
Timely Long Tail Identification Through Agent Based
Monitoring and Analytics
Peter Garraghan, Xue Ouyang, Paul Townend, Jie Xu

School of Computing
University of Leeds

Leeds, UK
{p.m.garraghan, scxo, p.m.townend, j.xu} @ leeds.ac.uk

Abstract—The increasing complexity and scale of distributed
systems has resulted in the manifestation of emergent behavior
which substantially affects overall system performance. A
significant emergent property is that of the “Long Tail”, whereby
a small proportion of task stragglers significantly impact job
execution completion times. To mitigate such behavior, straggling
tasks occurring within the system need to be accurately identified
in a timely manner. However, current approaches focus on
mitigation rather than identification, which typically identify
stragglers too late in the execution lifecycle. This paper presents a
method and tool to identify Long Tail behavior within distributed
systems in a timely manner, through a combination of online and
offline analytics. This is achieved through historical analysis to
profile and model task execution patterns, which then inform
online analytic agents that monitor task execution at runtime.
Furthermore, we provide an empirical analysis of two large-scale
production Cloud datacenters that demonstrate the challenge of
data skew within modern distributed systems; this analysis shows
that approximately 5% of task stragglers caused by data skew
impact 50% of the total jobs for batch processes. Our results
demonstrate that our approach is capable of identifying task
stragglers less than 11% into their execution lifecycle with 98%
accuracy, signifying significant improvement over current state-
of-the-art practice and enables far more effective mitigation
strategies in large-scale distributed systems worldwide.

Keywords—Long Tail, Stragglers, Distributed Systems, Data
analysis, agent based, datacenter, Cloud computing

I. INTRODUCTION

Modern day services typically leverage interconnected
distributed systems globally in order to fulfil consumer
Quality of Service (QoS) demands and business objectives.
This is particularly true when provisioning applications within
the Cloud computing and Big Data domain - applications
which require large amounts of computing power and storage
capacity in order to process large quantities of data in an
acceptable time frame. With the scale of systems increasing in
both physical size and complexity, providers responsible for
provisioning services are facing increasing challenges in
mitigating - in a timely manner - the effect of emergent system
behavior at scale which substantially impacts service QoS.

One such behavior is the Long Tail. This phenomena occurs
when a distributed job - composed of multiple smaller tasks
executing in parallel - incurs significant delays in completion
due to a small subset of its parallelized tasks performing much
slower than the other tasks within the same job known as
stragglers, thus impeding job completion [2]. Research by
both academia and industry has shown that the Long Tail
problem imposes a significant challenge in providing timely
and predictable application completion times, which is
becoming increasingly difficult as systems increase in scale
and complexity.

There have been a number of recent works that attempt to
mitigate the effect of the Long Tail at runtime. These
approaches primarily use speculative execution methods that
leverage redundant computation [12][14], network congestion
[9], and data locality [13]. While such works have been
demonstrated to reduce the impact of the Long Tail, a
universal challenge is the ability to identify potential straggler
behavior as quickly as possible in order to mitigate Long Tail
effects without breaching QoS time constraints. A common
assumption is that all stragglers can be accurately identified
within the system; in practice, this is challenging when
considering the different task computation patterns within a
system, as well as the requirement to identify stragglers in the
shortest time frame. Furthermore, it has been identified in [16]
that historical data of task execution can be leveraged as an
effective means to calculate task progress, to allow for
speculative task execution, and to avoid faulty nodes [17].
However, this work is not designed to identify and mitigate
task straggler occurrence within system.

From studying both straggler mitigation mechanisms and
offline analysis of task execution, there is a clear gap in the
literature when it comes to combining both online and offline
analytics of task execution together to identify straggler
behavior within the least amount of time.

This paper proposes a model and implementation for
automated analytic-driven Long Tail identification in
distributed systems in order to enhance state-of-the-art Long
Tail mitigation techniques. Specifically, our approach
combines historical data analytics (to model task execution for
different applications) with online agent-based monitoring and
analytics of executing tasks (to identify stragglers caused by
data skew). There are two core contributions of this work:

– A timely straggler identification mechanism leveraging
both historical analysis and online agent based monitoring/
analytics to identify straggler tasks in a much reduced
timeframe. Results demonstrate that our approach
identifies stragglers less than 11% into a tasks lifecycle
with a false positive rate of 1.59%.

