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Abstract—A major challenge for utilities is energy theft,
wherein malicious actors steal energy for financial gain. One such
form of theft in the smart grid is the fraudulent amplification
of energy generation measurements from DERs, such as photo-
voltaics. It is important to detect this form of malicious activity,
but in a way that ensures the privacy of customers. Not consid-
ering privacy aspects could result in a backlash from customers
and a heavily curtailed deployment of services, for example. In
this short paper, we present a novel privacy-preserving approach
to the detection of manipulated DER generation measurements.

Index Terms—Smart grid; Smart metering; Energy theft;
Detection; Privacy

I. INTRODUCTION

Smart grids make use of Information and Communication
Technology (ICT) and Supervisory Control and Data Acqui-
sition (SCADA) systems to support the monitoring and auto-
mated control of Distributed Energy Resources (DERs) [1].
Alongside these sub-systems, an Advanced Metering Infras-
tructure (AMI) permits two-way communication between a
smart meter at the customer premises and a utility company,
such as a Distribition System Operator (DSO). Together, these
systems can be used to collect data regarding energy usage
and generation by so-called prosumers – customers that both
consume and generate energy.

A major challenge for utilities is energy theft, wherein ma-
licious actors steal energy for financial gain. Energy theft can
have operational, safety and financial implications. There are
many ways to commit energy theft [2], including altering the
consumption and generation measurements that are collected
from smart meters. In the former case, the attacker aims to
under-report the amount of energy they consume (to reduce
their bill); in the latter, the aim is to amplify the reported
amount of energy generated, to increase remuneration from an
energy supplier or aggregator, for example. It is necessary for
utilities to deploy approaches to detect energy theft. However,
it is important this is done in a way that respects the right to
privacy of customers – not doing so could result in penalties
and heavily curtailed deployment of services [3].

Previous work has investigated the prevention and detection
of attacks to the AMI [4]–[8]. For example, Jokar and Leung
have developed a pattern-based energy theft detector, which
compares the output from transformer meters for a neigh-
bourhood with values from smart meters [6]. They train a

Support Vector Machine (SVM) with historical data for each
customer. Meanwhile, Faisal et al. [7] propose an intrusion
detection system that makes use of multiple points in an
AMI architecture to detect attacks using a number of classifier
algorithms. Liu et al. [8] propose a means of detecting data
injection attacks to smart meters, which operates on the meter
itself. Arguably, the cost of adding such functionality to smart
meters makes it unlikely to be used in reality. Importantly, the
authors of these contributions do not consider privacy aspects.

To address privacy concerns in the smart grid [9], a number
of approaches have been proposed [10]–[12]. For example,
Chen et al. advocate a scheme to modulate the behaviour
of a water heater to give the impression someone is al-
ways home [11]. They claim their approach does not waste
energy, but simply modifies when water is heated. Such a
scheme could prove problematic in the presence of demand-
response services, for example. Efthymiou and Kalogridis [12]
propose a mechanism for smart meter reading that allows
the secure attribution of measurements to a location, not a
specific customer. This allows utilities to use meter readings
for operational purposes. In our case, we require the capacity
to identify customers that may be acting nefariously, but do
not require (or rather, do not want to know) information about
their private usage patterns.

In this short paper, we present a novel privacy-preserving
approach to the detection of manipulated DER power genera-
tion measurements. Our aim is to detect malicious actors that
over-report the power they generate for financial gain, in a way
that ensures private information [13], which is contained in
smart meter measurement data, is not revealed to third-parties.
Our approach leverages the insight that (normalised) power
output from photovoltaic (PV) installations in a geographical
region should be similar – deviations from the norm could
indicate malicious behaviour. In short, our approach calculates
the Euclidean distance between all pairs of normalised power
generation measurements from PV installations in a region.
Subsequently, a clustering algorithm is used to identify outly-
ing distances that could indicate malicious behaviour. Privacy
is ensured as only the Euclidean distances and homomorphi-
cally encrypted measurements need to be shared with third-
parties.
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Fig. 1. Schematic of a typical residential photovoltaic installation, showing
the electricity and communication connections [14]

II. A SMART GRID ENERGY THEFT SCENARIO

In this section, we present the smart grid deployment
scenario that we are considering and the attacker model that
we assume for our work.

A. Smart Grid Deployment

The scenario we consider includes numerous residential
properties that have Distributed Energy Resources (DERs)
installed, such photovoltaics (PVs). So-called prosumers both
consume and produce energy. Figure 1 presents a typical
deployment of a PV installation at a residential property [14],
showing electrical and communication connections. In this
setting, the PV panels produce DC power, which is converted
to AC power by an Inverter. A Generation Meter records the
energy generated by the PV installation; this meter may be
integral to the Inverter. The output of the Generation Meter
goes to the Customer Consumer Unit (CCU). The Export
Meter records the energy that is fed into the electricity grid,
whilst the Import Meter records what is being consumed. Data
from both the Export Meter and Generation Meter are sent
to a prosumer’s energy supplier for billing and remuneration
purposes1. The Building Energy Agent (BEA) runs energy
services, e.g., it participates in demand-response services and
manages the generation and controllable loads at the premises.
Typically, this device is connected to a wide-area network,
such as the Internet, to support the implementation of these
services.

