
1

Reconfigurable Network Systems and
Software-Defined Networking

Noa Zilberman†, Philip Watts∗, Charalampos Rotsos‡, Andrew W. Moore†
†University of Cambridge Email: firstname.lastname@cl.cam.ac.uk

∗University College London Email: philip.watts@ucl.ac.uk
‡University of Lancaster Email: c.rotsos@lancaster.ac.uk

Abstract—
Modern high-speed networks have evolved from relatively

static networks to highly adaptive networks facilitating dy-
namic reconfiguration. This evolution has influenced all levels
of network design and management, introducing increased pro-
grammability and configuration flexibility. This influence has
extended from the lowest level of physical hardware interfaces
to the highest level of network management by software. A key
representative of this evolution is the emergence of software-
defined networking (SDN).

In this paper, we review the current state of the art in recon-
figurable network systems, covering hardware reconfiguration,
SDN, and the interplay between them. We take a top-down ap-
proach, starting with a tutorial on software-defined networks. We
then continue to discuss programming languages as the linking
element between different levels of software and hardware in the
network. We review electronic switching systems, highlighting
programmability and reconfiguration aspects, and describe the
trends in reconfigurable network elements. Finally, we describe
the state of the art in the integration of photonic transceiver and
switching elements with electronic technologies, and consider the
implications for SDN and reconfigurable network systems.

Index Terms—Software-Defined Networks, Reconfigurable De-
vices, FPGA, Switching Fabrics

I. INTRODUCTION

The Internet provides the infrastructure upon which our
modern world is built. Computer networks underpin modern
commerce and industry as well as enabling the social networks
that are at the heart of modern life. They are characterized
by a continuous evolution, with tensions between the practi-
cal and the desirable. As a flourishing and fertile network-
ing environment, the Internet has required innovative design
and management practices to evolve. Into this environment,
software-defined networks have come to describe a paradigm
for exploring innovation in network design and operation.
While Software-Defined Networking (SDN) seems to have
appeared suddenly, it is actually part of a long history of
trying to make computer networks more programmable and to
capitalize on the reconfigurability of the underlying systems.

It is our contention for this paper that SDN, and its prede-
cessors, are distinctive from reconfigurable networks yet serve
to drive the evolution of reconfigurable network systems. We
maintain that the approach of the SDN paradigm will dominate
the entire breadth of network system reconfigurability: from
the configuration of devices at setup to the reconfiguration and
update of those devices over their lifetime. The SDN paradigm
can offer well-defined interfaces to devices. While such SDN

interfaces may offer a subset of the devices’ capabilities, they
permit a flexible reconfiguration of network systems indepen-
dently of the details of the device implementation. As network
systems become more complex both in routine operation and
in their configurations, SDN provides an evolvable pathway
between devices.

To understand the symbiotic relationship between SDN
and reconfigurable network systems, this paper takes a top-
down approach. We begin with a short tutorial on software-
defined networking. A discussion of the interfaces between
different elements of a software-defined network follows, and
Section III surveys programming languages used across these
interfaces. We consider how SDN affected the evolution of
programming languages over time, and extend the discussion
to proprietary environments. Section IV provides a hardware
perspective to reconfiguration in current electronic switching
devices. This section describes header processing (as the
main operation affected by SDN), and extends to additional
networking functions as a place for future innovation in
SDN. The technologies for reconfigurable network systems are
introduced in Section V and we predict the impact of these
technologies upon such systems. Finally, Section VI considers
the integration of photonic transceiver and switching elements
with electronic technologies in future systems and discusses
the implications for SDN and reconfigurable network systems.
We appreciate that this paper targets a wide audience, and
therefore suggest SDN experts may skip the remainder of this
section along with Sections II and III.

A. The Foundations of Software-Defined Networking

Software-defined networking is a network paradigm. As
SDN is an assembly of ideas drawn from a range of innovation
efforts, it has several slightly different definitions (e.g. [1],
[2], [3], [4]). Key to all these definitions are the strong
isolation between different planes in the network (primarily
between the control and data-plane, as we explain next),
central management and a high level of programmability. The
isolation between control-plane and data-plane is not unique to
SDN, the accumulation of related functionality into layers is
common practice across networking disciplines. The strength
of isolation has varied across different types of networks.

In order to explain SDN, let us consider the common current
network environment, the Internet. At its heart, the Internet
consists of routers connected with each other and with hosts,

2

servers, and clients. Routers form the nodes of a network
interconnecting multiple hosts and other routers. Each router
forwards packets along links, and the router decides where to
forward packets in the data-plane using information derived
by the control-plane. A simple control-plane is a computer
program that (among other duties) uses routing protocols to
discover pathways upon which to forward packets. It had
been commonplace for a single manufacturer to provide an
integrated system that would implement a given set of routing
protocols, compute appropriate forwarding rules, and install
these in the hardware of the data-plane. Such systems provide
little opportunity to install new or experimental control-planes
(e.g. a new algorithm that routes packets according to a differ-
ent criteria) but in return the limited flexibility was balanced by
a system that offered most customers what they required. Each
router vendor would satisfy the compliance need, meaning
their products behaved correctly and conformed with appro-
priate Internet standards. However, such a vertically-integrated
system offered little opportunity for innovation. Additionally,
the vertically-integrated systems meant that a superior data-
plane from one vendor could not be simply connected to the
superior control-plane of a competitor vendor.

Such vertically-integrated systems meant that network ser-
vice providers (and researchers) were frustrated by the time
and expertise needed to develop and deploy new network
services. The wide-spread use of vertically-integrated network-
ing equipment has left limited opportunity for innovation.
Aside from customers and researchers that wished to deploy
and re-invent the control-plane, researchers focused upon the
network data-plane realized that commercial systems rarely
provided the right environment to evaluate their ideas. In
contrast to the software used for implementing new routing
algorithms in the control-plane, innovation in the data-plane
could require measurements, and redesigned control of the
data-plane’s high-speed networking hardware. Given that data-
plane design is a delicate balance of considerations (speed,
features and pricing), unnecessary features were shunned by
commodity network-equipment vendors. This lack of oppor-
tunity for innovation motivated the development of SDN on
reconfigurable systems.

B. Reconfigurable Systems
The reconfiguration of hardware has been a core require-

ment underlying many decades of networking success. Re-
configuration in network systems covers a wide spectrum of
use-cases from the one-time configuration of devices when a
system starts its life, through the run-time reconfiguration of
algorithms implemented in networking devices to allow their
operation at line-rate, to adapting the operation of previously
configured devices by maintenance programming.

Throughout much of the long history of computer net-
working, reconfigurable logic has provided core functionality
in commodity electronics. Such an example is the early use
of programmable array logic to permit the programming of
unique device identifiers, like the media access control (MAC)
address, after device manufacture. This permitted the cheap
manufacture, assembly and testing of devices – despite each
one being uniquely configured.

Field programmable gate array (FPGA) devices have a long
association with high-speed networking equipment. For exam-
ple, FPGA devices are commonly used to provide the control
logic required to interconnect ASIC devices while providing
management functions along with power and thermal control.
FPGA devices have been widely used on high-speed network
interfaces to implement rules intended to process incoming
and outgoing packets (e.g. for filtering packets) and continue
to see use as offload-processing, configured to provide data
processing as either a co-processor alongside more general-
purpose computer systems or a less-flexible dedicated network
switch silicon. Since FPGA devices can be configured in live
systems, they have seen widespread use implementing network
protocols, and protocol-translation services. In each of these
cases, the FPGA can be reconfigured as requirements change.

In this paper, we treat reconfiguration as a spectrum of
activities ranging from initial configuration, through in system
changes in functional design (complete and partial reconfigu-
ration), to include updating parameters within a reconfigurable
device (such as table entries). We distinguish between recon-
figuration and programmability. By reconfiguration we refer
to selecting one option from a given set (including a range of
values, e.g., set register value to 0xF) to change the operation
of an element. By programmability, we refer to providing a
set of instructions (of varying type, number and order, e.g.,
repeat a lookup operation until a match is found) to set the
operation of an element.

C. A Biased History: Reconfigurable Network Systems and
SDN

We assert a close relationship between reconfigurable (net-
work) systems and SDN. Recently, SDN owes much of its
journey into popular consciousness on the back of OpenFlow
[5], an interface between the control-plane and the data-
plane. However, the core ideas of software-defined networking
pre-date that work by several decades. Reconfigurability has
played many critical roles, from the earliest implementations
of network prototypes [6] through work on active networks [7]
and flexible network systems [8]. In addition, a series of SDN
interface approaches propose alternative protocols for control-
plane programmability and we present them extensively in
Section III.

The OpenFlow interface was first and foremost an open-
source standard. The code, documentation, and reference im-
plementation (software and hardware) are openly available to
any interested party. Such practice is not new, as much of
the early Internet engineering task force (IETF) work began
as open development. What makes the OpenFlow particularly
interesting was its reliance on open-source hardware based
upon reconfigurable systems [9]. If SDN owes much of its
relaunch to OpenFlow, then OpenFlow owes much of its
popular adoption to the ready availability of implementations.
The NetFPGA [10], [11], [12] platform, itself an open-source
FPGA-based reconfigurable platform, provided the ideal base
for a prototype OpenFlow hardware implementation [5].

It is clear that reconfigurable systems have made core
contributions to networking in general and SDN in particular.

3

Feamster et al. [2] provide a technical history of SDN, and
additional surveys can be found in [3] and [13].

D. Scope and Related Work

We presume that the reader is familiar with the key elements
of common Internet-style packet-switched networks, where
each packet has information sufficient for conveyance toward
the final destination. However, any network is more than a
simple process that forwards packets along links in a network.
Networks are subject to a combination of requirements such
as the coordination of decisions about where to send packets,
the need to optimally interconnect different types of physical
networks (e.g. wireless-mobile and wired), or the need to
subdivide a network based on geography or administrative-
domain. Each function adds complexity to the organization and
operation of the underlying network. Tackling the combinato-
rial effect of complexity is not specifically considered within
the Internet. It is the control of this expansive complexity that
SDN attempts to tackle.

We have purposely limited the scope of this paper to local
area network (LAN) and wide area network (WAN) applica-
tions. While the intersection of reconfigurable systems and
SDN is wide-ranging, the resurgence of interest in SDN has
remained firmly focused upon LAN and WAN (with emphasis
on Internet protocols and wired Ethernet-based networks,
unless otherwise noted). While this is not an SDN-imposed
restriction, it is the most common use case for SDN-based
networks.

Similarly, we limit the scope of this paper to wired
networks. SDN is independent of the physical media, as
the abstraction of the network-elements make this implicit.
However, we will not explicitly explore the implications for
mobile/wireless networks here. Interested readers may find
relevant an early SDN-enabled for mobile networks [14],
optimizing placement of overlapping LTE cells [15], and an
example of a full enterprise deployment incorporating au-
thentication, authorization and accounting [16]. Additionally,
we mention only in passing the plethora of other software-
controlled networks, such as advances in networks on chip
(NoC) reconfiguration under software control. Such work has
ranged from reconfigurable topologies [17] and configurable
channels [18], to fault recovery [19] and circuit-switched
NoCs [20]. Finally, while reconfigurable systems have made
an impact upon the wireless domain through software-defined
radio (SDR) [21], we shall not discuss these technologies here.

While not specifically SDN, as a matter of scope it is impor-
tant to make clear the relationship with network functions vir-
tualization (NFV). NFV is an emerging network architecture
concept that employs host virtualization-technologies such as
Xen [22], that allow entire classes of network node functions to
be treated as building blocks. These blocks may be connected,
or (in the language of NFV) chained, together to create
communication services. It is clear that SDN complements
the NFV idea and provides a powerful enabling tool. However,
NFV is a mechanism for organizing elements along the data-
path in a network (e.g. firewalls, network intrusion detection
systems, caches for various traffic types). Since an initial

white-paper [23], researchers have extracted some of the ideas
of NFV into the form of a reconfigurable network system [24],
and there is a nascent community engaged in abstracting such
data-plane elements to enable SDN-like innovation in network
function control, [25].

II. THE SOFTWARE-DEFINED NETWORK

A. Introducing the Software-Defined Network

Utilizing Software-Defined Networking (SDN), the
Software-Defined Network may naı̈vely be considered as
based upon simple concepts: SDN networks routinely utilize
a common and well-defined interface between a control-plane
and data-plane. The control-plane is responsible for global
coordination (such as routing and fault recovery). The data-
plane is where routine packet-by-packet operations occur.
Exceptional events in the data-plane become events sent to
the control-plane. The control-plane can modify data-plane
behavior. The separation of control-plane and data-plane
is not a new concept. It might be argued that what SDN
popularized is the use of a clearly defined interface between
the two. Next, we compare a traditional router with SDN.

Figure 1 illustrates a router-based network alongside its
SDN equivalent. In each case, there is a subdivision of work
between the data-plane and the control-plane. The data-plane
implements several processing functions on each packet: (1)
buffering (and/or storing) packets while the headers are pro-
cessed; (2) examining the header and looking up header infor-
mation in the forwarding table (the table storing the forwarding
rules) to identify the actions the switch should perform; and
(3) queuing packets for transmission. An example of a switch
action is updating the time-to-live (TTL) in IP packets (the
TTL field is decremented each time a packet passes through
a router. When the value reaches zero, the packet is discarded
and an error is generated). These functions are done for all
routers, whether SDN or not.

In both cases, the control-plane must handle all possible
circumstances, including any exceptional packets. For exam-
ple, in IPv4 and IPv6, packets that exceed their TTL require
such exceptional handling to include discarding the packet
and returning a control-packet to the source reporting the
error. The control-plane also configures the data-plane and
manages the mechanisms by which the data-plane forwarding
tables are computed and configured. Typically, this involves
running one or more routing protocols, exchanging local
routing information with other router peers, and deriving a
local forwarding table.

Common place approaches to separate control-plane and
data-plane functionality involves implementing control-plane
functionality in a high-level programming language and oper-
ating on a general-purpose processor. The control-plane may
implement sophisticated programs, but without optimization,
per-packet processing performance may be low. In contrast,
the data-plane implements optimum network performance (e.g.
high per-packet processing-rate, minimal latency), but only for
the most commonly encountered cases.

