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Abstract—The increasing complexity and scale of distributed 
systems has resulted in the manifestation of emergent behavior 
which substantially affects overall system performance. A 
significant emergent property is that of the “Long Tail”, whereby 
a small proportion of task stragglers significantly impact job 
execution completion times. To mitigate such behavior, straggling 
tasks occurring within the system need to be accurately identified 
in a timely manner. However, current approaches focus on 
mitigation rather than identification, which typically identify 
stragglers too late in the execution lifecycle. This paper presents a 
method and tool to identify Long Tail behavior within distributed 
systems in a timely manner, through a combination of online and 
offline analytics. This is achieved through historical analysis to 
profile and model task execution patterns, which then inform 
online analytic agents that monitor task execution at runtime. 
Furthermore, we provide an empirical analysis of two large-scale 
production Cloud datacenters that demonstrate the challenge of 
data skew within modern distributed systems; this analysis shows 
that approximately 5% of task stragglers caused by data skew 
impact 50% of the total jobs for batch processes. Our results 
demonstrate that our approach is capable of identifying task 
stragglers less than 11% into their execution lifecycle with 98% 
accuracy, signifying significant improvement over current state-
of-the-art practice and enables far more effective mitigation 
strategies in large-scale distributed systems worldwide.  

Keywords—Long Tail, Stragglers, Distributed Systems, Data 
analysis, agent based, datacenter, Cloud computing 

I.  INTRODUCTION 

Modern day services typically leverage interconnected 
distributed systems globally in order to fulfil consumer 
Quality of Service (QoS) demands and business objectives. 
This is particularly true when provisioning applications within 
the Cloud computing and Big Data domain - applications 
which require large amounts of computing power and storage 
capacity in order to process large quantities of data in an 
acceptable time frame. With the scale of systems increasing in 
both physical size and complexity, providers responsible for 
provisioning services are facing increasing challenges in 
mitigating - in a timely manner - the effect of emergent system 
behavior at scale which substantially impacts service QoS. 

One such behavior is the Long Tail. This phenomena occurs 
when a distributed job - composed of multiple smaller tasks 
executing in parallel - incurs significant delays in completion 
due to a small subset of its parallelized tasks performing much 
slower than the other tasks within the same job known as 
stragglers, thus impeding job completion [2]. Research by 
both academia and industry has shown that the Long Tail 
problem imposes a significant challenge in providing timely 
and predictable application completion times, which is 
becoming increasingly difficult as systems increase in scale 
and complexity. 

There have been a number of recent works that attempt to 
mitigate the effect of the Long Tail at runtime. These 
approaches primarily use speculative execution methods that 
leverage redundant computation [12][14], network congestion 
[9], and data locality [13]. While such works have been 
demonstrated to reduce the impact of the Long Tail, a 
universal challenge is the ability to identify potential straggler 
behavior as quickly as possible in order to mitigate Long Tail 
effects without breaching QoS time constraints. A common 
assumption is that all stragglers can be accurately identified 
within the system; in practice, this is challenging when 
considering the different task computation patterns within a 
system, as well as the requirement to identify stragglers in the 
shortest time frame. Furthermore, it has been identified in [16] 
that historical data of task execution can be leveraged as an 
effective means to calculate task progress, to allow for 
speculative task execution, and to avoid faulty nodes [17]. 
However, this work is not designed to identify and mitigate 
task straggler occurrence within system.  

From studying both straggler mitigation mechanisms and 
offline analysis of task execution, there is a clear gap in the 
literature when it comes to combining both online and offline 
analytics of task execution together to identify straggler 
behavior within the least amount of time. 

This paper proposes a model and implementation for 
automated analytic-driven Long Tail identification in 
distributed systems in order to enhance state-of-the-art Long 
Tail mitigation techniques. Specifically, our approach 
combines historical data analytics (to model task execution for 
different applications) with online agent-based monitoring and 
analytics of executing tasks (to identify stragglers caused by 
data skew). There are two core contributions of this work: 

– A timely straggler identification mechanism leveraging 
both historical analysis and online agent based monitoring/ 
analytics to identify straggler tasks in a much reduced 
timeframe. Results demonstrate that our approach 
identifies stragglers less than 11% into a tasks lifecycle 
with a false positive rate of 1.59%. 