B. Attacker Model

McLaughlin et al. [16] have developed an attacker model
that describes the types of attackers who may be sufficiently

1For example, E.ON, a UK energy supplier, states that prosumers will
receive payment for every kWh that is generated, whether it is used locally
or exported to the grid [15].

motivated to commit energy fraud – they highlight that cus-
tomers, e.g., prosumers, may be inclined to reduce their energy
bills in this way. In addition to examining threat sources and
their motivation, they consider the ways in which smart meters
could be attacked. For example, they have identified that data
can be manipulated in transit between the meter and the
supplier or when it is stored on the smart meter. Additionally,
by tampering with the smart meter, specifically the Export or
Generation Meter, it is possible for a prosumer to manipulate
the data that is communicated to the energy supplier, in order
to fraudulently claim they are producing more energy than
they are in actuality.

A way to detect such attacks involves identifying anomalous
measurements, out of a larger set, which could indicate ma-
licious behaviour. However, to use the data in this way, there
are a number of privacy issues that must be addressed. For
example, if the PV output is known along with the amount
of energy that is fed into the grid, it may be possible to
determine when a prosumer is at home, as the feed-in energy
will likely be lower if they are using appliances (assuming they
are using the power they generate). Consequently, technologies
that ensure the privacy of prosumers must be implemented,
alongside techniques that can be used to identify malicious
behaviour.

III. AN APPROACH TO PRIVACY-PRESERVING ENERGY
THEFT DETECTION

In this section, we describe an approach to detecting the
fraudulent manipulation of electricity generation data, and a
scheme that builds on this approach to ensure privacy.

A. Energy Theft Detection Approach

The insight that we use as a basis for detecting malicious
activity is that the behaviour of PV installations, in terms of
their normalised energy output, is geographically correlated.
To support this claim, we performed an analysis of a dataset
that was collected from residential PV installations in the
UK2. For each installation, the dataset contains periodic energy
generation measurements (kWh), which are recorded every
thirty minutes, along with the latitude, longitude, and its peak
generation capacity (kWp). To calculate the normalised energy
output P for a given time period ti, we divide the kWh
measure for the period by the installation’s peak capacity (see
Eq. 1).

Pti =
kWhti

kWp
(1)

For this analysis, we segmented the entire region under
evaluation into a 4x4 grid. Figure 2 depicts how the PV
installations in the dataset are geographically distributed. The
colour of a point in the figure indicates the normalised
energy output at midday. Figure 3 shows the normalised
measurements from these PV installations for a single day,
with each plot representing a distinct geospatial region. Each

2The data was obtained from the Sheffield Solar Group at the University
of Sheffield: http://www.microgen-database.org.uk/
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Fig. 2. The geospatial distribution of the photovoltaic installations in the
dataset we used, showing normalised energy output at midday for a selected
day; the x- and y-axis and longitude and latitude values.
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Fig. 3. Normalised energy output for a day for PV installations in a geospatial
area. The x-axis shows measurements over time; the y-axis are normalised
energy measurements. Empty plots contain no PV installations.

curve represents the normalised energy output from a single
installation. It can be seen from this analysis that PV behaviour
appears to be geographically correlated. In other data, not
shown here for space reasons, we have seen these normalised
values to be regionally distinct. We can use this as a basis for
identifying measurements that deviate from the norm.

In order to detect anomalous measurements, it is first nec-
essary to segment the PV installations into geospatial regions,
allowing us to then compare the power output from those
in a similar vicinity. After performing this segmentation, we
calculate the Euclidean distance between the normalised PV
power output of two installations over a single day; this is
performed for all combinations of installation pairs in the
geographic region. The Euclidean distance is calculated using
Eq. 2, in which P1ti and P2ti are the normalised energy output
measurements for two installations for time period ti, and n
is the total number of measurments that are taken over a day.

d(P1, P2) =

√√√√ n∑
i=0

(P1ti
− P2ti

)2 (2)

Subsequently, we cluster the Euclidean distance measure-
ments in a region using the DBSCAN clustering algo-
rithm [17], in order to identify outliers in a specific geospatial
region. Outliers could be indicative of malicious behaviour. To
increase the certainty that a particular installation is behaving
in an anomalous way (and is therefore potentially malicious),
we perform the analysis across multiple days.