As show in Figure 1, equivalent SDN systems support
identical functionality. These consist of a data-plane with an

4

Management &
CLI

Routing Protocols
Routing Table

Forwarding Table Switching

Control Plane

Data Plane Forwarding Table Switching

SDN Switch Agent

Routing Protocols
Routing Table
SDN Controller

SDN Protocol

(a) Classical-Router Network (b) SDN Network

Classical Router

SDN Enabled Router

SDN Controller

Monitoring
Security

Host

Communication Protocol

Host

Management
Plane

Fig. 1. Functionality in a classical router-based network and the equivalent SDN network. (Hosts are not shown.)

optimization for high-speed forwarding and a control-plane to
handle exceptions and create content for the forwarding table
of a switch element. The differences arise due to differences
in the abstractions defined between the data-plane system
and the control-plane system among SDN implementations.
Effectively, SDN treats network devices as fast but simplistic
forwarding elements which can be used as building blocks
for higher-order functionality, such as routing and access
control. Furthermore, by providing a common abstraction, new
architectures can arise. For example, as illustrated in Figure 1,
the SDN network may share a single SDN controller among
different switch elements.

B. Reducing Complexity: Motivation for SDN

Network architects, engineers, and operators are presented
with the challenge to provide state-of-the-art network infras-
tructure and services, all while minimizing the associated pur-
chase and operation costs. Researchers in networking extend
this challenge by also seeking to explore novel and potentially
disruptive ideas in a state-of-the-art network infrastructure. It
is into this space that SDN has arisen.

A core design principle of the SDN paradigm is to define
an open interface, exposed by network devices, which allows
control of the connectivity and traffic flow of the device [26].
This interface definition allows seamless network reconfigu-
ration of the network control logic. Effectively, SDN tries to

define a common abstraction which encodes the reconfigura-
tion capabilities of the underlying network devices.

The SDN thesis is in two parts: first, networks lack the
ability to enable innovation, and second, they lack proper
network abstractions. These limitations have resulted in an
inability to keep pace with user requirements and to keep the
costs of such networks under control. In part, this challenge
to innovation stems from user requirements that are inflexible
or unclear (e.g., user requirements that are stated informally,
or user requirements that are statically bound to particular
systems). Pursuit of the SDN thesis leads to the notion that
control and maintenance of network infrastructure and services
is better done by a machine which exploits the common control
abstraction across all network devices, from programmatic
configuration to monitoring and mechanized management.

We now describe examples where the use of SDN makes
tangible impact on the complexity of a problem. The first
shows how SDN can be used as an innovation enabler. In this
case, SDN addresses an ongoing problem. A network operator
wishes to try new ideas in an already complex network. The
operator wants to understand what changes occur, how those
changes have impacted the network, and to understand and
interpret the resulting systems. Furthermore, in common with
any good science, the operator wants repeatability with well-
defined constants and variables — particularly in attempting
to quantify the impact of the change. The idea of testing in-

5

A B C D E
10 20 30

L3 30

L2 20

L1 80

HA HB HC HD H E

H x X

Router Host

Y

Link Capacity

Fig. 2. A simple network topology with multiple links between routers D
and E

novation within existing networks provided a core motivation
of the original OpenFlow paper [5].

A second motivating example shows how a consolidated
viewpoint impacts networking. A consolidated viewpoint is
one whereby an observer could see and/or control an entire
network rather than rely upon triggering a desired behavior
by configuring many autonomous devices. A consolidated
viewpoint also permits both improved behavior and new ap-
plications. Imagine a security scenario: a malicious machine is
interrogating machines, probing for vulnerabilities, but doing
so in a non-deterministic way. Observations of small amounts
of malicious traffic may go unnoticed. However, centralized
information would have identified the malicious intent faster
through improved global awareness.

Now we consider a more sophisticated routing example. In
a simplified network, all links are interconnected by routers,
each making its own local forwarding decisions about the next
hop to send a given packet based on destination address. In
contrast, routing in such a non-SDN network is the result of a
coordinated exchange of information about local connectivity,
whereupon a routing mechanism can identify new or updated
pathways. In a distributed network of routers, an operational
failure leads to each router identifying the optimum path
and making simple optimizations leading to local forwarding
rules. However, despite a simple routing solution electing
an apparent optimum, it is in fact a local minima and this
solution can lead to overloading in (other) non-local links.
The solution then involves each participant router iterating
solutions in the hopeful (but non-guaranteed) pursuit of a
global optimum. With more (non-local) routing information,
a better global routing solution could be found, avoiding the
intermediate local minima and improving convergence. A very
simple example of this situation is shown in Figure 2: Each
host (HA through HD) communicates with host HE , with a
link capacity of 10. Initially, all the traffic goes through link
L1. In a distributed network, if link L1 fails, each of the routers
will autonomously try for the next best path. This means that
initially all traffic will be directed to link L2. Suppose A and
B succeed. Then C and D will fail, as the link will be over
provisioned. C and D will then autonomously try link L3 and
succeed. In a network with centralized traffic management,
such as provided over SDN, router D will first announce
the failure to the traffic management application, which re-
programs (through the controller) all routers.

As suggested by this example, the ability to make routing
decisions is improved when a regional or global awareness of
a system of routers is available. Without a SDN approach, the

use of local-only information leads to poorer results in general
and does not take advantage of well-established heuristics that
can operate when knowledge and control on a broader scale
is possible.

C. Actualization of SDN
To-date, network complexity has been tackled by modular

decomposition or modularization (breaking a problem into
subtasks) and abstraction (dealing with ideas and roles rather
than specific implementation details). The same principles
apply to the use of SDN to limit network control complexity.
SDN control functionality is commonly divided into multiple
abstraction layers, in an effort to simplify and modularize the
control tasks. Figure 3 presents a generalized model of an
SDN-enabled network control architecture. The architecture
comprises of three distinct layers: the data, the control, and
the management planes.

The data-plane, the lowest layer of the architecture is
comprised of the hosts and devices of the network. In order
to enable programmability by the control-plane, the SDN
paradigm builds a simple and clean functional separation
of network devices, aiming to transform each device into a
simplified forwarding engine that can be remotely controlled
through a well-defined but restricted southbound interface (SI).
The data-plane functionality of an SDN device comprises
a limited set of operations, such as packet header parsing
and extraction of a header field tuple, support for a fixed
set of packet operations (like header field manipulation and
forwarding through a specific set of ports), and the ability to
match packet header tuples against a lookup memory primitive
(e.g. a hash table or a content addressable memory [27]). By
contrast, the control interface of the switch enables an external
entity to define the lookup memory entries and associate them
with packet actions (e.g. forward any packet addressed to A
using the nth port of the switch). Such control functions can
also encompass the handling of exception packets, in cases
where no specific handling rules exist for a packet, and for the
accumulation of usage information such as packet-counts. A
final essential feature for the southbound interface that shapes
the SDN abstraction across layers is the flow-centric treatment
of packets. In the context of SDN, a network flow is an
ensemble of packets with header values that match specific
ranges. For example, a TCP flow can be identified through a
match with exact values for the IP addresses, the IP protocol
field and the TCP port numbers, while a routing flow can
be reflected through a match for the IP destination address.
Effectively, the flow granularity is user-defined and dynamic,
comprising any set of packet header fields (Figure 4 presents
the available header fields in OpenFlow version 1.0). The
flow abstraction is fundamental across all network devices and
permits control convergence across different network elements
(e.g. routers, switches, firewalls, and middleboxes).

In order to illustrate the design of a pragmatic southbound
interface, we elaborate the abstraction of the OpenFlow pro-
tocol. Each network device is modeled as a datapath, an
ensemble of device ports and flow tables. The flow table is
a core protocol abstraction reflecting the device forwarding
policy.

6

Routing

Routing
Accounting /

Auditing

MonitoringSecurity
Network

Virtualizer

Management-Plane

Control-Plane

Data-Plane

northbound interface (NI)

southbound interface (SI)

east-west Interface

Control channel
Controller nodes
Forwarding devices
Synchronization service

network operating system (NOS)

HTTP-based service

Fig. 3. A model of an SDN control architecture. Functionality is separated in three layers: the data-plane, control-plane and the management-plane. Integration
between layers is realized through the southbound interface (SI), connecting network devices with the network operating system, and the northbound interface
(NI), connection control application with the network operating system.

*

Matching Action Statistics

Packet + byte counters

Routing

(a)

Switch

Port

MAC

dst

MAC

src

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

SPort

TCP

DPort
Action

* * * * * 8.8.8.8 * * * Port 2

Port 3

Flow

Switching

(b)

Switch

Port

MAC

dst

MAC

src

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

SPort

TCP

DPort
Action

00:20.. 00:0A.. 0800 0 4.2.2.2 8.8.8.8 6 5555 80 Drop

Fig. 4. Examples of matching rules and actions. The first example (a) shows a routing rule matching of a destination IP address 8.8.8.8 to output port 2. The
second example (b) shows a rule matching each field in the header with a specific value, and droping the packet if all the fields are matched.

Each flow table entry is split to three sections: the flow
match, the action list, and the statistics. The flow match defines
a flow using all the important header fields of a packet. Field
wildcarding is supported, meaning any value will be accepted
on the designated fields. The flow action list contains a list of
packet operations, allowing header modifications and packet
forwarding, applied to every matching packet. Finally, flow
statistics of matched data include both byte counters and
packet counters. Figure 4 presents the structure of the flow
table entry and two example entries. The first is a routing
flow, matching only the destination address and forwarding
packets with destination IP address 8.8.8.8 to port 2. The
second is a flow switching entry, where all ten fields need to
match the table entry. The action is set to drop a matched
packet. We use these examples to highlight the generality
of the OpenFlow abstraction to flexibly accommodate data-
plane processing complexity. While the routing rule requires
only a destination IP address extraction from each packet,
the flow switching policy exhibits higher complexity. Because
flow matches from different flow entries may overlap, the
protocol assigns a flow priority to each flow entry in order

to break ties. In addition, each flow entry contains optional
time-out values, which identify the time period that a flow
remains active in the flow table. Furthermore, the protocol
provides message primitives to control the flow table, to
query switch configuration and port and table statistics, and to
intercept and inject data-plane traffic. The ability to intercept
traffic is commonly used as an exception channel for traffic
that is not handled by the device policy and, along with
the network statistics polling messages establishes a set of
powerful primitives to develop proactive and reactive control
schemes.

The primary (operational) benefit of the SDN paradigm
is the flexibility to rapidly develop new control logic in
networking elements and effectively enable evolvability. In
order to achieve this, the SDN paradigm exploits the flexibility
of high-level languages and employs a control-plane layer to
implement the network logic on general purpose servers. The
control layer, often referred to as the network operating system
(NOS), provides abstracted interfaces to network forwarding
elements of varied capability and southbound interface sup-
port, while managing contention for resources. Effectively, the

7

control-plane layer is responsible for synthesizing the output
of the control applications running on top of the NOS into
a forwarding policy and distributing it to all the switches
of the network. Additionally, the control-plane is responsible
for transforming input from the southbound interface into
semantically richer higher-level abstractions, e.g. establishing
the network topology. Furthermore, in order to improve the
scalability and availability of the control-plane, existing NOS
borrow established techniques from the distributed systems
domain to achieve horizontal scaling between control-plane
nodes. Such distributed NOS employ an abstraction layer, the
East-West Interface, which allows seamless synchronization
between the views of individual data-plane nodes. Such inter-
faces are implemented using distributed consensus protocols
or popular database services, like the Infispan [28] distributed
key/value store which is employed by the OpenDaylight
controller [29]. While maintaining a common network view
between distinct nodes, this approach permits the data-plane
control requirements to be scaled among multiple servers.

There exists a tension between centralization and decen-
tralization. Centralization is considered to offer enhanced
network control and planning. For several of the SDN use-
cases (e.g., security or globally-optimal routing), centraliza-
tion is an enabling force. However, such centralization runs
contrary to historic practice. Decentralized approaches are
sometimes regarded as more resilient to failure and robust to
changes in circumstance. While this tension is not resolved,
significant efforts are taken by NOS (e.g. OpenDaylight) to
ensure fundamental properties of resilience can be maintained
by multiple redundant servers.

Finally, the top layer of the SDN architecture, the
management-plane, consists of the management applications
which manifest the control logic of the network. This layer
consists of common network control applications like firewall,
access control and routing, but can also enrich the network ca-
pabilities by introducing new applications. Interaction between
control applications on the management-plane and the control-
plane is realized through the northbound interface (NI) of
the NOS. The northbound interface is defined by the control-
plane of the network. Its primitives vary between platforms,
spanning from direct southbound interface access to indirect
access based on building new primitives (synthesizing multiple
low-level interactions of the southbound interface). Control
applications can run on hosts separate from the control-plane
nodes, accessing the northbound interface through various
standard services, or they can be physically integrated with
the control layer during the compilation of the NOS.

III. PROGRAMMING LANGUAGES AND PLATFORMS
FOR SOFTWARE-DEFINED NETWORK RECONFIGURATIONS

The SDN paradigm defines an abstract architectural model
for the control of the network and identifies some key design
properties (e.g. flow-centric treatment of traffic). The realiza-
tion of SDN across the different layers of the network still
remains an open question for the research community, which
we elaborate in this section.

The majority of research efforts in the field of SDN
programming languages and platforms have focused on the

control and management planes. While data-plane research,
with its line-speed expectations, has limited research to only
a few facets based upon reconfigurable devices.

A. Management-plane, Control-plane and Northbound Inter-
face Programming Languages

The management and control-plane of the SDN architecture
orchestrates the network logic. The primary design goal of
the control-plane is to expose an application programming
interface (API), the northbound interface, which allows de-
velopers to focus on programming the network rather than the
device, thus abstracting the effort to consolidate control across
multiple devices and locations. In addition, control-plane
platforms aim to construct new reconfiguration abstractions,
by synthesizing low level reconfiguration capabilities of the
underlying network infrastructure. For example, heterogeneous
support of SDN reconfiguration capabilities across the network
forwarding devices (e.g. variable support for fast-path packet
modifications between forwarding elements) can be abstracted
through run-time network policy optimization (e.g. setting up
end-to-end paths that apply packet modifications on the most
appropriate device of the path).

