak + 3ak) + (1− y2k)(28Aak)

−

√√√√ n∑
k=1

y2k(28Aak − ak) + (1− y2k)(4Aak − ak) +A

)

=M −min
y∈X

28A2 + 3

n∑
k=1

y2kak −

√√√√4A2 + 24A

n∑
k=1

y2kak


Hence, the objective value of each solution y can be expressed by the value
λy = 1

A

∑n
k=1 y2kak.

Reg(x) = M −min
y∈X

(
28A2 + 3Aλy −

√
4A2 + 24A2λy

)
Consider the function f : [0, 1] → R, f(λ) = 28A2 + 3Aλ −

√
4A2 + 24A2λ.

The minimum of this function is attained for λ∗ = 0.5 due to the first order
condition, further f(λ∗) = 28A2 − 2.5A. Hence, Reg(x) ≥ M − 28A2 + 2.5A if
and only if the partition instance is a yes-instance.

Theorem 8. The solution problem of (SP ) for (axis-parallel) ellipsoidal uncer-
tainty sets is NP-hard.

Proof. We use a reduction from exact 3-SAT which is known to be NP-complete.
We begin the construction by defining the uncertainty set U = {c : (c− ĉ)TD(c−
ĉ) ≤ 1} with diagonal matrix D. We set the average cost of each edge e and
the corresponding diagonal entry of D to be 1, i.e., ĉe = Dee = 1 ∀e. Note that
U ⊂ Rn

+. Second, all s− t paths consist of L edges. With these restrictions the
minmax regret problem can be simplified as follows

min
x∈X

max
c∈U

(
cTx−min

y∈X
cT y

)
= min

x∈X
max
y∈X

max
c∈U

cT (x− y)

= min
x∈X

max
y∈X

(
ĉT (x− y) + ||x− y||2

)
= min

x∈X
max
y∈X

(L− L+ ||x− y||2)

= min
x∈X

max
y∈X

√
xTx− 2xT y + yT y
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l+1
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l+3
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1

C1l
−
1
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Figure 2: This part of the graph (G1) is used to represent the literal and clause
assignments.

= min
x∈X

max
y∈X

√
2L− 2xT y

For each path represented by x denote by S(x) = miny∈X x
T y the minimum

number of edges this path shares with all other s − t paths. Then, Reg(x) =√
2L− 2S(x). Therefore, minimizing the regret is equivalent to maximizing

S(x). For a given SAT instance, we construct a graph such that maxx∈X S(x) ≥
1 if and only if the SAT instance is a yes-instance. This proves the theorem.

Assume that we are given an instance of 3-SAT with n literals l1, . . . , ln and
m clauses C1, . . . , Cm. To describe the graph we construct, we use a simple
example. Assume the 3-SAT instance contains only 3 literals l1, l2, and l3 and
a single clause C1 = (l1 ∨ l2 ∨ l3). For clarity, we introduce the graph G in
three parts G1,G2, and G3. First we state the part of the graph G1 in Figure 2.
The next claims justify to restrict our attention to G1 if we search for a path x
maximizing S(x).

1. Claim: For all paths x in G it holds that S(x) ≤ 1.

2. Claim: If a path x in G exists with S(x) = 1, then there exists also a path
x′ contained in G1 with S(x′) = 1.

The claims are proved at the end of the graph construction, when the com-
plete graph is defined.

Each path x in G1 represents a literal and clause assignment. The first part
of the path from node s to node C1 represents the assignment of the literals.
For example: The assignment l1 = 0, l2 = 1, l3 = 1 is represented by the
path that contains the nodes l−1 , l

+
2 , and l+3 . The second part of the path from

node C1 to node t represents how the literals of clause C1 are chosen. If the
part contains for example the nodes C1l

+
1 , C1l

−
2 , and C1l

+
3 , then we assign the

literals l1 = 1, l2 = 0, and l3 = 1 in clause C1. Note that all paths in this
graph have the same length. Two requirements need to be modeled. First, the
assignment of the literals must correspond with the assignments of the literals
in each clause and, second, the literal assignment should satisfy all clauses. In
the next step we are going to introduce the part G2 and G3 which help to
model these requirements. The underlying idea is the following: If one of these
two requirements is not fulfilled by the path x, there exists another s − t path
y (containing edges of G2 or G3) which has no edge in common with x, i.e.,
S(x) = 0.