– Empirical analysis of Long Tail Phenomena in two unique 
real-world production Cloud systems consisting of 
thousands of heterogeneous servers, demonstrating for the 
first time the prevalence and impact of stragglers due to 
data skew and faulty nodes. Our findings demonstrate that 
less than 5% and 3% of task stragglers causes 35% and 
59% of total batch jobs within each system, respectively to 
experience Long Tail phenomena. 

The paper is structured as follows: Section 2 discusses the 
background to the research; Section 3 presents related work; 



Section 4 presents an empirical analysis of straggler impact in 
production Cloud datacenters; Section 5 presents the system 
model; Section 6 presents the experiments and evaluation of 
the proposed mechanism. Finally, Section 7 discusses 
conclusions and future work. 

II. BACKGROUND 

Big data analytics frameworks such as MapReduce, Dryad, 
Hadoop, and Spark decompose jobs into smaller tasks which 
are executed across a number of machines in order to achieve 
improved performance through parallelization. While such 
frameworks have seen substantial success in recent years, they 
also have their own set of challenges. Specifically, it has been 
established that achieving predictable execution within Cloud 
computing environments is problematic due to resource 
interference, scheduling and volatile network conditions [23]. 
This has resulted in significant challenges in provisioning real-
time QoS within current Cloud computing systems. 
Furthermore, with the increased usage, system scale and 
application complexity, such behavior has been demonstrated 
to be increasingly important and more common place [3]. This 
is particularly true of Long Tail phenomena, which arise when 
these frameworks are deployed in larger-scale infrastructure. 
Long Tail phenomena can cause poor job execution due to 
abnormally slow parallel tasks known as stragglers. An 
example of such straggler tasks is shown in Figure 1 taken 
from a major production Cloud datacenter (for commercial 
reasons we cannot identify the name of the company). Such 
stragglers can impede a job’s completion, as it is unable to 
complete until all its respective tasks are completed. Even 
after applying state-of-the-art straggler mitigation techniques, 
stragglers still execute on average eight times slower than the 
median task in a certain job, and increases the average job 
duration by 47% [14]. 

Stragglers can occur due to many reasons, including hardware 
heterogeneity [2], resource contention, background network 
traffic, I/O discord [3] and OS and application-level related 
sources [4][23]. A number of works focus on straggler data 
skew, categorized as either Map or Reduce skew, and further 
subdivided into partitioning skew, record size skew and 
computational skew [5][6][7]. How the distribution of input 
dataset can cause data skew - hence introducing stragglers into 
the system - is discussed further detailed in [8].   

As the size of clusters and jobs continue to grow, the impact of 
stragglers increases dramatically. Such stragglers can 
substantially extend job execution time, thus impacting QoS 
and potentially a consumer’s Service Level Agreement (SLA) 
[9]. Even rare performance abnormalities can affect a 
significant portion of all requests in large-scale distributed 
systems [2], and so addressing the Long Tail problem is 
critical in order to speed up job completion and improve 
system efficiency. 

III.  RELATED WORK 

A. Long Tail Mitigation 

Eliminating all sources of stragglers in large-scale systems is 
impractical, due to system scale and increasing use of multi-
tenancy to collocate tasks within the same physical server As a 
result, a typical approach is to attempt to mitigate the impact 
of straggling tasks occurring within a system through the use 
of speculation. Initially proposed in by Dean et al. [1], this 
technique observes the progress of individual tasks and 
launches speculative copies (or backup copies) for tasks that 

are running slower than average task execution at runtime. 
Such an approach assumes that the speculative copy should 
execute faster than the original straggling task, and is 
commonly deployed in many production clusters including 
Facebook, Google, Bing, and Yahoo. In recent years there 
have been a number of proposed speculative execution based 
methods: LATE [2] focuses on mitigation within 
heterogeneous environments, Mantri [9] leverages network 
congestion characteristics as well as preferentially replicating 
the output of tasks that are more likely to be lost or expensive 
to recompute, while GREST [11] leverages data locality of 
Map tasks when performing speculation. Dolly [14] is 
concerned exclusively with small jobs that contain less than 10 
tasks; this characteristic enables the scheme to copy all jobs, 
and ignores its impact on resource consumption. GRASS [10] 
uses speculation between deadline bound and error bound. 
Furthermore, [12] introduces the concept of co-workers that 
assist with task re-execution, while MCP [13] accelerates the 
re-execution by choosing a suitable set of back up nodes.  