The NOS is the main building block of the SDN control-
plane. Similar to a traditional operating system, it executes
management-plane applications and it is responsible for coor-
dinating access and securing network resources. Early NOS
approaches, like Ethane [30] and NOX [31], provided low
level OpenFlow protocol translation and multiplexing and
supported basic network services, like switching (Ethernet
address monitoring in order to map them to network device
ports and minimize traffic broadcasting) and user-based access
control (strong user authentication and association with a net-
work policy that allows use of specific applications). Nonethe-
less, the wide adoption of the SDN paradigm has motivated
the enhancement of NOS with novel capabilities, like NOS
scalability through state sharing between different instances,
monitoring, policy conflict detection and resolution between
management applications and network virtualization. As the
SDN paradigm is deployed in production networks, an interest
is put towards mature control-plane platforms, supporting a
richer set of network service. As a result, a series of vendor
and service provider consortia have been formed currently
in an effort to develop and support NOS platforms (like the
OpenDaylight [29], ONOS [32], Ryu [33] and Floodlight [34]
platforms). At the moment of writing, the standardization of
the northbound interface of the NOS still remains an open
question. The abstraction varies between existing NOS, and
it is highly influenced by the target deployment environment
(e.g. a controller targeting carrier grade networks, like ONOS,
requires a different set of control-plane functionalities, in
comparison to a controller targeting virtualized datacenters,
like the VMware NSX [35]). Although a detailed discussion
of the northbound interface is beyond the scope of this paper, it
is interesting to note that as the northbound interface becomes
more tightly coupled with the underlying controller function
(e.g. routing vs. security), its semantics will tend to converge
to a common definition [3].

8

The development of the data-plane layer has created an
interest in effective management-plane development environ-
ments using domain specific languages (DSLs). Management-
plane DSLs are built on top of the control-plane and use
the northbound interface provided by the control-plane. The
novelty and effectiveness of the SDN approach has developed
an interesting competition between programming language
experts to define new DSLs with support for all the re-
quired programming primitives and semantics. This led to
the development of multiple languages aiming to address
different aspects of control-plane programming. For example,
Netcore [36] provides a high-level forwarding policy lan-
guage, Nettle [37] transforms the view of control applications
and focuses on changes in the state of network elements
rather than event processing, while Maple [38] provides a
scalable multi-core scheduler and runtime policy optimizer
for OpenFlow control to match available device resource
configuration. Nonetheless, several programming languages
have been developed by evolving existing languages, such
as Flog [39], which combines ideas from FML [40] and
Frenetic [41]. Research on SDN DSLs has explored also
the applicability of different programming paradigm on the
expressibility of the management-plane. With the exception
of Pyretic [42], most high-level SDN programming languages
adopt a declarative paradigm, then explore further specific pro-
gramming models: functional programming [41], [38], [36],
logic programming [43], [39], dataflow programming [40],
and functional reactive programming [44], [37]. At the time
of writing, no single language stands up to all the challenges
imposed by SDN. We do not expect this situation to change
in the future.

Research on management-plane applications has motivated
solutions for a wide range of network problem. To exemplify
how these solutions are leveraged through the SDN paradigm,
we will focus on a common network problem; maintaining
consistency during policy updates. The centralized nature of
SDN introduces a significant problem in incremental policy
update deployment. A policy update for a network path that
spans across multiple switches can result in transient policy
violations, if the processing of the flow table modification
messages is not timely and ordered across all switches.
Nonetheless, the semantics of the reconfiguration abstraction
in existing COTS platforms is not designed to provide such
update consistency semantics [45]. Traditional network control
protocols support weak consistency models, using distributed
eventual-consistent algorithms (e.g. routing protocols) [46]. In
the context of SDN, multiple solutions have been proposed to
address this problem, by introducing in the NOS northbound
interface transactional update interfaces. The NOS implemen-
tation of these interfaces aggregate policy updates, analyzes
them for potential conflict during deployment and schedules
their deployment accordingly using two-phase commit algo-
rithms [47], [48], [49].

B. Southbound Interface Programming Languages

Existing SDN approaches have widely adopted the Open-
Flow protocol [5] as the southbound interface. Released as an

open-source implementation that fulfilled a need, OpenFlow
has become widely available in commercial SDN devices.
OpenFlow holds an important position in its role as an early
SDN enabler. It assimilates a low-level, assembly-like machine
language; closely aligned with and limited by the underlying
hardware. The burden remains on the programmer, who needs
intimate understanding of the hardware (such as switch details
and available resources), as well as behavioral details of the
handling of overlapping rules and rule ordering. This was one
of the incentives for the development of the management layer
languages. Nonetheless, such limitations reduce OpenFlow
code reusability. Consequently, creating modular/reusable code
is challenging and the development process is prone to error.

At the time of writing, OpenFlow does not have sufficient
expressability to cover the entire functionality provided by
network devices, nor can it optimize their performance. This
is true even for devices having an architecture compliant
with the OpenFlow specification. For this reason, another
abstraction layer is often provided between the two. For
example, Broadcom’s OpenFlow data-plane abstraction (OF-
DPA) [50] defines and implements a hardware abstraction
layer that maps the Broadcom’s StrataXGS switch architecture
to the OpenFlow 1.3.1 switch and pipeline. Similar approaches
are currently explored by other vendors. The protocol oblivious
forwarding (POF) [51] proposal sets an ambitious goal to
provide an abstraction table above the device driver, but also
to extend OpenFlow’s protocol dependent instruction to be
protocol independent. A prototype POF implementation is
available for the Huawei’s NE5000 core router, which uses
the proprietary microcode for its network processor. Further-
more, P4 (an acronym for programming protocol independent
packet processors) [52], [53] sets three more ambitious goals:
switch reconfigurability in the field, protocol independence
and independence from underlying hardware. In this way, P4
operates as a complement to SDN protocols, like OpenFlow,
and considers reconfiguration of the data-plane to support (in
target hardware or evaluation designs) specific operations that
are then manipulated by such protocols as OpenFlow.

C. Data-plane Programming Languages

While OpenFlow handles the low-level aspects of the data-
plane, it is not the language used to program widely-used data-
plane devices. Network processors, whose host processing
units require special programs, were for many years using
proprietary programming languages (e.g. Marvell’s XLP [54],
EZchip [55]). The use of specialized processing units, op-
timized for bandwidth, led to the development of different
instruction set architectures by each company, exploiting the
advantages of each architecture. In 2008, Cisco was the first
company to introduce a network processor that was fully
ANSI-C compatible [56]. This approach was later followed
by Ericsson [57], and most-recently by EZchip [58].

Several attempts have been made to go beyond assembler
and C-like programming languages for packet processing.
PacLang [59] was an early attempt for a high-level data-plane
language prototyped on the Intel IXP2400 network processor.
Based around the premise of strong typing (explicit variable

9

type casting, checked at compile time) and linearizable-types
(any object variable is used exactly once within the program,
thus simplifying memory management), PacLang presented a
transformation based methodology to separate architecture de-
tails from the high level program specification. The application
code was written in a high-level language and then matched
to the network processor architecture using an architecture
mapping script. Compared to previous solutions for a single
task or pipeline, a novelty of PacLang was its ability to handle
multi-core network processors.

PX [60] (and its earlier incarnation [61]), is a high-level lan-
guage for specifying packet-processing requirements, designed
for FPGA implementations. It is also focused on what should
be done, rather than how, leaving the hardware implementation
details to be handled by the compiler. The compiler, in
turn, generates code in VHDL and Verilog hardware design
languages (HDL).

While no implementation is available to date for network
applications, functional languages also present a future di-
rection for reconfigurable network devices. Languages such
as Chisel [62] and HardCaml [63], which generate low level
Verilog or VHDL code, are suited for such purposes.

D. Proprietary Environments

While the predominant SDN realizations remain currently
under the umbrella of the open networking foundation
(ONF) [64] or IETF [65], some organizations choose to have
their own environments supporting the same concepts. This
allows these organizations to maintain a proprietary environ-
ment, implementing mechanisms that best suit their hardware
and software, easing customer migration and removing restric-
tions imposed by public standards or specifications.

Cisco’s open network environment (ONE) tries to go beyond
SDN and to set the foundations for, what Cisco describe as,
an Internet of everything (IoE) [66]. Their approach does not
reject SDN, but rather tries to extend it to create a better
integrated solution for Cisco devices. Accordingly, Cisco’s
network processors (e.g. nPower X1 [67], Typhoon [68] and
QFP [69]) are OpenFlow capable. The difference lies in the
development environment underlying it, dubbed onePK[70].
onePK allows a programmer to write code in one of sev-
eral languages (C, Java, Python) using a set of APIs that
abstract the OS and network device internals. Effectively,
onePK enables easy interoperability with multiple layers of
the SDN model, as well as other interfaces and languages, like
OpenFlow and HTTP-based services [71], either seamlessly or
through plugins [72]. The onePK environment also integrates
with Cisco’s application centric infrastructure (ACI), which
operates at a higher architectural level.

A very different approach is taken by Xilinx’s software-
defined specification environment for networking (dubbed
SDNet) [73]. SDNet assumes that the underlying hardware
is completely programmable (e.g. FPGA), and uses this to
implement programmability of the data-plane. The concept
contains a complete design flow, from SDNet high level
description language, through the SDNet hardware design lan-
guage compiler, to Xilinx’s design tool (Vivado) that generates

the FPGA implementation’s bitstream. The data-plane packet
processing units allow firmware updates between packets.
While SDNet is not tied to a specific southbound programming
language, it does not reject them either: the user may choose
to implement, for example, OpenFlow protocol support in
hardware, and provide custom code to support it.

Additional environments, such as Juniper’s Junos Fusion,
Huawei’s SoftCom and Arista’s software-driven cloud net-
working (SDCN) exist, with various levels of maturity and
conformance with ONF. The adoption of these (primarily
commodity/closed-source) environments by the networking
community is yet to be seen.

IV. RECONFIGURATION IN ELECTRONIC SWITCHING

In current electronic switching, Software-Defined Networks
commonly rely on header processing. Header processing is the
stage where the header (the part of the packet that contains
address and network-handling details) is identified and exam-
ined. This is also the stage where packet actions are decided,
such as setting a packet’s destination within the device (e.g.
queue, flow, port), or selecting the number of replications of
a packet. However, there are further reconfiguration aspects to
switching, which are discussed in this section.

A. Header Processing

A networking element does not always require header pro-
cessing. For example, a host-computer attached to the network
with a single-port network interface card (NIC) may forward
all packets from the network to the CPU, and all packets from
the CPU to the network, without further processing. However,
this is rarely the case. Recall simple operations of our basic
switch in Section II: as a packet enters a device, its header is
parsed, matching rules are checked, and actions are applied
to it. The analysis may examine specific bits or detect an
expected format (Figure 4), or perform a more sophisticated
parsing. Clearly, the level of reconfiguration required for this
stage may vary between devices. Devices that support only
one header type may have little need for reconfiguration, but
devices supporting more sophisticated header processing might
benefit from the ability to dynamically reconfigure hardware
to perform functions more effectively.

Highly reconfigurable systems could permit defining which
protocols are admissible (or excluded), the number of headers
within a packet to be looked up, or even describe complex
lookup operations when multiple networking protocols are
being used. Furthermore, reconfiguration flexibility allows
adding support for new protocols. As new protocols emerge,
a network operator may need devices to recognize these
protocols and handle the packets accordingly.

It is instructive to consider a few examples of how network
actions can be driven by the structure of packet headers. For
example, a most basic admission action is “Should the packet
be admitted or dropped?”. Other example actions are to assign
a packet to a specific destination output port, or to specify a
quality-of-service queue within the device. Packets terminating
within a device (e.g. exception packets) may have actions that
differ from those for packets sent to a remote destination. The

10

stage at which actions are assigned can also vary, yet three
stages are commonly localized: The classification stage (where
necessary information is extracted from the header, such as the
protocol, the packet’s source and destination), the forwarding
stage (where the destination queue and/or output port of the
packet inside the device is decided) and the modification stage
(where the header of the packet is being altered). The shared
property of all these stages is that they require configuration,
both of actions and of results.

The header processing module may conduct many further
operations, from collecting statistics to security operations
(e.g. dropping packets with a false source address). Such func-
tions can be rich, varied, and almost arbitrarily sophisticated,
attesting to a need for expressive forms of SDN.

Currently, the hardware involved in network systems sup-
port a variety of reconfiguration mechanisms. The simplest
involves using registers for configuration, yet their use tends
to be limited to enabling or disabling a function. A standard
header processing configuration is implemented using tables
or databases. The most common table is a forwarding table.
The routing table is an example of dynamically configurable
data structure associated with the routine operation of a router.
During operation the router learns new IP addresses, along
with a port assignment through which they are accessible.
This information is added to the routing table and new packets
arriving to the router are sent to the right port accordingly. As
network connectivity changes over time, so does the routing
table: entries are not only added, but also deleted or altered.
While the routing table can be considered a stored state,
the result of modifying the routing table is an operational
reconfiguration: packet flows previously sent to port X may
be sent to port Y as a result of an entry being modified, their
content (e.g. header fields) may be modified, or e.g. they may
be dropped.

Header parsing uses tables that are indexed by packet-
headers, e.g. destination IP addresses. Each entry in such
tables contains specific primitive actions such as setting the
packet’s destination, drop the packet, etc. These tables used for
header parsing require memory, which in-turn scales in direct
proportion to the number of entries in a table. For this reason,
for many years these tables were implemented using external
memory modules, using different memory technologies. Over
time, shrinking silicon processes allow more and more on chip
memory. As external memories not only add to a networking
element’s cost, but also to its power consumption and overall
size, there is a considerable motivation for using on-chip
memory to implement these tables. This trend in monolithic
implementation stands in contrast with the progressive need
to increase table size to accommodate more table entries.
Consequently, some network and packet processing devices
use external memories, while other contain all tables on chip.
A variant of those are configurable networking devices that
allow selection between relatively small internal and larger
external memories.

Network and packet processing devices which employ many
tables and allow a large flexibility often face the challenge of
meeting conflicting size requirements by different customers:
one application will require table A to be large and table

B to be small, whereas a second application will require a
lot of entries in table B and no use of table A at all. This
contradiction can be solved by sharing databases across a
device: allowing a user to select the memory size for each
table out of a shared pool. This approach is resonant to ones
often used in FPGA devices, where the FPGA provides users
with a shared pool of memory resources that can be utilized
according to an implementation’s needs.