Next we introduce the part G2 which makes sure that the assignment of the
literals must be consistent with the assignments of the literals in each clause.

We introduce chains of edges that connect the first part of G1 with the
second part of G1 as shown in Figure 3. Note that the length of each chain can
be chosen in such a way that all s− t paths have the same length. Assume that
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Figure 3: The additional edges in the graph (G2) that model the relationship
between S(x) guarantee the consistency of literal assignment and literal assign-
ment in each clause are thick. Each thick edge in the figure corresponds to a
chain of edges in the graph.

path x represents an inconsistent assignment for l1, e.g., let x contain node l+1
and C1l

−
1 . We claim that in this case a path y exists with xT y = 0. Consider

the path y that contains from G1 only the nodes s, l−1 ,C1l
+
1 , the successor node

of C1l
+
1 and t. This path has no arc in common with x, hence, xT y = 0.

This relation holds analogously for the other literals l2 and l3. If only a single
inconsistent assignment is made, there exists a path y with xT y = 0. On the
other hand, if x represents a consistent assignment, all paths y in G1 and G2

have at least one edge in common with x.
Next we introduce part G3 that models the relationship between S(x) and

the correct clause assignment. The additional chains of edges are shown in
Figure 4. Again the length of each of these chains can be chosen in such a way
that all s− t paths have the same length.

Assume that clause C1 is not satisfied by the represented literal assignment,
i.e., path x contains C1l

−
1 , C1l

+
2 , and C1l

−
3 . It is obvious that the path y that

contains all three of the dotted chains has no edge in common with x and, hence,
S(x) = 0. Conversely, if only one literal is assigned such that C1 is fulfilled, this
path shares at least one arc with x.

We now show that if path x represents a consistent literal and clause assign-
ment, then S(x) ≥ 1, i.e., for every path y it holds that xT y ≥ 1, if and only if
all clauses are fulfilled.

Assume that x represents a literal assignment that fulfills all clauses. For the
sake of contradiction assume that a path y exists that has no edge in common
with x. It is an easy observation that y contains either one of the thick or one
of the dotted edges as, otherwise, it must contain the edge that leads to vertex
C1 which is also contained in x. If y contains one dotted arc that leads to some
clause it must also contain the other dotted arcs that belong to this clause as
x contains the edges that connect the three parts of this clause. Hence, the
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Figure 4: The additional edges in the graph (G3) that model the relationship
between S(x) and the correct clause assignment are dotted. Each dotted edge
in the figure corresponds to a chain of edges in the graph.

argument from above is valid. If y contains one of the thick arcs this arc must
correspond to a conflicting literal assignment (with respect to the assignment of
x), as every thick arc is connected to the contradicting assignment in the clause.
The next edge of this path is contained in x, as x represents a consistent literal
assignment.

On the other hand, if x represents a literal assignment that violates at least
one clause, there exists obviously a path y using the corresponding dotted edges
with xT y = 0.

To conclude the proof, we have to show the two open claims.

Proof of Claim 1
Let x be an arbitrary path in G. Observe that not both nodes l+1 and l−1 can
be contained in x. Without loss of generality let l+1 be not contained in x. We
construct a path y which shares at most one edge with x. Denote by v the
successor node of C1l

−
1 . Path y starts with edge (s, l+1 ) next it uses the chain of

edges from l+1 to C1l
−
1 and edge (C1l

−
1 , v). If x contains the chain of edges from

v to t, which are part of G2, we continue path y by an arbitrary path from v
to t contained in G1. In the other case, where the chain of edges from v to t is
not contained in x, we continue path y simply with this chain. The constructed
path y shares at most the edge (C1l

−
1 , v) with x. This proves Claim 1.