B. Identification and Analytics 

The identification of stragglers plays an important role in 
speculative execution, and its effectiveness is measured by 
identification accuracy and rapidness. However, current 
approaches will wait until a straggler has been identified from 
online processing [2][12][13] which typically occurs late in a 
task’s execution lifecycle. An effective means to improve the 
rapidity of straggler identification is through the use of offline 
analytics and historical data to characterize the temporal 
patterns of Long Tail manifestations within a system for given 
tasks or nodes. There are several approaches that leverage 
historical data to support straggler speculation performance: 
SAMR [16] uses historical data to adjust temporal weightings 
for each execution stage when calculating task progress, while 
MCP [13] leverages historical data to select the most suitable 
backup nodes for speculative tasks to run. Furthermore, there 
are methods that use historical data to proactively avoid 
scenarios that cause stragglers: Wrangler [15] uses a statistical 
learning technique based on cluster resource utilization 
counters, while [17] uses historical data to identify nodes 
which cause stragglers. While several works have attempted to 
avoid the occurrence of straggler nodes [17][24], to our 
knowledge, no existing system has used historical data to 
specifically identify task stragglers. 

From the related work, it is observable that there is need for an 
approach that can identify stragglers as quickly and accurately 
as possible. This is especially the case when considering jobs 
that are time sensitive or have temporal guarantees (through 

 
Fig 1. Example of straggler occurrence causing Long Tail within a job. 



SLAs, etc). Online and offline analytics are an effective means 
to achieve this; however, both face challenges when used in 
isolation. Firstly, the use of online analytics for identification 
can occur too late in task execution, still resulting in delayed 
job completion times, debilitating the system’s ability to 
provision timely service to users. Second, offline analytics are 
predominantly applied for straggler avoidance within the 
system, which becomes less feasible when approaching 
systems at increasing scale (which can experience Long Tail 
phenomena through numerous scenarios). Therefore, there is a 
clear opportunity to integrate both online and offline analytic 
techniques together to improve our ability to identify Long 
Tail behavior in a manner that can preserve the temporal 
guarantees within a system. 

IV.  SYSTEM ARCHITECTURE 

This paper proposes a method and tool for straggler 
identification to support the mitigation of Long Tail 
phenomena within large-scale distributed systems with much 
improved timeliness. A challenge in large-scale systems is to 
identify straggler manifestation, which can substantially 
impact job execution completion time. While our approach 
could be applied to a number of different types of distributed 
systems, in this work we focus on Cloud computing 
datacenters, a modern large-scale system that contain explicit 
(SLAs, QoS) and implicit (energy-efficiency, user experience) 
requirements for provisioning timely service to users.  

In order to achieve our objective of improving the rapidity and 
accuracy of straggler identification, we propose an architecture 
(as shown in Figure 2) composed of two primary components: 
offline and online analytics. The offline analytics component 

data mines historical system traces in order to characterize and 
model task execution patterns and calculates a theoretical 
threshold that determines the boundary of non-straggler  
behavior for task execution at a given time interval. The online 
analytics monitors and compares task execution at runtime 
through the use of agents against models created from the 
offline analytics in order to identify task straggler behavior. 