– Empirical analysis of Long Tail Phenomena in two unique
real-world production Cloud systems consisting of
thousands of heterogeneous servers, demonstrating for the
first time the prevalence and impact of stragglers due to
data skew and faulty nodes. Our findings demonstrate that
less than 5% and 3% of task stragglers causes 35% and
59% of total batch jobs within each system, respectively to
experience Long Tail phenomena.

The paper is structured as follows: Section 2 discusses the
background to the research; Section 3 presents related work;

Section 4 presents an empirical analysis of straggler impact in
production Cloud datacenters; Section 5 presents the system
model; Section 6 presents the experiments and evaluation of
the proposed mechanism. Finally, Section 7 discusses
conclusions and future work.

II. BACKGROUND

Big data analytics frameworks such as MapReduce, Dryad,
Hadoop, and Spark decompose jobs into smaller tasks which
are executed across a number of machines in order to achieve
improved performance through parallelization. While such
frameworks have seen substantial success in recent years, they
also have their own set of challenges. Specifically, it has been
established that achieving predictable execution within Cloud
computing environments is problematic due to resource
interference, scheduling and volatile network conditions [23].
This has resulted in significant challenges in provisioning real-
time QoS within current Cloud computing systems.
Furthermore, with the increased usage, system scale and
application complexity, such behavior has been demonstrated
to be increasingly important and more common place [3]. This
is particularly true of Long Tail phenomena, which arise when
these frameworks are deployed in larger-scale infrastructure.
Long Tail phenomena can cause poor job execution due to
abnormally slow parallel tasks known as stragglers. An
example of such straggler tasks is shown in Figure 1 taken
from a major production Cloud datacenter (for commercial
reasons we cannot identify the name of the company). Such
stragglers can impede a job’s completion, as it is unable to
complete until all its respective tasks are completed. Even
after applying state-of-the-art straggler mitigation techniques,
stragglers still execute on average eight times slower than the
median task in a certain job, and increases the average job
duration by 47% [14].

Stragglers can occur due to many reasons, including hardware
heterogeneity [2], resource contention, background network
traffic, I/O discord [3] and OS and application-level related
sources [4][23]. A number of works focus on straggler data
skew, categorized as either Map or Reduce skew, and further
subdivided into partitioning skew, record size skew and
computational skew [5][6][7]. How the distribution of input
dataset can cause data skew - hence introducing stragglers into
the system - is discussed further detailed in [8].

As the size of clusters and jobs continue to grow, the impact of
stragglers increases dramatically. Such stragglers can
substantially extend job execution time, thus impacting QoS
and potentially a consumer’s Service Level Agreement (SLA)
[9]. Even rare performance abnormalities can affect a
significant portion of all requests in large-scale distributed
systems [2], and so addressing the Long Tail problem is
critical in order to speed up job completion and improve
system efficiency.

III. RELATED WORK

A. Long Tail Mitigation

Eliminating all sources of stragglers in large-scale systems is
impractical, due to system scale and increasing use of multi-
tenancy to collocate tasks within the same physical server As a
result, a typical approach is to attempt to mitigate the impact
of straggling tasks occurring within a system through the use
of speculation. Initially proposed in by Dean et al. [1], this
technique observes the progress of individual tasks and
launches speculative copies (or backup copies) for tasks that

are running slower than average task execution at runtime.
Such an approach assumes that the speculative copy should
execute faster than the original straggling task, and is
commonly deployed in many production clusters including
Facebook, Google, Bing, and Yahoo. In recent years there
have been a number of proposed speculative execution based
methods: LATE [2] focuses on mitigation within
heterogeneous environments, Mantri [9] leverages network
congestion characteristics as well as preferentially replicating
the output of tasks that are more likely to be lost or expensive
to recompute, while GREST [11] leverages data locality of
Map tasks when performing speculation. Dolly [14] is
concerned exclusively with small jobs that contain less than 10
tasks; this characteristic enables the scheme to copy all jobs,
and ignores its impact on resource consumption. GRASS [10]
uses speculation between deadline bound and error bound.
Furthermore, [12] introduces the concept of co-workers that
assist with task re-execution, while MCP [13] accelerates the
re-execution by choosing a suitable set of back up nodes.