Proof of Claim 2
Let x be an arbitrary path in G with S(x) = 1. We claim that x must fulfill the
following properties: x must contain node C1 and x must contain at least one
of the nodes Cil

+
k or Cil

−
k .

For the sake of contradiction assume first that x does not contain C1. Then
there exists a path y from s to C1 not sharing any edge with x. This path can
easily be extended to an s− t path sharing no edge with x by either adding the
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path from C1 to C1l
+
1 to t (using a chain of edges from G2) or the path from

C1 to C1l
−
1 to t (using a chain of edges from G2) respectively.

For the sake of contradiction assume without loss of generality that C1l
+
1

and C1l
−
1 are not contained in x. Again we construct a path y that shares no

edge with x. Without loss of generality assume that l+1 is not contained in x.
Path y starts with edge (s, l+1 ), followed by the chain of edges from G2 going
from l+1 to C1l

−
1 , the edge (C1l

−
1 , v) and the chain of edges from G2 from v to

t. Note that y shares no edge with x.
Note that the first possible node a path x fulfilling both of these properties

can leave G1 is at the third part of the last clause node. Denote by u the last
node of x contained in G1 (except for t). Note that there is only a single path
x̃ from u to t in G1. Consider the following path x′. The first part from s to u
coincides with x. The second part is equal to x̃. Note that x′ is contained in G1

and shares edges with all paths y that share edges with x. Hence, S(x′) ≥ S(x).
This concludes the proof of Claim 2.

Note that the presented reduction uses a 3-SAT instance which consists
of a single clause. The presented ideas generalize straightforward to the case
of arbitrary 3-SAT instances. To introduce an additional literal ln, the first
part of the graph G1 is extended by l+n and l−n . The gadget representing an
additional clause Cm has exactly the same structure as the gadget for C1. The
corresponding gadget of Cm is put at the end of the graph.

Note that Theorem 8 even holds for (SP ) instances where all edges have
the same cost structure, the uncertainty set is a perfect ball and all s− t paths
contain the same number of edges. The same construction can be used to show
that the minmax regret shortest path problem is NP-complete even if the costs
of all edges belong to [0, 1]. This is a refinement of the original complexity proof
of Averbakh and Lebedev [AL04], where two types of intervals ([0, 1] and [1, 1])
are used.
The complexity results of this section are summarized in Table 2

Interval Finite Axis-Parallel Ellipsoid General Ellipsoid
Eval P P NPC (Thm. 7) NPC (Thm. 7)
Solve NPC NPC NPH (Thm. 8) NPH (Thm. 8)

Table 2: Overview of the different complexity results of the minmax regret
shortest path problem.

2.4 Spanning Tree Problem

In this section we sketch how to transfer results on the minmax regret shortest
path problem to the minmax regret minimum spanning tree problem.

Very similar to the case of the minmax shortest path problem the minmax
regret minimum spanning tree problem is well-researched for interval and finite
uncertainty sets. For a finite, but constant number of scenarios, the problem is
NP-hard [KY97] and allows a pseudo-polynomial solution algorithm [ABV07].
For a non-constant number of scenarios and in the case of interval uncertainty,
the problem is strongly NP-hard [ABV07].
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Figure 5: The graph used in the proof of Theorem 9.

Theorem 9. The evaluation problem of (MST ) for (axis-parallel) ellipsoidal
uncertainty sets is NP-complete.

Proof. We only give a sketch of the proof, since it is essentially the same as
the proof of Theorem 7. Using the same notation, we define a reduction from
the partition problem again. The constructed graph is almost the undirected
version of the graph defined in Figure 1. Instead of edge e1 that represented
a path for which we computed the regret, we define a set of edges {e′1, . . . , e′n}
that form a spanning tree. The cost structure of the edges e2, . . . , e2n+1 is the
same as given in Figure 1. The costs of the edges e′1, . . . , e

′
n are

(
M, An

)
.

