Timely Long Tail Identification Through Agent Based
Monitoring and Analytics

Peter Garraghan, Xue Ouyang, Paul Townend, Jie Xu

School of Computing
University of Leeds

Leeds,

UK

{p.m.garraghan, scxo, p.m.townend, j.xu} @ leeds.ac.uk

Abstract—The increasing complexity and scale of distributed
systems has resulted in the manifestation of emergent behavior
which substantially affects overall system performance. A
significant emergent property is that of the “Long Tail”, wher eby
a small proportion of task stragglers significantly impact job
execution completion times. To mitigate such behavior, straggling
tasks occurring within the system need to be accurately identified
in a timely manner. However, current approaches focus on
mitigation rather than identification, which typically identify
stragglerstoo latein the execution lifecycle. This paper presentsa
method and tool to identify Long Tail behavior within distributed
systemsin atimely manner, through a combination of online and
offline analytics. This is achieved through historical analysis to
profile and model task execution patterns, which then inform
online analytic agents that monitor task execution at runtime.
Further more, we provide an empirical analysis of two large-scale
production Cloud datacenters that demonstrate the challenge of
data skew within modern distributed systems; this analysis shows
that approximately 5% of task stragglers caused by data skew
impact 50% of the total jobs for batch processes. Our results
demonstrate that our approach is capable of identifying task
stragglers less than 11% into their execution lifecycle with 98%
accuracy, signifying significant improvement over current state-
of-the-art practice and enables far more effective mitigation
strategiesin large-scale distributed systemsworldwide.

Keywords—Long Tail, Stragglers, Distributed Systems, Data
analysis, agent based, datacenter, Cloud computing
I. INTRODUCTION

Modern day services typically leverage
distributed systems globally in order to fulfii consumer

There have been a number of recent works that attempt to
mitigate the effect of the Long Tail at runtime. These
approaches primarily use speculative execution methods that
leverage redundant computatidt?][14], network congestion

[9], and data locality 13]. While such works have been
demonstrated to reduce the impact of the Long Tail, a
universal challenge is the ability to identify potential straggler
behavior as quickly as possible in order to mitigate Long Talil
effects without breaching QoS time constraints. A common
assumption is that all stragglers can be accurately identified
within the system in practice, this is challenging when
considering the different task computation patterns within a
system, as well as the requirement to identify stragglers in the
shortest time frame. Furthermore, it has been identifiedah [1
that historical data of task execution can be leveraged as an
effective means to calculate task progress allow for
speculative task executipmand to avoid faulty nodesl7].
However, this work is not designed to identify and mitigate
task straggler occurrence within system.

From studying both straggler mitigation mechanisms and
offline analysis of task execution, there is a clear gap in the
literature when it comes to combining both online and offline
analytics of task execution together to identify straggler
behavior within the least amount of time.

This paper proposes a model and
automated analytic-driven Long Talil

implementation for
identification in

interconnectedlistributed systems in order to enhance svdte-art Long

Tail mitigation techniques. Specifically, our approach

Quality of Service (QoS) demands and business objectivesombines historical data analytics (to model task execution for
This is particularly true when provisioning applications within different applications) with online agent-based monitoring and
the Cloud computing and Big Data domain - applicationsanalytics of executing tasks (to identify stragglers caused by

which require large amounts of computing power and storaggata skew). There are two core contributions of this work:

capacity in order to process large quantities of datanin a
acceptable time frame. With the scale of systems increasing in
both physical size and complexity, providers responsible for
provisioning services are facing increasing challenges in
mitigating - in a timely manner - the effect of emergent system
behavior at scale which substartidampacts service QoS.

One such behavior is the Long Tail. This phenomena occurs
when a distributed job - composed of multiple smaller tasks
executing in parallel - incurs significant delays in completion
due to a small subset of its parallelized tasks performing much
slower than the other tasks within the same job known as
stragglers, thus impeding job completion.[Research by
both academia and industry has shown that the Long Tail
problemn imposes a significant challenge in providing timely
and predictable application completion times, which is

A timely straggler identification mechanism leveraging

both historical analysis and online agent based monitbring
analytics to identify straggler tasks in a much reduced
timeframe. Results demonstrate that our approach
identifies stragglers less than 11% into a tasks lifecycle
with a false positive rate of 1.9@

Empirical analysis of Long Tail Phenomena in two unique
real-world production Cloud systems consisting of
thousands of heterogeneous servers, demonstrating for the
first time the prevalence and impact of stragglers due to
data skew and faulty nodeSur findings demonstrate that
less than 5% and 3% of task stragglers causes 35% and
59% of total batch jobs within each system, respectively to
experience Long Tail phenomena.

becoming increasingly difficult as systems increase in scaléhe paper is structured as follows: Section 2 discusses the

and complexity.

background to the research; Section 3 presents related work;

Section 4 presents an empirical analysis of straggler impac 2671 %
. . 2493

production Cloud datacenters; Section 5 presents the sys 2318

model; Section 6 presents the experiments and evaluatior

2137
the proposed mechanism. Finally, Section 7 discuss 1959
conclusions and future work.