A. Offline Analytics 

The offline analytics component of our approach is 
conceptualized within the Long Tail Analytics Engine, and is 
responsible for analyzing and modeling task behavior and 
straggler manifestation through the use of historical analysis. 
Specifically, this module is responsible for modeling task 
execution patterns as well as informing the online analysis for 
identifying straggler behavior at runtime. The module is 
composed of three sub-components:  

Job profiler:  This component is responsible for profiling and 
modeling different types of jobs and task execution patterns 
within the system. This is an important consideration as work 
in [19] demonstrates how tasks are capable of exhibiting 
different task execution lengths and resource consumption 
across a system. The method of profiling job execution 
patterns is dependent on the nature of tasks within the system, 
and can be performed using a number of techniques such as 
clusterization, and modeling task progress execution [18]. 
Figure 3 shows the latter approached applied to 500 Reduce 
tasks within a 50 node cluster. It is observable that the Reduce 
phase can be divided into multiple phases [1][2] which can be 
modeled through the use of linear and non-linear regression 
analysis. Such a technique makes it possible to calculate 
typical task execution progress over time for a given job 

 
Fig 2. Cloud computing model with integrated Long Tail analytics engine and agent based analytics. 



profile and provide statistical models which can be integrated 
into the online analytics agents. 

Straggler Identifier: This component is responsible for 
quantifying the nature and impact of stragglers within the 
distributed system. Work in [3][7][9] have identified that there 
are numerous root cause for Long Tail as discussed in Section 
2. Therefore, it is advantageous to analyze and identify the 
cause of stragglers which occur historically within a system in 
order to ascertain where developmental and mechanism effort 
should be applied for maximum effectiveness. 

Threshold Calculator: The threshold calculator is 
responsible for generating models to identify potential task 
stragglers. This is achieved by exploiting the task execution 
patterns and models generated from the job profiler 
component to derive a (theoretical) minimum threshold for 
task progress at a certain time. Specifically, straggler threshold 
S is defined as minimum progress of task Ti completed at time 
t in relation to normal task progress Prog to avoid a task being 
flagged as a straggler. The difference between TiProg and TiS at 
time t is given by Diff, representing the maximum completion 
difference acceptable before straggler identification, and is 
expressed as a percentage configured by the provider. 

To give a hypothetical example, if a model which expresses Ti 
over period t generated by the Job Profiler component is 
defined as shown in (1): 

 

and Diff is defined as task execution time 50% greater than 
median execution (a value commonly defined in the literature 
[7]), then the straggler threshold is expressed as shown in (2): 

 

As demonstrated in Figure 4, TiS will equal TiProg when t is 
50% greater (thus, a task is identified as a straggler when the 
time taken to reach a specific progress score at time t is greater 
than 50% compared to typical task execution). The developed 
model generated from the offline component of the system are 
exploited by the online analytics at runtime to identify 
stragglers. 
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Fig 3. Example of converting empirical task progression into statistical models for 50 node cluster. 



B. Online Analytics 

The online analytics component is comprised of the Straggler 
Analytics Agent which resides on each individual physical 
server within the distributed system as shown in Figure 2. This 
is responsible for monitoring and analyzing task execution 
progress and identifying task stragglers at runtime. Upon task 
scheduling onto a server, each agent will periodically monitor 
and extract key parameters from progress logs generated by 
each task. Such parameters of interest includes the timestamp, 
time of task instantiation, current task progress score as well 
as additional parameters including data blocks transferred and 
download rate if applicable. 

The online agent compares current task progress against the 
model produced by the offline analysis derived from the Long 
Tail Analytics Engine. Furthermore, the agents also compare 
the current progress of other tasks within the same job. The 
model derived from the offline analysis is of particular 
importance, as multiple stragglers within a job will result in 
increased Long Tail identification time when solely comparing 
task progress scores at runtime. If TiProg < TiS, as well as 50% 
smaller than the median task progression at ti for its respective 
job, a task is identified as a straggler. Such an approach can 
encounter challenges in model sensitivity within the first time 
periods due to the short Euclidian distance between progress 
scores at the start of task execution. As a result, stragglers are 
identified if TiProg < TiS consecutively n times, where n is 
defined by the provider. 