Denote by x the spanning tree that consists of e′1, . . . , e
′
n. The goal is to

evaluate Reg(x). By searching for the spanning tree that defines Reg(x) we
can exclude all spanning trees that contain an edge e′i due to the large nominal
cost. Note that all remaining spanning trees form s − t paths. Hence, the
problem of computing Reg(x) is analogous to the problem defined in the proof
of Theorem 7.

Theorem 10. The solution problem of (MST ) for (axis-parallel) ellipsoidal
uncertainty sets is NP-hard.

Proof. Note that each spanning tree contains n−1 edges. Hence, by defining the
same cost structure as in the proof of Theorem 8 we derive an equivalent relation.
For an arbitrary spanning tree x we obtain that Reg(x) =

√
2n− 2− S(x).

Here, S(x) denotes the minimal number of edges each other spanning tree has
in common with x. Hence, minimizing Reg(x) is equivalent to maximizing S(x).
In [AL04] it is shown that maximizing S(x) is NP-complete.

Summarizing these results we obtain the same table as for the shortest path
problem (see Table 2).

3 Solution Approaches

In this section we discuss solution approaches for the minmax regret problem
with ellipsoidal uncertainty sets. We begin with briefly revisiting the scenario
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Interval Finite Axis-Parallel Ellipsoid General Ellipsoid
Eval P P NPC (Thm. 9) NPC (Thm. 9)
Solve NPC NPC NPH (Thm. 10) NPH (Thm. 10)

Table 3: Overview of the different complexity results of the minmax regret
minimum spanning tree problem.

relaxation procedure for interval uncertainty in Section 3.1, before introducing
exact solution approaches for ellipsoidal sets in Section 3.2.

3.1 Scenario Relaxation for Interval Sets

For combinatorial minmax regret problems with interval uncertainty sets, one of
the most frequently used solution method is to generate a finite set of scenarios
iteratively (see [ABV09]). There are (at least) two ways to do so. We briefly
explain them in the following.

A general minmax regret problem of the form

min
x∈X

max
c∈U

(
cTx− opt(c)

)
can be rewritten as:

min z

s.t. z ≥ cTx− cT y ∀c ∈ U , y ∈ X
x ∈ X

In case of an interval uncertainty set, these are infinitely many constraints.
Even restricting ourselves to extreme points of the uncertainty set, there are
still exponentially many. For this reason, we generate them iteratively during
the solution process.
Let us consider the constraints(

z ≥ cTx− cT y ∀y ∈ X
)

∀c ∈ U

with U =×i∈[n][ci, ci]. If we fix some c ∈ U , we can read this as

z ≥ max
y∈X

(
cTx− cT y

)
which is equivalent to

z ≥ cTx− opt(c). (4)

That is, we can iteratively generate scenarios c ∈ U and add constraints of the
form (4) to solve the robust problem. To find the next c ∈ U in each iteration
(that is, a maximizer of the right-hand side of (4)), one simply uses c∗(x), with
c∗(x)i := ci + (ci − ci)xi (see [ABV09] for a proof of this statement). To find
opt(c∗(x)), a problem of the nominal type needs to be solved. We refer to
constraints of this kind as type 1 cuts.
Analogously, we can consider constraints of the form(

z ≥ cTx− cT y ∀c ∈ U
)

∀y ∈ X .
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That is, for fixed y ∈ X , let us consider

z ≥ max
c∈U

(
cTx− cT y

)
in more detail. This is equivalent to setting

z ≥ c∗(x)Tx− c∗(x)T y. (5)

It is then possible to rewrite c∗(x) such that this becomes a linear integer pro-
gram. We refer to constraints of this kind as type 2 cuts. To find the next such
cut, we need to solve a nominal problem with c∗(x), just like for type 1.