1781
1603
1425
1247
1069 B Reduce Phase

891
3 W Map Phase

Il. BACKGROUND

Big data analytics frameworks such as MapReduce, Dryi
Hadoop, and Sparlecompose jobs into small tasks which

are executed across a number of machines in order to ach 7.
improved performance through parallelization. While suc 179
frameworks have seen substantial success in recent years, 1
also haveheir own set of challenges. Specifically, it has bee o
established that achieving predictable execution within Clo Exeuction time (s)

computing environments is problematic due to resour Fig 1. Example of straggler occurrence causing Loaigwithin a joh
interference, scheduling and volatile network condifions][25,.

This has resulted in significant chall@sgn provisioning real- are running slower than average task execution at runtime
time QoS within current Cloud computing systems.Such an approach assumes that the speculative copy should
Furthermore, with the increased usage, system scale afyecute faster than the original straggling task, and is
application complexity, such behavior has been demonstrat&é&@mmonly deployed in many production clusters including
to be increasingly important and more common flackTls Facebook, Google, Bing, and Yahoo. In recent years there
is particularly true of Long Tail phenomena, which arise wherfiave been a number of proposed speculative execution based
these frameworks are deployed in larger-scale infrastructurélethod: LATE [2] focuses on mitigation within
Long Tail phenomena can cause poor job execution due figterogeneous environments, Mantri [9] leverages network
abnormally slow parallel tasks known as straggleks congestion characteristics as well as preferentially replicating
example of such straggler tasks is shown in Figure 1 takelie output of tasks that are more likely to be lost or expensive
from a major production Cloud datacenter (for commerciafo recompute, while GREST [11] leverages data locality of
reasons we cannot identify the name of the company). Sudiap tasks when performing speculation. Dolly [14] is
stragglers can impede a jebcompletion, as it is unable to concerned exclusively with small jobs that contain less than 10
complete until all its respective tasks are completed. Evef®sks; this characteristic enables the scheme to copy all jobs,
after applying statef-the-art straggler mitigation techniques, and ignores its impact on resource consumption. GRASS [
stragglers still execute on average eight times slower than t$es speculation between deadline bound and error bound.

medan task in a certain job, and increases the average joburthermore, [12] introduces the concept of co-workers that
duration by 47% [14]. assist with task re-execution, while MCP [13] accelerates the

. _ re-execution by choosing a suitable set of back up nodes
Stragglers can occur dee many reasons, including hardware

heterogeneity [2], resource contention, background networB. Identification and Analytics

traffic, I/0_discord [3] and OS and application-level relatedThe identification of stragglers plays an important role in
sources [fI23] A number of works focus ostraggler data speculative execution, and its effectiveness is measured by
skew categorized as either Map or Reduce skew, and furthgfientification accuracy and rapidnessiowever, current
subdivided into partitioning skew, record size skew andhpproaches will wait until a straggler has been identified from
computational skew [5][6][7]How the distribution of input online processing [2][12][13] which typically occurs late in a
dataset can cause data skew - hence introducing stragglers igfgk’s execution lifecycle. An effective meas to improve the

the system - is discussed further detailed in [8]. rapidty of straggler identification is through the use of offline

As the size of clusters and jobs continue to grow, the impact haiytics and historical data to characterize the temporal
stragglers increases dramatically. Such stragglers cdiptterns of Long Tail manifestations witharsystem for given

substantially extend job execution time, thus impacting Qo%‘a}sks.orl r:jodes. There are sev?ral appr(?aqhes th?t leverage
and potentially a consumierService Level Agreement (SLA) istorical data to support straggler speculation performance:

[9]. Even rare performance abnormalitiesan affect a SAMR [16] uses historical data to adju_st temporal Weighting_s
significant portion of all requests in large-scale distribute};‘Or each execution stage when calculating task progress, while
i

Instance Number

0 1000 2000 3000 4000 5000 6000

systems [2], and so addressing the Long Tail problem i CP [13] leverages historical data to select the most suitable
critical in o’rder to speed up job completion and improv ackup nodes for speculative tasks to run. Furthermore, there