B. Identification and Analytics

The identification of stragglers plays an important role in
speculative execution, and its effectiveness is measured by
identification accuracy and rapidness. However, current
approaches will wait until a straggler has been identified from
online processing [2][12][13] which typically occurs late in a
task’s execution lifecycle. An effective means to improve the
rapidity of straggler identification is through the use of offline
analytics and historical data to characterize the temporal
patterns of Long Tail manifestations within a system for given
tasks or nodes. There are several approaches that leverage
historical data to support straggler speculation performance:
SAMR [16] uses historical data to adjust temporal weightings
for each execution stage when calculating task progress, while
MCP [13] leverages historical data to select the most suitable
backup nodes for speculative tasks to run. Furthermore, there
are methods that use historical data to proactively avoid
scenarios that cause stragglers: Wrangler [15] uses a statistical
learning technique based on cluster resource utilization
counters, while [17] uses historical data to identify nodes
which cause stragglers. While several works have attempted to
avoid the occurrence of straggler nodes [17][24], to our
knowledge, no existing system has used historical data to
specifically identify task stragglers.

From the related work, it is observable that there is need for an
approach that can identify stragglers as quickly and accurately
as possible. This is especially the case when considering jobs
that are time sensitive or have temporal guarantees (through

Fig 1. Example of straggler occurrence causing Long Tail within a job.

SLAs, etc). Online and offline analytics are an effective means
to achieve this; however, both face challenges when used in
isolation. Firstly, the use of online analytics for identification
can occur too late in task execution, still resulting in delayed
job completion times, debilitating the system’s ability to
provision timely service to users. Second, offline analytics are
predominantly applied for straggler avoidance within the
system, which becomes less feasible when approaching
systems at increasing scale (which can experience Long Tail
phenomena through numerous scenarios). Therefore, there is a
clear opportunity to integrate both online and offline analytic
techniques together to improve our ability to identify Long
Tail behavior in a manner that can preserve the temporal
guarantees within a system.

IV. SYSTEM ARCHITECTURE

This paper proposes a method and tool for straggler
identification to support the mitigation of Long Tail
phenomena within large-scale distributed systems with much
improved timeliness. A challenge in large-scale systems is to
identify straggler manifestation, which can substantially
impact job execution completion time. While our approach
could be applied to a number of different types of distributed
systems, in this work we focus on Cloud computing
datacenters, a modern large-scale system that contain explicit
(SLAs, QoS) and implicit (energy-efficiency, user experience)
requirements for provisioning timely service to users.

In order to achieve our objective of improving the rapidity and
accuracy of straggler identification, we propose an architecture
(as shown in Figure 2) composed of two primary components:
offline and online analytics. The offline analytics component

data mines historical system traces in order to characterize and
model task execution patterns and calculates a theoretical
threshold that determines the boundary of non-straggler
behavior for task execution at a given time interval. The online
analytics monitors and compares task execution at runtime
through the use of agents against models created from the
offline analytics in order to identify task straggler behavior.

A. Offline Analytics

The offline analytics component of our approach is
conceptualized within the Long Tail Analytics Engine, and is
responsible for analyzing and modeling task behavior and
straggler manifestation through the use of historical analysis.
Specifically, this module is responsible for modeling task
execution patterns as well as informing the online analysis for
identifying straggler behavior at runtime. The module is
composed of three sub-components:

Job profiler: This component is responsible for profiling and
modeling different types of jobs and task execution patterns
within the system. This is an important consideration as work
in [19] demonstrates how tasks are capable of exhibiting
different task execution lengths and resource consumption
across a system. The method of profiling job execution
patterns is dependent on the nature of tasks within the system,
and can be performed using a number of techniques such as
clusterization, and modeling task progress execution [18].
Figure 3 shows the latter approached applied to 500 Reduce
tasks within a 50 node cluster. It is observable that the Reduce
phase can be divided into multiple phases [1][2] which can be
modeled through the use of linear and non-linear regression
analysis. Such a technique makes it possible to calculate
typical task execution progress over time for a given job

Fig 2. Cloud computing model with integrated Long Tail analytics engine and agent based analytics.

profile and provide statistical models which can be integrated
into the online analytics agents.