Note that type 2 cuts are more ”flexible” in the sense that they only fix a
solution y, and use the worst-case scenario depending on x. For type 1 cuts,
both scenario c and solution y are fixed. For this reason, it can be shown that
type 2 cuts are more efficient (tighter) than type 1 cuts [ABV09].

3.2 Solution Approaches for Ellipsoidal Sets

We now consider minmax regret problems with general ellipsoidal uncertainty
sets U = {ĉ+Cξ : ‖ξ‖2 ≤ 1}. Also in this case, we have constraints of the form

z ≥ cTx− cT y ∀c ∈ U , y ∈ X

that need to be reformulated to solve the problem. We consider two ways to do
so. First, let us fix c ∈ U . Then, just as for interval uncertainty, the constraints
become equivalent to

z ≥ max
y∈X

(
cTx− cT y

)
⇐⇒ z ≥ cTx− opt(c).

However, generating the next such constraint for a given x ∈ X is more complex.
We need to solve the problem of finding the largest such cut, that is,

max
c∈U

(
cTx− opt(c)

)
.

This is equivalent to:

max cTx− cT y
s.t. c = ĉ+ Cξ

‖ξ‖2 ≤ 1

y ∈ X

Using Lemma 1, we find that this problem is equivalent to

max ĉT (x− y) + z

s.t. z2 ≤ ‖CT (x− y)‖22 (SUB)

y ∈ X , z ≥ 0.

To solve problem (SUB), we consider two linearizations of the right-hand side.
In our first approach, we use that xi = x2i for binary variables xi and find that

‖CT (x−y)‖22 =
∑
i∈[n]

∑
j∈[n]

C2
ji(xj − 2xjyj + yj) +

∑
k<j

2CjiCki(xj − yj)(xk − yk)
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To linearize products of the form yjyk, we introduce new binary variables αjk

with
yj + yk ≤ 1 + αjk and 2αjk ≤ yj + yk.

Using this linearization of the right-hand side in (SUB), we arrive at a convex
quadratic integer program.

As a second approach, we rewrite the constraint as

‖CT (x− y)‖22 = vTQv =
∑
i∈[n]

viai(v)

with vi := xi − yi, Q := CCT and aj(v) := (Qv)j =
∑

i∈[n] qjivi. We introduce

new variables hj := vjaj(v) and linearize them using the following constraints.
For any j ∈ [n] with vj ∈ {0, 1} (i.e., xj = 1) we set

hj ≤
∑
i∈[n]

qjivi +M−j (1− vj) and hj ≤M+
j vj .

For any j ∈ [n] with vj ∈ {−1, 0} (i.e., xj = 0), we use instead

hj ≤ −
∑
i∈[n]

qjivi +M+
j (1 + vj) and hj ≤ −M−j vj .

The constants M+
j and M−j are chosen such that M+

j ≥ maxv

∑
i∈[n] qjivi

and M−ij ≥ −minv

∑
i∈[n] qjivi. To this end, we set M+

j :=
∑

i∈[n] qjixi and

M−j :=
∑

i∈[n] qji(1− xi) as the smallest possible such constants.

Note that the second linearization requires less additional variables (linearly
instead of quadratically many), but is numerically less stable due to the ”big-M”
constraints.

Solving (SUB) we find y∗, and the corresponding c∗ is given by ĉ+Cξ∗ with
ξ∗ = CT (x− y∗)/‖CT (x− y∗)‖2.

As for interval uncertainty sets, we refer to this procedure as type 1 cuts.

For the second type of cuts, we fix y ∈ X , in which case our constraints
become

z ≥ cTx− cT y ∀c ∈ U

which is a ”classic” robust optimization constraint, i.e., using Lemma 1 it can
be reformulated to

z ≥ ĉT (x− y) + ‖CT (x− y)‖2.

This is again a conic quadratic constraint. To generate new cuts of this form, we
maximize the right-hand-side in y, which is the same subproblem as described
in (SUB).

To summarize, both approaches need to solve the same subproblem to gener-
ate new cuts. Using cuts of type 1 amounts to master problems that are integer
linear, while cuts of type 2 amount to master problems that are second order
cone integer. In principle, master problems for type 2 are therefore harder to
solve. However, they have the advantage that they give a tighter formulation.