" are methods that use historical data to proactively avoid
system efficiency. scenarios that cause stragglers: Wrangler [15] uses a s#dtistic
I1l. RELATED WORK learning technique based on cluster resource utilization
S counters, while [17] uses historical data to identify nodes
A Long Tail Mitigation which cause stragglers. While several works have attempted to
Eliminating all sources of stragglers in large-scale systems igvoid the occurrence of straggler nodes [17][24], to our
impractical, dueto system scale and increasing use of multi-knowledge no existing systemhas used historical data to
tenancy to collocate tasks within the same physical server Asgpecifically identify task stragglers.
result, a typical approach is to attempt to mitigate the impact o)
of straggling tasks occurring within a system through &e u From the related quk, itis observable that_there is need for an
of speculatn. Initially proposed in by Dean et al. [ifhis ~ @pproach that can identify stragglers as quickly and accurately
technique observes the progress of individual tasks an@s possible. This is especially the case when considering jobs
launctes speculative copies (or backup copies) for tasks thathat are time sensitive or have temporal guarantees (through

SLAs, etc). Online and offline analytics are an effective meandata mines historical system traces in order to characterize and
to achieve this; however, both face challenges when used model task execution patterns and calculates a theoretical
isolation. Firsty, the use of online analytics for identification threshold that determines the boundary of non-straggler
can occur too late in task execution, still resulting in delayetehavior for task execution at a given time interVale online

job completion times debilitating the system’s ability to analytics monitors and compares task execution at runtime
provision timely service to users. Second, offline analytics arthrough the use of agents against models created from the
predominantly applied for straggler avoidance within theoffline analytics in order to identify task straggler behavior.
system, which becomes less feasible when approachin Offline Analytics

systems at increasing scale (which can experience Long Tal i))
phenomena through numerous scenarios). Therefore, there igBe offline analytics component of our approach is
clear opportunity to integrate both online and offline analyticconceptualized within the Long Tail Analytics Engine, and is
techniques togetheto improve our ability to identify Long responsible for analyzing and modeling task behavior and
Ta” behavior in a manner that can preserve the temporé’:raggler manifestation through the use of h|st0r|Ca| ana|ySIS

guarantees within a system. Specifically, this module is responsible for modeling task
execution patterns as well as informing the online asfpr
IV. SYSTEM ARCHITECTURE identifying straggler behavior at runtim@he module is

This paper proposes a method and tool for stragglesomposed of three sub-components:

identification to support the mitigation of Long Tail ob profiler: This component is responsible for profiling and

phenomeng wiFhin large-scale dis'gributed systems with rT?ucﬁwodeling different types of jobs and task execution patterns
!mprqved timeliness. A Pha”ef‘ge in Igrge-scale SYStems 1S (Qithin the system. This is an important consideration as work
identify straggler manifestation, which can substantlallyin [19) demonstrates how tasks are capable of exhibiting

|mp|a:jctbjob eigeguttlon comgletlofn dF]'cfme' \t/\ih'le oufr da_lptp_r;atc ifferent task execution lengths and resource consumption
could be applied to a number ot difierent lypes of diStnbuteq, . oo o systemThe method of profiling job execution

systems, in this work we focus on Cloud COMPUNG,,terns is dependent on the nature of tasks within the system,
datacenters, a quem _Iarge-scale ;y_stem that contam_ expli d can be performed using a number of techniques such as
(SLAs, QoS) and implicit (energy-efficiency, user exloerlenc(':'l:lusterization, and modeling task progress execution. [18]

requirements for provisioning timely service to users. Figure 3 shows the latter approached applied to 500 Reduce
In order to achieve our objective of improving the rapidity andasks within a 50 node cluster. It is observable that the Reduce
accuracy of straggler identification, we propose an architecturghase can be divided into multiple phases [1][2] which can be
(as shown in Figure 2) composed of two primary componentgnodeled through the usef linear and non-linear regression
offline and online analytics. The offline analytics componentanalysis. Such a technique makes it possible to calculate
typical task execution progress over time for a given job

() Cloud Management
Cloud Interface
System

+
Longtail Analytics Engine . .
; Y & Longtail Analytics

VM
Manager Job Profiler Straggler Threshold H
Identifier Calculator H
Resource Service
Resource Pool Job Scheduler Job Constraints
Controller

Node 1 Node 2 Node n
L]l Job Task Job Physical Server
Master Master
Infrastructure