Straggler Identifier: This component is responsible for
quantifying the nature and impact of stragglers within the
distributed system. Work in [3][7][9] have identified that there
are numerous root cause for Long Tail as discussed in Section
2. Therefore, it is advantageous to analyze and identify the
cause of stragglers which occur historically within a system in
order to ascertain where developmental and mechanism effort
should be applied for maximum effectiveness.

Threshold Calculator: The threshold calculator is
responsible for generating models to identify potential task
stragglers. This is achieved by exploiting the task execution
patterns and models generated from the job profiler
component to derive a (theoretical) minimum threshold for
task progress at a certain time. Specifically, straggler threshold
S is defined as minimum progress of task Ti completed at time
t in relation to normal task progress Prog to avoid a task being
flagged as a straggler. The difference between TiProg and TiS at
time t is given by Diff, representing the maximum completion
difference acceptable before straggler identification, and is
expressed as a percentage configured by the provider.

To give a hypothetical example, if a model which expresses Ti
over period t generated by the Job Profiler component is
defined as shown in (1):

and Diff is defined as task execution time 50% greater than
median execution (a value commonly defined in the literature
[7]), then the straggler threshold is expressed as shown in (2):

As demonstrated in Figure 4, TiS will equal TiProg when t is
50% greater (thus, a task is identified as a straggler when the
time taken to reach a specific progress score at time t is greater
than 50% compared to typical task execution). The developed
model generated from the offline component of the system are
exploited by the online analytics at runtime to identify
stragglers.

543210

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

t

P
ro

g

Median Task Progress

Straggler Threshold

Fig 4. Representation of median task progress (TiProg) and straggler
threshold (TiS) at time t.

P
ro

g

(1)

(2)

00:01:0000:00:5000:00:4000:00:3000:00:2000:00:1000:00:00

1.0

0.8

0.6

0.4

0.2

0.0

Execution time (s)

Pr
og

re
ss

 C
om

pl
et

io
n

6560555045

1.00

0.95

0.90

0.85

0.80

0.75

0.70

Execution time (s)

T
a

s
k
 P

ro
g

re
s
s
io

n

20151050

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Execution time (s)

T
a

s
k
 P

ro
g

re
s
s
io

n

454035302520

0.40

0.35

0.30

0.25

0.20

Execution time (s)

T
a

s
k
 P

ro
g

re
s
s
io

n

Fig 3. Example of converting empirical task progression into statistical models for 50 node cluster.

B. Online Analytics

The online analytics component is comprised of the Straggler
Analytics Agent which resides on each individual physical
server within the distributed system as shown in Figure 2. This
is responsible for monitoring and analyzing task execution
progress and identifying task stragglers at runtime. Upon task
scheduling onto a server, each agent will periodically monitor
and extract key parameters from progress logs generated by
each task. Such parameters of interest includes the timestamp,
time of task instantiation, current task progress score as well
as additional parameters including data blocks transferred and
download rate if applicable.

The online agent compares current task progress against the
model produced by the offline analysis derived from the Long
Tail Analytics Engine. Furthermore, the agents also compare
the current progress of other tasks within the same job. The
model derived from the offline analysis is of particular
importance, as multiple stragglers within a job will result in
increased Long Tail identification time when solely comparing
task progress scores at runtime. If TiProg < TiS, as well as 50%
smaller than the median task progression at ti for its respective
job, a task is identified as a straggler. Such an approach can
encounter challenges in model sensitivity within the first time
periods due to the short Euclidian distance between progress
scores at the start of task execution. As a result, stragglers are
identified if TiProg < TiS consecutively n times, where n is
defined by the provider.

V. LONG TAIL ANALYTICS IN PRODUCTION SYSTEMS

This section fulfils two purposes: First, an empirical analysis
of two large-scale Cloud datacenters is conducted in order to
justify the impact of stragglers within production systems.
Second, this section provides a practical example how the
Straggler Identifier component operates within the system as
discussed in Section 4. To facilitate this, we have analyzed
two distinctive trace logs of large-scale production Cloud
datecenters. The first trace log is Google’s datacenter; a
system composed of over 12,500 servers and millions of tasks
over a period of 29 days, composed by a large number of
different types of applications. The trace log is publicly
available and can be found at [20]. The second trace log is
Cloud datacenter B; large-scale production e-commerce
system containing over 1,300,000 tasks and 2,800 servers.