The flexibility expected in header processing has grown over
time. If two decades ago a static configuration was acceptable,
and a decade ago marked the emergence of network proces-
sors, then today many devices claim to be fully programmable
and highly flexible. This is largely driven by market forces,
as chip vendors try to reach as many market segments as
possible. In addition, users require programmability in order
to be able to reconfigure their network over time, adding
new protocols, altering configurations, and so on. While in
the past network processors used proprietary processor archi-
tectures that maximize performance (e.g. Marvell’s DataFlow
architecture [74]), then today more and more network proces-
sors embed “traditional” RISC architectures (such as EZchip,
Broadcom, Ericsson, Cisco). This trend is possibly another
step toward the less intelligent programmable hardware driven
by the SDN paradigm.

B. Traffic Management

Header processing is focused on where packets are sent.
In contrast, traffic management is focused on how a stream
of packets to a certain destination is being handled, which
is commonly referred to as the quality of service (though
traffic management is broader than that). Quality of service
covers many parameters (such as bandwidth, latency, and
jitter) and is provisioned using different types of mechanisms
within a traffic management device (e.g. scheduling and rate
limiting). As traffic management devices need to match the
services bought by the user to the available resources, they
tend to be highly configurable. Such devices require the ability
to intimately configure and tweak resources, allowing every
traffic flow to be assigned to a correct group of detailed
servicing rules.

We distinguish between two classes of reconfiguration
mechanisms: mechanisms that affect the way the device works,
and mechanisms that set the way a specific traffic flow is
handled within the device. The second type of configuration
mechanism is typically easier to handle, since it is usually
implemented within a table, written as part of the power up
sequence. The entries in such a table indicate what different
properties should be assigned per flow. Examples include
setting the level of priority or the committed bandwidth.

Configuration mechanisms of the first type (that affect
intrinsically how a device works) can vary significantly. For
example, a scheduler may allow one or more scheduling
schemes to be defined (such as strict priory vs. weighted
fair queuing [75], [76]), and weights need to be assigned to
any flow or group of flows in a weighted scheduling scheme.
Similarly, a traffic shaper needs to be assigned average and a
peak rates as well as a burst size [77].

11

Congestion management is another class of complex net-
work operation amenable to (if not requiring) reconfiguration
support. Example functions range from the simple setting
of thresholds in different queue management schemes (such
as random early detection [78], where a packet is dropped
before being admitted to a filling queue) to rate adaptation
(by methods such as explicit congestion notification [79] and
quantized congestion notification [80]). Changing the traffic
rate of a flow requires changing the configuration of thresholds
and shaping parameters in a networking device, which in turn
modifies the rate of a given flow (e.g. a congested flow).

Despite being a general paradigm, when OpenFlow was
introduced and SDN got traction, the focus of data-plane
research was on header processing. There is a growing under-
standing that other aspects of the data-plane need to be defined
as well. Furthermore, as the central management of SDN
allows an end-to-end view of resource utilization across the
network, using it to improve aspects of traffic management is
called for. The use of the control-plane for traffic management
was well studied by different groups (as surveyed in [3],
[81]). Implementations of traffic management in the data-
plane, in hardware (as opposed to software based solutions,
such as QueuePusher [82]),are still rare. One example of such
implementation was presented by Sivaraman et al. [83], who
implemented SDN-enabled queue management in an FPGA.
Further study of enabling traffic management in the data-plane
is still underway [84]. The lack of research done to date in
this area is somewhat surprising, given that it was proposed
as a characteristic of SDN long ago [1].

C. Switching Devices and Functions

The last building block of a switching device that we discuss
is the switching unit. The most basic switching unit is the
crossbar, which allows a dynamic connection between input
and output pairs between the ports of this network element.
For this switching method to be non blocking (meaning all
possible combinations of input-output pair assignments can
be accommodated), it must be configurable, allowing inputs
to change their paired outputs over time, e.g. allowing packets
incoming on port N to be sent to any port M , according to
their header. This type of switching is near instantaneous in
electrical switching but can take milliseconds in some electro-
mechanical photonic switches (discussed in Section VI-B).
As crossbars (whose internal resource consumption grows
quadratically with port size) fail to scale with the performance
required in modern networks other, more scalable, multi-stage
switching architectures are gaining traction within current day
systems (e.g. Clos [85] and Fat-Tree [86]).

Switching elements have several modes of use. For example,
a network switching chip can work as a stand-alone device
(with all its interfaces serving as ports), or it may be connected
in a mesh with other identical devices (to create a system capa-
ble of higher radix, bandwidth or both). In less common cases,
a device may connect to a larger fabric mesh to create a multi-
board or a multi-chassis switch (e.g. using commercial devices
such as Broadcom’s BCM88750 and BCM88650 [87]). This
is commonly achieved using modular (i.e., board or box)

assemblies. In this case, the end user buys a module, which can
be used in a variety of different ways. A fabric module can be
configured to operate as a single-stage switch fabric in a stand-
alone chassis, or as a first and last stage (but e.g. not middle
stage) fabric switch, connecting to a different fabric chassis
when placed in a multi chassis system [88]. This type of a
configuration allows scaling switching systems based around
common building blocks, such as Huawei’s NE5000E and
Cisco’s CRS-X, from a few Tb/s to hundreds of Tb/s [89],
[88], [90]

Networking devices regularly offer more programmability
and reconfiguration than available to the end-users. Decisions
taken during the design of a system, and settings applied
during the assembly of devices within these systems, limit the
level of reconfiguration available to the end-user. Consider the
example above, where devices used to create a multi-board or
a multi-chassis may have programmable modes of operation.
These devices also typically support multiple types of physical
interfaces (e.g. 10GbE, 40GbE, 100GbE), but once assembled
on a given board the interface type is set to match the optical
transceiver of this module, and can not be altered. This means
the end-user can alter the device or module’s role within a
system, but can not alter the type of physical connectivity.
This start-of-life setting benefits both silicon vendors and their
customers: silicon vendors design and fabricate only one chip
to support different market segments, whereas their customers
use the device’s programmability to manufacture and sell the
most power efficient, cost effective networking system.

At the time of this writing, SDN-enabled electronic switch-
ing devices are increasingly being introduced by commercial
vendors. This trend is also emerging in the latest photonic
switches discussed in section VI.

V. TECHNOLOGIES FOR RECONFIGURABLE NETWORK
SYSTEMS

Several types of technologies are applicable for network-
ing devices. In considering how reconfigurable systems ap-
proaches could be used more effectively, we consider a spec-
trum that trades configurability for performance, and what
we might do to better achieve both. This section provides an
overview of these considerations and discusses the trends over
the last few decades.

Lets first describe the spectrum of programmability and
configurability. The most programmable type of device is a
general purpose CPU. Completely programmable, it allows
any programmer to create a networking device of his own
design, where only the device interfaces set the limitations of
the CPU-based system.

Network processors (we omit graphics processing units
from this discussion) are less programmable than CPUs, as
they are designed for a specific purpose, and their architecture
matches that purpose. Network processors vary considerably in
their architecture, therefore it is hard to make generalizations
about their level of programmability: some network processors
force a single datapath structure and allow programming the
actions taken in every stage of the datapath, whereas others
allow flexibility in the structure the datapath itself. The level of

12

expertise required to program a network processor is higher
than required to program a CPU, as the programmer often
needs to write (device specific) programs in order to configure
each processing unit within the network processor.

We consider traditional FPGAs to be less programmable
than network processors. An FPGA device is built from a
set of resources (programmable logic blocks, memory blocks
and I/O). Using HDL (or high-level languages generating
HDL descriptions) a user can design the FPGA to perform
any operation, limited only by the available resources. Once
completed, the design is then downloaded to the FPGA device.
Once a resource is configured to work in a certain way,
it will maintain this function until the device is powered
off or the device is reprogrammed. This limitation on the
use of a resource within the FPGA makes the FPGA less
programmable than a network processor.

FPGA vendors offer processing cores embedded within the
FPGA (e.g. [91], [92]). These processing cores can be either
soft cores (built using the FPGA’s general purpose logic),
or hard cores (built from dedicated silicon) [93]. Hard core
processors (e.g. [94]) typically offer a better performance than
softcore processors (e.g. [95], [96]), however their dedicated
silicon presents a waste of resources for FPGA designs that
do not require a processor. Implementing a networking device
over an FPGA requires a larger set of skills than programming
a network processor. Even when using high-level program-
ming languages, the user needs a deeper understanding of
hardware aspects. The implementation of an FPGA (including
simulation, synthesis and routing) requires a set of skills not
traditionally possessed by software engineers.

The least configurable devices are application specific inte-
grated circuits (ASIC) and commercial off the shelf (COTS)
networking devices. While the level of reconfiguration of
these devices varies, from highly configurable to completely
transparent, as a group they are far less configurable than
other solutions. COTS devices provide a closed feature set
that the user may choose if and how to use, but the function
itself is rarely programmable. Some contemporary high-end
devices introduce a level of programmability into their packet
processing units, using processing cores, however we classify
those as a hybrid with microprocessors. While using a COTS
device often requires the least expertise, designing one is
the most challenging. It engages people with a wide set of
expertise, from frontend and backend designers to embedded
software engineers. Note the distinction that we make here
between CPU and COTS networking devices: CPUs share with
COTS devices a very long and expensive design cycle, but
once CPUs reach the market, the customer can use them for
a wide range of applications. A COTS networking device has
its application set during the design stage, and it can not be
changed after that. This also reflects on the level of risk: if a
bug is found in a networking device implemented over a CPU,
the effort required to fix the bug is minimal. Fixing a bug in
a COTS device can have an indeterminate complexity, often
requiring changes in the manufacturing masks or even a new
device fabrication, costing millions of dollars.

A. The Evolution of Networking Devices Bandwidth

While CPUs offer the best level of programmability, they
are not present in all networking devices. High levels of
programmability is mostly seen in slower devices, while
the highest bandwidth is commonly provided by the least
configurable devices. Economic drives propose one reason for
this phenomenon, but a technological insight is provided in
Figure 5. This figure presents the evolution of aggregated
bandwidth of networking devices over several decades, starting
from 1Gb/s of the early 1990s to contemporary performance
levels exceeding 1Tb/s. As the figure shows, from the 1990s,
CPUs (the most programmable devices) provided the best
performance. Over time COTS devices (the least reconfig-
urable) managed to deliver the highest bandwidth. To better
understand this conclusion, we explain the details of the figure.

For network processors and COTS networking devices, we
use the manufacturer’s declaration of bandwidth. For FPGAs
we present the maximal theoretical bandwidth, calculated us-
ing the IEEE 802.3 standards methodology where the quantity
of I/O that can be used by a networking interface is multiplied
by its maximal frequency. The definition of bandwidth per
CPU is the product of device’s bus width and core frequency,
for a single core. Each point in the graph presents the “best
of breed” performance for a given device type at a particular
snapshot in time. All known devices available on the market to
date were considered, including but not limited to Intel, AMD,
EZchip, Netronome, Broadcom, Marvell, Mellanox, Altera and
Xilinx.

For CPUs, we calculate the effective bandwidth as the
product of bus width and core frequency, as it is an indication
of the internal pipe bandwidth as well as the possible packet
rate (the number of packets processed every second). Although
multicore processing was the direction taken to improve CPU
performance, the product of the above bandwidth and the
number of cores is not equal to the total device bandwidth. The
internal communication bus of multicore CPUs is not designed
to match the core bandwidth, even given optimizations [97].
As the multicore communication is the primary bottleneck,
and its throughput is less than a single core’s, we present a
single core bandwidth and consider inter-core communication
a challenge for future networking initiatives, such as the Intel
Omni-Path fabric [98].

Figure 5 also reveals that in the previous century, CPU
performance led all other solutions, while the last decade
shows a more modest improvement of data path bandwidth
performance per core. In a comparison of 2007 and mid-
2015 best-in-breed CPUs across all four SPEC CPU2006
benchmarks [99] we make an important performance obser-
vation. For whole-system performance, the speed benchmarks
(CINT2006 and CFP2006) improved by a factor of approx-
imately four and the throughput benchmarks (CINT2006rate
and CFP2006rate) by a factor of 15, yet the relative perfor-
mance per core improved by less than two, and the relative
throughput performance per core improved by less than a fac-
tor of four. This difference also contributed to the emergence
of network processors.

ASIC/COTS devices have played an interesting role in the

13

 1

 10

 100

 1000

 10000

 1990 1995 2000 2005 2010 2015

TO
TA

L
BA

N
D

W
ID

TH
 [

G
b/

s]

YEAR

CPU
Network Processor

FPGA
Commercial ASIC

Fig. 5. Evolution of Networking Device Bandwidth. In the last decade the least programmable devices (COTS) provided the highest bandwidth performance,
whereas the most programmable devices (CPU) made the least improvement.

evolution of network devices. A single modern network device
may consist of many types of high end silicon devices e.g.
traffic managers (implementing packet rate limiters such as
described earlier) or packet processors (devices implementing
header parsing and header-field lookup to trigger specific
processing). Yet the highest bandwidth capacity is always
presented by the switching devices (those devices that, having
the highest port count, provide port-to-port connectivity).
The lower the complexity of the device, the fewer the fea-
tures beyond just switching, and the higher its bandwidth.
The complexity of the device impacts both silicon area and
difficulty in achieving a design that meets all the criteria.
This drives devices toward simplicity, reducing features, in
order to improve performance. This optimization of the ASIC
and COTS devices is evident in comparison with network
processors, which are built in the same semiconductor pro-
cesses and subject to the same manufacturing constraints as
CPUs, FPGAs, and other devices. It should be noted that
the growth of bandwidth in COTS devices is tightly related
to the mechanical aspects of the target switching systems.
The bandwidth is often a multiplication of 24 ports times the
maximal interface speed available, as this is the number of
ports fitting a front panel of a card in a 19 inch rack. Thus
24, 48 and 96 ports are commonly used for port count, with
the addition of a few uplink and management ports.