Task Task Task Task PY Y Task Task +

Straggler Straggler Straggler Str:.-_lggler
Analytics Agent |_Analytics Agent Analytics Agent Analytics Agent
Virtual Machine Virtual Machine Virtual Machine

Manager Manager Manager

T
Task
Process Log

Fig 2. Cloud computing model with integrated Longl &aalytics engine and agent based analytics.

profile and provide statistical models which can be integrated 08

into the online analytics agents. 074 |7+ Medin Task Progress
— - — Straggler Threshold

Straggler ldentifier: This component is responsible for 0.6
quantifying the nature and impact of stragglers within the .|
distributed system. Work in [3][7][9] have identified that there
are numerous root cause for Long Tail as discussed in Secti
2. Therefore, it is advantageous to analyze and identify th 0.3
cause of stragglers which occur historically within a system ir |
order to ascertain where developmental and mechanism effort
should be applied for maximum effectiveaes

S 041
&

Threshold Calculator: The threshold calculator is L : ; ; : ;
responsible for generating models to identify potential task 0 ! 2 } N >
stragglers This is achieved by exploiting the task executlpn Fig 4. Representation of median task progressgTand straggler
patterns and models generated from the job profiler threshold (E) at timet.

component to derive a (theoretical) minimum threshold for

o) . . 0
task progress at a certain time. Specifically, straggler threshoﬁfd .D'ff IS deﬁ_ned as task execution t|m_e 504) grea?tef than
S is defined as minimum progress of taskompleted at time median execution (a value commonly defined in the literature

tin relation to normal task progress Prog to avoid a task beirB])‘ then the straggler threskias expressed as shown in (2):

flagged as a stragglefhe difference betweengl,g and Ts at
time t is given by Diff, representing the maximum completion
difference acceptable before straggler identification, and is

expressed as a percentage configured by the provider. As demonstrated in Figure, s will equal Tprog When t is
50% greater (thus, a task is identified as a straggler when the

To give a hypothetical example,afmodel which expresses T (ime taken to reach a specific progress score at time t is greater
over periodt generated by the Job Profiler component isan 5096 compared to typical task executidiije developed
defined as shown in (1): model generated from the offline component of the system are
exploited by the online analytics at runtime to identify
stragglers.

2
Tis = 0.01+0.15- ¢ (2)

Tiprog = 0.01+ 0.15¢ 1)

1.0 -

0.8

0.6 -

0.4 1

Progress Completion

0.2 A

0.0 -

00:00:30 00:00:40 :00:00:50 [00:01:00 *.

+'00:00:00 00:00:10 : G0:00:20
P Execution time (s)

Task Progression
°

Execution time (s)

—0.29769
x—52.7007)

f(x) =0.01940 + 0.1515x f(x) = 03185 + 0.000184x f(x)=0.98967 +

1+ L-(2.20364

Fig 3. Example of converting empirical task progresgma statistical models for 50 node cluster.

B. Online Analytics V. LONGTAIL ANALYTICS IN PRODUCTIONSYSTEMS

The online analytics component is comprised ofStiaggler This section fulfils two purposes: First, an empirical analysis

Analytics Agent which resides on each individual physical of two large-scale Cloud datacenters is conducted in order to
server within the distributed system as shown in Figure 2. Thigistify the impact of stragglers within production systems.

is responsible for monitoring and analyzing task executiorsecond, this section provides a practical example how the
progress and identifying task stragglers at runtioyon task ~ Straggler Identifier component operates within the system as
scheduling onto a server, each agent will periodically monitofiScussed in Section 4. To facilitate this, we have analyzed
and extract key parameters from progress logs generated WO distinctive trace logs of Iarge-scales production Cloud

each task. Such parameters of interest includes the timestanggfecemers' The first trace log is Google’s datacenter; a

time of task instantiation, current task progress score as welY>tem composed of over 12,500 servers and milpnasks

- . . er a period of 29 days, composed by a large number of
gs ad|d|t|3na1 p_aflramtla_terglmcludmg data blocks transferred a erent types of applications. The trace log is publicly
ownload rate It applicable. available and can be found at [20he second trace log is

The online agent compares current task progress against téoud datacenter B; large-scale production e-commerce
model produced by the offline analysis derived from the Longystem containingver 1,300,000 tasks and 2,800 servers.