In order to conduct a comprehensive analysis, jobs and their
respective tasks are filtered to fulfil a specific criteria:
Specifically, we are particularly interested in straggler
manifestation within batch jobs, which is possible to derive
given the characteristics of the job priority, job start and
completion time in relation to task submission and completion,
as well as resource characteristics (i.e. all tasks within a job
have the same requested resources and are submitted fraction
of timestamps apart from each other). Through this filtering
criteria it is possible to identify 3043 jobs comprised of
252,950 tasks within Google and 875 jobs comprised of
1,223,879 tasks for Cloud datacenter B.

200150100500

20

15

10

5

0

Task completion time vs. job completion (%)

P
e

rc
e

n
t

200150100500

10

8

6

4

2

0

Task completion time vs. job completion (%)

P
e

rc
e

n
t

Fig 5. Google Datacenter task - job completion difference %

 (a) median, (b) mean.

200150100500

18

16

14

12

10

8

6

4

2

0

Task completion time vs. job completion (%)

P
e

rc
e

n
t

250200150100500

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

Task completion time vs. job completion (%)

P
e

rc
e

n
t

Fig 6. Cloud Datacenter B task - job completion difference %
(a) median, (b) mean.

.

(a) (b)

(a) (b)

Figure 5 and 6 show the mean and median completion time of
an individual task in comparison to respective tasks within the
same job for Google datacenter and Cloud datacenter B,
respectively. It is observable tasks exhibit similar percentages
of completion time around 100% across both Cloud
datacenters, with a small portion of tasks completing much
earlier or later. Furthermore, we observe that studying the
mean and median of task execution time is substantially
different, most notable for Cloud datacenter B in Figure 6.
This is predominantly caused by extremely fast and slow tasks
significantly affecting the mean value for task completion. As
a result, while existing literature use the mean execution time
for defining task stragglers, we feel that the median task
duration is a more sensible approach. This results in 6.54%
and 3.48% of tasks to exhibit straggler behavior in Google
datacenter and Cloud datacenter B, respectively when
studying mean application execution.

While it might be intuitive to assume such a small portion of
straggled tasks may cause limited impact on job performance,
it actually results in significant impact to total job completion
times, indicated by 37.79% and 49.49% of jobs being
straggled within each datacenter, respectively. This is a result
of jobs unable to complete until all its respective tasks
(including stragglers) have completed execution.

Furthermore, the number of stragglers per server is also
studied as shown in Figure 7(a) and 7(b) for Google datacenter
and Cloud datacenter B, respectively. We observe that 19.9%
and 99.78% of servers experience task stragglers across each
system, and while at different proportions, exhibit a similarly
weakly skewed distribution.

These observations indicate two points of interest. First, given
the available trace log data from two production Cloud
computing datacenters, stragglers caused by data skew appear
to have significant impact in terms of timeliness of job
execution within the system due to frequent occurrence of
thousands of stragglers within the infrastructure, manifesting
Long Tail behavior in 35-59% of total jobs. Second, it appears
that node stragglers appear to have minimal impact due to
light skew of straggler occurrence per node within the system.
Such results highlights the need to study, identify and mitigate
straggler behavior caused by data skew within tasks.

VI. EVALUATION

A. Experiment Setup

Experiments were conducted to evaluate the effectiveness of
our method in terms of straggler identification accuracy and
rapidity within real systems. To facilitate this, our method was
implemented and evaluated by using a 50 node cluster
comprised of 40 x quad-core Intel machines @ 3.40GHz CPU
running CentOS. This system is used concurrently by other
users for research and university services. The application use
case for the system was Hive [22], a database management
system which interfaces and translates user specified queries

into MapReduce tasks. Approximately 40 jobs comprised
between 500-1000 Map tasks and 10-30 Reduce tasks were
submitted into the cluster; each job was configured to vary in
terms of data computation, (multiplication, CEIL and FLOOR
functions), number of JOIN clauses between data tables, and
the type of data attributes processed. Due to the severity of
data skew in Cloud datacenters identified in Section 5, upon
each submission there is a probability that the query will
invoke stragglers caused by data skew in a number of tasks
within the Reduce phase. This probability was configured to
be 5%, reflecting similar values discovered in the empirical
analysis discussed in Section 5, and was dictated by invoking
queries which are known to cause data skew within Hive. Task
straggler behavior was defined as task completion time 50%
greater than the median task execution within a job in
accordance to similar values reported and defined in [7]. From
conducting initial experiments into mapping the proposed
scientific model into a real-world implementation, the online
analytic agents were configured to flag tasks exhibiting
straggler behavior when TiProg < TiS for 3 consecutive
monitoring periods, and analyze progress scored 5 seconds
after task execution has begun. Finally, online analytics agents
were configured to monitor and compare current task progress
against the models generated from Long Tail Analytics Engine
at a time interval of one second.