Theorem 11. Cuts of type 2 are tighter than cuts of type 1.
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Proof. Let some x ∈ X be fixed, and let c and y be generated from the sub-
problem (SUB). Then we have

cTx− opt(c) = cTx− cT y

≤ max
c′∈U

(
c′

T
x− c′T y

)
= ĉT (x− y) + ‖CT (x− y)‖2

We conclude this section by considering an approximation algorithm. As
one can easily see, U is symmetric with respect to ĉ. Using Property 3.3 from
[Con12], we get the following result.

Theorem 12. The midpoint solution

x̂ ∈ arg min{ĉTx : x ∈ X}

is a 2-approximation for the minmax regret problem with ellipsoidal uncertainty
set.

4 Computational Experiments

The purpose of these experiments it to compare the performance of type 1
and type 2 cuts for general ellipsoidal uncertainty sets, using one of the two
linearizations for problem (SUB). To this end, we use both unconstrained and
shortest path problems as a testbed.

4.1 Setup

We generate uncertain unconstrained problems of the form

min
{
cTx : x ∈ {0, 1}n

}
by creating random ellipsoidal uncertainty sets U . For all instances, we gener-
ate ĉi ∈ {−100, . . . , 100} and Cii ∈ {50, . . . , 150}. Additionally, non-diagonal
entries of C are generated in three different ways:

• Sets with small deviation, where Cij ∈ {1, . . . , 50}

• Sets with medium deviation, where Cij ∈ {1, . . . , 50} with a probability
of 75%, and in Cij ∈ {50, . . . , 200} with 25%.

• Sets with large deviation, where Cij ∈ {50, . . . , 200}.

Parameters were always generated uniformly at random from the respective
sets of possible outcomes. Each non-diagonal entry is generated with a certain
probability p ∈ {5%, 15%, 25%}. For each number of items n in N = {10+20N :
N ∈ {0, . . . , 7}} we therefore generated nine instance sets, which which we
denote as Ip,yn with n items and y ∈ {s,m, l} for small, medium, and large
deviation, respectively. We abbreviate Is, Im, Il and I5, I15, I25 to denote
all instances of the respective type (i.e., Im denotes all instances with medium
deviation, and I5 denotes all instances where non-diagonal entries are generated
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with 5% probability). For each instance set, we generated 10 instances, which
means a total of 720 instances were considered.

Additionally, we generated a second set of test instances for shortest path
problems. All parameters are chosen in the same way as for the unconstrained
problems. The graphs we consider are layered graphs with 4 nodes per layer,
and n layers with n ∈ {2, . . . , 9}. Between two layers, all possible forward edges
were generated. We denote these instances as J p,y

n , with the same abbreviations
as for I. For each instance set, 10 instances were generated (720 instances in
total).

We use the two scenario relaxation procedures described in Section 3. In the
following, we denote the solution approach that uses type 1 cuts of the form

z ≥ cTx− opt(c)

as C1, and the approach based on type 2 cuts of the form

z ≥ ĉT (x− y) + ‖CT (x− y)‖2

as C2. Recall that C1 generates master problems that are likely to be easier to
solve, while C2 has tighter bounds and might need less iterations. Depending
on how the subproblem (SUB) is linearized, we append either ”-A” (for the
first linearization with quadratically many variables) or ”-B” (for the second
linearization with linearly many variables) to the name of the method.

We used CPLEX v.12.6 [IBM13] to solve all linear and quadratic integer
programs on a computer with a 16-core Intel Xeon E5-2670 processor, running
at 2.60 GHz with 20MB cache, and Ubuntu 12.04. Processes were pinned to
one core. A time limit of 900 seconds was used per method and instance.