Tail Analytics Engine. Furthermore, the agents also comparg, order to conduct a comprehensive analysis, jobs and their
the current progress of other tasks within the same job. Th@spective tasks are filtered to fulfii a specific criteria
model derived from the offline analysis is of particular Specifically, we are particularly interested in straggler
importance, as multiple stragglers within a job will result inmanifestation within batch jobs, which is possible to derive
increased Long Tail identification time when solely comparinggiven the characteristics of the job priority, job start and
task progress scores at runtinfeTip o < Tis, as well as 50% completion time in relation to task submission and completion
smaller than the median task progression far its respective as well as resource characteristics (i.e. all tasks within a job
job, a task is identified as a straggler. Such an approach chave the same requested resources and are submitted fraction
encounter challenges in model sensitivity within the first timeof timestamps apart from each other). Through this filtering
periods due to the short Euclidian distance between progre§gteria it is possible to identify 3043 jobs comprised of
scores at the start of task execution. As a result, stragglers #e2,950 tasks within Google and 875 jobs comprised of
identified if Tprog < Tis COnsecutively n times, where in 1,223,879 tasks for Cloud datacenter B.

defined by the provider.

20 104
8 4
154
€ £ 61
Q Q
O 10 e
b4 b4
4
5 4
24
[T r 01— i
0 50 100 150 200 0 150 200
Task completion time vs. job completion (%) Task completion time vs. job completion (%)
(a) (b)
Fig 5. Google Datacenter task - job completion déifee %
(a) median, (b) mean.
18 3.5
16
3.0
14
2.5
12
£ 104 2.0
8 g £ 15
64
1.0
4
2 || I I 0.5
014 el J"I'I"‘!J- i 00l-m ‘
0 50 100 150 200 0 200 250
Task completion time vs. job completion (%) Task completion time vs. job completion (%)

@)

Fig 6. Cloud Datacenter B task - job completionetéhce %
(a) median, (b) mean.

TABLE 1. DATA SKEW STRAGGLERSIN PRODUCTION SYSTEMS 100 -

90 A
80

Google Datacenter | Cloud Datacenter B

Mean Median Mean Median g
Total tasks 252,950 1,233,879 § 70 1
Task stragglers 11,210 16,543 33,322 42,925 £
Task stragglers% | 4.43 6.54 2.70 3.48 g
Total jobs 3043 875 e
Job stragglers 1081 1150 512 433 o
Job stragglers% | 35.52 | 37.79 | 5851 | 49.49 §

Figure 5 and 6 show the mean and median completion time
an individual task in comparison to respective tasks within t
same job for Google datacenter and Cloud datacenter

respectively. It is observable tasks exhibit similar percentag ! =01 1001{\nachine1?l.)(}1 2001 2201
of completion time around 100% across both Clot 1 (a)

datacenters, with a small portion of tasks completing mu

earlier or later. Furthermore, we observe that studying 1 12

mean and median of task execution time is substantic
different, most notable for Cloud datacenter B in Figure
This is predominantly caused by extremely fast and slow ta
significantly affecting the mean value for task completion. £
a result, while existing literature use the mean execution ti
for defining task stragglers, we feel that the median ta
duration is a more sensible approach. This results in 6.5
and 3.48% of tasks to exhibit straggler behavior in Goog
datacenter and Cloud datacenter B, respectively wk
studying mean application execution

10

Stragglers per machine
(=)}

While it might be intuitive to assume such a small portion 1 1001 2001 3001 Mii?ﬁne fgm 6001 7001 8001

straggled tasks may cause limited impact on job performar (b)

it actually results in significant impact to total job completio ') i

times indicated by 37.79% and 49.49% of jobs bein Fig 7. Comparison of filtered stragglers fr(Tm ((ja) Googlectiter, (b)
o ' e " A - C tem.

straggled within each datacenter, respectively. This is a re: ronymous e-commerce ~loud system

of jobs unable to complete until all its respective task§nto MapReduce tasksApproximately 40 jobs comprised
(including stragglers) have completed execution. between 500-1000 Map tasks and 10-30 Reduce tasks were

Furthermore, the number of stragglers per server is alsgHbmitted into the cluster; eactbjwas configured to vary in
studied as shown in Figure 7(a) and 7(b) for Google datacentt§™ms of data computation, (multiplication, CEIL and FLOOR
and Cloud datacenter B, respectively. We observe that 19.9%nctions), number of JOIN clauses between data tables, and
and 99.78% of servers experience task stragglers across e type of data attributes processed. Due to the severity of

system, and while at different proportions, exhibit a similarlydat@ skew in Cloud datacenters identified in Section 5, upon
weakly skewed distribution. each submission there is a probability that the query will