B. Results

Figure 8 depicts the progress of Reduce execution over time,
as well as highlights the generated threshold model and
straggler identification for a given job. It is observable that
after 30 seconds (approximately 50% task progress), there is a
significant difference between normal task and straggled task

TABLE 1. DATA SKEW STRAGGLERS IN PRODUCTION SYSTEMS.

Google Datacenter Cloud Datacenter B

Mean Median Mean Median

 Total tasks 252,950 1,233,879

 Task stragglers 11,210 16,543 33,322 42,925

 Task stragglers % 4.43 6.54 2.70 3.48

 Total jobs 3043 875

 Job stragglers 1081 1150 512 433

 Job stragglers % 35.52 37.79 58.51 49.49

Fig 7. Comparison of filtered stragglers from (a) Google datacenter, (b)
Anonymous e-commerce Cloud system.

(a)

(b)

progress patterns due to the input size pushed to an individual
Reduce task becoming more distinct further into task
execution. Through using statistical models generated using
historical data from the offline analysis in conjunction with the
online analytic agents, it is possible to identify over 98% of
stragglers caused by data skew that are flagged on average
10.91% into a task's progress at runtime as shown in Table 2.

Furthermore, we observe a false positive rate of 1.59% which
is caused by task progress of straggler and non-straggler tasks
exhibiting similar progress scores at the start of execution as
shown in Figure 8. This is predominantly caused by threshold
sensitivity or interference from other users executing jobs on
the same cluster. This result demonstrates the need for
refinement of any future identification techniques that are
configured to handle potentially different sensitivity levels for
straggler identification at different time frames into a task’s
execution. While this result indicates high accuracy of
straggler identification, from our experiments we observe that
there is further refinement required for identifying true
positive task stragglers less than 10% into a task’s execution.
Such refinement could be achieved through tuning Diff as well
as data mining additional event parameters of interest from
system logs (i.e. task process resource consumption, network
usage, node location, etc.).

Moreover, we observe that a minority of tasks are flagged as
stragglers early within their execution however finish
relatively close to the boundary of acceptable task completion.

This behavior highlights the potential issues of defining a
fixed value for Long Tail phenomena (i.e. 50% greater than
median task execution completion time), as tasks which
complete just under the threshold will be flagged as false
positives, however still substantially impede timely job
completion. Such a result indicates that there is a need for a
more intelligent metric for defining Long Tail phenomena.
One such solution would entail transitioning away from a
fixed temporal boundary as defined in [7] to a progressive
boundary relative to the distance between task progress and
median task completion time for straggler identification.

Finally, the online analytics agent are demonstrated to be
lightweight, indicated by CPU usage of 0.2% usage for a
fraction of a time frame periodically for each server, and no
indication that it has significant effect on task progress
execution depicted in Figure 8.

VII. CONCLUSION

In this paper, we have developed a method and tool for Long
Tail identification in distributed systems that for the first time
combines both offline analytics and online agent based
monitoring/analytics in order to improve the timeliness of
straggler identification. This work demonstrates that our
approach is capable of identifying task stragglers caused by
data skew rapidly and accurately at runtime, and can be
integrated into state-of-the-art straggler mitigation techniques
in order to enhance the temporal properties and timeliness of
job execution. Furthermore, we have presented an empirical
analysis of two large-scale production Cloud datacenters
exemplifying the impact of stragglers caused by data skew.
Such results provides key empirical insight into how job
timeliness and performance is significantly degraded due to
straggler occurrence. Our conclusions are listed as follows:

– Holistic usage of offline and online analytics is an effective
means to identify Long Tail behavior at runtime. Through
a novel approach of offline and online agent based
analytics, we demonstrate through empirical experiments

TABLE 2. STATISTICAL PROPERTIES OF DATA SKEW EXPERIMENTS.