FPGAs show a consistent improvement over the last decade,
with a steep increases in performance. On the other hand, the
graph also demonstrates why FPGA do not gain more traction
with system vendors: the place where the FPGA match the
COTS devices performance is always at the same time or after
COTS devices became available on the market. This means
that the FPGA-based design will only start when a COTS-
based design is already available. We account for early access
to FPGA technology by large vendors and the reduced design
cycle time of FPGA. However, eventually the networking

devices need to be tested and validated in the lab, which can
take a considerable amount of time. In order to replace COTS
devices, FPGA devices need to be available a couple of years
ahead of COTS devices with the same clock frequency (and
other performance characteristics). Altera’s Stratix 10 is an
example to such an attempt, as Altera gained early access to
manufacture it in 14nm by an Intel semiconductor fabrication
plant [100].

The design of a networking device is more than just inter-
face bandwidth and clock frequency. Other FPGA resources
(e.g. logic elements, embedded block memories, etc.) need to
match those of COTS networking devices. The FPGA must
provide a superset of all these resources or the design will
not be able to carry the required feature set. This raises the
complexity and cost requirements of FPGAs. Having said this,
we prefer not to engage in a direct comparison of FPGA to
COTS devices as we think a fair comparison is difficult. This
is primarily due to the fact that simple metrics (such as gate
count) do not adequately capture the true capabilities of an
FPGA.

B. High Speed Interface Adoption By Networking Devices

Figure 6 presents the adoption of networking interface by
different classes of networking devices over time. In this
figure, we focus on members of the IEEE 802.3, ITU-T
G.707/Y.1322 and ITU-T G.709/Y.1331 standards families,
starting with the basic 10Mb/s IEEE 802.3 standard, and span-
ning the higher-speeds projected by (at the time of writing)
future standards. Interfaces composed from several parallel
lanes, such as 4×3.125Gb/s XAUI, are considered by their
aggregated bandwidth (e.g. 10Gb/s). The figure shows over
time (x-axis) when a particular technology class achieved a
particular performance plateau. The introduction of the new
IEEE and ITU-T standards is shown by the two bottom rows.
A particular point on the graph indicates an approximate

14

point in time of “initial adoption”, when products that embod-
ied that interface performance level were available from the
designated class (“FPGA”, “Network Processors”, “Switching
Systems”). We choose to refer here to ”Switching Systems”
rather than ASIC/COTS devices, as most COTS switching
devices do not connect directly to the network, but instead
are interconnected with a vendor-specific (non-IEEE 802.3x
or ITU-T G.709/Y.1331) interface, such as Interlaken [101]
or SPI4.2 [102]. As such, the vendor-specific solutions more
readily achieve targeted performance levels between their own
components using proprietary ASICs.

While one would have expected the networking systems to
be the last to come into the market, as their design cycle is un-
likely to exceed the availability of silicon devices, the contrary
happens: since the mid nineties, commercial systems always
came into the market ahead of the official announcement of
standards. While this is driven by companies wishing to gain
customers by being first-to-market, this also relates to the long
life-cycle defining standards and the involvement of vendors
in this process. This involvement allows them to complete
their design ahead of the publication and wide-availability
of the standard. The introduction of new standards varies
significantly between standardization bodies. As Figure 6
shows, ITU-T recommendations were once ahead of IEEE
by up to 7 years. While we can not attest to the reason, we
believe it is the combination of the focus of ITU-T on optical
communication rather than electrical, and to the narrow market
segment aimed by the G.707 and G.709 standards (i.e. optical
transport networks), which allowed fewer requirements and
faster consolidation.

Network processors appear also to follow the same trend:
being early in the market, available to the system designers that
require them. An anomaly is observed for the introduction of
network processors supporting 100Gb/s interfaces, announced
later than the standards. This is possible as several network
processing devices announced in 2010 (the year of the IEEE
802.3ba standard), were not able to reach an aggregated
100Gb/s bandwidth, and the one that did (EZchip NP-4), used
an Interlaken interface (an interconnect protocol driven by
Cisco and Cortina Systems).

The desire of FPGA vendors to gain a larger market share
is demonstrated by their adoption of high speed interfaces.
While in the past FPGAs were last to adopt new standards
(e.g. 10Gb/s), today we see a trend for FPGA transceivers
to match or exceed the developing standard. For example (at
the time of this writing), Altera is announcing in its newest
FPGA devices (Stratix 10) transceivers capable of 56Gb/s,
ahead of the 25.7Gb/s used by 100Gb/s CAUI-4. This appears
aimed at the optical internetworking forum (OIF) 400Gb/s
standard [103]. The advantage of FPGAs in this field is
that once their transceivers meet the electrical requirements
of the new standard, the FPGA companies can design and
release logical cores (e.g. PCS-PMA for the physical coding
and media-attachment layers, and new MAC protocols for
the data-link layer) at any point in time without affecting
the customers hardware. Such processes were easier when
all standards used a two voltage level, e.g. non-return-to-zero
(NRZ) transmission, but with new proposals involving more

sophisticated physical layer interfaces including multi-level
coding, e.g. pulse amplitude modulation (PAM), support of a
standard cannot practically be announced before all transceiver
requirements have been settled. As if to demonstrate this point,
Xilinx announced support of 100 Gb/s in 2008 in the Virtex-
5, though its transceivers maximum rate was 6.25Gb/s [104].
Xilinx has also announced support for 400Gb/s [105], demon-
strating a 400 Gb/s MAC capability using an Interlaken
interface [101] as (at time of this publication) no 400 Gb/s
IEEE or ITU-T standard has been ratified.

C. Power Consumption

Efficient power-consumption is a common challenge across
all types of networking devices and networking markets. In the
high-end market, the power density of silicon has grown to the
point where devices limit their feature set in order to meet the
power budget. Configurability is one of the main mechanisms
today to address the power budget limitations without reducing
any device feature set [106]. A silicon vendor or an FPGA
designer can design a device which addresses requirements for
a wide market segment and provides configuration options that
reduce power consumption when a feature is not required. This
may be implemented as configurable table size, powering on
and off of certain stages/units/blocks in the design or configur-
ing the device frequency (and thus its bandwidth). Many more
power saving by configuration techniques exist, which are
not limited to networking devices (e.g. voltage scaling). New
manufacturing processes promise considerable power saving,
yet none of those leads to a ground breaking reduction in
power consumption. Photonic switches (Section VI-B) can
provide power saving however, they remain applicable only
to fabric switching devices and not, for example, to network
processors.

D. Balancing The Forces

The networking market is not altruistic, and the eventual
goal of all system vendors is to sell more products. To this end,
each vendor wants to be first in the market, presenting the most
advanced solution with the richest features set, the highest
bandwidth, and the lowest power consumption. Unfortunately,
life is a series of compromises, and designing a networking
device is no different. We have already mentioned time to
market and compliance with standards, but this is not the only
limitation. Silicon vendors often find themselves limited by
technology constraints, more so than architecture limitations,
e.g. the maximal power or power density of their device as
well as the maximal silicon area with a reasonable yield.
By today’s standards, the scale of integration of a typical
network ASIC is remarkable: Intel’s Xeon E7 v2 employs 4.3
billion transistors for a die area exceeding 500 square mil-
limeters [107]. Xilinx’s Virtex-7 2000T FPGA device is built
from 6.8 billion transistors [108]. Over 7 billion transistors are
floorplanned in devices such as Broadcom’s Tomahawk [109].
Factors including integration scale, performance demand, and
competitive pressure drive a complex set of interrelated de-
cisions that face the design of any new device: should the
number of lookup entries in a table come at the expense of a

15

`

10Gb/s100Mb/s 1Gb/s10Mb/s 100Gb/s 1Tb/s

LAN Adapter

1982 1990 1993 1997 2000 2008

2011200119981996

1998 20012002 2009

1980 1990 2000 2010 2020

FPGA

Network
Processors

Switching
Systems

802.3z
1998

802.3
1983

802.3i
1990

802.3u
1995

802.3ab
1999

802.3ae
2003

802.3ab
2010

Beyond
2017

IEEE
Standard

ITU-T
RecommendationG.707

38.49Gb/s
2000

G.707
1991

2.49Gb/s

G.709
104.79Gb/s

2009

G.709
40.32Gb/s

2001

G.707
9.95Gb/s

1996

G.707
622Mb/s

1988

Fig. 6. High Speed Interfaces Adoption By Networking Devices. Commercial switching systems tend to adopt new high-speed interfaces before a standard
is concluded. FPGA devices do not claim support of new interfaces before a standard is completed.

certain protocol support? Should multiple interface standards
be supported at the expense of area or latency? As silicon
vendors try to address a large number of customers, in-house
ASIC designs can often reach better capabilities, as they only
need to suit their own system needs: the size of lookup tables
and supported protocols are set by their end system, and its
front panel options define the interfaces that will be supported.
This reduces the overall number of features, but improves the
quality of each.

.

VI. PHOTONICS

As data rates have risen, copper cables have increasingly
been replaced by optical fiber. For point to point links,
photonic communication offers clear advantages in lower
energy consumption per bit and increased signal integrity
at high bit rates and long reach without the use of digital
signal processing (DSP) [110]. The increased reach and signal
integrity also provide latency benefits due to reduced buffering
and DSP delays. In contrast, packet switching (switching on
a per packet basis) has remained in the electronic domain.
The only area of widespread commercial adoption of photonic
switching has been in space and/or wavelength circuit switches
(switching on timescales much larger than packet lengths) in
wide area and long haul networks. However, these circuit
switches demonstrate the potential for energy and latency
saving having energy consumption of the order of 0.01 nJ/bit
[111] (approximately three orders of magnitude lower than
electronic routers) when used for router bypass. In this section,
we review the state of the art in photonic networking, in
particular, seeking to answer two questions. Firstly, how can
we build reconfigurable photonic arrays (to work alongside

reconfigurable electronic arrays such as FPGAs) in future
networks? Secondly, how will photonic switching affect the
ability to apply the techniques of SDN in future systems?
In sections VI-A and VI-B, we describe developments in
photonic integration and photonic switch technologies which
will be necessary to build reconfigurable photonic systems.
In section VI-C we contrast photonic router architectures
with conventional electronic versions concentrating on the
application of SDN techniques.

A. Photonic Integration

Despite the advantages of point-to-point photonic links,
their use is not ubiquitous. In data centers, the links between
hosts and the local rack-switch are commonly copper, while
photonic links replacing the copper interconnect for memories
and peripherals (internal: e.g. PCI-Express, or external: e.g.
USB) is rarer still. In part, this is due to the low level
of integration and the consequent high cost (particularly for
packaging) of photonic devices. For example, a 10Gb/s optical
transceiver may cost tens of dollars and still requires a high
bandwidth, power hungry electronic link across printed circuit
board tracks between the optical module and the processor
or switching device. Integrating CMOS electronics with pho-
tonics on the same chip or in the same package has been
a long term industry goal in order to share the packaging
cost over a larger system [112]. FPGAs already feature high
speed serial electronic transceivers as discussed in section
V. The addition of photonic transceivers is a logical, and
probably inevitable, future step. Indeed, in order to continue
the increase in bandwidth of switching systems (described in
section V-A), future systems will require integrated photonics
using wavelength division multiplexing (WDM). These will

16

be used to overcome bandwidth limits due to the number of
connectors fitting onto a rack unit front panel or the number
of high speed signal pins on a chip. The cost issue is also
important to reconfigurability: the high cost of optical modules
has meant that previous research has focused on defining
photonic network architectures which minimize the number
of components. However, reconfigurability inevitably requires
over-provisioning (e.g. FPGA-based configurable logic blocks
and transceivers) which can only occur when these compo-
nents are low cost.

While serial electronic transceivers operating at up to 12.5
Gb/s have been integrated on the same die as configurable
logic, the highest bit rates have been achieved by implementing
the transceivers on a separate silicon die connected to the con-
figurable logic of the FPGA via an interposer. The interposer
is a carrier, usually fabricated from silicon or glass, with only
passive interconnect between the active dies and the package
substrate [113]. This approach enables individual functions,
e.g. configurable logic, memory and serial transceivers to be
fabricated using optimized processes before final integration,
as well as reducing overall costs through reduced individual
die area. An alternative to the interposer approach is to attach
photonic transceivers directly to the CMOS chip in a 3D
arrangement [114]. Ultimately this offers minimum intercon-
nect delays between circuit elements and maximum bandwidth
between layers but is challenging due to thermal, stress and
reliability issues and requires new methods for testing.

B. Photonic Switching
Photonic switches are the key component of future re-

configurable photonic systems. High bandwidths and port
count photonic switches are achieved using a combination
of space switching (switching between waveguides or fibers)
and wavelength switching. The differences between space
and wavelength switching are illustrated in Figure 7. Space
switching allows multiple wavelengths to be switched in a
single operation resulting in high bandwidth and low serial-
ization latency. In wavelength switching, the signal wavelength
defines the route through the network. However, unlike in
electronic switches in which the signals are regenerated at
each sequential element (register, first-in first-out (FIFO) etc.),
optical loss, crosstalk and noise builds up along a cascade of
optical switches, limiting scalability of the network.

The reconfiguration time of photonic switch technologies
varies over some six orders of magnitude. At millisecond
to microsecond timescales, micro electro-mechanical systems
(MEMS) [115], [116], piezo-electric [117], thermo-optic or
liquid crystal beam steering technologies are suitable for
occasional or start of life reconfiguration. These technologies
offer scalability to large port counts (up to 200 ports for
piezoelectric and >1000 ports for MEMs at the current time)
and low loss (<1 dB for piezoelectric devices) for transmission
through a cascade of switches without electronic regeneration
or amplification. These switches are already widely used in
circuit switches in wide area networks and increasingly in data
centers (see section VI-C).

For compatibility with both circuit and packet switching,
several devices offer multi-wavelength space switching on

nanosecond timescales: Mach-Zehnder interferometers (MZI)
[118], semiconductor optical amplifier (SOA) [119] and ring
resonators [120]. For these switching technologies, large pro-
totype switches have not been demonstrated, so predictions are
extrapolated from smaller scale demonstrations. The gain of
SOA switching elements enables losses to be overcome and
scaling to 1000s of ports has been demonstrated using discrete
components connected by optical fiber [121]. However, in
integrated circuit implementations, the higher gain required
to overcome losses due to splitting and waveguide crossings
causes a build up of noise, limiting scalability. Integrated
SOA switches have been shown to scale to 64 ports with
10 wavelengths per port [119] while a hybrid MZI and SOA
integrated switch architecture has been shown to scale to
128 ports [122]. The scaling of both MZI and ring resonator
switches is limited by optical losses and crosstalk. Ring
resonators have attracted considerable interest due to their
small physical size (down to a few microns diameter) and
scaling to 256 ports with 10 wavelengths per port has been
claimed [123], but require accurate temperature control. Ring
resonators can be used as both as WDM space switches or
as wavelength routing elements. The other main option for
wavelength routing is the arrayed waveguide grating (AWG)
[124] which is also limited in scalability by loss and crosstalk.