invoke stragglers caused by data skew in a number of tasks
These observations indicate two points of interest. First, givewithin the Reduce phase. This probability was configured to
the available trace log data from two production Cloudpe 5%, reflecting similar values discovered in the empirical
computing datacenters, stragglers caused by data skew appaaglysis discussed in Section 5, and was dictated by invoking
to have significant impact in terms of timeliness of jobqueries which are known to cause data skew within Hive. Task
execution within the system due to frequent occurrence ditraggler behavior was defined as task completion time 50%
thousands of stragglers within the infrastructure, manifestingreater than the median task execution within a job in
Long Tail behavior in 35-59% of total jobs. Second, it appeargccordance to similar valuesported and defineth [7]. From
that node stragglers appear to have minimal impact due tbnducting initial experiments into mapping the proposed
light skew of straggler occurrence per node within the systemycientific model into a real-world implementation, the online
Such results highlights the need to study, identify and mitigatanalytic agents were configured to flag tasks exhibiting
straggler behavior caused by data skew within tasks. straggler behavior when ploy < Tis for 3 consecutive
monitoring periods, and analyze progress scored 5 seconds
after task execution has begun. Finally, online analytics agents
A Experiment Setup were configured to monitor and compare current task progress

Experiments were conducted to evaluate the effectiveness 892inst the models generated from Long Tail Analytics Engine
our method in terms of straggler identification accuracy andt @ time interval of one second.

rapidity within real systems. To facilitate thaur method was g Results

implemented and evaluated by using a 50 node clustq_r. : . .
comprised of 40 x quad-core Intel machines @ 3.40GHz cpylgure 8 dep|c_ts t_he progress of Reduce execution over time
running CentOS. This system is used concurrently by othé¥S Well as highlights the generated threshold model and
users for research and university services. The application uséfaggler identification for a given job. It is observable that
case for the system was Hivd2], a database management after 30 seconds (approximately 50% task progress), there is a
system which interfaces and translates user specified queri@gnificant difference between normal task and straggled task

VI. EVALUATION

Maximum acceptable task completion time
/

1.0- T 7 /
os- ////////7 &
5 i %7 | ’/”j
igi) 0.6 - / /(/ / /
go"}_ I IIM /
) %
0.2 1
b e
0.0

00:00:00 00:00:30 00:01:00 00:01:30 00:02:00 00:02:30
Task Execution Time (m)

Fig 8. Task Progress with Long Tail Identification Artads Engine.

progress patterns due to the input size pushed to an individubhis behavior highlights the potential issues of defining a
Reduce task becoming more distinct further into tasKixed value for Long Tail phenomena (i.e. 50% greater than
execution. Through using statistical models generated usingedian task execution completion time), as tasks which
historical data from the offline analysis in conjunction with thecomplete just under the threshold will be flagged as false
online analytic agents, it is possible to identify over 98% ofositives, however still substantially impede timely job
stragglers caused by data skew that are flagged on averagmmpletion. Such a result indicates that there is a need for a
10.91% into a task progress at runtime as shown in Table 2. more intelligent metric for defining Long Tail phenomena.
One such solution would entail transitioning away from a

Furthermore, we observe a false positive rate ©¥%.which fk(sed temporal boundary as defined in [7] to a progressive

S’Xﬁ?bﬁﬁd g?;nti?asrk prroogrreessss ;gos;gzgzgl?;:r;?a?tog;sé;aegﬂﬁgr:agaoundary relative to the distance between task progress and
g S progres . edian task completion time for straggler identification.
shown in Figure 8. This is predominantly caused by threshol

sensitivity or interference from other users exewijfobs on Finally, the online analytics agent are demonstrated to be
the same clusterThis result demonstrates the need forlightweight, indicated by CPU usage of 0.2% usage for a
refinement of any future identification techniques that ardraction of a time frame periodically for each server, and no
configured to handle potentially different sensitivity levels forindication that it has significant effect on task progress
straggler identification at different timfeames into a task’s execution depicted in Figure 8.
execution. While this result indicates high accuracy of
straggler identification, from our experiments we observe that VII. CONCLUSION
there is further refinement required for identifying trueIn this paper, we have developed a method and tool for Long
positive task straggte less than 10% into a task’s execution. Tail identification in distributed systems that for the first time
Such refinement could be achieved through tuning Diff as wefombines both offline analytics and online agent based
as data mining additional event parameters of interest frofnonitoring/analytics in order to improve the timeliness of
system logs (i.e. task process resource consumption, netwoskaggler identification This work demonstrates that our
usage, node location, efc. approach is capable of identifying task stragglers caused by
. data skew rapidly and accurately at runtime, and can be
Moreover, we observe that a minority of tasks are flagged gftegrated into statef-the-art straggler mitigation techniques
stragglers early within their execution however finishj, orger 1o enhance the temporal properties and timeliness of
relatively close to the boundary of acceptable task complet|0rj10b execution. Furthermore, we have presented an empirical