4.2 Experiment 1: Unconstrained Problems

Figure 6 shows the resulting performance profile over all 720 unconstrained
instances, i.e., at every time step, we plot how many instances have been solved
to optimality. Plotted in black is C1, while C2 is in blue. Method A linearization
of sub is a full line, and method B linearization is a dashed line. In Figure 7,
the performance is shown over different instance classes.

The results indicate that method B clearly outperforms method A to solve
subproblems. As C1 requires more cuts (and therefore the subproblem is solved
more often), using the better method gives an even larger performance im-
provement than for C2. However, method B is numerically less stable due to
the bigM constants, which are particularly large when the matrix C is dense.
For five instances, the subproblem could not be solved by Cplex due to numeri-
cal instability, which we counted as if the time limit of 900 seconds was reached
for the purpose of this evaluation.

Furthermore, type 2 cuts outperform type 1 cuts in this experiment. Only
when the density in matrix C is low and for small deviation instances, there is a
short advantage of C2 over C1. We present more detailed tables in Appendix A.
There it can be seen that for less and smaller entries in C, more type 2 cuts
need to be generated. In fact, if C is dense enough and its values sufficiently
large, only two solutions y need to be constructed, namely y = 0 and y = 1,
to solve the minmax regret problem, leading to a strong performance of C2 in
these cases.
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Figure 6: Performance profile for unconstrained problems, all instances.

Overall, solution approach C2-B shows the best performance to solve the
minmax regret problem with ellipsoidal uncertainty on the instances we consid-
ered here.

4.3 Experiment 2: Shortest Path Problems

We now consider the performance of our algorithms on shortest path instances.
In Figure 8, we present performance profile over all 720 instances, and a more
differentiated view on instance classes in Figure 9.

In this case, the strong performance of C2 for high-density matrices C with
large values that could be observed for unconstrained instances cannot be ob-
served. The reason for this is that it does not suffice to generate the two cuts
y = 0 and y = 1, as these are infeasible in this setting. Hence, performance
of C2 actually deteriorates if the density of C or the size of the values in C
increase.

The relative order of the methods, i.e., subproblems B perform better than
A and cuts of type 2 perform better than cuts of type 1 is the same as before.
Hence, also for these shortest path problems, we find that the best solution
approach is given by C2-B. More detailed tables are given in Appendix A.

5 Conclusion

Minmax regret problems are a cornerstone in robust optimization. Despite
their popularity, research has been focusing on only very simple uncertainty
sets, which might not reflect actual requirements in real-world problems. In
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(c) Instances Il.
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(d) Instances I5.
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(e) Instances I15.
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(f) Instances I25.

Figure 7: Performance profile for unconstrained problems.
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Figure 8: Performance profile for shortest path problems, all instances.

this work, we considered minmax regret problems with ellipsoidal uncertainty
sets.

We gave a thorough discussion of arising problem complexities for the un-
constrained combinatorial problem, and the shortest path problem. To solve
these problems, two types of cuts that can be used in a scenario relaxation pro-
cedure were derived, as well as two linearizations to solve the subproblem of
generating new cuts. We compared the performance of these methods in two
computational experiments, using unconstrained and shortest path problems as
a testbed.

We found that the increased complexity of master problems with type 2
cuts are worth the effort, as less iterations are required to solve the minmax
regret problem to optimality. The advantage is particularly strong for the un-
constrained problem if the values of the deviation matrix C are dense and large.

In future research, heuristic solution algorithms should be developed and
tested, due to the high computational effort when solving these problems.
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Figure 9: Performance profile for shortest path problems.
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A Appendix

We present detailed results for the experiments described in Section 4. In Ta-
bles 4 and 6, we show the average number of cuts and the number of problems
that were solved to optimality for each instance set. We show how much time
was spent in the relaxed master problem and in the subproblem in Tables 5
and 7.