As discussed in Section VI-A, reconfigurable photonic
arrays will need to integrate many components on a single
chip in order to reduce die costs and amortize packaging
costs. Therefore, switching component dimensions are critical.
Section V notes the impressive track record of smaller features
and increased die sizes for standard electronics driven, at least
in part, by the cost benefits of smaller circuits. While these
improvements have provided partial benefits to the control cir-
cuits and DSP coupled to photonic devices, photonic systems
themselves are subject to other, unique, constraints. In partic-
ular, the minimum size for photonic devices is determined by
the wavelength of light: typically between 800nm and 1.6µm
for communication systems. For example, optical waveguides
must be larger than one-half of the wavelength of the light in
use. This is at least an order of magnitude larger than the size
of CMOS transistors. This means there are fundamental limits
on the miniaturization of photonic components and, in contrast
to the scaling of CMOS devices, photonic device sizes cannot
be continuously scaled in physical dimensions. A key metric
determining the size of photonic circuits is the minimum
achievable waveguide bend radius. In this respect silicon is
superior to traditional optical materials with minimum bend
radii down to a few microns (due to the high contrast between
the refractive index of the waveguide core and cladding mate-
rials) [125]. Silicon photonic elements have been demonstrated
that are sufficiently small as to allow large integrated photonic
circuits and switch fabrics. Typical dimensions for 2-port
silicon photonic switches are 104µm2 for MZI devices and
102µm2 for ring resonators [126] allowing respectively up
to 104 or 106 switching elements to be implemented on a
400mm2 die. The area of SOAs ranges from 104µm2 to
105µm2 depending on the gain required whereas the smallest
AWG in silicon are of the order of 105µm2.

Reconfigurable photonic arrays incorporating photonic

17

transceivers and switching elements could assist in meeting
the energy and latency goals of future systems. Such arrays
could provide both circuit and packet switching functionality
as well as reconfigurable high speed WDM interfaces with
FPGA or other programmable electronic fabrics. As discussed
in section VI-A, high levels of photonic integration (and
hence low cost per device) are in order to make this vision
economically viable. The requirement rules out devices which
have large physical size or high power, for example, photonic
delay lines and buffers and wavelength converters based on
non-linear processes. A key question is the building block
switch technology. While slow electro-mechanical switches
could provide reconfigurability with low losses, fast electro-
optic switches based on SOA, MZI or ring resonator tech-
nologies ultimately offer greater functionality and potential
for integration. However, further development is required to
achieve very low losses in integrated circuit implementations
to make this vision a practical reality.

C. Photonic Networks and SDN

Electronic switches and routers place packets into memory
(or at least the header in cut-through switches) to permit header
processing and routing decisions (described in Section IV)
to be carried out. Replicating this functionality exactly in
the photonic domain including packet buffering, header pro-
cessing logic and switch control, as shown in Figure 8a is
challenging due to the immaturity of both optical memory
and logic. However, optical logic functions of internet routers
such as decrementing a packet’s time to live (TTL) counter
has been demonstrated [127] and continuing research aims to
demonstrate routing table lookup and checksum processing in
the optical domain under electronic control [128]. Unless the
header is sent on a separate control channel ahead of data,
optical memory or delay lines are required to delay the data
while header processing is taking place. Switched fiber or
integrated circuit recirculation loops have been demonstrated
but these have a large physical size and are unsuitable for
integration with other photonic circuits and electronics. Other
studies have shown that the use of fiber delay lines is not
feasible in large switching systems such as Internet routers
[129]. This can be clearly understood by considering that a
high performance router used by Internet service providers,
will typically provide 250ms of buffering per port; this would
require 50,000km of fiber delay lines. In general, these all-
optical packet switch approaches will yield minimum latency,
but will never achieve the density of electronic memory and
logic due to the fundamental limitation of the wavelength
of light discussed above. In addition, the optical processing
functions cited above use non-linear processes which have
low energy efficiency. It is also likely that electronic routing
will still be required. For example, in Touch et al.[128], it is
proposed that only packets with a common address are routed
optically (due to limitations in the number of destination fields
which can be examined in an optical correlator) with other
packets routed to an electronic packet switch.

Avoiding either optical memory or optical logic requires
that at least the packet header is converted back to the

Optical

Optical
Header

Processing

Optical

Header
Processing

(a)

Switch
Control

OE

(b)

Optical

Header
Processing

Switch
Control

OE

(c)

EO

Optical

Switch
Control

Delay Line

(d)

Delay Line

FIFO

Optical Electrical

Fig. 8. Photonic routers (a) all optical packet switch - may rely on electronic
packet switch backup (b) optical packet switch - relies on electronic logic
(c) optical-electrical-optical - relies on electronic buffering and logic and
(d) circuit switched - relies on electronic or photonic packet switching.
Blue lines represent optical functions and connections. Black lines represent
electronic functions and connections. OE = optical to electrical conversion.
EO = electrical to optical conversion.

electronic domain, as shown in Figure 8b. As with the all-
optical approach, this requires that the header is sent ahead
of the data and/or that the packet is stored in a delay line.
In order to minimize this delay, fast header processing and
low header serialization latency is required. Therefore, the
header fields are kept to a minimum in these systems (e.g.
just a valid bit plus port destination in [130], [131]) and so the
ability to differentiate actions between different packet types is
extremely limited. In general, although both packet switches
with all-optical or electronic header processing can achieve
low latency for a limited number of cases, the ability to apply
the rich header processing and SDN functions described in
Section II is limited.

Several groups investigating large port count or multiple
stage optical switches have come to the conclusion that

18

Broadband SwitchN0

N1

N2

N0

N1

N2

Wavelength
Selective SwitchN0

N1

N2

N0

N1

N2

(a)

(b)

Fig. 7. Photonic switching using (a) space switching with multiple wavelengths per port to increase port bandwidth (b) wavelength switching in which the
signal wavelength defines its output port.

conversion of the entire packet back to the electronic domain
for electronic buffering and header processing is necessary
(Figure 8c). This approach enables SDN approaches to be
used with little modification. It is also highly scalable as the
optical signals are regenerated at each optical-electrical-optical
(OEO) conversion point. However, this approach reduces the
potential for energy and latency benefits through photonic
switching. OSMOSIS[132], an example of such an optical
switch aimed at 2000-port shared memory supercomputers,
introduced an OEO conversion at the input of each 64-port
photonic switch stage in order to maintain short connections
between electronic packet queues and the switch scheduler.
Scalable internet routers have also been proposed using OEO
stages between the load balancing and switching stages [133].

Circuit switching (Figure 8d) is the natural flow control
mechanism for photonics and is the only area which has seen
widespread commercial adoption in the form of optical cross
connects (space switches) and reconfigurable optical add drop
multiplexers (ROADM, space and wavelength switches) used
in core networks. In these scenarios, carriers can switch at
the port or wavelength level to allow heavy traffic flows to be
rerouted or to bypass electronic routers. Similar hybrid packet
and circuit switching techniques have also been proposed for
data centers and high performance computing (HPC) either
operated in parallel with electronic packet switches [134],
[135] or as a reconfigurable physical layer for an electronic
packet switch network [136]. Traditionally, the optical space
and wavelength circuit switching has been managed by a sep-
arate control-plane, typically based on the generalized multi-
protocol label switching (GMPLS) protocol [137]. Current
research is investigating the use of SDN to unify the control
of circuit and packet switching in a common structure. An
extension to OpenFlow has been developed to handle circuit
switching [138]. Other researchers propose the integration of
GMPLS control structures into SDN implementations [139],
[140]. There has also been a widespread move to build SDN
interfaces into commercial optical circuit switching products,

for example [117], [115], [141], [116]. As circuit switches are
designed to complement rather than replace packet switches
(electronic or photonic), there is considerable scope for creat-
ing rules for packet or circuit decisions [142] or reconfigura-
tion to optimize for changing bandwidth demands.

VII. SUMMARY

Network systems have developed to incorporate vast depth
and breadth of reconfiguration. Techniques for reconfiguration
in networks span time-scales, network implementation tech-
nologies, and approaches to reconfiguration itself. Into this
domain, SDN has emerged as a dominant paradigm of network
system reconfiguration, from the configuration of devices at
setup to the reconfiguration and update of those devices over
their lifetime. This paper shows the interplay between the need
for reconfiguration in networks and development of SDN.

While a term only recently coined, SDN represents many
decades of developments in network control through recon-
figuration. Its rise in recent years has been in response to
an environment that had made innovation, for both users
and researchers, increasingly challenging. While SDN itself
is defined a number of ways, common across all definitions is
the strong isolation between different planes in the network
(e.g. between the control and data-plane), along with the
enabling of centralized network-management, and a high level
of programmability.

Within this paper, we provide a tutorial of SDN with an
emphasis on OpenFlow which (at the time of this writing)
was the most popular incarnation of SDN. We argue that SDN
arises to permit control and reconfiguration across devices
with a forcing function being the increase in device flexibility.
We further show that the only realistic mechanism permitting
elegant interworking between the packet-centric networks of
the electrical domain and the flow-centric networks of the
optical domain is to permit deeper levels of network-system
and device reconfiguration through SDN. Finally, we have
examined the near-future for both electronic and photonic

19

reconfiguration technologies and how these will be enabled
by the opportunities provided by SDN.

Acknowledgements

The authors thank Adrian Wonfor, Toby Moncaster, Nik
Sultana, George Neville-Neil, Richard Clegg, Peter G. Neu-
mann, David Riddoch, Jim Lyke and our anonymous reviewers
for helping us improve this paper. We also thank Cathal Mc-
Cabe, Amy Chang and Mark Gustlin from Xilinx, Guy Lange
and Gadi Rosenfeld from Broadcom and Daureen Green from
EZchip for their assistance. This work was jointly supported by
the UKs Engineering and Physical Sciences Research Council
(EPSRC) Internet Project EP/H040536/1, an EPSRC Research
Fellowship grant to Philip Watts (EP/I004157/2), and DARPA
and AFRL under contract FA8750-11-C-0249. The views,
opinions, and findings contained herein are those of the authors
and should not be interpreted as representing the official views
or policies, either expressed or implied, of DARPA or the US
Department of Defense.

REFERENCES

[1] N. McKeown, “Software-defined networking,” 28th Annual Joint Con-
ference of the IEEE Computer and Communication Societies (INFO-
COM), vol. 17, no. 2, pp. 30–32, 2009.

[2] N. Feamster, J. Rexford, and E. Zegura, “The road to SDN: An
intellectual history of programmable networks,” SIGCOMM Computer
Communication Review, vol. 44, pp. 87–98, Apr. 2014.

[3] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE, vol. 103, pp. 14–76,
Jan 2015.

[4] Open Networking Foundation (ONF), ”Software-Defined Networking
(SDN) Definition”. https://www.opennetworking.org/sdn-
resources/sdn-definition, [Online; accessed January 2015].

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[6] I. Leslie and D. McAuley, “Fairisle: An ATM Network for the Local
Area,” in Proceedings of the ACM SIGCOMM 1991 Conference,
SIGCOMM, Aug. 1991.

[7] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden,
“A survey of active network research,” IEEE Communications Maga-
zine, vol. 35, no. 1, 1997.

[8] I. Hadžić and J. M. Smith, “Balancing Performance and Flexibility with
Hardware Support for Network Architectures,” ACM Transactions on
Computer Systems, vol. 21, pp. 375–411, Nov. 2003.

[9] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McKe-
own, “Implementing an OpenFlow Switch on the NetFPGA Platform,”
in Fourth ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ANCS, pp. 1–9, 2008.

[10] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke,
J. Naous, R. Raghuraman, and J. Luo, “NetFPGA – An Open Plat-
form for Gigabit-Rate Network Switching and Routing,” in IEEE
International Conference on Microelectronic Systems Education, MSE,
pp. 160–161, IEEE, 2007.

[11] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and H. Zeng, “FPGA
research design platform fuels network advances,” Xilinx Xcell Journal,
no. 73, pp. 24–29, 2010.

[12] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE
Micro, no. 5, pp. 32–41, 2014.

[13] F. Hu, Q. Hao, and K. Bao, “A Survey on Software Defined Network-
ing (SDN) and OpenFlow: From Concept to Implementation,” IEEE
Communications Surveys and Tutorials, vol. PP, no. 99, pp. 1–1, 2014.

[14] K.-K. Yap, M. Kobayashi, R. Sherwood, T.-Y. Huang, M. Chan,
N. Handigol, and N. McKeown, “OpenRoads: empowering research
in mobile networks,” SIGCOMM Computer Communication Review,
vol. 40, pp. 125–126, Jan. 2010.

[15] H. Ali-Ahmad, C. Cicconetti, A. De La Oliva, M. Draxler, R. Gupta,
V. Mancuso, L. Roullet, and V. Sciancalepore, “CROWD: An SDN
Approach for DenseNets,” in European Workshop on Software Defined
Networks (EWSDN), pp. 25–31, Oct. 2013.

[16] L. Suresh, J. Schulz-Zander, R. Merz, A. Feldmann, and T. Vazao,
“Towards Programmable Enterprise WLANS with Odin,” in Hot Topics
in Software Defined Networking, HotSDN, pp. 115–120, 2012.

[17] M. Stensgaard and J. Sparso, “ReNoC: A Network-on-Chip Architec-
ture with Reconfigurable Topology,” in IEEE International Symposium
on Networks-on-Chip (NoCS), pp. 55–64, Apr. 2008.

[18] Y.-C. Lan, S.-H. Lo, Y.-C. Lin, Y.-H. Hu, and S.-J. Chen, “BiNoC: A
bidirectional NoC architecture with dynamic self-reconfigurable chan-
nel,” in IEEE International Symposium on Networks-on-Chip (NoCS),
pp. 266–275, May 2009.

[19] Z. Zhang, A. Greiner, and S. Taktak, “A reconfigurable routing
algorithm for a fault-tolerant 2D-Mesh Network-on-Chip,” in Design
Automation Conference, DAC, pp. 441–446, June 2008.