V. LONG TAIL ANALYTICS IN PRODUCTION SYSTEMS 

This section fulfils two purposes: First, an empirical analysis 
of two large-scale Cloud datacenters is conducted in order to 
justify the impact of stragglers within production systems. 
Second, this section provides a practical example how the 
Straggler Identifier component operates within the system as 
discussed in Section 4. To facilitate this, we have analyzed 
two distinctive trace logs of large-scale production Cloud 
datecenters. The first trace log is Google’s datacenter; a 
system composed of over 12,500 servers and millions of tasks 
over a period of 29 days, composed by a large number of 
different types of applications. The trace log is publicly 
available and can be found at [20]. The second trace log is 
Cloud datacenter B; large-scale production e-commerce 
system containing over 1,300,000 tasks and 2,800 servers. 

In order to conduct a comprehensive analysis, jobs and their 
respective tasks are filtered to fulfil a specific criteria: 
Specifically, we are particularly interested in straggler 
manifestation within batch jobs, which is possible to derive 
given the characteristics of the job priority, job start and 
completion time in relation to task submission and completion, 
as well as resource characteristics (i.e. all tasks within a job 
have the same requested resources and are submitted fraction 
of timestamps apart from each other). Through this filtering 
criteria it is possible to identify 3043 jobs comprised of 
252,950 tasks within Google and 875 jobs comprised of 
1,223,879 tasks for Cloud datacenter B. 
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Fig 5. Google Datacenter task - job completion difference % 

 (a) median, (b) mean. 
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Fig 6. Cloud Datacenter B task - job completion difference % 
(a) median, (b) mean. 
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Figure 5 and 6 show the mean and median completion time of 
an individual task in comparison to respective tasks within the 
same job for Google datacenter and Cloud datacenter B, 
respectively. It is observable tasks exhibit similar percentages 
of completion time around 100% across both Cloud 
datacenters, with a small portion of tasks completing much 
earlier or later. Furthermore, we observe that studying the 
mean and median of task execution time is substantially 
different, most notable for Cloud datacenter B in Figure 6. 
This is predominantly caused by extremely fast and slow tasks 
significantly affecting the mean value for task completion. As 
a result, while existing literature use the mean execution time 
for defining task stragglers, we feel that the median task 
duration is a more sensible approach. This results in 6.54% 
and 3.48% of tasks to exhibit straggler behavior in Google 
datacenter and Cloud datacenter B, respectively when 
studying mean application execution.  

While it might be intuitive to assume such a small portion of 
straggled tasks may cause limited impact on job performance, 
it actually results in significant impact to total job completion 
times, indicated by 37.79% and 49.49% of jobs being 
straggled within each datacenter, respectively. This is a result 
of jobs unable to complete until all its respective tasks 
(including stragglers) have completed execution. 

Furthermore, the number of stragglers per server is also 
studied as shown in Figure 7(a) and 7(b) for Google datacenter 
and Cloud datacenter B, respectively. We observe that 19.9% 
and 99.78% of servers experience task stragglers across each 
system, and while at different proportions, exhibit a similarly 
weakly skewed distribution.  

These observations indicate two points of interest. First, given 
the available trace log data from two production Cloud 
computing datacenters, stragglers caused by data skew appear 
to have significant impact in terms of timeliness of job 
execution within the system due to frequent occurrence of 
thousands of stragglers within the infrastructure, manifesting 
Long Tail behavior in 35-59% of total jobs. Second, it appears 
that node stragglers appear to have minimal impact due to 
light skew of straggler occurrence per node within the system. 
Such results highlights the need to study, identify and mitigate 
straggler behavior caused by data skew within tasks. 