B. Ensuring Prosumer Privacy

In the UK, energy customers, such as prosumers, can choose
the frequency that smart meter data is collected for billing
purposes. The options that are available include monthly (a
mandatory minimum), daily, or every thirty minutes. For
privacy reasons, a customer may choose to have their meter

data read, as a cumulative total, on a daily or monthly basis.
Meter data collection at these frequencies cannot be readily
used to detect fraudulent behaviour using a scheme such as
the one proposed in this paper.

To address this issue, and to ensure measurement data that
could reveal private information is not sent to third-parties,
we have developed a privacy-preserving means of implement-
ing our detection approach. The technique results in just a
Euclidean distance measure being sent to an energy supplier
(or other suitable third-party), which is used to detect outliers
and malicious behaviour. These distances cannot be used
to infer detailed energy consumption or generation profiles.
The Euclidean distances are computed by Building Energy
Agents (BEAs) in the field, using homomorphic computa-
tion. This combination ensures that generation metering data,
which could reveal personally sensitive information, are not
distributed in a way that can be openly read by third-parties.
However, in this way, the detection of malicious behaviour can
still be achieved.

Trusted Third-Party (e.g., Energy Supplier)

Generate public-private
key-pair per 
geospatial region

Send the public key
to all the BEAs in
a region

For each region, generate 
all combinations of pairs 
of BEAs

For each BEA
pair, denote 
one to be Bob 
and the other Alice

Instruct all Bobs to calculate the 
Euclidean distance between their 
normalised generation data and its
designated Alice, for a day

For all results from 
Bobs, decrypt the
Euclidean distances

Per geospatial region,
cluster distances using 
DBSCAN to identify 
outliers

Bob (BEA)

Send public key to 
Alice and request 
encrypted normalised 
generation 
measurements

Alice (BEA)

Calculate normalised 
power generation 
measurements, encrypt
and send to Bob

Create geospatial 
regions of PV 
installations

Calculate Euclidean 
distance using 
homomorphic 
computation 
and return encrypted 
result

Fig. 4. Euclidean distance calculation with Paillier cryptosystem

Figure 4 depicts how our privacy scheme works. Initially,
the energy supplier creates a public-private key-pair using
the Paillier cryptosystem [18]. The public key is sent to all



the BEAs that reside in a pre-calculated geospatial region
of PV installations. (The public key is used to encrypt the
normalised energy and Euclidean distance measurements.) It
is then necessary for the Euclidean distance to be calculated
for all combinations of installation pairs. To accomplish this,
a list of PV installation pairs – called Alice and Bob for
explanatory purposes – are generated by the energy supplier.
Subsequently, each Bob in a pair is instructed to calculate the
Euclidean distance between its own measurements and those
from Alice, for the full day, using Eq. 2. To achieve this,
Alice sends its normalised energy generation measurements
as ciphertext to Bob. Using a method for homomorphic
computation, proposed by Rane et al. [19], Bob is able to
calculate the Euclidean distance between the measurements.
Once the resulting ciphertext has been generated by Bob, it is
sent to the energy supplier. Finally, the supplier decrypts the
result from Bob, with its private key, and uses a clustering
algorithm to detect outlying distances within a region.

IV. INITIAL EVALUATION

To evaluate the effectiveness of our detection approach, we
conducted experiments using the UK dataset. We created ten
geospatial regions, containing on average ten installations. We
introduced a single malicious installation into each region,
which over-reported their generation measurements. We ex-
ecuted our detection algorithm over a year’s worth of data,
using the same malicious actor for each day. The F-score was
calculated for the complete year’s worth of results from a
single day. When a malicious actor reports twice their actual
generation, we see an F-score of 0.9, whereas for three times
the value is 0.97 – an ideal F-score is 1. These initial results
indicate the detection approach can effectively identify this
form of energy theft.

V. CONCLUSION

A major challenge for utilities is energy theft, wherein ma-
licious actors steal energy for financial gain. One such form of
theft in the smart grid is the fraudulent amplification of energy
generation measurements from DERs, such as photovoltaics.

In this short paper, we have introduced a novel privacy-
preserving approach to detecting such attacks. It builds on the
observation that normalised energy output from PV installa-
tions in a geographic region are similar. Malicious behaviour is
detected by calculating the Euclidean distance between energy
output measurements from an installation over a day. These
distances are then clustered to identify outliers and potentially
malicious behaviour. Privacy is preserved through the use
of homomorphic computation to allow Euclidean distance
measures to be calculated privately – this distance is the only
information that is given to a third-party, such as an energy
supplier.

In our ongoing work, we are evaluating two major aspects
of our approach: (i) the overhead associated with performing
calculations in a distributed manner on BEAs; and (ii) the
detection performance of our approach. Initial results indi-
cate the approach has promise. Future work will investigate
whether our scheme could be applied to other forms of DER,

such as wind turbines, and whether faults in installations can
be identified, as well as malicious behaviour.
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