[20] P. Wolkotte, G. J. M. Smit, G. Rauwerda, and L. Smit, “An Energy-
Efficient Reconfigurable Circuit-Switched Network-on-Chip,” in IEEE
International Parallel & Distributed Processing Symposium (IPDPS),
pp. 155a–155a, Apr. 2005.

[21] M. Dillinger, K. Madani, and N. Alonistioti, Software Defined Radio:
Architectures, Systems and Functions. Wiley & Sons, 2003.

[22] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art of Vir-
tualization,” ACM SIGOPS Operating Systems Review, vol. 37, no. 5,
pp. 164–177, 2003.

[23] European Telecommunications Standards Institute (ETSI), ”Network
Functions Virtualisation – Introductory White Paper”, June 2012. http:
//portal.etsi.org/NFV/NFV White Paper.pdf, [Online; accessed July
2014].

[24] C. Kachris, G. C. Sirakoulis, and D. Soudris, “Network Func-
tion Virtualization based on FPGAs: A Framework for all-
Programmable network devices,” Computing Research Repository
(CoRR), vol. abs/1406.0309, 2014.

[25] A. Gember, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das,
and A. Akella, “OpenNF: Enabling Innovation in Network Function
Control,” in Proceedings of the ACM SIGCOMM 2014 Conference,
SIGCOMM, (Chicago, Il), Aug. 2014.

[26] Open Networking Foundation (ONF), “SDN architecture.”
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf
[Online; accessed July 2014], June 2014.

[27] G. Varghese, Network Algorithmics,: An Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufmann, 2004.

[28] “Infinispan Homepage.” http://infinispan.org/ [Online; accessed July
2014].

[29] OpenDaylight, ”OpenDaylight: A Linux Foundation Collaborative
Project”. http://www.opendaylight.org, [Online; accessed July 2014].

[30] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” SIGCOMM
Computer Communication Review, vol. 37, pp. 1–12, Aug. 2007.

[31] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: towards an operating system for networks,”
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[32] ONOS, ”ONOS: A new carrier-grade SDN network operating
system designed for high availability, performance, scale-out”.
http://onosproject.org/, [Online; accessed July 2014].

[33] Ryu, ”Ryu SDN framework”. http://osrg.github.io/ryu/, [Online; ac-
cessed July 2014].

[34] Floodlight, ”Floodlight OpenFlow Controller – Project Flood-
light”. http://www.projectfloodlight.org/floodlight/, [Online; accessed
July 2014].

[35] VMware, ”Network Virtualization with VMware NSX Virtualized Net-
work”. https://supportforums.cisco.com/document/105496/asr9000xr-
understanding-route-scale, [Online; accessed February 2015].

[36] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, 2012.

[37] A. Voellmy and P. Hudak, “Nettle: Taking the sting out of programming
network routers,” in Practical Aspects of Declarative Languages,
pp. 235–249, Springer, 2011.

[38] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak, “Maple: Sim-
plifying SDN programming using algorithmic policies,” in Proceedings
of the ACM SIGCOMM 2013 Conference, SIGCOMM, pp. 87–98,
2013.

20

[39] N. P. Katta, J. Rexford, and D. Walker, “Logic programming for
software-defined networks,” in Workshop on Cross-model Language
Design and Implementation, XLDI, pp. 1–3, 2012.

[40] T. L. Hinrichs, N. S. Gude, M. Casado, J. C. Mitchell, and S. Shenker,
“Practical declarative network management,” in Proceedings of the
ACM SIGCOMM Workshop: Research on Enterprise Networking
(WREN), pp. 1–10, 2009.

[41] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in Proceedings of the 16th ACM SIGPLAN International Conference
on Functional Programming, ICFP, pp. 279–291, 2011.

[42] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al., “Com-
posing software defined networks.,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, NSDI,
pp. 1–13, 2013.

[43] R. Soulé, S. Basu, R. Kleinberg, E. G. Sirer, and N. Foster, “Managing
the network with Merlin,” in Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, HotNets, p. 24, 2013.

[44] A. Voellmy, H. Kim, and N. Feamster, “Procera: A language for high-
level reactive network control,” in Hot Topics in Software Defined
Networking, HotSDN, pp. 43–48, 2012.

[45] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore,
“OFLOPS: An Open Framework for Openflow Switch Evaluation,” in
Proceedings of the 13th International Conference on Passive and Active
Measurement, PAM, (Berlin, Heidelberg), pp. 85–95, Springer-Verlag,
2012.

[46] P. Francois, M. Shand, and O. Bonaventure, “Disruption Free Topology
Reconfiguration in OSPF Networks,” in 26th Annual Joint Conference
of the IEEE Computer and Communication Societies (INFOCOM),
pp. 89–97, May 2007.

[47] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent Updates
for Software-Defined Networks: Change You Can Believe In!,” in
Proceedings of the 10th ACM Workshop on Hot Topics in Networks,
HotNets, ACM, 2011.

[48] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker, “Ab-
stractions for Network Update,” in Proceedings of the ACM SIGCOMM
2012 Conference, SIGCOMM, ACM, 2012.

[49] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent up-
dates,” in Hot Topics in Software Defined Networking, HotSDN, ACM,
2013.

[50] Broadcom, ”OpenFlow data-plane Abstraction
(OF-DPA): Abstract Switch Specification”, 2014.
http://www.broadcom.com/collateral/etp/OFDPA OASS-ETP101-
R.pdf, [Online; accessed January 2015].

[51] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN
through a future-proof forwarding plane,” in Hot Topics in Software
Defined Networking, HotSDN, pp. 127–132, 2013.

[52] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Ta-
layco, A. Vahdat, G. Varghese, and D. Walker, “Programming
protocol-independent packet processors,” Computing Research Repos-
itory (CoRR), vol. abs/1312.1719, 2013.

[53] ”The P4 Language Consortium web site”. http://www.p4.org, [Online;
accessed April 2015].

[54] Marvell, ”Marvel Xelerated HX4100 Family of Network
Processors, Product Brief”. http://www.marvell.com/network-
processors/assets/Marvell Xelerated HX4100-02 product[Online;
accessed July 2014].

[55] R. Giladi, Network processors: architecture, programming, and imple-
mentation. Morgan Kaufmann, 2008.

[56] Cisco, ”The Cisco QuantumFlow Processor:
Ciscos Next Generation Network Processor”.
http://www.cisco.com/c/en/us/products/collateral/routers/
asr-1000-series-aggregation-services-routers/solution overview c22-
448936.pdf, [Online; accessed July 2014].

[57] B. Wheeler, “A New Era of Network Processing,” tech. rep., The Linley
Group, 2013.

[58] EZChip, ”Building Scalable and Ef-
ficient SDN and NFV Architectures”.
http://www.ezchip.com/Images/pdf/EZchip SDN & NFV Oct2013.pdf,
[Online; accessed July 2014].

[59] R. Ennals, R. Sharp, and A. Mycroft, “Task partitioning for multi-core
network processors,” in Compiler construction, vol. 3443, pp. 76–90,
2005.

[60] G. Brebner and W. Jiang, “High-Speed Packet Processing using Re-
configurable Computing,” IEEE Micro, vol. 34, no. 1, pp. 8–18, 2014.

[61] M. Attig and G. J. Brebner, “400 Gb/s Programmable Packet Parsing
on a Single FPGA,” in Seventh ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS, pp. 12–23, 2011.

[62] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: constructing hardware in a
scala embedded language,” in Design Automation Conference, DAC,
pp. 1216–1225, 2012.

[63] MicroJamJar, ”HardCaml: Register Transfer Level Hardware Design
in OCaml”. http://ujamjar.github.io/hardcaml, [Online; accessed July
2014].

[64] ONF, ”Open Network Foundation”. http://www.opennetworking.org,
[Online; accessed July 2014].

[65] IETF, ”IRTF - Software Defined Networking Research Group (SD-
NRG)”. https://trac.tools.ietf.org/group/irtf/trac/wiki/sdnrg, [Online;
accessed February 2015].

[66] Cisco, ”Cisco Open Network Environment for Service Providers”.
http://www.cisco.com/c/en/us/solutions/service-provider/open-
network-environment-service-providers/index.html, [Online; accessed
July 2014].

[67] Cisco, ”Cisco Unveils nPower, World’s Most Advanced Network
Processor”. http://newsroom.cisco.com/release/1262342, [Online; ac-
cessed February 2015].

[68] Cisco, ”ASR9000/XR Understanding Route scale”.
https://supportforums.cisco.com/document/105496/asr9000xr-
understanding-route-scale, [Online; accessed February 2015].

[69] Cisco, ”The Cisco QuantumFlow Processor:
Cisco’s Next Generation Network Processor”.
http://www.cisco.com/c/en/us/products/collateral/routers/asr-
1000-series-aggregation-services-routers/solution overview c22-
448936.html, [Online; accessed February 2015].

[70] Cisco, ”Cisco’s One Platform Kit (onePK)”.
http://www.cisco.com/c/en/us/products/ios-nx-os-software/onepk.html,
[Online; accessed February 2015].

[71] P. J. Leach, T. Berners-Lee, J. C. Mogul, L. Masinter, R. T. Fielding,
and J. Gettys, “RFC 2616: Hypertext Transfer Protocol – HTTP/1.1.”
RFC 2616, 1999.

[72] J. Ungerman, “OpenFlow,” in Cisco Connect, Cisco, 2014.
[73] Xilinx, ”Software Defined Specification Environment for Networking”.

http://www.xilinx.com/applications/wired-communications/sdnet.html,
[Online; accessed July 2014].

[74] Marvell, ”Data Flow Architecture”. http://www.marvell.com/network-
processors/technology/data-flow-architecture/, [Online; accessed Jan-
uary 2015].

[75] A. K. Parekh and R. G. Gallager, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The Single-
node Case,” IEEE/ACM Transactions on Networking, vol. 1, pp. 344–
357, June 1993.

[76] A. K. Parekh and R. G. Gallagher, “A Generalized Processor Sharing
Approach to Flow Control in Integrated Services Networks: The
Multiple Node Case,” IEEE/ACM Transactions on Networking, vol. 2,
pp. 137–150, Apr. 1994.

[77] K. Bala, I. Cidon, and K. Sohraby, “Congestion control for high speed
packet switched networks,” in Ninth Annual Joint Conference of the
IEEE Computer and Communication Societies (INFOCOM, pp. 520–
526, IEEE, 1990.

[78] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Transactions on Networking, vol. 1,
no. 4, pp. 397–413, 1993.

[79] K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP.” RFC 3168, Sept. 2001. Updated
by RFCs 4301, 6040.

[80] IEEE, “IEEE Standard for Local and metropolitan area networks–
Virtual Bridged Local Area Networks Amendment 13: Congestion
Notification,” IEEE Std 802.1Qau-2010 (Amendment to IEEE Std
802.1Q-2005), pp. c1–119, Apr. 2010.

[81] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in SDN – OpenFlow networks,” Computer Networks,
vol. 71, no. 0, pp. 1 – 30, 2014.

[82] D. Palma, J. Goncalves, B. Sousa, L. Cordeiro, P. Simoes, S. Sharma,
and D. Staessens, “The QueuePusher: Enabling Queue Management in
OpenFlow,” in The European Workshop on Software Defined Network-
ing (EWSDN 2014), pp. 125–126, IEEE, 2014.

[83] A. Sivaraman, K. Winstein, S. Subramanian, and H. Balakrishnan, “No
silver bullet: Extending SDN to the data-plane,” in Proceedings of the
Twelfth ACM Workshop on Hot Topics in Networks, HotNets, p. 19,
ACM, 2013.

21

[84] H. Farhad, H. Lee, and A. Nakao, “Data plane Programmability in
SDN,” in IEEE 22nd International Conference on Network Protocols
(ICNP), pp. 583–588, Oct. 2014.

[85] Cisco, “Ciscos Massively Scalable Data Center, Network Fabric for
Warehouse Scale Computer,” tech. rep., 2010.

[86] V. Mehta, “New IBM System Networking Innovations Address CIOs’
Pain Points,” tech. rep., IBM, 2011.

[87] Broadcom, ”Broadcom Enables Massive Network Scalability With
World’s Highest Density 100GbE Switch Solution”, Apr. 2012.
http://investor.broadcom.com/releasedetail.cfm?ReleaseID=668485,
[Online; accessed January 2015].

[88] Cisco, “Building Cost Effective and Scalable CORE Networks Using
an Elastic Architecture,” tech. rep., 2013.

[89] Huawei, ”NE5000E”. http://huawei.com/us/products/data-
communication/ne-routers/ne5000e/index.htm, [Online; accessed
January 2015].

[90] Cisco, ”Cisco Adds Carrier Routing System X (CRS-
X) Core Router to Industry-Leading CRS Family”.
http://newsroom.cisco.com/release/1208192, [Online; accessed January
2015].

[91] Altera, ”Embedded Processors”. http://www.altera.co.uk/products/ip/
processors/ipm-index.jsp, [Online; accessed January 2015].

[92] Xilinx, ”Embedded Processing Peripheral IP Cores”.
http://www.xilinx.com/ise/embedded/edk ip.htm, [Online; accessed
January 2015].

[93] B. H. Fletcher, “FPGA embedded processors, revealing true system
performance,” in Embedded Systems Conference, pp. 1–18, 2005.

[94] Altera, ”Dual-Core ARM Cortex-A9 MPCore Processor”.
http://www.altera.co.uk/devices/processor/arm/cortex-a9/m-arm-
cortex-a9.html, [Online; accessed January 2015].

[95] Xilinx, ”MicroBlaze Soft Processor Core”.
http://www.xilinx.com/tools/microblaze.htm, [Online; accessed
January 2015].

[96] Altera, “Nios II Processor Reference Handbook,” Tech. Rep. NII5V1-
13.1, 2014.

[97] H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto, “Intra-Socket
and Inter-Socket Communication in Multi-core Systems,” Computer
Architecture Letters, vol. 9, pp. 13–16, Jan. 2010.

[98] Intel, ”Intel Omni-Path Architecture”.
http://www.intel.com/content/www/us/en/omni-path/omni-path-fabric-
overview.html, [Online; accessed May 2015].