C1-A C1-B C2-A C2-B
Inst. Cuts Opt Cuts Opt Cuts Opt Cuts Opt

I5
s 57.0 45 160.1 65 12.7 43 13.6 50

I15
s 18.5 38 48.6 72 3.6 60 3.9 80

I25
s 9.2 41 19.3 77 2.7 59 2.9 79

I5
m 33.2 39 142.9 53 9.0 46 10.2 53

I15
m 20.5 35 75.5 57 3.7 68 3.7 79

I25
m 21.5 43 53.7 75 2.5 79 2.5 80

I5
l 26.6 32 136.3 49 5.0 62 5.5 77

I15
l 25.4 38 92.9 56 2.3 80 2.3 80

I25
l 32.7 40 77.4 58 2.0 80 2.0 80

Table 4: Results for unconstrained instances. ”Cuts” is the average number of
cuts that were generated during the solution process. ”Opt” is the number of
problems that were solved to optimality, out of 80 for each instance type.

C1-A C1-B C2-A C2-B
Inst. Main SUB Main SUB Main SUB Main SUB

I5
s 5.8 94.2 55.8 44.2 73.5 26.5 97.8 2.2

I15
s 2.0 98.0 8.8 91.2 21.6 78.4 65.7 34.3

I25
s 1.3 98.7 5.0 95.0 12.6 87.4 43.6 56.4

I5
m 4.0 96.0 48.5 51.5 60.6 39.4 95.4 4.6

I15
m 2.7 97.3 16.8 83.2 25.2 74.8 73.0 27.0

I25
m 2.5 97.5 17.3 82.7 18.6 81.4 70.4 29.6

I5
l 3.2 96.8 45.9 54.1 37.9 62.1 93.1 6.9

I15
l 2.2 97.8 46.4 53.6 24.5 75.5 86.0 14.0

I25
l 4.6 95.4 64.1 35.9 27.5 72.5 90.8 9.2

Table 5: Results for unconstrained instances. ”Main” is the average percentage
of time that was spent in the master problem. ”SUB” is the average percentage
of time that was spent in the subproblem.
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C1-A C1-B C2-A C2-B
Inst. Cuts Opt Cuts Opt Cuts Opt Cuts Opt

J 5
s 11.4 69 13.2 80 2.6 79 2.6 80

J 15
s 10.0 59 17.0 80 2.4 65 2.6 80

J 25
s 8.9 46 19.7 79 2.1 59 2.7 80

J 5
m 15.1 62 21.0 80 2.8 80 2.8 80

J 15
m 15.2 45 43.1 78 3.0 60 3.8 80

J 25
m 12.4 31 63.2 63 2.6 50 4.0 80

J 5
l 24.0 45 57.2 79 3.7 76 3.8 80

J 15
l 15.9 29 80.1 54 2.7 44 4.9 74

J 25
l 14.7 20 79.8 48 2.8 39 5.2 66

Table 6: Results for shortest path instances. ”Cuts” is the average number of
cuts that were generated during the solution process. ”Opt” is the number of
problems that were solved to optimality, out of 80 for each instance type..

C1-A C1-B C2-A C2-B
Inst. Main SUB Main SUB Main SUB Main SUB

J 5
s 0.8 99.2 17.4 82.6 23.6 76.4 83.1 16.9

J 15
s 0.8 99.2 2.5 97.5 22.4 77.6 57.7 42.3

J 25
s 0.7 99.3 1.9 98.1 17.3 82.7 50.6 49.4

J 5
m 0.7 99.3 11.5 88.5 32.1 67.9 85.3 14.7

J 15
m 1.1 98.9 4.9 95.1 34.2 65.8 80.9 19.1

J 25
m 0.9 99.1 5.4 94.6 27.7 72.3 82.2 17.8

J 5
l 1.4 98.6 9.2 90.8 44.0 56.0 86.6 13.4

J 15
l 1.3 98.7 9.3 90.7 27.6 72.4 87.4 12.6

I25
l 0.8 99.2 9.6 90.4 19.0 81.0 78.0 22.0

Table 7: Results for shortest path instances. ”Main” is the average percentage
of time that was spent in the master problem. ”SUB” is the average percentage
of time that was spent in the subproblem.
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