 Total Reduce tasks submitted 410

 Total stragglers submitted (%) 6.45

 True positive rate (%) 98.71

 False positive rate (%) 1.59

 Straggler progress detection (%) 10.91

 CPU usage of agent per node 0.20%

00:02:3000:02:0000:01:3000:01:0000:00:3000:00:00

1.0

0.8

0.6

0.4

0.2

0.0

Task Execution Time (m)

P
ro

gr
es

s
C

om
pl

et
io

n

Fig 8. Task Progress with Long Tail Identification Analytics Engine.

Straggler threshold

(TiProg < TiS)

Maximum acceptable task completion time

that it is possible to identify 98% of task stragglers
approximately 11% into a task’s execution. Such results
signify that our approach is capable of identifying task
stragglers relatively early, and can substantially reduce the
time to detect straggler behavior, hence improving the
temporal properties of executing jobs when combined with
state-of-the-art straggler mitigation techniques.
Furthermore, our approach was demonstrated to scale to 50
physical machines whilst utilizing minimal resources due
to the agent based architecture, and is likely to operate
sufficiently within larger-scale systems.

– Data skew that occurs in a small subset of tasks
significantly impacts job completion time. Our empirical
analysis of two production distributed systems composed
of thousands of nodes demonstrates that 4% and 6% of
total task stragglers cause Long Tail behavior to manifest
within 37 – 49% of total jobs, exemplifying the challenges
large-scale systems face. With the evolving trend of
computing systems growing in complexity and scale, such
findings demonstrate the significant threat that Long Tail
phenomena imposes towards guaranteeing application
timeliness and performance within next generation
systems. This work highlights and discusses the urgent
need for research that addresses this challenge and
attempts to limit its impact on efficient system operation.

– Challenges in straggler identification due to data skew
occur primarily at beginning of task execution. We
discover that there are potential challenges in detecting
straggler behavior at runtime within the very first time
periods into job execution. This is reflected in experiments
by a straggler identification false positive of approximately
2%. This is a result of task progress scores being extremely
similar at the beginning of task execution, signifying
sensitivity of identification could potentially change at
different periods through a task’s execution. As a result,
while our approach is effective for identifying stragglers
11% into task execution, refinement is required in order to
achieve straggler identification within the first few seconds
of task execution.

Future work includes integration of our approach into
established Long Tail mitigation techniques including
speculative speculation and similar techniques to discover
whether we can achieve substantial gains in job completion
timeliness and system QoS. Furthermore, while data skew has
been demonstrated to significantly affect temporal behavior of
jobs, there exist other causes of Long Tail phenomena
including performance interference and garbage collection.
Therefore, there is an opportunity to extend our approach
allowing it to identify different causes of stragglers at runtime.
Finally, current definition of stragglers are indicated by
completion times greater than 50% of the mean task
execution; such a definition restricts the usefulness for
subsequent Long Tail identification and mitigation for tasks
which complete prior to this (i.e. 145 - 149%). As a result, we
plan to develop a more effective straggler identification model
which factors in task completion times within the context of
job QoS specified by a user or provider.

Acknowledgments

The work is supported in part by the National Basic Research
Program of China (973) (No.2011CB302602), the U.K.

EPSRC WRG platform project (No. EP/F057644/1), and other
EPSRC and RC grants.

References
[1] J.Dean, S. Ghemawat, "MapReduce: Simplified Data Processing on

Large Clusters", Communications of the ACM 51.1, pp. 107-113, 2008.
[2] M.Zaharia, A. Konwinski, A.D. Joseph, R. Katz, I. Stoica, "Improving

MapReduce Performance in Heterogeneous Environments." in Proc. of
the 8th USENIX conference on Operating systems design and
implementation (ODSI), pp 29-42, 2008.

[3] J. Dean, L. A. Barroso, "The Tail at Scale." Communications of the
ACM 56.2, pp.74-80, 2013.

[4] J. Li, N. K. Sharma, D. R. K. Ports, S. D. Gribble, "Tales of the Tail:
Hardware, OS, and Application-level Sources of Tail Latency." ACM
Symposium on Cloud Computing (SOCC), 2014.

[5] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, "A Study of Skew in
MapReduce Applications." Open Cirrus Summit, 2011.