[99] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM
SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[100] Altera, ”Stratix 10 FPGAs and SoCs: Delivering the Unimaginable”.
http://www.altera.co.uk/devices/fpga/stratix-fpgas/stratix10/stx10-
index.jsp, [Online; accessed January 2015].

[101] M. Gustlin, F. Olsson, and M. Weber, ”Interlaken
Technology: New-Generation Packet Interconnect Pro-
tocol, White paper”, Mar. 2007. https://www.cortina-
systems.com/images/documents/400023 Interlaken Technology White

Paper.pdf, [Online; accessed January 2015].
[102] R. Cam, R. T. Lerer, K. Gass, and W. Nation, “System Packet Interface

Level 4 (SPI-4) Phase 2 Revision 1: OC-192 System Interface for
Physical and Link Layer Devices,” Implementation Agreement: OIF-
SPI4-02.1, 2003.

[103] O. I. F. (OIF), “OIF Next Generation Interconnect Framework,” Tech.
Rep. OIF-FD-Client-400G/1T-01.0, 2013.

[104] A. Torza, “Using FPGA Technology to Solve the Challenges of
Implementing High-End Networking Equipment: Adding a 100 GbE
MAC to Existing Telecom Equipment,” Tech. Rep. WP280, Xilinx,
2008.

[105] Xilinx, ”Xilinx Highlights All Programmable Solutions for 400GE
Applications at WDM Nice 2014”. http://press.xilinx.com/2014-
06-17-Xilinx-Highlights-All-Programmable-Solutions-for-400GE-
Applications-at-WDM-Nice-2014, [Online; accessed January 2015].

[106] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency
in the future Internet: a survey of existing approaches and trends in
energy-aware fixed network infrastructures,” IEEE Communications
Surveys & Tutorials, vol. 13, no. 2, pp. 223–244, 2011.

[107] Intel, ”Intel Xeon Processor E7 v2 Product Family”.
http://newsroom.intel.com/docs/DOC-5073, [Online; accessed July
2014].

[108] Xilinx, ”Xilinx Ships World’s Highest Capacity FPGA and
Shatters Industry Record for Number of Transistors by 2X”,
2011. http://press.xilinx.com/2011-10-25-Xilinx-Ships-Worlds-
Highest-Capacity-FPGA-and-Shatters-Industry-Record-for-Number-of-
Transistors-by-2X,[Online; accessed January 2015].

[109] Broadcom, ”Broadcom Delivers Industry’s First High-Density 25/100
Gigabit Ethernet Switch for Cloud-Scale Networks”, Sept. 2014.
http://www.broadcom.com/press/release.php?id=s872349, [Online; ac-
cessed January 2015].

[110] D. A. B. Miller, “Device Requirements for Optical Interconnects to
Silicon Chips,” Proceedings of the IEEE, vol. 97, no. 7, pp. 1166–
1185, 2009.

[111] R. S. Tucker, “Green Optical Communications—Part I: Energy Lim-
itations in Transport,” IEEE Journal of Selected Topics in Quantum
Electronics, vol. PP, no. 99, pp. 1–16, 2010.

[112] U. Vlasov, “Silicon photonics for next generation computing systems,”
in European Conference on Optical Communication (ECOC), 2008.

[113] K. Saban, “Xilinx Stacked Silicon Interconnect Technology Delivers
Breakthrough FPGA Capacity, Bandwidth, and Power Efficiency,”
Tech. Rep. WP380, Xilinx, 2012.

[114] P. Duan, O. Raz, B. Smalbrugge, and H. J. S. Dorren, “Demonstration
of Wafer Scale Fabrication of 3D Stacked Transmitter and Receiver
Modules for Optical Interconnects,” Journal of Lightwave Technology,
vol. 31, pp. 4073–4079, December 2013.

[115] G. C. Solutions, ”Enterprise Data Center”.
http://www.glimmerglass.com/solutions/enterprise-data-center/,
[Online; accessed January 2015].

[116] Calient, ”The Software Defined Hybrid Packet Optical Datacenter
Network”, 2013. http://www.calient.net/solutions/software-defined-
datacenter-networks/,[Online; accessed January 2015].

[117] Polatis, ”All-Optical Switching and Software Defined Networking
(SDN) in Todays Evolving Data Center”. SDN Application Note.

[118] B. Lee, A. Rylyakov, W. Green, S. Assefa, C. Baks, R. Rimolo-
Donadio, D. Kuchta, M. Khater, T. Barwicz, C. Reinholm, E. Kiewra,
S. Shank, C. Schow, and Y. Vlasov, “Monolithic Silicon Integration
of Scaled Photonic Switch Fabrics, CMOS Logic, and Device Driver
Circuits,” IEEE Journal of Lightwave Technology, vol. 32, pp. 743–751,
February 2014.

[119] A. Wonfor, H. Wang, R. V. Penty, and I. H. White, “Large port count
high-speed optical switch fabric for use within datacenters [Invited],”
IEEE/OSA Journal of Optical Communications and Networking, vol. 3,
no. 8, 2011.

[120] A. W. Poon, X. S. Luo, F. Xu, and H. Chen, “Cascaded microresonator-
based matrix switch for silicon on-chip optical interconnection,” Pro-
ceedings of the IEEE, vol. 97, no. 7, pp. 1216–1238, 2009.

[121] O. Liboiron-Ladouceur, B. A. Small, and K. Bergman, “Physical layer
scalability of WDM optical packet interconnection networks,” Journal
of Lightwave Technology, vol. 24, no. 1, pp. 262–270, 2006.

[122] Q. Cheng, A. Wonfor, J. L. Wei, R. V. Penty, and I. H. White,
“Demonstration of the feasibility of large port count optical switching
using a hybrid mzi-soa switch module in a recirculating loop,” Optics
Letters, vol. 39, pp. 5244–5247, Sept. 2014.

[123] A. Biberman, G. Hendry, J. Chan, H. Wang, K. B. K. Preston,
N. Sherwood-Droz, J. S. Levy, and M. Lipson, “CMOS-Compatible
Scalable Photonic Switch Architecture Using 3D-Integrated Deposited
Silicon Materials for High-Performance Data Center Networks,” in
Optical Fiber Communication Conference (OFC), March 2011.

[124] L. Wang, W. Bogaerts, P. Dumon, S. K. Selvaraja, J. Teng, S. Pathak,
X. Han, J. Wang, X. Jian, M. Zhao, R. Baets, and G. Morthier, “Ather-
mal arrayed waveguide gratings in silicon-on-insulator by overlaying
a polymer cladding on narrowed arrayed waveguides,” Appl. Opt.,
vol. 51, pp. 1251–1256, Mar 2012.

[125] M. Lipson, “Guiding, modulating, and emitting light on silicon - Chal-
lenges and opportunities,” Journal of Lightwave Technology, vol. 23,
no. 12, pp. 4222–4238, 2005.

[126] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon
optical modulators,” Nature Photonics, vol. 4, no. 8, pp. 518–526, 2010.

[127] J. McGeehan, S. Kumar, D. Gurkan, S. Motaghian Nezam, A. Willner,
K. Parameswaran, M. Fejer, J. Bannister, and J. Touch, “All-optical
decrementing of a packet’s time-to-live (TTL) field and subsequent
dropping of a zero-TTL packet,” Journal of Lightwave Technology,
vol. 21, pp. 2746–2752, November 2003.

[128] J. Touch, J. Bannister, S. Suryaputra, and A. Willner, “A design for
an Internet router with a digital optical data-plane,” SPIE Proceedings,
vol. 9008, pp. 9–15, 2013.

[129] R. S. Tucker, “The role of optics and electronics in high-capacity
routers,” Journal of Lightwave Technology, vol. 24, no. 12, pp. 4655–
4673, 2006.

[130] O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang,
C. P. Lai, A. Biberman, and K. Bergman, “The data vortex optical
packet switched interconnection network,” Journal of Lightwave Tech-
nology, vol. 26, no. 13-16, pp. 1777–1789, 2008.

22

[131] A. Shacham and K. Bergman, “Building ultralow-latency interconnec-
tion networks using photonic integration,” IEEE Micro, vol. 27, no. 4,
pp. 6–20, 2007.

[132] R. Luijten, C. Minkenberg, R. Hemenway, M. Sauer, and R. Grzy-
bowski, “Viable opto-electronic HPC interconnect fabrics,” in Super-
computing, 2005.

[133] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Sol-
gaard, and N. McKeown, “Scaling Internet routers using optics,” in
Proceedings of the ACM SIGCOMM 2003 Conference, SIGCOMM,
pp. 189–200, 2003.

[134] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Sub-
ramanya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: A Hybrid
Electrical/Optical Switch Architecture for Modular Data Centers,” in
Proceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM,
(New York, NY, USA), pp. 339–350, 2010.

[135] G. Porter, R. Strong, N. Farrington, A. Forencich, P. Chen-Sun, T. Ros-
ing, Y. Fainman, G. Papen, and A. Vahdat, “Integrating Microsecond
Circuit Switching into the Data Center,” in Proceedings of the ACM
SIGCOMM 2013 Conference, SIGCOMM, pp. 447–458, ACM, 2013.

[136] S. Kamil, A. Pinar, D. Gunter, M. Lijewski, L. Oliker, and J. Shalf,
“Reconfigurable hybrid interconnection for static and dynamic scien-
tific applications,” in ACM Computing Frontiers, pp. 183–194, 2007.

[137] E. Mannie, “RFC 3945: Generalized Multi-Protocol Label Switching
(GMPLS) Architecture,” 2004.

[138] V. Gudla, S. Das, A. Shastri, G. Parulkar, N. McKeown, L. Kazovsky,
and S. Yamashita, “Experimental demonstration of OpenFlow control
of packet and circuit switches,” in Optical Fiber Communication
Conference (OFC), pp. 1–3, Mar. 2010.

[139] M. Shirazipour, W. John, J. Kempf, H. Green, and M. Tatipamula,
“Realizing packet-optical integration with SDN and OpenFlow 1.1
extensions,” in IEEE International Conference on Communications,
ICC, pp. 6633–6637, June 2012.

[140] S. Azodolmolky, R. Nejabati, E. Escalona, R. Jayakumar, N. Efstathiou,
and D. Simeonidou, “Integrated OpenFlow–GMPLS control-plane: an
overlay model for software defined packet over optical networks,”
Optics express, vol. 19, no. 26, pp. B421–B428, 2011.

[141] A. Autenrieth and J.-P. Elbers, Network Virtualization and
SDN/OpenFlow for Optical Networks - EU Project OFELIA,
ADVA Optical Networking SE, Mar. 2013. http://www.fp7-
ofelia.eu/assets/Publications-and-Presentations/NetSys2013-
Autenrieth-Slides.pdf [Online; accessed January 2015].

[142] J. Perello, S. Spadaro, S. Ricciardi, D. Careglio, S. Peng, R. Nejabati,
G. Zervas, D. Simeonidou, A. Predieri, M. Biancani, H. Dorren,
S. Lucente, J. Luo, N. Calabretta, G. Bernini, N. Ciulli, J. Sancho,
S. Iordache, M. Farreras, Y. Becerra, C. Liou, I. Hussain, Y. Yin,
L. Liu, and R. Proietti, “All-optical packet/circuit switching-based data
center network for enhanced scalability, latency, and throughput,” IEEE
Network, vol. 27, pp. 14–22, November 2013.

Noa Zilberman (M’13, SM’14) is a Research Associate in
the Systems Research Group, at the University of Cambridge
Computer Laboratory in England. Since 1999 she has filled
several development, architecture and managerial roles in the
telecommunications and semiconductor industries. In her last
role, she was a senior principal chip architect at Broadcom.
Her research interests include open-source research using
the NetFPGA platform, network and computer architectures,
high speed interfaces, Internet measurements and topology.
Zilberman received her B.SC., M.Sc. and Ph.D. in Electrical
Engineering from Tel-Aviv University, Israel, in 2003, 2007
and 2014 respectively.
Philip M. Watts (M’04) received the B.Sc. degree in applied
physics from the University of Nottingham, Nottingham, U.K.,
in 1991, the M.Sc. in Technologies for Broadband Commu-
nications from University College London (UCL), London,
UK in 2003 and Ph.D. in Electronic Engineering from UCL
in 2008. He was a Research Engineer with the BAE Sys-
tems Advanced Technology Centre, Chelmsford, U.K., from
1991 to 2000. From 2000 to 2010, he was a Senior Optical

Hardware Engineer with Nortel Networks, Harlow, UK, a
researcher with Intel Research, and a consultant with Azea
Networks and Huawei Technologies. From 2008 to 2010,
he was a Research Fellow with the Computer Laboratory,
University of Cambridge, Cambridge, U.K. He is currently an
EPSRC Research Fellow and a Lecturer with the Department
of Electronic and Electrical Engineering, UCL. His current
research interests include optical networks for future computer
systems and control and signal processing circuits for optical
communications.
Charalampos Rotsos (M’14) received the B.Sc. degree in
computer science from the University of Piraeus, Piraeus,
Greece in 2006, the M.Sc. degree in Data Communications,
Networks and Distributed Systems from University College
London (UCL), London, U.K. in 2007 and his Ph.D. degree
in computer science from the Computer Laboratory, University
of Cambridge, Cambridge, UK in 2015. He is currently a
Senior Research Associate at the School of Computing and
Communications, Lancaster University, Lancaster, UK, and he
is part of the Network Research Group. His current research
interests include Software Defined Networking, network ex-
perimentation, network measurement and traffic classification.
Andrew W. Moore (M’97) received Bachelors and Masters
degrees in Digital Technology and Computing from Monash
University, Melbourne, Australia in 1992 and 1994. He com-
pleted his Ph.D. in Computer Science with the Cambridge
University Computer Laboratory in 2001. He is a Senior Lec-
turer at the University of Cambridge Computer Laboratory in
England, where he jointly leads the Systems Research Group
working on issues of network and computer architecture. He
has been principal investigator on research grants from the
EPSRC (part of the UK research council), the EU, DARPA,
and NSF as well as collaborations with industry partners
Xilinx, Cisco, Netronome, and Solarflare. Andrew currently
leads the NetFPGA project providing an Open-Source recon-
figurable hardware/software platform for networking research
and teaching His research interests include enabling open-
network research and education using the NetFPGA platform,
other research pursuits include software-hardware co-design,
low-power energy-aware networking, and novel network and
systems data-center architectures.