TABLE 2. STATISTICAL PROPERTIES OFDATA SKEW EXPERIMENTS analysis of two large-scale production Cloud datacenters
exemplifying the impact of stragglers caused by data skew.
Total Reduce tasks submitted 410 Such results provides key empirical insight into how job
Total stragglers submitted (%) 6.45 timeliness and performance is significantly degraded due to
True positive rate (%) 98.71 straggler occurrenc®ur conclusions are listed as follows:
" — Holistic usage of offline and online analytics is an effective
False positive rate (%) 1.59

means to identify Long Tail behavior at runtime. Through
Straggler progress detection (%) 1091 a novel approach of offline and online agent based
analytics, we demonstrate through empirical experiments

CPU usage of agent per node 0.20%

that it is possible to identify 98% of task stragglersEPSRC WRG platform project (No. EP/F057644/1), and other

approximately 11% inta task’s execution. Such results

signify that our approach is capable of identifying task
stragglers relatively early, and can substantially reduce the
time to detect straggler behavior, hence improving th

temporal properties of executing jobs when combined withy)
stateof-the-art straggler mitigation techniques.

Furthermore, our approach was demonstrated to scale to 50
physical machines whilst utilizing minimal resources due3]
to the agent based architecture, and is likely to operate
sufficiently within larger-scale systems. [4]

Data skew that occurs in a small subset of tasks
significantly impacts job completion time. Our empirical [5]
analysis of two production distributed systems composed
of thousands of nodes demonstrates that 4% and 6% (8
total task stragglers cause Long Tail behavior to manifest
within 37— 49% of total jobs, exemplifying the challenges 7
large-scale systems face. With the evolving trend o¥
computing systems growing in complexity and scale, sucls]
findings demonstrate the significant threat that Long Tail
phenomena imposes towards guaranteeing applicatio[g]
timeliness and performance within next generation
systems. This work highlights and discusses the urgent
need for research that addresses this challenge afif]
attempts to limit its impact on efficient system operation.

Challenges in straggler identification due to data skewi]
occur primarily at beginning of task execution. We
discover that there are potential challenges in detectinHZ]
straggler behavior at runtime within the very first time
periods into job execution. This is reflected in experiments
by a straggler identification false positive of approximately
2%. This is a result of task progress scores being extremel
similar at the beginning of task execution, signifying
sensitivity of identification could potentially change at [14]
different periods through a task’s execution. As a result,
while our approach is effective for identifying stragglers
11% into task execution, refinement is required in order t 15]
achieve straggler identification within the first few seconds

of task execution.

EPSRC and RC grants.

References

JDean, S. Ghemawat, "MapReduce: Simplified Data Proagssm
Large Clusters”, Communications of the ACM 51.1,1§¥-113, 2008.
M.Zaharia, A. Konwinski, A.D. Joseph, R. Katz, |08, "Improving
MapReduce Performance in Heterogeneous Environment®toin of
the 8th USENIX conference on Operating systems design and
implementation (ODSI), pp 29-42, 2008.

J. Dean,L. A. Barroso "The Tail at Scale." Communications of the
ACM 56.2, pp.74-80, 2013.

J.Li, N. K. Sharma, D. R. K. Ports, S. D. Gribble, [8sof the Tail:
Hardware, OS, and Application-level Sources of Tatency." ACM
Symposium on Cloud Computing (SOCC), 2014.

Y. Kwon, M. Balazinska, B. Howe, J. RoliaA"Study of Skew in
MapReduce Applications." Open Cirrus Summit, 2011.

Y. Kwon, M. Balazinska, B. Howe, J. Rolia, "Skew&unMitigating
Skew in Mapreduce Applications." in Proc. of ACM GBIOD
International Conference on Management of Data2p86, 2012.

J. Rosen, B. Zhao. "Fine-Grained MicFasks for MapReduce Skew-
Handling.; White Paper, University of Berkeley, 2012.

J. Lin, "The Curse of zipf and Limits to Parallelizatigh look at the
Stragglers Problem in Mapreduce." In Proc. of 7th k§bop on Large-
Scale Distributed Systems for Information Retrieval,.\19I2009.