VI.  EVALUATION  

A. Experiment Setup  

Experiments were conducted to evaluate the effectiveness of 
our method in terms of straggler identification accuracy and 
rapidity within real systems. To facilitate this, our method was 
implemented and evaluated by using a 50 node cluster 
comprised of 40 x quad-core Intel machines @ 3.40GHz CPU 
running CentOS. This system is used concurrently by other 
users for research and university services. The application use 
case for the system was Hive [22], a database management 
system which interfaces and translates user specified queries 

into MapReduce tasks. Approximately 40 jobs comprised 
between 500-1000 Map tasks and 10-30 Reduce tasks were 
submitted into the cluster; each job was configured to vary in 
terms of data computation, (multiplication, CEIL and FLOOR 
functions), number of JOIN clauses between data tables, and 
the type of data attributes processed. Due to the severity of 
data skew in Cloud datacenters identified in Section 5, upon 
each submission there is a probability that the query will 
invoke stragglers caused by data skew in a number of tasks 
within the Reduce phase. This probability was configured to 
be 5%, reflecting similar values discovered in the empirical 
analysis discussed in Section 5, and was dictated by invoking 
queries which are known to cause data skew within Hive. Task 
straggler behavior was defined as task completion time 50% 
greater than the median task execution within a job in 
accordance to similar values reported and defined in [7]. From 
conducting initial experiments into mapping the proposed 
scientific model into a real-world implementation, the online 
analytic agents were configured to flag tasks exhibiting 
straggler behavior when TiProg < TiS for 3 consecutive 
monitoring periods, and analyze progress scored 5 seconds 
after task execution has begun. Finally, online analytics agents 
were configured to monitor and compare current task progress 
against the models generated from Long Tail Analytics Engine 
at a time interval of one second. 

B. Results 

Figure 8 depicts the progress of Reduce execution over time, 
as well as highlights the generated threshold model and 
straggler identification for a given job. It is observable that 
after 30 seconds (approximately 50% task progress), there is a 
significant difference between normal task and straggled task 

TABLE 1. DATA SKEW STRAGGLERS IN PRODUCTION SYSTEMS. 

 

Google Datacenter Cloud Datacenter B 

Mean Median Mean Median 

 Total tasks 252,950 1,233,879 

 Task stragglers 11,210 16,543 33,322 42,925 

 Task stragglers % 4.43 6.54 2.70 3.48 

 Total jobs 3043 875 

 Job stragglers 1081 1150 512 433 

 Job stragglers % 35.52 37.79 58.51 49.49 

 

 

Fig 7. Comparison of filtered stragglers from (a) Google datacenter, (b) 
Anonymous e-commerce Cloud system.  

(a) 

(b) 



progress patterns due to the input size pushed to an individual 
Reduce task becoming more distinct further into task 
execution. Through using statistical models generated using 
historical data from the offline analysis in conjunction with the 
online analytic agents, it is possible to identify over 98% of 
stragglers caused by data skew that are flagged on average 
10.91% into a task's progress at runtime as shown in Table 2. 

Furthermore, we observe a false positive rate of 1.59% which 
is caused by task progress of straggler and non-straggler tasks 
exhibiting similar progress scores at the start of execution as 
shown in Figure 8. This is predominantly caused by threshold 
sensitivity or interference from other users executing jobs on 
the same cluster. This result demonstrates the need for 
refinement of any future identification techniques that are 
configured to handle potentially different sensitivity levels for 
straggler identification at different time frames into a task’s 
execution. While this result indicates high accuracy of 
straggler identification, from our experiments we observe that 
there is further refinement required for identifying true 
positive task stragglers less than 10% into a task’s execution. 
Such refinement could be achieved through tuning Diff as well 
as data mining additional event parameters of interest from 
system logs (i.e. task process resource consumption, network 
usage, node location, etc.).  

Moreover, we observe that a minority of tasks are flagged as 
stragglers early within their execution however finish 
relatively close to the boundary of acceptable task completion. 

This behavior highlights the potential issues of defining a 
fixed value for Long Tail phenomena (i.e. 50% greater than 
median task execution completion time), as tasks which 
complete just under the threshold will be flagged as false 
positives, however still substantially impede timely job 
completion. Such a result indicates that there is a need for a 
more intelligent metric for defining Long Tail phenomena. 
One such solution would entail transitioning away from a 
fixed temporal boundary as defined in [7] to a progressive 
boundary relative to the distance between task progress and 
median task completion time for straggler identification. 

Finally, the online analytics agent are demonstrated to be 
lightweight, indicated by CPU usage of 0.2% usage for a 
fraction of a time frame periodically for each server, and no 
indication that it has significant effect on task progress 
execution depicted in Figure 8. 