[6] Y. Kwon, M. Balazinska, B. Howe, J. Rolia, "Skewtune: Mitigating
Skew in Mapreduce Applications." in Proc. of ACM SIGMOD
International Conference on Management of Data, pp. 25-36, 2012.

[7] J. Rosen, B. Zhao. "Fine-Grained Micro-Tasks for MapReduce Skew-
Handling.", White Paper, University of Berkeley, 2012.

[8] J. Lin, "The Curse of zipf and Limits to Parallelization: A look at the
Stragglers Problem in Mapreduce." In Proc. of 7th Workshop on Large-
Scale Distributed Systems for Information Retrieval, Vol. 1, 2009.

[9] G. Ananthanarayanan, et al. "Refining in the Outliers in Map-Reduce
Clusters using Mantri." in Proc. of USENIX conference on Operating
systems design and implementation (ODSI) Vol 10, 2010.

[10] G. Ananthanarayanan, et al. "GRASS: Trimming Stragglers in
Approximation Analytics." in Proc. of 11th USENIX Conference on
Networked Systems Design and Implementation, pp. 289-302, 2014.

[11] L. Lei, T. Wo, C. Hu, "CREST: Towards Fast Speculation of Straggler
Tasks in MapReduce." in Proc. of IEEE 8th International Conference on
e-Business Engineering (ICEBE), pp. 311-316, 2011.

[12] S.W. Huang, T.C. Huang, S.R. Lyu, C.K. Shieh, Y.S. Chou, "Improving
Speculative Execution Performance with Coworker for Cloud
Computing." In Proc. of 17th IEEE International Conference on Parallel
and Distributed Systems (ICPADS), pp. 1004-1009, 2011.

[13] Q. Chen, C. Qi, X. Zhen "Improving MapReduce Performance using
Smart Speculative Execution Strategy.", in Proc. of IEEE Transactions
on Computers, Issue No. 4, pp. 954-967,2013.

[14] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I.Stoica, "Effective
Straggler Mitigation: Attack of the Clones." In Proc. of the 10th
USENIX conference on Networked Systems Design and Implementation
(NSDI). Vol. 13, pp. 185-198, 2013.

[15] N.J. Yadwadkar, G. Ananthanarayanan, R. Katz, "Wrangler: Predictable
and Faster Jobs using Fewer Resources." in Proc. of the ACM
Symposium on Cloud Computing, pp. 1-14, 2014.

[16] Q. Chen, D. Zhang, M. Guo, Q. Deng, "SAMR: A Self-adaptive
MapReduce Scheduling Algorithm in Heterogeneous Environment." in
Proc. of IEEE 10th International Conferience on Computer and
Information Technology (CIT), pp. 2736-2743, 2010.

[17] N.J. Yadwadkar, W. Choi. "Proactive Straggler Avoidance using
Machine Learning.", White paper, University of Berkeley, 2012.

[18] I.S. Moreno, P. Garraghan, P. Townend, J. Xu, "An Approach for
Characterizing Workloads in Google Cloud to Derive Realistic Resource
Utilization Models" in Proc. of IEEE International Symposium of
Service-Oriented System Engineering (SOSE), pp. 49-60, 2013.

[19] I. Solis Moreno, P. Garraghan, P. Townend, J. Xu "Analysis, Modeling
and Simulation of Workload Patterns in a Large-Scale Utility Cloud",
IEEE Transactions on Cloud Computing, vol.2, no.2, pp.208-221, 2014.

[20] Google. Google Cluster Data V2. Available:
http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1

[21] C. Reiss, J. Wilkes, "Google Cluster-Usage Traces: Format and
Schema," Google Inc., White Paper, 2011.

[22] A. Thusoo, et al. "Hive: a Warehousing Solution over a MapReduce
Framework.", Processing of VLDB Endowment, Vol. 2, Issue 2, pp
1626-1629, 2009.

[23] M. García-Valls, T. Cucinotta, C. Lu, "Challenges in Real-time
Virtualization and Predictable Cloud Computing." Journal of Systems
Architecture 60, pp.726-740, 2014.

[24] Y.Xu, Z. Musgrave, B. Noble, M. Bailey. "Bobtail: Avoiding Long Tails
in the Cloud." in Proc. of 10th USENIX conference on Networked
Systems Design and Implementation, pp. 329-342. 2015.