G. Ananthanarayanan, et al. "Refining in the Ordlim Map-Reduce
Clusters using Mantri." in Proc. of USENIX conferenge ©perating
systems design and implementation (ODSI) 1@l 2010.

G. Ananthanarayanan, et al. "GRASS: Trimming Stegglin
Approximation Analytics." in Proc. of 11th USENIX Confape on
Networked Systems Design and Implementation, pp. 28928012,

L. Lei, T. Wo, C.Hu, "CREST: Towards Fast Speculation of Straggler
Tasks in MapReduce." in Proaf IEEE &h International Conference on
e-Business Engineering (ICEBE), pp. 311-316, 2011.

S.W. Huang, T.C. Huang, S.R. Lyu, C.K. Shieh, YC8ou, "Improving
Speculative Execution Performance with Coworker forou@l
Computing." In Proc. of 17th IEEMternational Conference on Parallel
and Distributed Systems (ICPADS), pp. 1004-1Ga 1.

] Q. Chen,C. Qi, X. Zhen "Improving MapReduce Performance using

Smart Speculative Execution Strategy.”, in Proc. of |IEE&n3actions
on Computers, Issue No. 4, pp. 954-967,2013.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, |.Stoil&dfective
Straggler Mitigation: Attack of the Clones." In Proof the 10th
USENIX conference on Networked Systems Design and Impletiem
(NSDI). Vol. 13, pp. 185-198, 2013.

N.J. Yadwadkar, G. Ananthanarayanan, R. Katz, "WeanBredictable
and Faster Jobs using Fewer Resources." in Proc. of theé AC
Symposium on Cloud Computing, pp14;2014.

Fut Kk includ int ti f h int [16] Q. Chen, D. Zhang, M. Guo, Q. Deng, "SAMR: A Selaptive
uture WOork Includes ntegration of our approach N0 ~ \apreduce Scheduling Algorithm in Heterogeneous Bnwirent.” i
established Long Tail mitigation techniques including Proc. of IEEE 10th International Conferience on Compuaed

Information Technology (CIT), pp. 2736-2743, 2010.

N.J. Yadwadkar,W. Choi. "Proactive Straggler Avoidance using
Machine Learning.", White paper, University of Bdeyg 2012.

I.S. Moreno, P. Garraghan, P. Townend, J. Xu,'An Approach for
Characterizing Workloads in Google Cloud to Derive Realistic Resource
Utilization Models" in Proc. of IEEE International Symposium of
Service-Oriented System Engineering (SOSE), pp. 42@I(B.

] I. Solis Moreno, P. Garraghan, P. Townend, J. Xu lysis, Modeling
and Simulation of Workloadatterns in a Large-Scale Utility Cloud",
IEEE Transactions on Cloud Computing, vol.2, no.2, pp.208-221, 2014.
Google. Google Cluster Data V2. Available:
http://code.google.com/p/googleclusterdata/wiki/Cli3téa2011_1

C. Reiss, J. Wilkes, "Google Cluster-Usage Traces: Format and
Schema," Google Inc., White Paper, 2011.

A. Thusoo, et al. "Hive: a Warehousing Solution oveMapReduce
Framework.", Processing of VLDB Endowment, Vol. 2, IsQjepp
1626-1629, 2009.

M. Garcia-Valls, T. Cucinotta, CLu, "Challenges in Real-time
Virtualization andPredictable Cloud Computing.” Journal of Systems
Architecture 60, pfg26-740, 2014.

Y.Xu, Z. Musgrave, B. Noble, M. Bailey. "Bobtail: Awbng Long Tails
in the Cloud." in Proc. of 10th USENIX conference Networked
Systems Design and Implementation, pp. 328-2015.

speculative speculation and similar techniques to discover
whether we can achieve substantial gains in job completioft’]
timeliness and system QoS. Furthermore, while data skew h
been demonstrated to significantly affect temporal behavior o
jobs, there exist other causes of Long Tail phenomena
including performance interference and garbage collection
Therefore, there is an opportunity to extend our approac :
allowing it to identify different causes of stragglers at runtime
Finally, current definition of stragglers are indicated by[20]
completion times greater than 50% of the mean task
execution; such a definition restricts the usefulness fol?!]
subsequent Long Tail identification and mitigation for task 22]
which complete prior to this (i.e. 145 - 149%). As a result, we
plan to develop a more effective straggler identification model
which factors in task completion times within the context ofl23]
job QoS specified by a user or provider.

Acknowledgments [24]

The work is supported in part by the National Basic Research
Program of China (973) (N0.2011CB302602), the U.K.