VII.  CONCLUSION 

In this paper, we have developed a method and tool for Long 
Tail identification in distributed systems that for the first time 
combines both offline analytics and online agent based 
monitoring/analytics in order to improve the timeliness of 
straggler identification. This work demonstrates that our 
approach is capable of identifying task stragglers caused by 
data skew rapidly and accurately at runtime, and can be 
integrated into state-of-the-art straggler mitigation techniques 
in order to enhance the temporal properties and timeliness of 
job execution. Furthermore, we have presented an empirical 
analysis of two large-scale production Cloud datacenters 
exemplifying the impact of stragglers caused by data skew. 
Such results provides key empirical insight into how job 
timeliness and performance is significantly degraded due to 
straggler occurrence. Our conclusions are listed as follows:  

– Holistic usage of offline and online analytics is an effective 
means to identify Long Tail behavior at runtime. Through 
a novel approach of offline and online agent based 
analytics, we demonstrate through empirical experiments 

TABLE 2. STATISTICAL PROPERTIES OF DATA SKEW EXPERIMENTS. 

  Total Reduce tasks submitted 410 

  Total stragglers submitted (%) 6.45 

  True positive rate (%) 98.71 

  False positive rate (%) 1.59 

  Straggler progress detection (%) 10.91 

  CPU usage of agent per node 0.20% 
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Fig 8. Task Progress with Long Tail Identification Analytics Engine. 
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that it is possible to identify 98% of task stragglers 
approximately 11% into a task’s execution. Such results 
signify that our approach is capable of identifying task 
stragglers relatively early, and can substantially reduce the 
time to detect straggler behavior, hence improving the 
temporal properties of executing jobs when combined with 
state-of-the-art straggler mitigation techniques. 
Furthermore, our approach was demonstrated to scale to 50 
physical machines whilst utilizing minimal resources due 
to the agent based architecture, and is likely to operate 
sufficiently within larger-scale systems. 

– Data skew that occurs in a small subset of tasks 
significantly impacts job completion time. Our empirical 
analysis of two production distributed systems composed 
of thousands of nodes demonstrates that 4% and 6% of 
total task stragglers cause Long Tail behavior to manifest 
within 37 – 49% of total jobs, exemplifying the challenges 
large-scale systems face. With the evolving trend of 
computing systems growing in complexity and scale, such 
findings demonstrate the significant threat that Long Tail 
phenomena imposes towards guaranteeing application 
timeliness and performance within next generation 
systems. This work highlights and discusses the urgent 
need for research that addresses this challenge and 
attempts to limit its impact on efficient system operation. 

– Challenges in straggler identification due to data skew 
occur primarily at beginning of task execution. We 
discover that there are potential challenges in detecting 
straggler behavior at runtime within the very first time 
periods into job execution. This is reflected in experiments 
by a straggler identification false positive of approximately 
2%. This is a result of task progress scores being extremely 
similar at the beginning of task execution, signifying 
sensitivity of identification could potentially change at 
different periods through a task’s execution. As a result, 
while our approach is effective for identifying stragglers 
11% into task execution, refinement is required in order to 
achieve straggler identification within the first few seconds 
of task execution. 

Future work includes integration of our approach into 
established Long Tail mitigation techniques including 
speculative speculation and similar techniques to discover 
whether we can achieve substantial gains in job completion 
timeliness and system QoS. Furthermore, while data skew has 
been demonstrated to significantly affect temporal behavior of 
jobs, there exist other causes of Long Tail phenomena 
including performance interference and garbage collection. 
Therefore, there is an opportunity to extend our approach 
allowing it to identify different causes of stragglers at runtime. 
Finally, current definition of stragglers are indicated by 
completion times greater than 50% of the mean task 
execution; such a definition restricts the usefulness for 
subsequent Long Tail identification and mitigation for tasks 
which complete prior to this (i.e. 145 - 149%). As a result, we 
plan to develop a more effective straggler identification model 
which factors in task completion times within the context of 
job QoS specified by a user or provider.  
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